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The CHRM2 gene is thought to be involved in neuronal

excitability, synaptic plasticity and feedback regulation of

acetylcholine release and has previously been implicated

in higher cognitive processing. In a sample of 667

individuals from 304 families, we genotyped three single-

nucleotide polymorphisms (SNPs) in the CHRM2 gene on

7q31–35. From all individuals, standardized intelligence

measures were available. Using a test of within-family

association, which controls for the possible effects of

population stratification, a highly significant association

was found between the CHRM2 gene and intelligence.

The strongest association was between rs324650 and per-

formance IQ (PIQ), where the T allele was associated with

an increase of 4.6 PIQ points. In parallel with a large family-

based association, we observed an attenuated – although

still significant – population-based association, illustrating

that population stratification may decrease our chances of

detecting allele–trait associations. Such a mechanism has

been predicted earlier, and this article is one of the first to

empirically show that family-based association methods

are not only needed to guard against false positives, but

are also invaluable in guarding against false negatives.
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Individual performance across a single aspect of cognitive

ability is highly predictive of performance on other aspects of

cognitive ability. Indeed, about 40% of the population var-

iance of measures of these individual cognitive processes

can be accounted for by a single general intelligence factor

(Plomin et al. 2004). Multivariate genetic analyses indicate

that this general intelligence factor is highly heritable

(Boomsma & van Baal 1998; Cherny & Cardon 1994; Plomin

et al. 1994; Posthuma et al. 2001) and that there is a sub-

stantial overlap in the genes influencing different aspects of

cognitive ability. This implies that genes associated with one

aspect of cognitive ability are likely to be associated with

other aspects as well. As noted by Plomin et al. (2004),

these quantitative genetic findings make general intelligence

an excellent target for molecular genetic research.

In spite of its high heritability, reports on the actual genes

influencing intelligence are scarce. Recently, Comings et al.

(2003) reported an association between a variant of the

cholinergic muscarinic receptor 2 (CHRM2 ) gene explaining

1% of the variance in scores on full-scale IQ (FSIQ) and years

of education. We recently conducted an autosomal genome

scan for intelligence using two independent, unselected

samples consisting of 329 Australian families and 100

Dutch families, totalling 625 sib pairs (Posthuma et al.

2005). Although the most promising regions were 2q and

6p, we also found modest evidence for linkage with perfor-

mance IQ (PIQ) at 7q31–36 right above the CHRM2 gene.

The cholinergic muscarinic receptor family (M1-M5)

belongs to the superfamily of G-protein-coupled receptors.

These receptors activate a multitude of signaling pathways

important for modulating neuronal excitability, synaptic plas-

ticity and feedback regulation of acetylcholine (ACh) release

and cognitive processes, including learning and memory

(Hulme 1990; Volpicelli & Levey 2004; Wess 1996). On the

basis of its putative role in cognitive ability, we genotyped

three tagging single-nucleotide polymorphisms (SNPs) in the

CHRM2 gene in a sample of 667 Dutch individuals from 304

twin families. The current sample overlaps only marginally

(17%) with the sample used in the linkage analysis. A family-

based genetic association test was used, which allows eval-

uating evidence for association that is free from spurious

effects of population stratification (Abecasis et al. 2000;

Fulker et al. 1999; Posthuma et al. 2004).

Materials and methods

Subjects

All twins and their siblings were part of two larger cognitive

studies and were recruited from the Netherlands Twin

Registry, which ensures population-based sampling

(Boomsma 1998). We have previously shown such a popula-

tion to be representative of the total population with respect
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to intelligence (Posthuma et al. 2000). Informed consent was

obtained from the participants (adult cohort) or from their

parents if they were under 18 years of age (young cohort).

The current study was approved by the Institutional Review

Board of the VU University Medical Center. None of the

individuals tested suffered from severe physical or mental

handicaps, as assessed through surveys sent out to partici-

pants or their parents every 2 years.

Young cohort

The young cohort consisted of 177 twin pairs, born between

1990 and 1992, and 55 siblings. The twins were 12

(mean ¼ 12.42, SD ¼ 0.16) years of age, and the siblings

were between 8 and 15 years old at the time of testing.

There were 41 monozygotic male (MZM) twin pairs, 28

dizygotic male (DZM) twin pairs, 56 monozygotic female

(MZF) twin pairs, 25 dizygotic female (DZF) twin pairs, 27

dizygotic opposite-sex (DOS) twin pairs, 28 male siblings and

27 female siblings. Participation in this study included a

voluntary agreement to provide buccal swabs for DNA

extraction. Buccal swabs were obtained from 391 children.

Adult cohort

A total of 793 family members from 317 extended twin

families participated in the adult cognition study (Posthuma

et al. 2001). Participation in this study did not automatically

include DNA collection; however, part of the sample (284

subjects) returned to the laboratory to provide blood for DNA

extraction. Mean age was 37.3 years (SD ¼ 12.5). There

were 20 MZM twin pairs, 11 DZM twin pairs, 1 DZM triplet,

14 MZF twin pairs, 22 DZF twin pairs, 17 DOS twin pairs, 23

female siblings, 23 male siblings and 59 subjects from

incomplete twin pairs (18 males and 41 females).

Cognitive testing

In the young cohort, cognitive ability was assessed with the

Dutch adaptation of the Wechsler Intelligence Scale for

Children-Revised (WISC-R) (Wechsler 1986) and consisted

of four verbal subtests (similarities, vocabulary, arithmetic

and digit span) and two performance subtests (block design

and object assembly).

In the adult cohort, the Dutch adaptation of the Wechsler

Adult Intelligence Scale III-Revised (WAISIII-R) (Wechsler

1997) assessed IQ and consisted of four verbal subtests

(VIQ: information, similarities, vocabulary and arithmetic)

and four performance subtests (PIQ: picture completion,

block design, matrix reasoning and digit-symbol substitution).

The correlation between VIQ and PIQ is usually around 0.5

(0.53 in our data), implying that only 25% of the variance in

PIQ and VIQ is shared. Thus, a substantial part of the var-

iance in these two measures is non-overlapping, and theore-

tically, they are expected to capture different aspects of

cognitive ability. We therefore included VIQ and PIQ as mea-

sures of the two different aspects of intelligence as well as

FSIQ as a general measure of intelligence.

In both cohorts, VIQ, PIQ and FSIQ were normally distrib-

uted (Table 1).

DNA collection and genotyping

The DNA isolation from buccal swabs was performed using a

cloroform/isopropanol extraction (Meulenbelt et al. 1995).

DNA was extracted from blood samples using the salting

out protocol (Miller et al. 1988).

Zygosity was assessed using 11 polymorphic microsatel-

lite markers (Het > 0.80). Eight subjects were not included

in further association analyses due to genotypic incompat-

ibilities on the marker alleles (i.e. more than four different

marker alleles observed within one family).

SNPs were selected based on their minor allele frequency

(MAF) and genotypic correlation (r) as obtained from a ran-

domly selected Caucasian sample (http://www.celeradiag-

nostics.com/cdx/applera_genomics). MAF had to be >0.10

to avoid the rare heterozygous genotypes, and SNPs with a

r > 0.85 compared with any of the other SNPs were not

selected to avoid redundancy.

SNP genotyping was performed blind to familial status and

phenotypic data.

Three tagging SNPs were selected, rs2061174, rs324640

and rs324650, using SNP Browser version 2.0.4 (http://www.

applied biosystems.com/support/software/snplex/) (NCBI build

34) (Fig. 1).

SNP genotyping was performed as part of an SNPlex

assay. We here focus on the SNPs in the CHRM2 only, as

Table 1: Means and standard deviations of IQ in the young and adult cohorts

Young cohort Adult cohort

Total sample Genotyped Total sample Genotyped

N 409 391 793 276

Age (SD) 12.37 (0.95) 12.36 (0.90) 37.60 (13.00) 37.40 (12.42)

Mean PIQ (SD) 101.40 (12.85) 101.66 (12.96) 100.96 (12.50) 100.04 (12.40)

Mean VIQ (SD) 98.42 (19.04) 98.90 (19.02) 92.78 (13.83) 93.03 (14.36)

Mean FSIQ (SD) 99.81 (15.20) 100.21 (15.21) 95.74 (11.62) 95.59 (12.04)

FSIQ, full-scale IQ; PIQ, performance IQ; VIQ, verbal IQ.
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this gene was selected based on its putative role in cognition

and its position under one of our linkage peaks. The SNPlex

assay was conducted following the manufacturer’s recom-

mendations (Applied Biosystems, Foster City, CA, USA).

Stock genomic DNA (gDNA) solutions (50 ng/ml) were diluted

after fragmentation to a final concentration of 18.5 ng/ml.
Diluted gDNA aliquots (2 ml) were spotted and dried down

in 384-well plates (Bioplastics, Landgraaf, the Netherlands).

Previous to the oligo ligation assay (OLA) reaction, reagents

were phosphorilated and diluted (1 : 1). The OLA reaction

was performed in a total volume of 5 ml, which contained

37 ng of gDNA, 0.5 ml of ligation buffer, 0.025 ml of 48-

SNPlex ligase and 1 ml of activated ligation probe pool. The

PCR conditions were 3 min at 90 �C, 30 cycles of 15 sec-

onds at 90 �C, 30 seconds at 60 �C and 30 seconds at 51 �C

(2% ramp), followed by denaturation at 99 �C for 10 min.

After this step, a purification step was conducted after

which the OLA products were ready to be amplified in a

final volume of 10 ml. Exonuclease I 0.1 ml and lambda exo-

nuclease 0.2 ml (Applied Biosystems) were added and incu-

bated at 37 �C for 90 min followed by a deactivation step at

80 �C for 10 min. The purified OLA products were diluted

(2 : 3) for further amplification. Amplification of OLA pro-

ducts was performed in 10 ml, which contained 2 ml of

diluted OLA reaction, (�1) SNPlex amplification master mix

and (�20) SNPlex amplification primers. The OLA amplifica-

tion conditions were 95 �C for 10 min, followed by 95 �C for

15 seconds, 63 �C for 60 seconds for 30 cycles. After the

hybridization step, analysis of the fluorescence intensity was

performed in an aliquot (7.5 ml) using ABI Sequencer 3730

(Applied Biosystems). All pre-PCR steps were performed on

a cooled block. Reactions were carried out in Gene Amp

9700 Thermocycler (Applied Biosystems). Data were ana-

lyzed using GENEMAPPER v3.7 (Applied Biosystems).

Statistical analyses

Allele frequencies of the three selected SNPs were esti-

mated in both young and adult cohorts using PEDSTATS

(http://www.sph.umich.edu/csg/abecasis/PedStats) in which

a Hardy–Weinberg test is implemented, based on an exact

calculation of the probability of observing a certain number of

heterozygotes conditional on the number of copies of the

minor SNP allele.

We first determined the heritability of IQ scores in the

young and adult cohorts using the standard strategy of com-

paring MZ and DZ twin resemblance. Specifically, we used

the variance decomposition framework implemented in Mx

(Posthuma et al. 2003).

Genetic association tests were conducted using the pro-

gram QTDT which implements the orthogonal model pro-

posed by Abecasis et al. (2000) (see also Fulker et al. 1999;

Posthuma et al. 2004). This model allows to decompose the

genotypic effect into orthogonal between-family (bb) and

within-family (bw) components and also models the residual

sib-correlation as a function of polygenic or environmental

factors. MZ twins can be included and are modeled as such,

by adding zygosity status to the datafile. They are not infor-

mative for the within-family component (unless they are

paired with non-twin siblings) but are informative for the

between-family component. The between-family association

component is sensitive to population admixture, whereas the

within-family component is significant only in the presence of

linkage disequilibrium (LD) due to close linkage. Spurious

associations may arise in a population that is a mix of two

or more genetically distinct subpopulations. Any trait that is

more frequent in one of the subpopulation(s) (e.g. because

of assortative matting or cultural differences) will show a

statistical association with any allele that has a different

frequency across those subpopulation(s) (e.g. as a result

of different ancestors or genetic drift). In practice, more

than two subpopulations may have combined, and it will

not be obvious from the combined populations whether the

sample is stratified and in what way.

If population stratification acts to create a false association, the

test for association using the within-family component is still

valid. More importantly, if population stratification acts to hide a

genuine association, the test for association using the within-

family component has more power to detect this association

than a population-based association test. To correct for multiple

testing, the Monte-Carlo permutation framework as

implemented in QTDT is used to calculate empirical P-values

(Abecasis et al. 2000). Empirical P-values provide an indication

of the empirical levels of type I errors, conditional on the

observed, multivariate data.

Results

Comparison of MZ and DZ twin similarities for IQ measures

showed that the observed variation in IQ could be attributed

to additive genetic variance and unique environmental vari-

ance and not to shared environmental variance. Heritabilities

of PIQ, VIQ and FSIQ were 0.73 (95% CI 0.63–0.80), 0.70

(95% CI 0.59–0.78) and 0.80 (95% CI 0.72–0.85), respect-

ively, in the young cohort. Using the complete adult cohort,

the respective heritabilities for PIQ, VIQ and FSIQ were 0.71

(95% CI 0.62–0.77), 0.78 (95% CI 0.72–0.83) and 0.78 (95%

CI 0.72–0.83). These heritability estimates are comparable

with those reported previously for these age cohorts in the

Dutch population (Bartels et al. 2002; Posthuma et al. 2001).
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Figure 1: Location of single-nucleotide polymorphisms

(SNPs) within the CHRM2 gene on chromosome 7.
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In total, 667 subjects were available for SNP genotyping. On

the basis of blind controls and MZ checks, no genotyping

errors were found. For SNP rs2061174, 2.8% of the geno-

types could not be called (648 genotypes succeeded), for SNP

rs324640, 4.0% of the genotypes could not be called (640

genotypes succeeded) and for SNP rs324650, 5.7% of the

genotypes could not be called (629 genotypes succeeded).

SNP rs2061174 (A/G) in intron 4 had an MAF of 0.34. Two

SNPs in intron 5, rs324640 (A/G) and rs324650 (A/T), had

similar MAFs between 0.48 and 0.49. Observed haplotype

frequencies were estimated using HAPLOVIEW 3.11 that imple-

ments the EM-algorithm (http://www.broad.mit. edu/mpg/

haploview/). Only one twin from each MZ pair was included.

LD was calculated from the estimated haplotype frequencies.

The two SNPs in intron 5, lying 4 kb apart, are in very strong

LD (r2 > 0.90). The SNP in intron 4 lies about 28 kb apart from

the SNPs in the downstream region and shows lower LD with

the two SNPs in intron 5 (r2 < 0.35).

Genotypic means per cohort are summarized in Tables 2a

and b. The three SNPs were in Hardy–Weinberg equilibrium

in both cohorts as well as in the combined cohort. As the

heritabilities were comparable across cohorts, as well as the

allele frequencies and the directions of the genotypic effects,

we pooled the two cohorts for the association tests.

The models used in QTDT included the effects of age and

sex on the means and modeled additive allelic between- and

within-family effects. When testing for the presence of popu-

lation stratification (i.e. equivalence of the between- and

within-family effects), we found significant evidence for the

presence of population stratification in the association

Table 2a: Means (SD) per genotype for performance IQ (PIQ), verbal IQ (VIQ) and full-scale IQ (FSIQ) in the young cohort

Genotype Total N

rs2061174 GG AA AG

Frequency 0.43 0.45 0.12

Mean PIQ (SD) 100.16 (13.75) 102.20 (12.55) 105.26 (11.57) 381

Mean VIQ (SD) 99.81 (18.71) 97.56 (19.75) 101.00 (18.32) 382

Mean FSIQ (SD) 99.64 (15.52) 99.93 (15.40) 103.62 (14.16) 381

rs324640 AA AG GG

Frequency 0.28 0.50 0.22

Mean PIQ (SD) 100.60 (14.02) 101.81 (12.82) 102.67 (12.27) 381

Mean VIQ (SD) 98.78 (18.82) 98.41 (18.82) 100.38 (18.96) 382

Mean FSIQ (SD) 99.18 (16.35) 100.10 (14.67) 101.88 (15.42) 381

rs324650 AA AT TT

Frequency 0.29 0.50 0.21

Mean PIQ (SD) 100.50 (14.15) 101.76 (12.74) 102.96 (12.051) 379

Mean VIQ (SD) 97.67 (19.47) 98.94 (18.93) 100.05 (18.81) 380

Mean FSIQ (SD) 98.56 (16.11) 100.35 (14.83) 101.89 (15.05) 379

Table 2b: Means (SD) per genotype for performance IQ (PIQ), verbal IQ (VIQ) and full-scale IQ (FSIQ) in the adult cohort

Genotype Total N

rs2061174 AA AG GG

Frequency 0.45 0.44 0.11

Mean PIQ (SD) 98.59 (12.55) 100.95 (12.79) 102.76 (9.21) 259

Mean VIQ (SD) 91.94 (14.08) 94.15 (15.71) 93.62 (9.69) 260

Mean FSIQ (SD) 94.06 (12.08) 97.27 (12.67) 96.03 (8.12) 256

rs324640 AA AG GG

Frequency 0.26 0.44 0.30

Mean PIQ (SD) 98.17 (13.39) 100.68 (12.64) 101.09 (11.5) 252

Mean VIQ (SD) 91.26 (16.770) 93.28 (13.76) 93.559 (13.33) 251

Mean FSIQ (SD) 94.60 (12.23) 95.71 (12.92) 96.17 (10.78) 248

rs324650 AA AT TT

Frequency 0.27 0.45 0.29

Mean PIQ (SD) 98.84 13.07 100.41 (12.78) 100.07 (12.51) 238

Mean VIQ (SD) 92.33 16.13 93.22 (13.23) 93.39 (13.70) 239

Mean FSIQ (SD) 95.33 11.72 95.48 (12.48) 95.94 (11.09) 235

Gosso et al.
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between rs324650 and both PIQ and FSIQ (P < 0.05), indicat-

ing the association effects across the total population are not

equal to the association effects as found within families. As it

seems obvious that population stratification is caused by pool-

ing the two age cohorts, we also tested for population strati-

fication in each cohort separately and found evidence for

population stratification for the same SNPs, in the same direc-

tion (i.e. between-family effects smaller than within-family

effects), in the young cohort (rs324650 with PIQ: rs324650

with FSIQ: P < 0.05), but not in the adult cohort. The within-

family effects were comparable across both cohorts.

Using the within-family association, a significant associa-

tion of PIQ with all three SNPs was found. The strongest

effect was seen with the T allele of rs324650 (P < 0.001),

which was associated with an increase of 4.6 IQ points

among family members (Table 3). Put otherwise, the differ-

ence between AT and TT genotypes or AT and AA is 4.6,

whereas the difference between AA and TT genotypes is

estimated at 9.2.

Notably, the effect sizes of the increaser alleles were all

reduced, although still significant, in the total association test

as compared with the effect sizes based solely on the within-

family association. As within-family associations are not

sensitive to spurious associations due to population stratifi-

cation, whereas between-family associations are, this means

that stratification acted to hide a true association. Figure 2

shows the observed mean difference in IQ points between

different genotypes for individuals within families, for asso-

ciations significant at the 0.01 level.

Discussion

To investigate the possible role of the CHRM2 gene in intelli-

gence, we employed a family-based genetic association test.

Significant evidence was found for an association between

the CHRM2 gene and IQ, showing an effect size of 4.6 IQ

points for the increaser allele of SNP rs324650 (P < 0.001).

We also found that the effect sizes based on the within-

family effects were 1.5-2.5 times as large as the population-

based effect sizes, suggesting that population stratification

resulted in an underestimation of the genuine allelic effect.

The attenuation of allelic effects due to population stratifi-

cation occurs when across subpopulations higher trait values

tend to go together with a lower frequency of the increaser

allele, or vice versa. This is consistent with findings from

mouse model systems in which it has been shown that the

same allele at the same locus may cause a major disease in

one mouse strain, but no disease phenotype in a strain with a

different genetic background (e.g.Linder 2001; Liu et al.

2001; Montagutelli 2000). The same has been reported for

effects on gene expression in different environmental back-

grounds (Cabib et al. 2000; Crabbe et al. 1999). In humans,

the presence of different genetic (or environmental) back-

grounds that derive from mixed strata may differentially

affect the expression of gene variants (G � E interaction).

As non-Mendelian traits are likely to be influenced by multi-

ple (risk-) factors which in turn are likely to interact with

each other, neglecting the presence of population stratifica-

tion may realistically hide genuine allele-trait associations,

Table 3: Tests for genetic association between the CHRM2 gene and intelligence

Within-family association Population-based association

w2 Genotypic effect w2 Genotypic effect

N (nominal P-value) (increaser allele) N (nominal P-value) (increaser allele)

rs2061174

PIQ 175 7.3 (<0.01) 3.7 (G) 648 9.0 (<0.01) 2.4 (G)

VIQ 175 0.4 1.2 (G) 648 0.0 0.2 (G)

FSIQ 174 2.4 2.3 (G) 644 2.3 1.4 (G)

rs324640

PIQ 209 7.7 (<0.01)* 3.7 (G) 640 5.2 (<0.05)* 1.8 (G)

VIQ 209 1.9 2.5 (G) 640 1.2 1.1 (G)

FSIQ 207 4.6 (<0.01) 3.1 (G) 636 2.9 1.4 (G)

rs324650

PIQ 193 12.1 (<0.001)* 4.6 (T) 629 6.0 (<0.05)* 1.9 (T)

VIQ 193 3.9 (<0.05) 3.6 (T) 629 1.8 1.4 (T)

FSIQ 191 8.0 (<0.01)* 4.1 (T) 625 4.0 (<0.05)* 1.7 (T)

FSIQ, full-scale IQ; PIQ, performance IQ; VIQ, verbal IQ.

Note: N denotes the number or individuals. For the within-family association test, it denotes the number of individuals informative for the within-

family association, i.e. those individuals who occur in families with more than one genotype. The N for the between-family association differs

slightly from the added totals of Tables 2a and 2b as QTDT assumes equal genotypes for monozygotic twins and includes non-typed MZ

cotwins with IQ scores.

*Statistically significant based on 1000 Monte-Carlo permutations.
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and may be responsible in part for the difficulties in repli-

cating reported associations. We previously predicted this

phenomenon based on theory and simulations (Posthuma

et al. 2004) and now show it to occur in practice as well.

The most significant association was seen with rs324650

where the presence of the T allele was associated with an

increase of 4.6 points for PIQ. This extends earlier findings of

Comings et al. (2003) who found a weaker association

between the CHRM2 gene and both total IQ score and

years of education, which was only significant after stratify-

ing on the parental origin of transmission. The current study

therefore looked at different SNPs than the SNP that was

used by Comings et al. (2003). Their SNP was in the 30 UTR

region and is not classified as a tagging SNP. The SNPs used

in the current sample are tagging SNPs, two of which

(rs324640 and rs324650) are in LD with the SNP used in

the study by Comings et al. (2003). These two SNPs are also

the ones that show a significant association with IQ in the

current study, albeit stronger than in the study by Comings

et al. (2003). This study thus provides further evidence of a

role of the cholinergic muscarinic receptor in cognition.

The M2 subtype cholinergic muscarinic receptor is, like the

M1 and M4 subtypes, predominantly expressed in the CNS

(Volpicelli & Levey 2004). The M2 receptors are predomi-

nantly located at the presynaptic level (Levey et al. 1991;

Mrzljak et al. 1993), spread throughout the brain but with

the highest levels in the cerebral cortical, forebrain choliner-

gic nuclei, cervical spinal cord region, cerebellum and thala-

mus (Flynn & Mash 1993; Piggott et al. 2002; Spencer et al.

1986; Wei et al. 1994). M2 receptors are selectively coupled

to G-proteins of the Gi/Go family, which mediate the inhibition

of voltage-sensitive Ca2þ channels. Furthermore, the M2

receptor subtype is likely to have an additional role in choliner-

gic modulation of excitatory and inhibitory hippocampal cir-

cuits acting as autoreceptor (Akam et al. 2001; Kitaichi et al.

1999a, 1999b; Rouse et al. 2000; Shapiro et al. 1999; Zhang

et al. 2002), inhibiting ACh release from cholinergic terminals.

It is well known that exposure to a novel environment

causes pronounced ACh release at the level of the neocortex

and hippocampus and that these high levels of ACh are

necessary for memory formation (Miranda et al. 2000;

Pepeu & Giovannini 2004; Ramirez-Lugo et al. 2003). Many

studies in animals confirm the importance of cholinergic

activity for the acquisition and retrieval of several learning

tasks (Orsetti et al. 1996; Vannucchi et al. 1997). Importantly,

M2-knockout animal models and studies using selective

receptor antagonist agents have shown enhancement in

performance in several tasks with cognitive components

(Carey et al. 2001; Quirion et al. 1995; Seeger et al. 2004).

Finally, higher M2 distribution volumes have been found in

post-mortem and in vivo studies in Alzheimer’s disease (AD)

patients compared with healthy controls (Cohen et al. 2003).

The association found in the present study as well as by

Comings and coworkers was all with SNPs in non-coding

regions of the gene. We found association with SNPs

located in intron 4 (rs2061174) and intron 5 (rs324640 and

rs324650) of the CHRM2 gene. Comings et al. (2003) found

an association between the CHRM2 gene and IQ with an

SNP in the 30 UTR of the gene. The transcription of the

CHRM2 gene is complex. Krejci et al. (2004) determined

that the 50 UTR of CHRM2 consists of four non-coding regions

rs324640–PIQ

0

5

10

15

20

D
iff

er
en

ce
 in

 IQ

rs2061174–PIQ

0

5

10

15

20

sib 1 = AG
sib 2 = AA

sib 1 = GG
sib 2 = AG

sib 1 = GG
sib 2 = AA

sib 1 = AG
sib 2 = AA

sib 1 = GG
sib 2 = AG

sib 1 = GG
sib 2 = AA

sib 1 = AT
sib 2 = AA

sib 1 = TT
sib 2 = AT

sib 1 = TT
sib 2 = AA

sib 1 = AT
sib 2 = AA

sib 1 = TT
sib 2 = AT

sib 1 = TT
sib 2 = AA

D
iff

er
en

ce
 in

 IQ

rs324650–FSIQ

0

5

10

15

20

D
iff

er
en

ce
 in

 IQ

rs324650–PIQ

0

5

10

15

20

D
iff

er
en

ce
 in

 IQ

Figure 2: Observed mean difference in IQ scores between

siblings (i.e. within family pairs) with different genotypes

for those single-nucleotide polymorphisms (SNPs) in the

CHRM2 gene that show a significant association. Sibling

pairs include dizygotic pairs and non-twin sibling pairs. The number

of pairs on which the difference scores are based is: rs2061174:

97 (AG-AA), 64 (GG-AG) and 15 (GG-AA); rs324640: 87 (AG-AA),

97 (GG-AG) and 9 (GG-AA); rs324650: 75 (AG-AA), 98 (GG-AG) and

11 (GG-AA). FSIQ, full-scale IQ; PIQ, performance IQ.
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whose different combinations give rise to eight splice variants.

In addition, expression is regulated by two promoters. One

promoter regulates expression at the cardiac cell level,

whereas the second promoter could be considered neuron

specific. Experiments using reporter genes demonstrated that

additional regulatory sequences are present further upstream

of the proximal promoter(s) and, even more interesting, within

the intronic regions (Krejci et al. 2004).

On the basis of the findings from animal and functional

studies (Carey et al. 2001; Krejci et al. 2004; Miranda et al.

2000; Pepeu & Giovannini 2004; Quirion et al. 1995; Ramirez-

Lugo et al. 2003; Seeger et al. 2004), we hypothesize that a

non-coding polymorphism might be involved in the regulation

of expression or alternative splicing of the CHRM2 gene.

This polymorphism may subsequently affect mAChR2 tran-

scription, as well as the fine-tuning negative feedback of this

particular receptor, making it less reactive to ACh increases

during cognitive processing. Another possibility is that SNP

rs324650 is in strong LD with the causative regulatory variant

in the CHRM2 gene.

Identifying genes for variation in the range of normal intelli-

gence could provide important clues to the genetic etiology of

disturbed cognition in, for example, autism, reading disorder

and attention deficit and hyperactivity disorder (ADHD). It is

worth to mention the first genome-wide linkage screen in

autism, performed by the International Molecular Genetic

Study of Autism Consortium, involving sib pairs from the

United Kingdom. Interestingly, the strongest linkage signal

for autism occurred at 7q near the CHRM2 gene (for a review

on linkage scans for autism, see Wassink et al. 2004). With

regard to attention problems, it is of note that a number of

recent findings clearly implicate deviant ACh neurotransmis-

sion in attentional processing (Beane & Marrocco 2004; Yu &

Dayan 2005). Thus far, candidate gene approaches for atten-

tion disorder have focused only on genetic variation in nicoti-

nergic receptors (Sacco et al. 2004; Todd et al. 2003). The

results in the current study tentatively suggest that muscar-

inergic signaling may be involved as well.
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