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Abstract

The relationship of speed-of-information-processing (SIP), as derived from reaction times (RTs) on experimental tasks, and
intelligence has been extensively studied. SIP is suggested to measure the efficiency with which subjects can perform basic cognitive
operations underlying a wide range of intellectual abilities. Observed phenotypic correlations between RT and IQ typically are in
the −0.2 to −0.4 range, and the question is addressed to what extent this relationship is determined by genetic or environmental
influences. In a group of Dutch twins the heritabilities for RT tasks at age 16 and 18 years were estimated longitudinally and the
nature of the RT-IQ relationship was investigated. At age 16 years heritabilities for a simple reaction time (SRT) and choice
reaction time (CRT) were 64 and 62% and the average phenotypic correlations between the RTs and IQ, assessed by the Raven
standard progressive matrices, was −0.21. At the second test occasion lower heritabilities were observed for the RTs, probably
due to modifications in administration procedures. The mean correlations between the RTs and WAIS verbal and per formal
subtests were −0.18 and −0.16. Multivariate genetic analyses at both ages showed that the RT-IQ correlations were explained
by genetic influences. These results are in agreement with earlier findings (Baker et al., Behav Genet 1991;21:351–67; Ho et al.,
Behav Genet 1988;18:247–61) and support the existence of a common, heritable biological basis underlying the SIP-IQ
relationship. © 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

In the search for determinants of human intelligence
the relationship between measures of timed perfor-
mance on experimental tasks and scores on psychomet-
ric tests of intelligence is the most extensively studied
and well established. Performance on reaction time
(RT) tasks are supposed to be a reflection of the
speed-of-information processing (SIP). The idea of
studying RTs as correlates of intelligence goes back to
Galton [1], but it was not until after the 1960s that a

great deal of research on RTs and intelligence was
successfully conducted. One of the major contributors
to this area is Jensen [2,3]. The history of the research
on RTs is extensively reviewed elsewhere [4].

A theoretical model for the relationship between RTs
and IQ was given by the ‘neural efficiency’ model [2,5],
in terms of three characteristics of the short term
memory (STM) system in which basic cognitive opera-
tions are carried out: the limited capacity of the STM
system; the rapid decay of information in absence of
continued rehearsal and the trade-off between the
amount of information that can simultaneously be
stored and processed. SIP is regarded as the fourth
property which can prevent the capacity threshold from
being exceeded. The speed or efficiency with which
individuals can execute basic cognitive operations at
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each step in solving a given problem is expected to
have an effect on the success of their performance.
Beyond showing the existence of RT-IQ correlations,
the nature of this relationship can further be explored
by means of twin data.

Twin and family studies indicate considerable ge-
netic influences for individual differences in intelli-
gence [6]. Moderate heritability estimates (h2=46 and
54%) for RT tasks were observed in studies of reared-
apart adult twins [7,8]. Another adult twin study re-
ported a heritability of 49% for a ‘general speed of
response’ factor [9]. In younger populations common
environmental factors seem to play a bigger role in
explaining individual differences for SRT and CRT
[10].

Only a few studies have investigated the genetic
and environmental covariance between SIP and IQ.
Results of multivariate genetic analysis indicated that
phenotypic correlation between two RT factors (rapid
automatic naming and symbol processing speed) and
full-scale IQ (both r ’s −0.42) was largely attributable
to correlated genetic effects [11]. This was also the
case when adult RT twin data of the Vernon study
[9] was re-examined. The phenotypic correlations of
RT with verbal and performance IQ data (both r ’s
−0.59) were entirely mediated by genetic factors [12].
Individual differences in the speed with which cogni-
tive operations can be executed were suggested to be
responsible for individual differences in IQ as a con-
sequence of differences in neurophysiological proper-
ties of the brain that may be hypothesized to underlie
both SIP and IQ. What was shown by these results is
a common genetic (biological) basis for IQ and SIP.
More recently, in children, multivariate analyses of
RT tasks and the WISC-R subtests, showed the SIP-
IQ covariance to be predominantly determined by
shared family environment (C) [13]. This result is in
accordance with significant C effects on IQ for this
age interval (6–13 years).

Genetic studies of RTs, suggest moderate to high
heritabilities in adult and adolescent samples. The
RT-IQ correlation is mainly due to genetic factors. In
the present study results of a longitudinal genetic
study on RTs and IQ are reported. In a sample of
Dutch twin pairs performance on a SRT and CRT
task and IQ scores were examined at age 16 and 17.5
years. The genetic relationship between RTs and IQ
was examined in a multivariate design including all
variables. In contrast, earlier studies [11,12] employed
phenotypically derived factor scores of SIP and IQ in
the genetic analyses. A disadvantage of the later
method may be that phenotypic factors may yield
quite a different pattern than is observed for the ge-
netic and environmental factors when employing the
complete set of variables in a multivariate genetic de-
sign.

2. Subjects and methods

2.1. Subjects

Subjects were 213 Dutch twin pairs who participated
in a longitudinal project which investigated variation in
peripheral nerve conduction velocity and intelligence
[14,15] and genetic and environmental influences on
brain development [16]. Mean age on occasion I was
16.13 years (S.D., 0.56), on occasion II 17.6 years (S.D.,
0.54). Data on the first test occasion were available for
80 monozygotic (MZ) and 108 dizygotic (DZ) twin
pairs (including 44 opposite sex pairs). On test occasion
II data were available for 74 MZ and 100 DZ pairs
(including 39 opposite sex pairs). The drop-out pairs
did not significantly differ in IQ score compared to the
other participants. For 117 same-sex twin pairs zygosity
was determined by blood group and DNA typing and
for the others by questionnaire information.

2.2. RT tasks

SRT, the display of a reaction stimulus, either a digit
or a letter, requiring a right-key response (72 trials).

CRT, the display of a digit requiring a right-key
response and that of a letter a left-key response (72
trials).

The RT tasks, part of a battery of five tasks, were
administered via a computer with attached response
console. The sum of the ‘decision time’ (time from
onset of the stimuli to the release of a home key) and
the ‘movement time’ (time from releasing the home key
to pressing the response key) was employed as the
measure for speed of performance (msec). For each
subject (per task), outlier trials exceeding three standard
deviation (S.D.) units above or below an initially com-
puted individual mean, were removed. In addition to
this individual screening of outliers per RT task, all
subjects with mean RTs exceeding 93 S.D. units from
the group means were excluded. Subjects with less than
50% correct responses on a RT task were excluded as
well. Subjects received at least 10 practice trials for each
task. At test occasion II the same battery was adminis-
tered with a few modifications. The number of trials
was reduced to 60 to shorten the administration time.
After each response, the RT was displayed and feed-
back was given whenever it was slower than an estab-
lished target RT value for that specific task. Correct
responses were rewarded with 5 cents.

2.3. IQ tests

On the first visit the Raven standard progressive
matrices [17] and on the second visit the Dutch version
of the WAIS [18] were administered.
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Fig. 1. Longitudinal genetic model for RTs of test occasion I and II. A, C and E are the additive genetic, the shared environmental and the unique
environmental components. AC, CC and EC represent influences common to the RT scores of test occasion I and II. AS, CS and ES represent
influences specific to the RTs of test occasion II.

2.4. Statistical analyses

2.4.1. Phenotypic analyses
Phenotypic correlations among RTs and IQ scores

were estimated by maximum-likelihood (ML). This was
accomplished with the structural equation modelling
program Mx [19]. To raw data a model was fitted for
the covariances in which ML correlations and S.D.
were obtained. This model can be denoted as:

SYY=S×R×S%,

where SYY is the estimated 6×6 covariance matrix, S is
a 6×6 diagonal matrix in which the S.D. are estimated,
and R is a 6×6 symmetric matrix in which the correla-
tions among variables are estimated (6=number of
variables). A model for the means was specified as well.
The fit of models which constrain parameter estimates
of means, S.D. or correlations to be equal across
groups can be compared to the fit of models which
allow them to vary. This is done by subtracting the
−2*LL of the unconstrained model from that of the
constrained one, yielding a x2 distribution. The degrees
of freedom (df) for this test is equal to the difference in
df of the two models [20]. Significance of single correla-
tions can be tested by evaluating the significance of the
x2-change when the specific element in matrix R is fixed
at zero. When for the MZ and DZ groups, two sets of
variables for twin1 and twin2 are considered (dimen-
sions of R and S: 26×26), twin correlations can be
estimated with the same model.

2.5. Longitudinal genetic analysis

Variation in phenotype was modelled as a function of
variation in genotype and environment. Sources of
variation considered were A, additive genetic variation
(i.e. the sum of the average effects of the individual
alleles at all contributing loci), C, environmental varia-
tion shared by family members in the same household
and E, random, environmental variation that is not
shared by family members. The phenotypic variance
can be expressed as a simple additive function of the
effects of A, C and E :

VP=VA+VC+VE.

Twin data are very useful to unravel these sources of
variance. Resemblance within MZ pairs is caused by
equal genetic constitution and shared environment, dif-
ferences are caused solely by unique environment. Re-
semblance in DZ pairs are caused by shared
environment, and genetic factors. However genetic fac-
tors contribute less to DZ resemblance since they share
only 50% of their genes on average. Decomposition of
the phenotypic variance of each RT task measured at
age 16 and 17.5 years, was carried out in a longitudinal
genetic analyses. Per task the RT score of occasion I
was selected as first, and that of occasion II as second
variable (Fig. 1). The A, C and E matrices were com-
posed of a common factor (AC, CC, EC) influencing the
RT scores of both occasions and a specific factor
(AS, CS, ES) influencing the RT score of occasion II.
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The loading of the first RT score on the common
genetic factor is represented by the path coefficient ac

and that of the second score by a c% . The factor AS

represents new genetic influences at age 17.5 years. The
relative contributions of genetic and environmental infl-
uences to individual RT differences were estimated by
ML, conducted on raw MZ and DZ data. This method
is especially useful for handling incomplete data. Sub-
jects with missing values for one RT task are not
excluded from the sample and, the loss of valuable data
is minimized. Goodness-of-fit of alternative nested
models in which the C structure and specific parameters
in A and E were dropped, were assessed by x2-change.
The ACE model is compared to the saturated model in
which the estimated covariance matrix is specified to be
S×R×S% and the means, S.D. and correlations were
unconstrained across groups.

2.6. Multi6ariate genetic analyses

The RT-Raven covariance was examined by impos-
ing a triangular decomposition upon the A, C and E
matrix. In a triangular decomposition the number of
latent factors equals the number of variables. The first
factor influences all variables, the second factor the
second and subsequent variables, and so on. The last
factor only contributes to the last variable. To examine
the covariance among the RTs and WAIS subtests,
models with a number of group factors and specific
factors were specified for the A, C and E structures and
fitted to the mean-squares-between pairs (MSB) and
mean-squares-within pairs (MSW) matrices of the MZ
and DZ pairs. Among the Group factors were general
factors, loaded by all variables. The dimensions of the
A, C and E matrices were (6× f ), where f is the
number of group factors. The specific factors ASP, CSP

and ESP had dimension 6×6, representing the variance
specific to each variable. Significance of these factors
were tested by x2-change when fixing particular factors
or loadings at zero. Heritability estimates for all vari-
ables as well as their 95% confidence intervals (CIs)
were computed based on the best fitting model.

3. Results

3.1. Phenotypic analyses of test occasion I and II

The distribution of the Raven score was negatively
skewed (−0.98), and a quadratic transformation was
conducted to obtain a more symmetric distribution
(−0.49). Distributions for the WAIS subtest scores and
RT tasks at occasion I and II all showed acceptable
symmetry. Descriptive statistics for RTs and Raven IQ
occasion I are given in Table 1. Means and S.D.
differed slightly between the MZ and DZ group. The

correlation between SRT and CRT was 0.73 and be-
tween the RTs and the Raven −0.21 and −0.22.

WAIS full-scale IQ (113.8) was higher and the S.D.
(11.7) lower than the population mean (100) and S.D.
(15). This is most probable an effect of the dated norms
for the Dutch WAIS [21]. The mean phenotypic corre-
lation among the verbal WAIS subtests was 0.54,
among the WAIS performance subtests 0.26 and be-
tween the verbal and performance subtests 0.27 (Table
2). RTs were, on average, almost equally correlated
with the verbal and performance subtests (−0.18 and
−0.16).

3.2. Longitudinal genetic analyses of RTs from test
occasion I and II

Twin correlations for RTs on both occasions are
given in Table 3. The fit of the ACE model (Table 3)
was compared against the saturated model. The C
structure was not significant and could be dropped for
both RTs. Genetic and environmental influences from
occasion I on occasion II (a c% and e c%) were significant
for both RT tasks. The significance of new genetic
influences was tested by omitting the specific genetic
influences (AS) from the AE model. Expression of new
genetic influences was significant for both RTs tasks.
New environmental influences (including measurement
errors) were highly significant. For Raven IQ and the
WAIS subtests an AE model was observed to have the
best fit (unpublished results).

3.3. Multi6ariate genetic analyses of test occasion I

Table 4 shows the multivariate genetic analyses of the
RT-Raven covariance. Model 1, a triangular ACE
model showed a good fit. The drop of the C structure
resulted in an even more parsimonious AE model. In
Model 3 it was tested whether or not the RT-Raven
environmental covariances could be fixed at zero. The
fit of this model showed no significant decline. This

Table 1
ML estimates of phenotypic correlations among RTs and the Raven
standard progressive matrices, means and S.D. (occasion I, age 16)

RavenChoice RTSubtests Simple RT

Simple RT —
—0.73Choice RT

−0.21Raven —−0.22

654.19Means 452.91 247.02
76.75S.D. 57.1566.87

RTs in msec; the Raven score= (number of correct items)2/10.
Number of observations for SRT and CRT: 175 in MZ group, 238 in
DZ group.
Number of observations for Raven: 181 in MZ group, 242 in DZ
group.
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Table 4
Fit indices for nested sequence of multivariate IQ-RT models fitted to between and within mean product matrices of MZ and DZ pairs (occasion
I, age 16)

df P Dx2Model Ddfx2 DP

1. ACE model 62.30 0.89
12 0.86 4.686.98 62. Same as 1, without C 0.59

3. Same as 2, without Raven-RT covariances in E 147.11 0.93 0.12 2 0.99

Groups: 80 MZ pairs, 108 DZ pairs.
DPB0.05 means a significant change in x2.
A, additive genetic variance; C, common environmental variance; E, unique environmental variance.

Table 5
Genetic and environmental correlations between RTs, Raven and heritability estimates with 95% CI based on Model 3

h2 95% CI of h2 Environmental correlations e2Subtests 95% CI of e2Genetic Correlations

CRTSRT Raven SRT CRT Raven

0.61 0.46–0.71SRT 11 0.39 0.29–0.54
0.83CRT 1 0.59 0.44–0.70 0.62 1 0.41 0.30–0.56

−0.36 1 0.58 0.44–0.68 — — 10.42−0.39 0.32–0.56Raven

Table 6
Fit indices for nested sequence of multivariate IQ-RT models fitted to between and within mean product matrices of MZ and DZ pairs (occasion
II, age 18)

df PModel Dx2x2 Ddf DP

250 0.271. Four-factor ACE model+specifics e.g. AG AV AP ART ASP 263.05
2. Same as 1, without C 315.02 288 0.13 51.9 38 0.07
3. Same as 2, without EV EP 330.48 299 0.10 15.5 11 0.16

301 0.11 1.10331.58 24. Same as 3, without RT loadings on EG 0.58
5. Same as 2: AG AV AP ART ASP; EG ERT ESP, without all nonsignificant loadings 309333.29 0.16 1.7 8 0.99

Groups: 74 MZ pairs, 100 DZ pairs.
DPB0.05 means a significant change in x2.
Factors: A, additive genetic factor; C, common environmental factor; E, unique environmental factor.
Factor subscripts: G, general; V, verbal IQ; P, performal IQ; SP, specific.

Table 7
Percentages genetic and environmental variance and heritability estimates with their 95% CI for RTs and WAIS subtests

Subtests % variance accounted for by genetic and environmental factors Genetic correlations

STM CRTAG AV AP ART ASP h2 95% CI of h2 EG ERT ESP e2 95% CI of e2

0.18–0.35 −0.44Information 45 13 — — 18 0.75 0.66–0.82 — — 24 −0.360.25
0.31–0.53 −0.33Comprehension 30 20 — −0.40— 0.4110 0.59 0.47–0.70 9 — 31
0.27–0.48 −0.50Arithmetic 49 1 — — 15 0.64 0.52–0.73 3 — 32 −0.400.36

−0.35−0.430.36–0.55Similarities 31 23 — — 0.45— 0.55 0.45–0.64 5 — 41
0.41 0.30–5.60 −0.44Digit span 35 — — −0.36— 23 0.59 0.44–0.70 — — 42

−0.36−0.440.15–0.32Vocabulary 46 28 — — 0.233 0.77 0.68–0.84 1 — 22
0.52 0.38–0.70 −0.26Coding 10 — — — 38 0.48 −0.210.31–0.62 — — 52

−0.33−0.410.53–0.85Pic. completion 17 — — — 0.6815 0.32 0.15–0.47 17 — 51
0.31 0.23–0.42 −0.34Block design 24 — 44 −0.28— — 0.69 0.58–0.77 3 — 28

−0.42 −0.34Pic. arrangement 17 — 1 0.52–0.87— 0.6913 0.31 0.13–0.45 10 — 59
0.51 0.39–0.67 −0.22 −0.18Object assembly 7 — 20 — 21 0.49 0.33–0.63 7 — 45

0.6910.35–0.63Simple RT 17 — — 26 0.4810 0.52 0.37–0.65 — 34 13
0.55 0.33–0.63 0.69 1Choice RT 11 — — 20 23 0.54 0.37–0.67 — 13 33

Factors: A, additive genetic factor; E, unique environmental factors.
Subscripts: G, general; V, verbal IQ; P, performal IQ; SP, specific.
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indicates that the RT-Raven correlation is entirely me-
diated by genetic factors, genetic correlations were:
−0.39 and −0.36 (Table 5). Heritability estimates with
95% CI are also reported in Table 5. The RT heritabil-
ities are considerable (61 and 59%), almost as high as
that of the Raven (58%).

3.4. Multi6ariate genetic analyses of test occasion II

A model was specified with a general, a verbal IQ, a
performance IQ and RT factor in addition to specific
factors for each subtest. In order to identify the model,
the RT loadings on each specific factor were constrained
to be equal. The first model (Table 6) showed a good fit.
In subsequent model fittings, the C structure, could be
dropped (Model 2). In Model 3 the verbal and perfor-
mal IQ factors in the E matrix could be omitted. It was
tested whether the RT-WAIS covariance could be en-
tirely explained by genetic factors. In accordance with
the results of occasion I, the loadings of the RTs on EG

were not significant. In the final step all nonsignificant
loadings were fixed at zero. Percentages of variance
accounted for by the genetic and environmental factors
and h2 estimates with their 95% CI are reported in Table
7. The mean rg among the verbal subtests (0.74) was
higher than among the performance subtests (0.45),
whereas the mean environmental correlations were
around zero. The mean rg among the RTs was high
(0.69), and so was the mean re (0.45) which may in part
have resulted from correlated measurement errors. The
mean rg between RTs and verbal was −0.40 and
between RTs and performance subtests −0.30.

4. Discussion

Heritabilities for SRT and CRT were considerable on
both occasions (48–64%). Heritabilities for verbal
WAIS subtest were slightly higher on average (64%)
than that for the performance subtests (46%). The mean
phenotypic correlation between the RTs and the Raven
was within the typically observed range. This correla-
tion was entirely due to genetic influences. Although the
RTs correlated lower with the WAIS subtests at occa-
sion II, than with the Raven 2 years earlier, the genetic
correlations are considerable. Covariances among
WAIS subtests were mainly explained by genetic factors
(general, verbal and performance), whereas covariances
among RTs were almost equally explained by genetic
and environmental factors. The WAIS-RT covariance
was entirely mediated by common genetic influences.

The nonsignificant correlations between ‘object as-
sembly’ (one of the two subtests in which faster perfor-
mance is rewarded with higher scores) and the RTs
support the notion that the SIP-IQ relationship does not
seem to be a consequence of the fact that some parts of

IQ tests are timed. In another study RT tasks also
showed to explain less of the variance of a timed IQ test
than that of an untimed administration of the same test
[22].

Heritabilities for SRT and CRT were lower on occa-
sion II. It is unclear whether the decrease in both
environmental and genetic variance was induced by
changes in response strategies caused by modifications
of the RT battery: subjects were rewarded for correct
responses and encouraged to perform in agreement with
target speed values. Mean RTs on both tasks were
significantly faster, but the percentages of correctly
made trials were significantly lower on occasion II.

In this study, the complete set of variables were
included in the multivariate genetic analyses, not com-
posite factor scores. As shown by our results, genetic
analyses can yield a quite different pattern than ob-
tained with phenotypic factor analyses. The typically
observed Verbal and Performance scales of the WAIS
are only expressed in the genetic matrix. The common
variance of all WAIS subtests are mainly explained by
the general genetic factor and for a small part by the
general environmental factor. This method also allows
identification of particular aspects of verbal and perfor-
mance IQ which show higher (genetic) correlations with
SIP. Whereas the mean phenotypic correlations between
the RTs, verbal and performance subtests were equally
high, the RTs showed higher genetic correlations with
the verbal subtests, on average. The highest genetic
correlations for both RTs were with the subtests infor-
mation, arithmetic, vocabulary and digit span (a STM
task).

Biological determinants of IQ may be translated into
neurophysiological and biochemical processes in the
central nervous system. In the neural efficiency model of
intelligence individual differences in IQ are hypothesized
to be attributable to genetic variability in the structure
and amount of transmission proteins, which determine
speed-of-information-processing. SIP is argued to be an
instrument to overcome limiting properties of the work-
ing memory and to ensure the correct performance on
basic cognitive operations like those involved in IQ
tests. In general, genetic studies reveal the importance of
genetic effects underlying the established RT-IQ rela-
tionship and support this model. In accordance with
earlier findings [11,12], the phenotypic RT-IQ correla-
tion in this study, measured at two occasions, was
entirely determined by common genetic influences. It is
thus possible that common features of both SIP and IQ
are determined by the same neurophysiological pro-
cesses which tap neural speed and efficiency. However,
other possibilities have to be considered, e.g. a genetic
predisposition to engage in some cognitive activities that
increase both SIP and IQ or a causal relationship
between the two.
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Twin data may be informative for direction of cau-
sation tests under certain conditions. This is the case
when two correlated traits have different modes of
inheritance (e.g. family resemblance is determined by
family background for one trait and by genetic factors
for the other trait) or if there is a large difference in
heritability between the two traits [23]. The RT and IQ
data did not meet these criteria. Since, in general, RT
and IQ data seem to show rather consistent patterns in
genetic architecture and covariance, panel data (mea-
surements on two occasions) may prove useful. How-
ever, even when applying data of occasion I and II
there was not enough power to distinguish between
models predicting either direction of causation.

What is the importance of (small) correlations be-
tween IQ and possible biological determinants? Varia-
tion in intelligence scores is probably due to multiple
factors. This complex trait is unlikely to show a large
correlation with any single causal factor. If there is a
consistent correlation among a number of biological
and psychometric variables, however, and these correla-
tions are shown to be genetic in origin, even small
correlations may be of theoretical interest. In addition
to the present (and earlier) results, which reveal the
genetic basis of the SIP-IQ correlation, the genetic
correlation between peripheral nerve conduction veloc-
ity and IQ [15] may serve as another example. Genetic
analyses are thus considered essential in examining the
relationship between biological variables and any com-
plex behavioral trait [24]. Twin studies, therefore, may
provide new perspectives in the identification of biolog-
ical determinants of intelligence.

References

[1] Galton F. Inquiries into Human Faculty and its Development.
London: MacMillan, Everyman’s library, 1883.

[2] Jensen AR. Reaction times and psychometric g. In: Eysenck
HJ, editor. A Model for Intelligence. Berlin: Springer-Verlag,
1982.

[3] Jensen AR. Individual differences in the Hick paradigm. In:
Vernon PA, editor. Speed of Information Processing and Intel-
ligence. Norwood (NJ): Ablex, 1987.

[4] Vernon, P.A., New developments in reaction time research, In
P.A. Vernon (Ed.), Speed of Information Processing and Intelli-
gence. Norwood (NJ): Ablex, 1987:1–20.

[5] Vernon PA. Speed of information processing and general intel-
ligence. Intelligence 1983;7:53–70.

[6] Bouchard TJ, Lykken DT, McGue M, Segal NL, Tellegen A.
Sources of human psychological differences: the Minnesota
study of twins reared apart. Science 1990;250:223–8.

[7] McGue M, Bouchard TJ, Lykken DT, Feuer D. Information
processing abilities in twins reared apart. Intelligence
1984;8:239–58.

[8] McGue M, Bouchard TJ. Genetic and environmental determi-
nants of information processing and special mental abilities: a
twin analysis. In: Sternberg RJ, editor, Advances in the Psy-
chology of Human Intelligence, vol. 5. Hillsdale (NJ): Lawrence
Erlbaum, 1989:7–45.

[9] Vernon PA. The heritability of measures of speed of informa-
tion processing. Pers Indiv Diff 1989;10:573–6.

[10] Petrill SA, Thompson LA, Detterman DK. The genetic and
environmental variance underlying elementary cognitive tasks.
Behav Genet 1995;25:199–209.

[11] Ho HZ, Baker LA, Decker SN. Covariation between intelli-
gence and speed of cognitive processing: Genetic and environ-
mental influences. Behav Genet 1988;18:247–61.

[12] Baker LA, Vernon PA, Ho HZ. The genetic correlation be-
tween intelligence and speed of information processing. Behav
Genet 1991;21:351–67.

[13] Petrill SA, Luo D, Thompson LA, Detterman DK. The inde-
pendent prediction of general intelligence by elementary cogni-
tive tasks: Genetic and environmental influences. Behav Genet
1996;26:135–47.

[14] Rijsdijk FV, Boomsma DI, Vernon PA. Genetic analysis of
peripheral nerve conduction velocity in twins. Behav Genet
1995;25:341–8.

[15] Rijsdijk FV, Boomsma DI. Genetic mediation of the correla-
tion between peripheral nerve conduction velocity and IQ.
Behav Genet 1997;27:87–98.

[16] Van Beijsterveldt CEM, Molenaar PCM, de Geus EJC,
Boomsma DI. Heritability of human brain functioning as as-
sessed by Electroencephalography (EEG). Am J Hum Genet
1996;58:562–73.

[17] Raven JC. Standard Progressive Matrices: Sets A, B, C, D, and
E. University Printing House, Cambridge. London: M.K. Lewis
& Co, 1985.

[18] Stinissen J, Willems PJ, Coetsier P, Hulsman WLL. Manual for
the Dutch Translated and Adapted Version of The Wechsler
Adult Intelligence Scale (WAIS). Lisse: Swets and Zeitlinger,
1970.

[19] Neale MC. Statistical Modelling with Mx. Department of Hu-
man Genetics, Box 3, MCV, Richmond, VA 23298, 1995.

[20] Neale MC, Cardon L. Methodology for Genetic Studies of
Twins and Families, NATO ASI Series: Behavioral and Social
Sciences. Dordrecht: Kluwer, 1992.

[21] Bouma A, Mulder JL, Lindeboom J. Neuropsychologische
Diagnostiek: Handboek. Lisse: Swets and Zeitlinger, 1996.

[22] Vernon PA, Kantor L. Reaction times correlations with intelli-
gence test scores obtained under either timed or untimed condi-
tions. Intelligence 1986;10:315–30.

[23] Heath AC, Kessler RC, Neale MC, Hewitt JK, Eaves LJ,
Kendler KS. Testing hypotheses about dierection of causation
using cross-sectional family data. Behav Genet 1993;23:29–50.

[24] Jensen AR, Sinha SN. Cerebral glucose metabolism and intelli-
gence. In: Vernon PA, editor. Biological Approaches to the
Study of Human Intelligence. Norwood (NJ): Ablex, 1993.


