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Combining datasets across independent studies can boost statistical power by increasing the numbers of obser-
vations and can achieve more accurate estimates of effect sizes. This is especially important for genetic studies
where a large number of observations are required to obtain sufficient power to detect and replicate genetic ef-
fects. There is a need to develop and evaluate methods for joint-analytical analyses of rich datasets collected in
imaging genetics studies. The ENIGMA-DTI consortium is developing and evaluating approaches for obtaining
pooled estimates of heritability through meta-and mega-genetic analytical approaches, to estimate the general
additive genetic contributions to the intersubject variance in fractional anisotropy (FA)measured from diffusion
tensor imaging (DTI). We used the ENIGMA-DTI data harmonization protocol for uniform processing of DTI data
from multiple sites. We evaluated this protocol in five family-based cohorts providing data from a total of 2248
children and adults (ages: 9–85) collectedwith various imaging protocols.We used the imaging genetics analysis
tool, SOLAR-Eclipse, to combine twin and family data fromDutch, Australian andMexican-American cohorts into
Kochunov).
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one large “mega-family”. We showed that heritability estimates may vary from one cohort to another. We used
two meta-analytical (the sample-size and standard-error weighted) approaches and a mega-genetic analysis to
calculate heritability estimates across-population.We performed leave-one-out analysis of the joint estimates of
heritability, removing a different cohort each time to understand the estimate variability. Overall, meta- and
mega-genetic analyses of heritability produced robust estimates of heritability.

© 2014 Elsevier Inc. All rights reserved.
Introduction

Human brain mapping studies have shown substantial advantages
of pooling data across multiple studies (Van Horn et al., 2004). Genetic
analyses, particularly genome-wide association studies (GWAS), tend
to be limited in statistical power as there is typically a small (b0.5%,
Flint andMunafò, 2013) contribution to complex phenotypic variability
from individual, common genetic variants. This limitation is especially
problematic for imaging genetic studies of human brain. The structure
and function of the human brain is greatly influenced by genetics, but
the proportion of the variance due to individual differences in the
human genome depends on the brain structure and measure assessed
(Kochunov et al., 2009, 2010).

A large number of neuroimaging traits with ever-increasing
spatial resolution are becoming increasingly available to describe
the regional complexity of brain variability. This presents a daunting
challenge where the number of degrees of freedom, in both the im-
aging and genetics, can be overwhelming for any single imaging-
genetic study. Therefore, data pooling strategies are crucial whereby
data from multiple large imaging genetics studies can be analyzed
together.

Imaging and genetics have both greatly advanced neuroscience
in recent years. The two fields have developed in parallel but in
the last decade, there was a push to merge them to fully capitalize
on their power leading to the development of the new field of imag-
ing genetics. This field emerged as a variation of classical genetic
analyses that related diagnostic, clinical and/or behavioral measures
to locations and specific variants in the genome. This new field is
thought to be able to provide new approaches to characterize,
treat and potentially prevent some brain-related disorders. Insight
into biological mechanisms that predispose individuals to these
types of illnesses holds the promise of yielding potential new thera-
pies and a significant reduction of this considerable burden. Advan-
tages of imaging genetics include the presumed greater biological
proximity to genetic variation and the quantitative nature of imag-
ing phenotypes, which ideally suited for partitioning phenotypic
variance into variance explained by genetic and environmental
factors. Therefore, the statistical power of genetic analysis depends
on both the closeness of a phenotype to the action of the gene and
the precision of the measurements. Modern MRI offers phenotypic
measurements that may provide a more detailed description of the
disorder than clinical symptoms or neuropsychological assessments,
and many of these measures have high precision and reproducibili-
ty. Our experience and that of others indicate that the inter-session,
scan-rescan variability of many common imaging measurements
can be low, in the range of 1–5% (Agartz et al., 2001; Julin et al.,
1997; Kochunov and Duff Davis, 2009; Kochunov et al., 2012b;
Lemieux et al., 1999; Lerch and Evans, 2005). Therefore, the imaging
genetics approach may help ascertain effects of specific genetic var-
iants on the human brain and may also discover genetic variants as-
sociated with neurological or psychiatric illnesses (Braskie et al.,
2011; Chen et al., 2012; Glahn et al., 2007, 2010; Hasler and
Northoff, 2011; Thompson et al., 2001; van den Heuvel et al., 2013).

In imaging genetic studies, up to a million voxel-based imaging
traits may be analyzed. The required correction for multiple compar-
isons may limit the statistical power for gene discovery, even in the
largest individual imaging studies of hundreds or even thousands
of subjects. One solution is collaborative data sharing and pooling
through consortia such as Enhancing Neuroimaging Genetics
through Meta-Analysis (ENIGMA) Consortium (http://enigma.ini.
usc.edu). Recent examples highlight the potential of large, meta-
analyses of genome-wide association studies (GWAS) to uncover ge-
netic loci that are reliably and consistently associated with MRI-
based phenotypes in worldwide datasets, including hippocampal
volumes (Bis et al., 2012; Stein et al., 2012), intracranial volumes
(Ikram et al., 2012; Stein et al., 2012), and head circumference
(Taal et al., 2012). Recently, the ENIGMA-DTI Consortium working
group was organized to develop methods to facilitate multi-site
approaches to study genetic influences on white matter micro-
architecture and integrity, assessed using diffusion tensor imaging
(DTI). Here we specifically focus on the fractional anisotropy (FA)
as it is the most commonly analyzed scalar parameter extracted
from DTI (Basser and Pierpaoli, 1996; Basser et al., 1994). The abso-
lute FA values are sensitive to fiber coherence, myelination levels,
and axonal integrity, and have been widely used as an index of
white matter integrity (Thomason and Thompson, 2011). FA has
emerged as a sensitive index of diffuse abnormalities in many brain
disorders including Alzheimer's disease (AD) (Clerx et al., 2012;
Teipel et al., 2012); in many studies, it is related to cognitive perfor-
mance (Penke et al., 2010a, 2010b) and is altered in numerous psy-
chiatric disorders including major depressive disorder (Carballedo
et al., 2012) and bipolar disorder (Barysheva et al., 2012; Sprooten
et al., 2011). Patient-control differences in FA values are also
among the most replicable and consistent neuroimaging findings in
schizophrenia (Alba-Ferrara and de Erausquin, 2013; Friedman
et al., 2008; Kochunov et al., 2012a; Mandl et al., 2012; Nazeri
et al., 2013; Perez-Iglesias et al., 2011).

The goal of the ENIGMA-DTI Working Group is to develop gen-
eralizable analyses, methods, and techniques for extraction and
combined genetic analysis of phenotypes from DTI data collected
from imaging groups around the world, regardless of the imaging
acquisition or specific population under study. Its overall aim is to
discover genetic factors influencing or related to white matter
architecture. The first step towards this goal was the development
of homogenization protocols to reliably extract phenotypic mea-
surements from data collected with different imaging equipment
and parameters (Jahanshad et al., 2013). The next step is to evalu-
ate different statistical approaches for data pooling and specifically
compare meta and megaanalytical techniques to choose one
approach that yields the greatest improvements in the power of
genetic discovery while accommodating for potential for genetic
diversity among samples. Two specific advantages of data pooling
are the increased power for genetic discovery and the genetic diver-
sity of the population sample. Data pooling makes it easier to iden-
tify genetic variants that exert only small individual effects (Zuk
et al., 2012). However, pooling data may be confounded by varia-
tions in data acquisition across datasets, heterogeneities in study
population, and other factors. Another limitation to data pooling
arises from restrictions that can arise with sharing raw data (both
ethical and regulatory), including either phenotypic or genetic
information.

Here, we tested and compared the outcomes of three approaches
to pool imaging genetic data from five separate cohorts worldwide,
that had used various imaging acquisition parameters and popula-
tion structures for analysis of heritability of the DTI–FA. Of course
the ultimate goal is to detect specific variants on the genome that

http://enigma.ini.usc.edu
http://enigma.ini.usc.edu
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relate to DTI measures; but in the past we have found it boosts power
in GWAS to first rank phenotypes by heritability, discarding the least
promising ones for data and dimensionality reduction (Jahanshad
et al., 2013).

Two different approaches were used to perform aggregation of
heritability estimates derived from each cohort individually, known
as meta-analytical pooling, where no raw data were shared between
sites. One meta-analytic approach tested here weighted heritability
estimates by the standard errors derived from the heritability
estimates (MA-SE) (Borenstein et al., 2009); the other approach,
although not optimal in this scenario as explained in the discussion,
is commonly used for meta-analysis of heritability estimates of twin-
only studies (Bergen et al., 2007; Rhee and Waldman, 2002) and
therefore was used here for comparison; it involves weighting indi-
vidual results by the total number of subjects per sample (MA-N).
The third approach, the “mega-analytic” approach, individually nor-
malizes each cohort to the same imaging template, and then pools
together all data. For amega-analytic GWAS all individual subject ge-
notype information, or some imputed version of it, would commonly
be shared. But in the case presented here, as we were not performing
a genome-wide scan, the shared data included only the population
and family structure of the cohort in addition to the FA images and
covariate information.

All data was processed using the harmonization protocol previ-
ously developed by our group ((Jahanshad et al., 2013) provided
on-line at http://enigma.ini.usc.edu/ongoing/dti-working-group/).
This included the use of the ENIGMA protocol for following the QA/
QC steps for each site, registration to the ENIGMA-DTI target, extrac-
tion of white matter skeleton, followed by extraction of tract-
average FA values. After processing all datasets with this protocol,
we performed heritability analyses using the Sequential Oligogenic
Linkage Analysis Routines (SOLAR) software package (http://www.
nitrc.org/projects/se_linux) (Almasy and Blangero, 1998) for tract-
average FA values as well as on a detailed voxel-wise level. The
data pooling approaches we compared to assess power and stability
in estimation.

As an extension of our prior paper, this paper presents much
deeper view of DTI heritability in the largest sample ever analyzed.
With an unprecedented sample size of over 2200 scans, which to
the best of our knowledge is the largest for a DTI imaging genetics
study – or any DTI study, for that matter – we show the ability to
measure heritability consistently across populations in a multi-site
manner and provide estimates with narrower confidence intervals,
which is sorely needed in heritability analyses. We approximately
double our previous sample size and extend our analyses to include
populations of children. Our goal was to determine whether, regard-
less of population, we are able to prioritize targets for GWAS with re-
spect to stability, reliability, and heritability estimates. We provide
Table 1
Demographic and imaging information for the 5 cohorts used in this study are listed.

GOBS QTIM

Relatedness Pedigree Twins and siblings
Race/ethnicity Mexican-American Caucasian
Number subjects contributed 859 625
Sex 351 M/508 F 231 M/394 F
Age range (years) 19–85 21–29
Healthy Yes Yes
Scanner Siemens Bruker/Siemens
N-acquisitions 1 1
Field strength 3 T 4 T
Voxel size (mm) 1.7 × 1.7 × 3.0 1.8 × 1.8 × 2
N-gradients 55 94
N-b0 3 11
b-value (s/mm2) 700 1159
Reference Kochunov et al., 2011 de Zubicaray et al., 2008
our combined heritability results online at http://enigma.ini.usc.
edu/ongoing/dti-working-group/2014_nimg/.

Methods

Study subjects and imaging protocols

Five datasets (GOBS, QTIM, TAOS, NTR, and BrainSCALE; the acro-
nyms are detailed below) contributed data from 2203 subjects, aged
9–85 years (Table 1). All datasets were family-based studies that
allowed for measurements of heritability.

• GOBS — Genetics of Brain Structure and Function study

o Subjects: The sample comprised 859 (351 M/508 F, mean age:
43.2 ± 15.0) Mexican-American individuals from 73 extended
pedigrees (average size, 17.2 people, range = 1–247) from the
San Antonio Family Study (Olvera et al., 2011). Only 814 subjects
in the sample (350 M/464 F, mean age 43.1 ± 15.2, ranging from
19 to 85 years) had a significant genetic relationship with other
subjects and provided contribution to the heritability measure-
ment. However, the entire sample was used to estimate the covar-
iate effects. Individuals in this cohort have actively participated in
research for over 18 years and were randomly selected from the
community with the constraints that they are of Mexican-
American ancestry, part of a large family, and live in the San
Antonio region. All participants providedwritten informed consent
on forms approved by the Institutional Review Boards at the Uni-
versity of Texas Health Science Center San Antonio (UTHSCSA)
and Yale University before participating in any aspect of the
study. Imaging: All imagingwas performed at the Research Imaging
Institute, UTHSCSA, on a Siemens 3 T Trio scanner using a multi-
channel phased array head coil. A single-shot single refocusing
spin-echo, echo-planar imaging sequence was used to acquire
diffusion-weighted data with a spatial resolution of 1.7 × 1.7 ×
3.0 mm. The sequence parameters were: TE/TR = 87/8000 ms,
FOV = 200 mm, 55 isotropically distributed diffusion weighted
directions, two diffusion weighting values, b = 0 and 700 s/mm2

and three b = 0 (non-diffusion-weighted) images.
• QTIM — the Queensland Twin IMaging study
o Subjects: The sample comprised of 625 young adult Australian twins

and siblings (231 M/394 F, average age = 22.9 ± 2.1 year, range
21–29), all of European ancestry. The sample including 79 monozy-
gotic (MZ) pairs, and 80 dizygotic (DZ) pairs and their siblings. Ad-
ditional information on the cohort, inclusion and exclusion criteria,
and the study goals may be found in (de Zubicaray et al., 2008).

o Imaging: A high angular resolution diffusion imaging protocol was
used, consisting of a 14.2-minute, 105-image acquisition, with a
4-Tesla Bruker Medspec MRI scanner. Imaging parameters were:
TAOS Adults NTR BrainSCALE NTR

Twins and siblings Twins Twins
Caucasian Caucasian Caucasian
319 246 199
158 M/161 F 93 M/153 F 100 M/99 F
12–15 18–45 9–10
Yes Yes Yes
Siemens Intera Achieva
1 1 2
3 T 3 T 1.5 T
1.7 × 1.7 × 3.0 2.5 × 2.5 × 2.5 2.5 × 2.5 × 2.5
55 32 32
3 1 8
700 1000 1000
Kochunov et al., 2011 den Braber et al., 2013 Brouwer et al., 2010

http://enigma.ini.usc.edu/ongoing/dti-working-group/
http://www.nitrc.org/projects/se_linux
http://www.nitrc.org/projects/se_linux
http://enigma.ini.usc.edu/ongoing/dti-working-group/2014_nimg/
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Table 2
Regions of interest (ROIs) examined along the ENIGMA-DTI skeleton as defined by the JHU
white matter parcellation atlas (Mori et al., 2008). Analyses for other JHU ROIs are provid-
ed in the Supplement.

Average Skeleton FA

GCC Genu of the corpus callosum
BCC Body of corpus callosum
SCC Splenium of corpus callosum
FX Fornix
CGC Cingulum (cingulate gyrus) — L and R combined
CR Corona radiata— L and R anterior and posterior sections combined
EC External capsule — L and R combined
IC Internal capsule — L and R anterior limb, posterior limb, and

retrolenticular parts combined
IFO Inferior fronto-occipital fasciculus— L and R combined
PTR Posterior thalamic radiation — L and R combined
SFO Superior fronto-occipital fasciculus
SLF Superior longitudinal fasciculus
SS Sagittal stratum (includes inferior longitudinal fasciculus and inferior

fronto-occipital fasciculus) — L and R combined
CST Corticospinal tract
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TR/TE= 6090/91.7 ms, FOV= 23 cm, with a 128 × 128 acquisition
matrix. Each 3D volume consisted of 55 2-mm thick axial slices with
no gap and 1.8 × 1.8 mm2 in-plane resolution. 105 images were
acquired per subject: 11 with no diffusion sensitization (i.e., T2-
weighted b0 images) and 94 diffusion-weighted (DW) images (b
= 1159 s/mm2) with gradient directions uniformly distributed on
the hemisphere.

• TAOS — the Teen Alcohol Outcomes Study.

o Subjects: The sample comprised of 319 twin and sibling adoles-
cent participants (158 M/161 F) residing in San Antonio, Texas.
Subjects were aged 12 to 15 years, average age: 13.4 years ±
0.96 SD at the time of imaging. The study consisted of 12 pairs
of twins (MZ = 4/DZ = 8) and siblings with the average family
size of 2.1 ± 0.2. All subjects were healthy and free of drug
abuse at the time of the imaging. All subjects and their parents
signed informed assents and informed consents, respectively.

o Imaging: Diffusion imaging was performed at the Research Im-
aging Center, UTHSCSA, on a Siemens 3 T Trio scanner the same
protocol as GOBS study.

• NTR — Netherlands Twin Register

o Subjects: 246 adults (93/153 M/F; average age 33.9 ± 10.1,
range 19–57), monozygotic and dizygotic twin pairs (72/48/6
MZ/DZ/Sibs), were recruited from the Netherlands Twin Regis-
try. Exclusion criteria consisted of having any metal material in
the head, having a pacemaker, a known history of any major
medical condition or psychiatric illness (den Braber et al.,
2008, 2012).

o Imaging: Diffusion tensor data were collected on a 3.0 T Philips
Intera MR scanner (32 diffusion-weighted volumes with differ-
ent non-collinear diffusion directions with b-factor = 1000 s/
mm2 and one b-factor = 0 s/mm2 image, flip angle = 90°; 38
axial slices of 3.0 mm; no slice gap; voxel size, 2.0 × 2.0
× 3.0 mm; FOV = 230 mm; TE = 94 ms; TR = 4863 ms; no car-
diac gating; and total scan duration = 185 s) (den Braber et al.,
2011).

• BrainSCALE — Brain Structure and Cognition: an Adolescent Longi-
tudinal Twin Study into genetic Etiology
University Medical Center Utrecht and Netherlands Twin Register,
Amsterdam

o Subjects: 199 children (100 M/99 F; average age 9.2 ± 0.1, range
9.0–9.6), mono and dizygotic twin pairs (42/57 MZ/DZ), were
recruited from families participating in the BrainSCALE cohort
(van Soelen et al., 2012) that was recruited from the Netherlands
Twin Register (van Beijsterveldt et al., 2013). Imaging of this cohort
was performed in the University Medical Center Utrecht (Peper
et al., 2009). Exclusion criteria consisted of having any metal mate-
rial in the head, having a pacemaker, a known history of any major
medical condition or psychiatric illness. Zygosity was determined
based on DNA polymorphisms, using 8–11 highly polymorphic di-
, tri- and tetranucleotide genetic markers and confirmed by
genome-wide single nucleotide polymorphism (SNP) data. All
subjects and their parents signed informed assents and informed
consents, respectively. The studywas approved by the Central Com-
mittee on Research involving Human Subjects of the Netherlands
(CCMO) and was in agreement with the Declaration of Helsinki
(Edinburgh amendments).

o Imaging: MRI data were collected on a 1.5 Philips Achieva MR scan-
ner (32 diffusion-weighted volumes with different non-collinear
diffusion directions with b-factor = 1000 s/mm2 and 8 diffusion-
unweighted volumes with b-factor = 0 s/mm2; parallel imaging
SENSE factor = 2.5; flip angle = 90°; 60 slices of 2.5 mm; no slice
gap; 96 × 96 acquisition matrix; reconstruction matrix 128 × 128;
FOV = 240 mm; TE = 88 ms; TR = 9822 ms; two repetitions; no
cardiac gating; and total scan duration = 296 s). More information
may be found in Brouwer et al. (2010, 2012).
ENIGMA-DTI processing

We used the ENIGMA-DTI protocols for multi-site processing and
extraction of tract-wise average FA values as described in our prior
work (Jahanshad et al., 2013). Briefly, FA images from all subjects
were non-linearly registered to ENIGMA target brain using FSL fnirt
(Smith et al., 2006, 2007) as a default registration. This targetwas creat-
ed from the images of the participating studies as theminimal deforma-
tion target as previously described (Jahanshad et al., 2013). The data
were then processed using the tract-based spatial statistics (TBSS) ana-
lyticmethod (Smith et al., 2006, 2007)modified to project individual FA
values on the ENIGMA-DTI skeleton. Following the extraction of the
skeletonized white matter and projection of individual FA values,
ENIGMA-tract-wise regions of interest (ROIs), derived from the Johns
Hopkins University (JHU) white matter parcellation atlas (Mori et al.,
2008), were transferred to extract the mean FA across the full skeleton
and average FA values for twelve major white matter tracts, breaking
down the corpus callosum into 3 regions, for a total of 15 ROIs. The re-
gions analyzed are listed in Table 2. The full brain average FA values
were calculated to include all voxels in the ENIGMA-DTI skeleton, not
just those voxels in the segmented regions of interest, thereby also in-
cluding peripheral white matter regions. The protocol, target brain,
skeleton mask, source code and executables, are publicly available
(http://enigma.ini.usc.edu/ongoing/dti-working-group/). Finally, we
analyze the voxelwise FA value along the ENIGMA skeleton mask.

Single-site heritability estimation: Analysis of additive genetic variance

The variance componentsmethod, as implemented in the Sequential
Oligogenic Linkage Analysis Routines (SOLAR) software package
(http://www.nitrc.org/projects/se_linux) (Almasy and Blangero, 1998)
was used for all individual cohort heritability estimations. Briefly, the
algorithms in SOLAR employmaximum likelihood variance decomposi-
tion methods and are extensions of the strategy developed by Amos
(1994). The covariance matrix Ω for a pedigree of individuals is given
by:

Ω ¼ 2 �Φ � σ2
g þ I � σ2

e ð1Þ

where σg
2 is the genetic variance due to the additive genetic factors,Φ

is the kinship matrix representing the pair-wise kinship coefficients
among all individuals, σe

2 is the variance due to individual — specific
environmental effects, and I is an identity matrix (under the assump-
tion that all environmental effects are uncorrelated among family

http://enigma.ini.usc.edu/ongoing/dti-working-group/
http://www.nitrc.org/projects/se_linux
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members). Narrow sense heritability is defined as the fraction of
phenotypic variance σP

2 attributable to additive genetic factors,

h2 ¼ σ2
g

σ2
P
: ð2Þ

The variance parameters are estimated by comparing the observed
phenotypic covariance matrix with the covariance matrix predicted by
kinship (Almasy and Blangero, 1998). Significance of heritability is test-
ed by comparing the likelihood of the model in which σg

2 is constrained
to zero with that of a model in which σg

2 is estimated. Twice the differ-
ence between the loge likelihoods of these models yields a test statistic,
which is asymptotically distributed as a 1/2:1/2mixture of aχ2 variable
with 1 degree-of-freedom and a point mass at zero. Prior to testing for
the significance of heritability, phenotype values for each individual
within the cohort were adjusted for covariates including sex, age, age2,
age × sex interaction, and age2 × sex interaction. Inverse Gaussian trans-
formation was also applied to ensure normality of the measurements.
Outputs from SOLAR include the heritability value, the significance
value (p), and the standard error for each trait (ROI or voxel).

Mega-and-metagenetic analysis of additive genetic variance

A mega-analysis function ‘polyclass’ was recently developed for the
software package, SOLAR-Eclipse (Blangero et al., 2005). It was imple-
mented in the LONI Pipeline infrastructure (Dinov et al., 2010) and
used for both voxelwise and ROI-level analyses. This function 1) fitted
a model for each of the sites separately, and 2) performed the mega-
analysis where the data for all populations is fitted together using a sin-
glemodel. The processing steps for this function are shown in Fig. 1. The
trait average and variability values can vary by site due to study design
and measurement biases as shown by non-overlapping histograms of
average FA values (Fig. 1A). Two data normalization steps are per-
formed. In the first, the regression of covariates (as specified above) is
performed, per site, and then followed by the per-site inverse Gaussian
normalization of data (Fig. 1B). Individual cohort heritability estimates
are obtained by fitting a polygenic model per population. The heritabil-
ity value, its significance, and standard error are tabulated for themeta-
genetic analysis.

A mega-genetic analysis refers to analysis multiple cohorts com-
bined into a single pedigree (Jahanshad et al., 2013). In this step, a
joint pedigree structure was created by merging the kinship matrices
from all cohorts, and a polygenic model was then fit for the combined
dataset. Meta-genetic analyses calculate weighted-mean heritability
(h2) and standard error estimates based on measurements from indi-
vidual cohorts (Li et al., 2003). We chose two methods to calculate the
weights: by standard error (Sutton, 2000) and, for comparison with
most other meta-analysis studies of heritability, by study sample2

(Verweij et al., 2010).
We weight the heritability from each study by the heritability stan-

dard error, as extracted from the variance component model of SOLAR.
The heritability weighted by standard error (Sutton, 2000) is:

h2MA‐SE vð Þ ¼
X

j
se−2

j h2j vð Þ
X

j
se−2

j ;
ð3Þ

where v = 1 to Nv indexes voxels or ROIs, and j = 1,…, 5 indexes site.
2 The Verweij et al. (2010) study specifically focused on twin studies. Weighting a mix
of family studies by sample size should be approached with caution as sample sizes in dif-
ferent family based studies do not reflect the same power. A certain sample size in a twin
study may be more powerful in picking up heritability effects than that same sample size
in a large extended pedigree due to lower degrees of shared genetic information between
more distant relatives. Please see Discussion for a more detailed explanation.
The mean heritability weighted by sample size is calculated as

h2MA‐N vð Þ ¼
X

j
n jh

2
j vð Þ

X
j
n j

: ð4Þ

As the heritability estimates for all datasets were computed with
SOLAR, the standard error for the heritability at each voxel was also
available. Therefore, we computed the joint standard error for each
MA as follows:

Var h2MA‐SE vð Þ
� �

¼ 1X
j
se−2

j vð Þ;
ð5Þ

Var h2MA‐N vð Þ
� �

¼
X

j
n2
j se

2
j vð Þ

X
j
n jÞ2:

� ð6Þ

Surprisingly, there is no standard method for calculating the signifi-
cance, or p-value, for meta-analyses of such variance component esti-
mates. The principal problem is the non-Normality of the heritability
estimate, reflected in the fact that a variance component p-value cannot
exceed 1/2. To demonstrate some possible approaches, we calculated
the meta-analysis Z-score in two ways and compared the results.

The first approach is based on individual cohort p-values; first
they are transformed to cohort Z values according to zj(v) =
Φ−1(pj(v)), where Φ represents the Gaussian normal transforma-
tion; if all p-values are strictly less than 1/2, this transformation is
valid. These Z values are then combined into meta-analysis Z-scores
following (Willer et al., 2010):

ZMA‐SE vð Þ ¼ β̂ vð Þ
SE β̂ vð Þ

� � ¼
X

j
β̂ j vð Þ � se−2

j vð Þ=
X

j
se−2

j vð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=

X
j
se−2

j vð Þ
q

;
ð7Þ

ZMA‐N vð Þ ¼
X

j
z j vð Þ ffiffiffiffiffi

nj
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
j
n j

q ; ð8Þ

where, for the SE-weighted meta-analysis, each site's effect is esti-
mated as β̂ j vð Þ ¼ z j vð Þ � se j vð Þ, which can be interpreted as z-scores
in h2 SE units.

In the second approach for calculating p-values, the meta-analysis
p-values are calculated from the meta-analysis heritability estimates
and their standard error, without consulting individual cohort p-values.
Specifically, these were found by computing z-scores for both MA-SE
and MA-N methods, found as ratios of the hMA ‐ SE

2 (v) and hMA ‐ N
2 (v)

values (Eqs. (3) & (4)) with their standard errors (square root of
Eqs. (5) & (6), respectively); from these z-scores, p-values were found
based on the asymptotic normality of maximum likelihood estimates
(Lehmann and Casella, 1998).

Multiple comparisons correction

Multiple statistical tests performed across voxels and/or ROIs can
increase the chance of reporting a false positive finding at a given signif-
icance threshold, unless steps are taken to control for multiple compar-
isons. We use the false discovery rate (FDR) (Benjamini and Hochberg,
1995; Genovese et al., 2002) approach for controlling false positives.



Fig. 1. Themega-analysisworkflow is shown. First, covariates are regressed fromeach site. Next, each site's data undergoes an inverse Gaussian normalization. Finally data aremerged for a
mega-analysis of heritability estimates using a joint kinship matrix.
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Results

Heritability estimates for individual cohorts

Heritability analysis for the whole-brain average FA values demon-
strated significant heritability for all five cohorts (Table 3, Fig. 2). The
highest heritability estimate was observed for the NTR cohort (h2 =
0.84 ± .03; p b 10−10), while the lowest heritability was observed for
the youngest cohort, BrainSCALE (h2 = 0.27 ± .13; p = .02); there
were no significant differences between samples in the heritability esti-
mates for the average FA values (1-way ANOVA p = 0.07). The herita-
bility for tract-wise average FA measurements were significant for all
cohorts with exception of the TAOS cohort where heritability estimates
for six tracts (EC, FX, IFO, SFO, SS, CST) had p N 0.05.When correcting for
multiple comparisons across all regions, the BCC and SCC were also not
significant in TAOS. The CST was also not significantly heritable in QTIM
or BrainSCALE cohorts; the SFO was alson not significantly heritable in
BrainSCALE. Also of note is that with the exception of the two youngest
cohorts (TAOS and BrainSCALE), the standard errors for regional mea-
surements were similar for the three remaining cohorts (e.g., 0.06,
0.07, 0.07, vs 0.12 and 0.26 for GOBS, QTIM, NTR, vs. BrainSCALE and
TAOS, for average FA respectively).

The significance of voxelwise measurements of heritability varied
substantially per cohort (Table 3). Followingmultiple comparisons cor-
rection across all voxels using FDR, we observed that the QTIM cohort
had the highest fraction (79%) of significant voxels, while TAOS cohort
had the lowest (1.6%) fraction (Table 4).

Meta- and Mega-analysis

The results for the three approaches for pooling data and obtaining
overall estimates of heritability are shown in Table 3 and Fig. 3.
The SE-weighted meta-analysis yielded the highest estimate (h2 =
0.71 ± 0.06; p b 10−10) for the average FA across the whole skeleton,
while the N-weighted meta-analysis produced the lowest (h2 =
0.51 ± 0.06; p b 10−10) heritability estimate. The mega-genetic
approach produced an intermediate heritability estimate but with the
lowest standard error and the highest significance (h2 = 0.67 ± 0.04;
p b 10−10). The tract-wise heritability estimates for the SE-weighted
meta- with mega-genetic analyses were highly correlated (r = 0.76,
p = 0.002) (Table 5), however the correlations of the tract-wise
estimates for the N-weighted approachwith the SE-weighted approach
and with the mega-analytical approach, were not significant (r= 0.48,
p = 0.11; r = 0.41, p = 0.15).

The tract-wise heritability estimates of the N-weighted meta-
analysiswas highly correlatedwith the estimates from the TAOS sample
(r = 0.84, p = 0.0006), while the results of the SE-weighted meta-
analysis was strongly correlated with the NTR cohort (r = 0.89, p =
0.0001). The ROI results of the mega-analysis were more correlated
with QTIM, NTR, and BrainSCALE (r= 0.74, 0.54 and 0.50, respectively).

Voxelwise, all three data pooling analytic approaches produced a
similar spatial pattern of heritability (Fig. 4). Themeta-analysis weight-
ed by N (top) showed the lowest overall voxelwise heritability. The
meta-analysis weighted by SE (middle) showed a more similar pattern
to the mega-analysis (bottom), although the mega-analysis appeared
to have a smoother spatial distribution of heritability. Notably, all
three methods produced a significant number of voxel-wise estimates
that would pass the most stringent, Bonferroni, correction for multiple
testing (Table 6). Both methods of calculating p-values for meta-
analysis produced a significant number of heritable voxels. The
SE-MAs included many voxels whose p-values were exceedingly low
(0). Despite this, the mega-analytic analysis was the only one to show
a majority of voxels surviving Bonferroni correction.

We note a high voxel-wise correlation of heritability values 0.87–
0.90 between the different joint approaches (Fig. 5). Meta-analyses
show a correlation of 0.87. Additionally, when the mega-analysis is
compared to the SE-weighted meta-analysis, a similar high correlation
of 0.87 is obtained (Fig. 5b). A slightly higher correlation is observed
when comparing the mega-analysis to the meta-analysis weighted by
N (Fig. 5c).

Leave-one-cohort out analysis

Finally, the stability of the joint heritability estimates was
ascertained in the regions of interest using a leave-one-out analysis.
The aim was to study how the joint heritability estimate depended on
the contribution from any one dataset. For the whole brain average FA
values, removing one cohort resulted in different results for each type
of joint analysis. On average, the SE-weighted meta-analysis approach
produced the highest heritability estimate, yet with the widest range
of results h2 = 0.69 (for average FA for example; range 0.51 to 0.74)
while the N-weighted meta-analysis approach produced the lowest
heritability estimate h2 = 0.52 with a narrower range of results
(range 0.47 to 0.57). For both meta-analytic approaches, the highest
h2 estimate was observed when leaving out the GOBS cohort and the
lowest was observed following removal of the NTR cohort. However,
for the SE-weighted meta-analysis, the removal of the NTR cohort led
to a substantially different heritability estimate than removal of each
of the others, while for the N-weighted meta-analysis, removal of NTR
was similar to removing QTIM, and differences in estimations were
more subtle. Mega-analysis produced an intermediate estimate h2 =
0.67 (cumulative h2 estimates ranging from 0.58 to 0.77). The highest
h2 estimate was observed following removal of the BrainSCALE cohort
and the lowest following removal of the QTIM cohort (Fig. 6).
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Table 3
Individual cohort heritability results (and significance (p) values) for each ROI are listed alongwith the results for the joint analytic approaches. Meta-analysis p-values were computed in
twoways as described in theMethods section, both of which are reported here. The first p-value presented in theMA columns uses individual cohort level data while the second is found
directly from the MA heritability and SE values.

GOBS QTIM TAOS BrainSCALE NTR Metaanalysis (SE) Metaanalysis (N) Megaanalysis

Whole-brain 0.41 ± 0.08
(5.98E-09)

0.61 ± .05
(p b 10−10)

0.49 ± 0.24
(0.04)

0.27 ± 0.13
(0.02)

0.84 ± 0.03
(p b 10−10)

0.71 ± 0.03
(0, p b 10−10)

0.51 ± 0.05
(p b 10−10, p b 10−10)

0.67 ± 0.03
(p b 10−10)

BCC 0.49 ± 0.08
(p b 10−10)

0.69 ± 0.05
(p b 10−10)

0.69 ± 0.19
(0.004)

0.49 ± 0.11
(7.70E-05)

0.72 ± 0.05
(p b 10−10)

0.65 ± 0.03
(0, p b 10−10)

0.60 ± 0.04
(p b 10−10, p b 10−10)

0.69 ± 0.03
(p b 10−10)

GCC 0.48 ± 0.09
(5.62E-10)

0.59 ± 0.06
(p b 10−10)

0.82 ± 0.13
(4.01E-04)

0.40 ± 0.12
(9.54E-04)

0.84 ± 0.03
(p b 10−10)

0.75 ± 0.02
(0, p b 10−10)

0.60 ± 0.04
(p b 10−10, p b 10−10)

0.66 ± 0.03
(p b 10−10)

SCC 0.56 ± 0.09
(p b 10−10)

0.57 ± 0.06
(p b 10−10)

0.52 ± 0.17
(0.007)

0.37 ± 0.12
(0.002)

.78 ± .05
(p b 10−10)

0.66 ± 0.03
(0, p b 10−10)

0.57 ± 0.05
(p b 10−10, p b 10−10)

0.62 ± 0.03
(p b 10−10)

FX 0.21 ± 0.08
(8.23E-04)

0.62 ± 0.06
(p b 10−10)

0.50 ± 0.29
(0.077)

0.45 ± 0.13
(0.001)

0.53 ± 0.08
(2.29E07)

0.49 ± 0.04
(0, p b 10−10)

0.43 ± 0.05
(p b 10−10, p b 10−10)

0.56 ± 0.04
(p b 10−10)

CGC 0.41 ± 0.08
(2.16E-08)

0.65 ± 0.05
(p b 10−10)

0.78 ± 0.20
(0.002)

0.47 ± 0.11
(1.14E-04)

0.76 ± 0.05
(p b 10−10)

0.66 ± 0.03
(0, p b 10−10)

0.58 ± 0.05
(p b 10−10, p b 10−10)

0.63 ± 0.03
(p b 10−10)

CR 0.50 ± 0.08
(p b 10−10)

0.77 ± 0.04
(p b 10−10)

0.76 ± 0.16
(.006)

0.49 ± 0.12
(3.03E-04)

0.77 ± 0.05
(p b 10−10)

0.73 ± 0.03
(0, p b 10−10)

0.64 ± 0.04
(p b 10−10, p b 10−10)

0.75 ± 0.03
(p b 10−10)

EC 0.49 ± 0.08
(4.03E-10)

0.78 ± 0.03
(p b 10−10)

0.02 ± 0.37
(0.40)

0.46 ± 0.13
(7.68E-04)

0.83 ± 0.03
(p b 10−10)

0.77 ± 0.02
(0, p b 10−10)

0.54 ± 0.06
(p b 10−10, p b 10−10)

0.75 ± 0.03
(p b 10−10)

IC 0.46 ± 0.08
(5.55E-10)

0.67 ± 0.05
(p b 10−10)

0.62 ± 0.21
(0.02)

0.48 ± 0.11
(1.26E-04)

0.81 ± 0.04
(p b 10−10)

0.71 ± 0.03
(0, p b 10−10)

0.58 ± 0.05
(p b 10−10, p b 10−10)

0.71 ± 0.03
(p b 10−10)

IFO 0.37 ± 0.09
(1.54E-06)

0.68 ± 0.05
(p b 10−10)

0.26 ± 0.44
(0.22)

0.65 ± 0.08
(4.26E-08)

0.81 ± 0.04
(p b 10−10)

0.71 ± 0.03
(0, p b 10−10)

0.51 ± 0.07
(p b 10−10, p b 10−10)

0.73 ± 0.03
(p b 10−10)

PTR 0.38 ± 0.08
(2.48E-09)

0.72 ± 0.04
(p b 10−10)

0.48 ± 0.19
(0.01)

0.39 ± 0.12
(0.002)

0.86 ± 0.03
(p b 10−10)

0.76 ± 0.02
(0, p b 10−10)

0.54 ± 0.04
(p b 10−10, p b 10−10)

0.69 ± 0.03
(p b 10−10)

SFO 0.36 ± 0.08
(1.16E-07)

0.67 ± 0.05
(p b 10−10)

0.29 ± 0.23
(0.10)

0.39 ± 0.13
(0.02)

0.73 ± 0.05
(p b 10−10)

0.62 ± 0.03
(0, p b 10−10)

0.48 ± 0.05
(p b 10−10, p b 10−10)

0.64 ± 0.03
(p b 10−10)

SLF 0.57 ± 0.09
(p b 10−10)

0.78 ± 0.03
(p b 10−10)

0.51 ± 0.29
(0.05)

0.41 ± 0.13
(0.002)

0.88 ± 0.03
(p b 10−10)

0.82 ± 0.02
(0,0)

0.64 ± 0.06
(p b 10−10, p b 10−10)

0.77 ± 0.02
(p b 10−10)

SS 0.44 ± 0.08
(1.04E-09)

0.74 ± 0.04
(p b 10−10)

0.05 ± 0.31
(0.50)

0.25 ± 0.14
(0.03)

0.70 ± 0.06
(p b 10−10)

0.66 ± 0.03
(0, p b 10−10)

0.48 ± 0.06
(p b 10−10, p b 10−10)

0.65 ± 0.03
(p b 10−10)

CST 0.33 ± 0.08
(1.72E-06)

0.25 ± 0.10
(0.008)

0.29 ± 0.39
(0.23)

0.37 ± 0.13
(0.004)

0.61 ± 0.06
(p b 10−10)

0.44 ± 0.04
(0, p b 10−10)

0.33 ± 0.07
(p b 10−10,2.54E-06)

0.42 ± 0.04
(p b 10−10)
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The tract-wise, leave-one-cohort-out analysis produced mainly
stable results consistent with the full group analysis, with one notable
exception. The N-weighted and mega-analyses produced consistent
estimates that followed the trend of the full group analysis (r = 0.91–
0.99) (Fig. 7). The SE-weighted meta-analysis however, appeared to
be most influenced by exclusion of the NTR dataset, which had the
highest individual heritability and lowest SE. Removal of that dataset
Fig. 2. Individual site heritability estimates and standard
led to substantially lower heritability estimates across the ROIs
and lowered the correlation with the results from the complete dataset
(r = 0.79). Another notable observation is that the mega-analytic ap-
proach (Fig. 7) produced generally higher heritability estimates with a
narrower error margin compared to both the meta analytical methods.
Genetic analyses for other regions of the Johns Hopkins DTI atlas are
provided in supplement (see Supplement).
error are plotted for each of 15 regions of interest.
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Table 4
Voxelwisemultiple comparisons correction using FDRwas performed for each heritability
map based on the resulting p-values. The percent of the skeleton that was significantly
heritable, along with the FDR critical p-value and minimum p-value along the image are
listed.

% Significantly
heritable (FDR)a

FDR critical
p-value

Minimum p-value

GOBS 59.09 0.0295 p b 10−10

QTIM 79.10 0.0395 p b 10−10

TAOS .61 0.0008 3.0 × 10−7

BrainSCALE 16.36 0.0082 2.1 × 10−10

NTR 40.22 0.0201 p b 10−10

a Total voxels in mask = 116524.
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Discussion

We evaluated three data-pooling strategies for performing a
multi-site analysis of additive genetic contributions to variability in
the fractional anisotropy (FA) of cerebral white matter (WM). The
ENIGMA-DTI data harmonization protocol, presented in our prior
work (Jahanshad et al., 2013) served as the foundation for this analysis.
0.0 0.2

GOBS

QTIM

TAOS

BrainSCALE

NTR

MA-SE

Mega

MA-N

Fig. 3. Top: Heritability estimates formeta andmega analytical approaches combining the 5 coh
ing each cohort and all joint models.
This protocol was used to assemble and homogenize data collected at
five sites, using diverse imaging protocols and cohorts that varied in
age (9–85 years) and the family structure (twins, twins and siblings,
and extended family). Our efforts aim to identify FA measurements
that are significantly heritable regardless of age, ethnicity, family struc-
ture, andmethodological variations. To summarize our findings, we ob-
served that (as expected) the heritability estimates do vary across
cohorts. Datasets with smaller numbers of subjects, or less familial rela-
tionships, were more likely to produce heritability estimates
not representative of the pooled trend. Nonetheless, including these
datasets improves the overall outcome of the joint analysis. We also
observe that three analytical approaches for data pooling vary in both
the estimates and the significance of pooled heritability and these
estimates may be sensitive to inclusion/exclusion of specific datasets.
Overall, our study concluded that despite methodological differences,
combining genetically informative datasets using meta-and/or-mega-
genetic approaches led to a significant improvement of the statistical
significance. Overall, the pooled heritability estimates across the brain
showed high heritability, with additive genetic factors explaining over
50% of intersubject variance in FA values across most regions.
Heritability
0.4 0.6 0.8 1.0

orts. Bottom: A forest plot of the average FA value (h2+/− the 95% CI) is shownhighlight-
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Table 5
Result of the linear correlation analysis (r-coefficients) between tract-wise heritabilitymeasurements for three data poolingmethods andfive cohorts. The tract-wise heritability estimates
of theN-weightedmeta-analysis was highly correlatedwith the estimates from the TAOS sample (r = 0.84, p = 0.0006), while the results of the SE-weightedmeta-analysiswas strongly
correlatedwith the NTR cohort (r = 0.89, p = 0.0001). The ROI results of the mega-analysis were more correlated with QTIM, NTR, and BrainSCALE (r = 0.74, 0.54 and 0.50, respective-
ly).

GOBS QTIM TAOS Brain-SCALE NTR Metaanalysis (SE) Metaanalysis (N) Megaanalysis

GOBS 0.11 0.23 −0.21 0.24 0.36 0.49 0.24
QTIM 0.11 −0.44 −0.01 0.11 0.50 0.00 0.73
TAOS 0.23 −0.44 0.20 0.13 0.00 0.84 0.11
BrainSCALE −0.21 −0.01 0.20 0.23 0.13 0.34 0.50
NTR 0.24 0.11 0.13 0.23 0.89 0.46 0.54
Metaanalysis (SE) 0.36 0.50 0.00 0.13 0.89 0.48 0.76
Metaanalysis (N) 0.49 0.00 0.84 0.34 0.46 0.48 0.41
Megaanalysis 0.24 0.73 0.11 0.50 0.54 0.76 0.41
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This manuscript extends and validates the ENIGMA-DTI harmoniza-
tion protocol (Jahanshad et al., 2013) to a wider range of cohorts. This
protocol ensures that imaging data from multiple sites can be harmo-
nized for a pooled analysis by transforming them in the common
space (a custom spatial normalization template derived from four
diverse high-resolution datasets) and extracting regional measures; it
includes the processing steps necessary to prepare DTI data for quanti-
tative genetic analysis, including extraction of tract-wise average and
voxel-wise FA data, as well as data quality control and assurance proce-
dures. Ideally, harmonization of data collection should occur at the
onset of the multicenter imaging study as demonstrated by the efforts
of the Alzheimer's Disease Neuroimaging Initiative (Weiner et al.,
2012) and others (Teipel et al., 2011; Zhan et al., 2013). Clearly, this is
only applicable to data that has yet to be collected. The ENIGMA-DTI
harmonization effort was developed as a post hoc solution to help pre-
pare existing data for pooled genetic analyses to facilitate the search
Meta-analysis (N) 

Meta-analysis (SE) 

Mega-analysis 

Fig. 4. Voxelwisemaps ofmeta andmega–analysis of heritability. Themeta-analysis weighted b
SE (middle) showed a more similar pattern to the mega-analysis (bottom), although the mega
for genetic associations with DTI-extracted traits. This manuscript eval-
uated the ENIGMA-DTI protocol by testing its ability to reproduce and
replicate findings of significant additive genetic contribution to FA
values in data collected at five sites.

The contribution of additive genetic variation (i.e., heritability) to
individual variability was calculated for the whole brain skeleton and
regional FA values in five cohorts. The five cohorts were diverse in
both the age of participants (9–85 years) and family structure (twin,
twins+ siblings, extended families). Heritability is a property of a pop-
ulation sample andmay vary from sample to sample. It should not serve
as the single parameter to estimate and compare across various popula-
tions. However, for certain planned collaborative efforts to search the
genome and discover individual variants contributing to basic white
matter properties, it is desirable to establish patterns of heritability
that are common regardless of the population under study. Despite dif-
ferences in age, structure and ethnicity amongour cohorts, therewas no
0.1
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yN (top) showed the lowest overall voxelwise heritability. Themeta-analysis weighted by
-analysis appeared to have a smoother spatial distribution of heritability.
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Table 6
Multiple comparisons corrections for joint analyses using the most stringent Bonferroni
correction. All threemethods have produced a significant number of voxel-wise estimates
that would pass the most stringent, Bonferroni, correction for multiple testing. Meta-
analysis p-values were computed in two ways as described in the Methods section, and
values for both corrections are listed below.

% Significantly heritablea Bonferroni critical p-valuea Minimum p-value

Meta-SE 34.87, 49.86 4.3 ∗ 10−7 p b 10−10

Meta-N 10.15, 35.75 4.3 ∗ 10−7 p b 10−10

Mega 53.1 4.3 ∗ 10−7 p b 10−10

a Total voxels in mask = 116,524.
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significant difference in the average heritability estimates. While this
does not signify that the same genes contribute to the level of heritabil-
ity in the different populations, we can be confident that each of the
regions has the potential to serve as a promising endophenotype to dis-
cover genes that exert controls over white matter structure in general.
Our experiments demonstrate that heritability estimates from smaller
cohorts with non-twin sibling family structures (TAOS) may be under-
powered, particularly for smaller regions, and possibly not be represen-
tative of the group at large compared to those of extended pedigrees or
primarily twin based cohorts. Despite these variations, we show joint
Fig. 5. Scatter plots of voxel-wise heritability estimates for three data poolingmethods. The high
0.90). The lowest was observed for the SE-and N-weighted approaches (r = 0.87).

Fig. 6. Heritability and standard error results of the leave-one-out analysis for three data
analytic procedures have limited sensitivity to such differences and can
still benefit from the addition of individually underpowered cohorts.

The cohorts that yielded the highest and the lowest heritability
estimates for the full skeleton (NTR and BrainSCALE, respectively)
were twin samples recruited from the same twin register in The
Netherlands. Moreover, the two populations were imaged using similar
DTI-protocols implemented on Philips MRI scanners. The low heritabil-
ity estimate in the BrainSCALE cohort may be due to a combination of
factors. Its original study suggested that the low heritability estimate
might have been due to the young age of the sample (average age =
9.2 ± 0.1 years) (Brouwer et al., 2010). It hypothesized that the on-
going cerebral myelination may lead to higher intersubject variance,
thereby reducing heritability estimates. Unsurprisingly, the subject's
age was not a significant covariate in this cohort (p N 0.5) and this
may be responsible for the inflation of the overall variance in FA values
(Brouwer et al., 2010). While potentially masked by differences is ped-
igree structure, the trends in heritability across cohorts do not appear to
be due to the young age in the cohort. The next youngest cohort, TAOS,
was also collected in adolescent subjects with a narrow age window
(average age = 13.4 years ± 0.96) where the subject's age was also a
non-significant covariate (p = 0.41). However, the heritability
estimates from this cohort were nearly twice that observed in the
est correlationwas observed between SE-weightedmeta andmega genetic analyses (r=

pooling approaches. The x-axis shows the cohort that was left out of the analysis.
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BrainSCALE sample (h2=0.49 vs. 0.27). The heritability estimates in the
TAOS cohort had a low significance. This is because it was composed of
siblings and therefore had a lower statistical power compared to twin
cohorts. Clearly, this topic of age-by-heritability change during cerebral
development deserves further study. These said, in this study, the vari-
ation in heritability estimates for cohorts with small subject number is
likely to be caused by subject selection rather than methodological
issues and/or biases.

The three data pooling methods succeeded in producing similar
estimates of heritability using data from all five cohorts. However,
there were a few notable differences. The two-meta-analytical
Fig. 7. Results of the leave-one-cohort out analysis for three data pooling methods. The SE-wei
dividually, had the highest heritability estimate and lowest SE. The N-weighted meta-analysis
approaches produced the lowest and the highest heritability esti-
mate for the average FA values (h2 = 0.51, p b 10−10 and 0.71, p
b 10−10 for N- and SE-weighted approaches, respectively), while
mega-genetic analysis produced intermediate heritability estimates
with the highest significance (h2= 0.67, p= b10−10). A similar pattern
was observed for the tract-wise and voxel-wisemeasurements: over 50%
of the voxel-wise estimates obtained by the mega-genetic approach sat-
isfied even the strictest Bonferroni threshold for multiple comparisons.
Importantly, the voxel-wise correlation of heritability estimates showed
high levels of shared regional variance (r = 0.87–0.90), suggesting a
high concordance among the three data-pooling approaches.
ghted meta analysis is most severely affected by the removal of the NTR cohort, which in-
has the widest error-bars of the three methods.
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Table 7
Correlation between our past (Jahanshad et al., 2013) and present by-tract heritability
estimates.

Past estimates Present N-weighted Present SE-weighted Present mega

N-weighted 0.77 0.86 0.80
SE-weighted 0.69 0.86 0.86
Mega 0.70 0.84 0.86
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Importantly, aggregated heritability estimates presented here showed a
high level of concordance with previous estimates calculated in the
GOBS and only the twin pairs from the QTIM cohorts (N = 1151)
(Jahanshad et al., 2013). For instance, the average FA heritability esti-
mate by the mega-genetic approach was nearly identical to a mega-
genetic estimate obtained in the prior study h2 = 0.67, p = 7.6
· 10−49 vs. h2 =0.68, p = 1.9 · 10−11, for present and past mega-
genetic estimates. While the present meta-genetic heritability esti-
mates here were higher than these obtained in the previous sample
(h2 = 0.51 and 0.71 vs. 0.42 and 0.43 for the N- and SE-weighted esti-
mates for present and previous studies) (Jahanshad et al., 2013), the
by-tract correlations of current (N =2203) vs past (N = 1151) anal-
ysis showed high consistency (r =0.70–.86; p ≤ 0.01) for all three
data pooling methods (Table 7).

Meta-analysismethods approximate global effect-size by computing
a weighted estimate of the effect-sizes from individual studies. The
weighs, or scaling factors, for effect sizes are assigned based on the pre-
cision of the effect size estimates per study. Studies with more precise
estimate of the effect size may therefore be given higher weights. In
general, the precision of the effect-size is directly related to the study's
sample size (N). The sample size, or N-weighted, meta-analysis is,
therefore, a commonly used approach. On the other hand, the design
of genetic studies also plays an important role in affecting the precision
of the estimate (Borenstein et al., 2009). Particularly in the case of
variance-component derived heritability estimates, different family
based study designs may have different correlation structures such
that the sample size may not directly reflect the estimate precision.
For instance, matched twin studies provide more precise estimates of
heritability than populations with the same number of more distantly
related relatives. On the other hand, the latter type provides a better
estimate of covariate effects and thereby may provide more precise
estimates of genetic effects (Blangero et al., 2013).

The N-weighted meta-analytic approach used in this study was
developed for meta-analysis of twin data (Li et al., 2003; Rhee and
Waldman, 2002; Verweij et al., 2010). Here it was used for a meta-
analysis of both twin and family population. This may be a limitation
as scaling of statistical power per subject may be different for family-
based versus twin-based studies. However, we believe that in our case
it is a minor limitation. To test this, we used power calculation methods
implemented in SOLAR-Eclipse (Blangero et al., 2013) to model the
statistical power for detecting heritability in each of the five samples.
We observed that for the range of expected heritability estimates
(h2 = 0.3–0.7), the statistical power per cohort was directly propor-
tional to the sample size (r = ~0.9), supporting the basic assumption
of N-weighted meta-analysis. Further, we compared the estimates
from N-weighted approach to these derived using the standard-error
weighted meta and mega-genetic analyses. The estimates derived
from the N-weightedmeta-analysis overlappedwith the confidence in-
tervals of the other approaches, suggesting that it homed in on appro-
priate heritability estimates. Furthermore, a single weighting scheme
of a meta-analysis may not be available for every condition and it is
also possible that the difference weighting may have minimal effects
(Brannick et al., 2011). Nonetheless, this limitation signifies the urgent
need for development of more universal meta-genetic analytical
approaches for an effective sample-size estimate based on within and
between family variance. For instance, simulation modeling of statisti-
cal power based on the study designs (Blangero et al., 2013) may
become a promising novel approach to derive the scaling factors.

The leave-one-out analysis was performed to test the stability of the
pooled heritability estimates on inclusion and exclusion of specific co-
horts. The average FA heritability estimates following the removal of
each of the five cohorts were similar to the overall pooled heritability
estimate for the both the N-weightedmeta- andmega-genetic analyses
(h2 = 0.51 and 0.67, respectively). The N-weighted meta-analysis
showed the smallest variability in heritability estimates because the
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cohorts with the highest and lowest heritability estimates (NTR and
BrainSCALE) had the two smallest numbers of subjects and this limited
their contribution to this pooled heritability estimate. Nonetheless, the
N-weighted meta-analysis was shown to be most sensitive to removal
of the GOBS cohort (Fig. 7A). Removal of this cohort led to a change in
the heritability estimate from h2 = 0.51 to 0.57. This was expected
since the GOBS cohort had the largest number of subjects and thereby
exerted the highest weight in the N-weighted combined heritability es-
timate. On the other hand, the SE-weighted approach was sensitive to
removal of the NTR cohort. The removal of this cohort reduced the
pooled MA-SE heritability estimate from h2 = 0.71 to 0.51. This led to
the highest standard deviation in pooled heritability estimates among
the three methods (std dev = 0.10, 0.07 and 0.05 for SE-weighted,
mega and N-weighted approaches, respectively). This was also expect-
ed, as the NTR cohort had the highest heritability estimates with the
lowest standard error. The highest change in mega-genetic analysis
h2 =0.67 to 0.78 (for average FA)was observed following the exclusion
of the BrainSCALE cohort due to its lowest heritability estimates and its
twin-design that produced population structure with high statistical
power. While overall, the pooled estimates are exceedingly similar
across regions of interest and voxelwise FA measurements, when data-
sharing is not a viable option for mega-analysis, careful consideration
of cohort structure and inherent power should be taken into account
for meta-analytic approaches.

Overall, we observed that regional heritability estimates varied
among individual cohorts and to a lesser degree between the joint anal-
ysis methods. As the heritability of a phenotype is dependent on the
study population, wewould not expect to see the same heritability esti-
mates across geographically and ethnically diverse cohorts. Pooling di-
verse datasets and populations through joint analytical approach of
variance-component analysis provides global means of heritability
across a variety of populations. As no standards exist for jointly analyz-
ing such data, we provided results from three different types of analyses
and observe the variability between these joint estimators. In addition,
we used leave-one out analyses to evaluate stability of each method
and its sensitivity to individual cohorts. These stability tests suggest
that adequately powered independent studies will likely produce
heritability estimates that will fall within the range derived from
the set of joint analyses. However, given that only 5 cohorts were
used in this study and 4 out of 5 were of children or young adults,
and common environmental effects were not assessed, it is also
possible that heritability estimates of an independent cohort will
be significantly different. The ENIGMA-DTI protocols available online
(http://enigma.ini.usc.edu/ongoing/dti-working-group/), and the
joint analytical methods described here, may now be used by others
to expand upon the joint heritability analyses. Ideally, with enough
cohorts, joint estimation of heritability will be analyzed using
random-effects modeling (Normand, 1999) to further account for
underlying differences and similarities between cohorts.

Conclusion

Here we test the reliability of the FA endophenotypes measured
from DTI data and extensively evaluated three data pooling approaches
to study the additive genetic contribution to variability in FA. This step
of optimizing methods and protocols brings us closer to fulfilling the
overall aim of the ENIGMA Consortium — using imaging phenotypes
studies to help discover genes that associate with brain structure and
may in turn be associated with, behavior, cognition, and neuropsychiat-
ric disorders.We used five datasets of various ages, ethnicities and fam-
ily structure to demonstrate that data pooling approaches provide
robust estimates of FA heritability in almost all white matter regions,
suggesting that despite differences in acquisition and cohort structure,
data pooling is feasible. We showed that both global and regional heri-
tability estimates from pooled approaches were much more similar
than heritability estimates derived from individual cohorts were to
each other.We determined stability in the pooling approaches by show-
ing the differences in pooled estimates, using subsets of the data. While
we generally showed that mega-analytic approaches have greater
stability and highest power for jointly analyzing data, we note that
meta-analytic approaches are comparable when full individual-level
data sharing is not feasible, although caution and careful evaluation of
cohort trends should be taken when making the choice of a meta-
analytic approach. We provide our joint heritability results online at
http://enigma.ini.usc.edu/ongoing/dti-working-group/2014_nimg/ to
serve as a voxelwise heritability atlas for future studies.
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