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Combination of data sets from different objects (for
example, from two groups of healthy volunteers from the
same population) that were measured on a common set
of variables (for example, metabolites or peptides) is
desirable for statistical analysis in “omics” studies be-
cause it increases power. However, this type of combina-
tion is not directly possible if nonbiological systematic
differences exist among the individual data sets, or
“blocks”. Such differences can, for example, be due to
small analytical changes that are likely to accumulate over
large time intervals between blocks of measurements. In
this article we present a data transformation method, that
we will refer to as “quantile equating”, which per variable
corrects for linear and nonlinear differences in distribu-
tion among blocks of semiquantitative data obtained with
the same analytical method. We demonstrate the success-
ful application of the quantile equating method to data
obtained on two typical metabolomics platforms, i.e.,
liquid chromatography-mass spectrometry and nuclear
magnetic resonance spectroscopy. We suggest uni- and
multivariate methods to evaluate similarities and differ-
ences among data blocks before and after quantile equat-
ing. In conclusion, we have developed a method to correct
for nonbiological systematic differences among semiquan-
titative data blocks and have demonstrated its successful
application to metabolomics data sets.

Combining data from different sources is an important topic
in systems biology. At least two types of data combination can be
envisaged. The first type of combination is often referred to as
data integration or data fusion, and here combination is considered
of data sets all representing the same set of objects (for example,
a group of healthy volunteers) but different sets of measured

variables (for example, metabolites, peptides, etc.).1,2 Data fusion
combines the strengths of different analytical techniques to
enhance the biological interpretation of the variability present in
the study population. In the second type of combination, which is
the scope of this article, data sets are combined representing
different groups of objects (for example, two groups of healthy
volunteers) that were measured on a common set of attributes
(for example, the same set of metabolites). Combination of data
sets in such a way is desired because it increases the power of
statistical analyses. In other words, one may want to combine
different data “blocks”. In this article, we use the term “blocks”
to refer to measurements obtained on the same analytical method
but on different sets of objects and in particular with a considerable
time span in between these sets of measurements. A block can
consist of data from one or more measurement batches. A similar
definition of blocks is given by Zelena et al.3

Different measurement blocks can arise within a study, for
example, because (1) the number of study samples is too large
to measure all samples in one measurement block or in one
laboratory, (2) additional samples become available in the course
of the study while previously collected samples have already been
measured, or (3) following a successful pilot experiment, additional
samples are measured for validation. It is also conceivable that it
is desired to combine data blocks from different studies. Nonbio-
logical differences between the data from different measurement
blocks can exist due to small analytical differences that are often
unavoidable and that are typically not addressed during method
robustness tests. Such analytical differences are, for example,
likely to accumulate over large time spans between blocks of
measurements.3-5
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In data fusion, often three types of combination of data from a
common set of objects are considered: high-level fusion, which
is the combination of results of data analyses obtained on sets of
different variables, low-level fusion, or the concatenation and
possibly subsequent weighting of data matrices in such a way that
the objects are the shared mode, and mid-level fusion, a term used
to describe the combination of variables selected from different
data sets.1,2 A similar classification can be envisioned when
considering combination of data on sets of different objects where
the attributes are identical. In this article, we present a method
that enables such combination of data blocks at a “low level” and
illustrate its use with metabolomics data sets. Combination at low
level allows maximal flexibility in the choice of subsequently
applied (multivariate) data analysis methods yielding results for
the combined data sets and therefore is particularly suited to
increase the power of such subsequent data analyses. Moreover,
combination of data at a low level allows to account for differences
in distribution shapes of the same variable(s) among the data sets
to be combined, if it is known that such differences have a
nonbiological cause.

The necessity and possibility of applying data correction
methods in order to obtain combinable “omics” data blocks will
vary from situation to situation. In the discussion below, we have
intended to provide a guideline where we start with a description
of situations where combination should be possible without
additional data correction and end with a description of situations
where the data transformation method we propose in this article
could be useful.
1. If the between-block reproducibility of the used analytical

method is good (e.g., semiquantitative nuclear magnetic
resonance (NMR) spectroscopy under similar conditions
for all measurement blocks of which data sets are to be
combined),6,7 or the data sets to be combined all contain
quantitative data (either through separate calibration per
measurement block or through transfer of calibration
models),4,5 then the combination of data sets from
different measurement blocks should be possible without
additional correction. However, currently obtaining quan-
titative data from metabolomics experiments is still rather
difficult, because often due to the absence of reference
standards for all detected compounds it is impossible to
create a complete calibration model per variable.8 Both
techniques that are the most frequently used in metabo-
lomics, i.e., liquid chromatography-mass spectrometry
(LC-MS) and NMR, suffer from this problem.

2. If the measurements performed within particular blocks
are not reliable, then the data from these measurements
should be discarded. The reliability of measurements can
be monitored using, for example, a quality control (QC)
sample consisting of pooled individual study samples, of

which aliquots are measured during all analytical mea-
surement blocks.8-13

3. Recently, a method has been presented to correct for
between-batch effects using these repeated measure-
ments of QC samples as well.14 Like the other methods
to be discussed below, it can be used for the correction
of semiquantitative data, i.e., in cases where no full
calibration models can be made. We will refer to
techniques that make combinable sets of semiquantita-
tive data as “equating” methods, because the term
“equating” is used in psychometrics to denote techniques
that solve similar problems.15,16 In the method of van
der Kloet et al., the data are corrected for within-batch
and between-batch effects per metabolite using the
responses of pooled QC samples (for that metabolite).14

This method can be of use if a single-point calibration is
appropriate for correcting differences in data distributions
among measurement batches or even among measure-
ment blocks. Of course, it can be used only if the same
QC samples are measured in all batches or blocks of
which data need to be combined.

4. There are situations where repeated QC sample mea-
surements cannot be used for between-batch effect
correction or for between-block effect correction. An
obvious example is if such measurements have not been
done during all measurement batches or blocks of which
data sets need to be combined. Another example is when
the QC samples are not representative for the measure-
ments in all data sets to be combined. This can happen
for instance if there is differential degradation in the QC
samples with respect to the individual study samples.
Such situations are analogous to the situations where in
the context of multivariate calibration transfer one would
typically use “nonstandardization methods”, i.e., data
preprocessing methods that are independent of transfer
standards.4 An example of an equating method that is
independent of repeated QC sample measurements is
local autoscaling: autoscaling per data set separately.17

Like the method described in ref 14, this local autoscaling
method could be regarded as a linear equating method.

5. Finally, the data distribution shapes of the same variable
in all data sets to be combined can be different mainly
due to nonbiological differences among the blocks. Such
nonlinear differences among the data distribution shapes
in different blocks can arise even if within each block
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the measurements for each variable are within the
dynamic range of the detector. For example, in case of
LC-MS, in a typical metabolomics study, measurement
values can be outside the linear range for various
reasons: saturation of the detector, peak integration
effects (e.g., caused by peak tailing, depending on the
concentrations of a particular compound in the samples
measured in a particular block), or nonlinear losses
during sample preparation. These effects can be different
for different measurement blocks. In this article, we
propose an equating method that corrects for nonlinear
differences between distributions under the assumption
that there is an underlying common distribution. There-
fore, the beneficial effects of our method will be largest
when the compositions of the object groups are balanced
among the measurement blocks of which data are to be
combined. Our method is independent of repeatedly
measured QC samples as well.

In case it has been decided that equating methods need to be
considered to correct the data for between-block effects, the choice
of a particular equating method might not be trivial. It can be
generally stated that the equating method should be used that
removes most analytical between-block variation with respect to
the biological variation present in all blocks. In practice, however,
it is not always possible to determine exactly which part of the
total between-block variation is attributable to biological variation
and which part is attributable to analytical variation, because the
objects measured in different blocks are different. In this respect,
an objective evaluation of the results of equating is necessary,
because the best equating method in a given situation is not
necessarily the one that gives the most desirable results in view
of the biological question. Therefore, as with any data preprocess-
ing, using the results of subsequent data analyses alone as a
reference to “optimize” the choice for a particular method could
lead to bias.

The structure of the remainder of this article is as follows. In
the Materials and Methods section, we first introduce the
metabolomics data that we will use to illustrate the use of our
equating method. Then, we describe our equating method.
Univariate as well as multivariate parameters are described that
can be used to evaluate the comparability of data sets before and
after equating. The Results and Discussion section describes the
results of application of our equating method to the data sets
originating from the different measurement blocks. Several
possible sources of nonbiological systematic variation between
data obtained in the different blocks are pointed out.

The results of application of our equating procedure to
metabolomics data sets, as described in this article, will be used
to reproduce and extend our observations that were done in a
cohort of twins.18 The results of these subsequent analyses on
the combined equated data sets described in the current article
will be presented in a separate paper, because the biological
interpretation of the results is out of the scope of this paper.

MATERIALS AND METHODS

Participant recruitment and characterization, blood sampling,
and blood plasma sample preparation were performed as described
previously.18 In brief, blood was drawn and urine collected from
all participants (twins and biological nontwin siblings) after
overnight fasting. Plasma samples were stored at -80 °C until
analysis. The LC-MS and 1H NMR measurements were per-
formed in two blocks; the measurements of “block 2” (B2) were
performed almost 1 year (48 weeks) after those of “block 1”
(B1). In B2, for the purpose of QC of the LC-MS and NMR
analyses, QC samples were prepared prior to sample prepara-
tion by pooling equal amounts of plasma sample from all
participants who were measured in that block. In B1, such QC
samples were prepared for the LC-MS analyses only. For both
LC-MS and NMR analyses, these QC samples were inserted
uniformly distributed after separate randomization of the
measurement order of the individual study samples in each
batch.

LC-MS Plasma Lipid Profiling. Plasma lipid extraction and
profiling by LC-MS were performed as described previously.18

After lipid extraction, all extracts were stored at -20 °C and
measured within 2 weeks. Each peak area obtained for a lipid
was corrected using an appropriate internal standard (IS), which
had been added prior to sample preparation; no further normaliza-
tion of the data was applied.

1H NMR Analysis of Plasma. Prior to 1H NMR spectro-
scopic analysis, 300 µL of each plasma sample was centrifuged to
remove proteins that had come out of the solution after freezing
and transferred to a 5 mm o.d. NMR tube. To each sample 300
µL of deuterated sodium phosphate buffer (0.1 mmol/L, pH 7.4,
made up with D2O) was added. 1H NMR spectra were acquired
in triplicate on a fully automated Bruker Avance 600 MHz
spectrometer (Bruker Analytik GmbH, Karlsruhe, Germany)
using a “Carr-Purcell-Meiboom-Gill” (CPMG) spin-echo
pulse sequence and operating at an internal probe temperature
of 300 K. The water signal was removed by a presaturation
technique in which the water peak was irradiated with a constant
frequency during the relaxation delay. A total of 128 transients
were acquired into 32 × 103 data points for B1 and 64 × 103 data
points for B2. A spectral width of 6 kHz for B1 and 12 kHz for B2
was used with a spin relaxation delay of 88 ms and τ 3.4 × 10-4 s
for both blocks. The spectra were processed using XWIN-NMR
software (v.3.1, Bruker Analytik GmbH). An exponential line-
broadening function of 0.5 Hz was applied to the free induction
decays (FIDs) prior to Fourier transformation. All spectra were
manually phased, baseline-corrected, and referenced to the lactate
signal (CH3 δ 1.33). After peak picking of the NMR data using
the XWIN-NMR software, peak lists were imported into Winlin
(V1.10, TNO, The Netherlands). Small variations in chemical shifts
in the NMR spectra were adjusted manually based on the partial
linear fit algorithm.19 The peak-picked data from B1 and B2 were
aligned together, with the aim to make the alignment for data
from both blocks as comparable as possible. Peaks detected in

(18) Draisma, H. H.; Reijmers, T. H.; Bobeldijk-Pastorova, I.; Meulman, J. J.;
Estourgie-Van Burk, G. F.; Bartels, M.; Ramaker, R.; Van der Greef, J.;
Boomsma, D. I.; Hankemeier, T. Omics 2008, 12, 17–31.

(19) Vogels, J. T. W. E.; Tas, A. C.; Venekamp, J.; Van der Greef, J. J. Chemom.
1996, 10, 425–438.

1041Analytical Chemistry, Vol. 82, No. 3, February 1, 2010



at least 80% of the spectra recorded in each block were kept for
further analysis.2,13 Then, the data were median-normalized.20

Differences between B1 and B2. The 54 healthy participants
(30 males and 24 females) who contributed the samples measured
in B1 have already been described previously.18 In B2, plasma
samples from 128 additional healthy participants (49 males and
79 females) from 42 families were measured. In this cohort, there
were 16 monozygotic twin pairs, 26 dizygotic twin pairs, and 44
nontwin siblings. The average age of the twins in the cohort of
whom samples were measured in B2 was 18.2 years (standard
deviation (SD), 0.2); the average age of the siblings was 19.5 years
(SD, 4.8). In B1, for LC-MS analysis two aliquots were taken of
the plasma sample from each individual participant, which were
then divided into two measurement batches where each batch
contained one aliquot of each study sample. In B2, on the other
hand, only one aliquot of each study sample was processed and
analyzed in one measurement batch. Furthermore, following every
other of the QC sample aliquots consisting of B2 study samples,
aliquots were inserted of the QC sample that had been measured
in B1 as well and that thus consisted of B1 individual study sample
aliquots (sample pretreatment was performed for this B1 QC
sample in B1 and in B2 separately). This B1 QC sample thus
underwent an additional freeze-thaw cycle between B1 and B2.
As a measure of experimental error, for each detected lipid
compound relative standard deviations (RSDs) were computed
for B1 of the IS-corrected measurements in B1 of the pooled QC
sample prepared from individual study samples measured in B1,
and for B2 of the IS-corrected measurements of the pooled QC
sample prepared from samples measured in B2. In B2, for NMR
analysis following each of the QC sample aliquots consisting of
B2 study samples, samples were inserted of in total 12 participants
that had already been analyzed in B1. These samples thus
underwent an additional freeze-thaw cycle between B1 and B2.

Equating Data from B1 and B2. Our equating method lets
the data for each variable assume the same distribution in all
blocks, by averaging the distributions for that variable in all blocks.
An algorithm to achieve this has been presented by Bolstad et
al.21,22 This algorithm was based on the principle of the
quantile-quantile plot (Q-Q plot). Generally stated, quantiles are
the values marking the boundaries between regular intervals of
the cumulative distribution of a data sample. That is, when dividing
ranked data into a number of subsets, then the quantiles are the
values at the boundaries between consecutive subsets. In a Q-Q
plot, the quantile values of two distributions are plotted against
each other; the number of quantiles plotted equals the number
of data points in the smaller data sample (the quantile values in
the larger data sample are found by linear interpolation).23,24 If
in the Q-Q plot the points defined by the values of corresponding
quantiles in both data samples all lie on a straight diagonal line,
then the distributions of both samples are highly similar; if they

do not, then the distributions are dissimilar. In the algorithm as
presented by Bolstad et al., the averaging of data distributions is
achieved by projecting the corresponding quantile values of all
distributions onto a scalar multiple of the unit vector (a, possibly
multidimensional, analogue of the diagonal in the Q-Q plot)
(Figure 1).21,22 Then, the averaged quantile values are substituted
for the original values that are in the subsets belonging to the
corresponding quantiles in the data samples under consideration.
Thus, the original ranking of the data points in the data samples
to be combined is retained. The result is that the distributions of
all data samples become equal, orsin the case of different
numbers of observations per data samplesalmost equal. This
algorithm is usually applied in an “omics” context to make the
distributions of different objects equal over all measured variables,
that is, for “normalization”. Examples of this application are found,
e.g., in the fields of genomics (normalization of gene probe

(20) Hendriks, M. M.; Smit, S.; Akkermans, W. L.; Reijmers, T. H.; Eilers, P. H.;
Hoefsloot, H. C.; Rubingh, C. M.; de Koster, C. G.; Aerts, J. M.; Smilde,
A. K. Proteomics 2007, 7, 3672–3680.

(21) Bolstad, B. M. Division of Biostatistics, University of California, Berkeley.
Probe level quantile normalization of high density oligonucleotide array
data. Unpublished work, 2001.

(22) Bolstad, B. M.; Irizarry, R. A.; Astrand, M.; Speed, T. P. Bioinformatics
2003, 19, 185–193.

(23) Cleveland, W. S. The Elements of Graphing Data, 2nd ed.; Hobart Press:
Summit, NJ, 1994; pp 133-149.

(24) Wilk, M. B.; Gnanadesikan, R. Biometrika 1968, 55, 1–17.

Figure 1. Action of quantile equating algorithm schematically
illustrated: Data samples B1 and B2 have different distribution shapes
(panel A). The cumulative distributions (CD) corresponding to these
distributions are plotted against each other in the quantile-quantile
plot (Q-Q plot) in panel B. Quantile equating is attained by projecting
the values of corresponding quantiles onto a scalar multiple of the
unit vector (the diagonal line in the Q-Q plot) in panel C. Then, the
projected (averaged) quantile values are substituted for the original
values in the subsets belonging to each quantile. Thereby, the
distributions of B1 and B2 become equal, as is illustrated with equal
cumulative distributions (panel D) and equal kernel densities (panel
E). Data from ref 35. CD, cumulative distribution; Q-Q plot,
quantile-quantile plot; Cum. fx, cumulative fraction. The axis labels
as in panel B apply to panels C and D as well.
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intensity distributions between oligomicroarrays, over all gene
probes)22,25-27 and of peptidomics (normalization of peptide
intensity distributions between analytical samples, over all detected
peptides).28 However, we introduce the use of this algorithm for
equating, that is, for making the distributions of the same variable
(NMR feature or lipid) equal over all sets of objects (sets of study
samples in all blocks). Because our method is conceptually akin
to what is known in psychometrics as “quantile equating” or
“equipercentile equating”,16,29 we will refer to it as “quantile
equating” as well. Of note, in quantile equating in a psychometrical
context the aim is not to make the distributions of the same
variable equal for all sets of objects but to provide transformations
by which equivalent scores can be found on different versions of
the same test. We used the “normalize.quantiles” function, which
was written by the first author of the original publications,21,22 to
perform quantile equating. This function is part of the “prepro-
cessCore” package, which is a component of the Bioconductor
software suite (version 2.1)30 running in the statistical environment
R (version 2.6.2).31 For its originally intended purpose, i.e., for
normalization, the “normalize.quantiles” function is applied si-
multaneously to all objects (study samples). To perform equating,
however, we applied this function to the variables. Moreover, we
applied the function to the B1 and B2 data for each variable
separately. In case of the LC-MS data, replicate measurements
of the individual study samples in B1 were first averaged before
equating, whereas in case of the NMR data unaveraged replicates
were equated. Data for samples measured in B1 as well as in B2
(for example, QC samples prepared on basis of pooled aliquots
of B1 individual study samples) were omitted from all B2 data
sets before equating for the following reason. If the composition
of QC samples changes differently between measurement blocks
with respect to the composition of individual study samples, then
QC samples are not representative for the samples measured in
all blocks. In this paper, we show an example of this in case of
plasma NMR spectroscopy, where repeatedly measured samples
underwent an additional freeze-thaw cycle between B1 and B2
with respect to the individual samples measured in B2. If we would
have left the data for these repeatedly measured samples in the
B2 block, these data would have influenced the B2 data distribu-
tions and thereby would have distorted the result of quantile
equating. We did not remove the B1 and B2 measurement data
for the QC samples prepared on basis of samples measured in

each block, because these helped to visualize the beneficial effects
of quantile equating in making combinable B1 and B2 data sets.

Evaluation of Comparability of Data Sets. The comparability
of data sets obtained with the same analytical method but in
different measurement blocks was evaluated using various meth-
ods. At the univariate level, before quantile equating we assessed
to which extent the relationship between data distributions of both
measurement blocks was nonlinear using the Pearson correlations
between the ranked quantile values of both measurement blocks.
Due to the nature of quantile equating, after equating the
correlations between the B1 and B2 quantile values are always
equal to 1. We characterized the extent to which nonlinear
relationships between the distributions as well as other differences
between the data from both measurement blocks before equating
gave rise to differences at the multivariate level, using a strategy
proposed by Jouan-Rimbaud et al.32 In this strategy, data sets are
compared in the principal component (PC) space using three
continuous parameters that each can take a value between 0 and
1, where a zero value indicates low similarity of the evaluated data
sets and a value of 1 suggests perfect similarity. The first
parameter (“P”) is based upon the comparison of principal
components analysis (PCA) loadings patterns, the second param-
eter (“C”) is based upon the comparison of variance-covariance
matrices, and the third parameter (“R”) characterizes the similarity
in location of the centroids of the data sets. The degree of success
of quantile equating in making data from both measurement
blocks comparable, was characterized using these multivariate
parameters as well. We used a 2% increase in total variance
explained by the model as a criterion to estimate the number of
PCs for which these parameters were to be computed (PLS_
Toolbox version 3.5, Eigenvector Research, Wenatchee, WA).
Furthermore, the success of the equating procedure was visualized
by the results of PCA on the combined (concatenated with the
variables as the shared mode) data sets originating from different
measurement blocks. For this PCA, replicate measurements were
averaged. LC-MS data were then mean-centered, whereas NMR
data were autoscaled. These different types of scaling were applied
to the respective types of data because this enhanced the visibility
of the between-block effects prior to equating. All PCA were
carried out using the PLS_Toolbox for MATLAB (version R2006b,
The Mathworks, Natick, MA).

RESULTS AND DISCUSSION
Analytical Data. In ref 18, the data denoted in the current

paper as the B1 LC-MS data have already been presented. The
61 different lipids that were detected in the chromatograms in
B1 were detected in B2 as well.18 Lipids from the following classes
were detected: lysophosphatidylcholines (LPC), phosphatidylcho-
lines (PhC), sphingomyelins (SPM), cholesterol esters, and
triglycerides (TG). Throughout the manuscript, lipids are denoted
as follows: the number of carbon atoms as well as the number of
double bonds in the fatty acid, separated by a colon (e.g., C36:5)
is followed by the class abbreviation (e.g., PhC).13 The data for
C16:0_LPC and C52:2_TG were excluded from further analysis
because their responses displayed a systematic trend in the QC
sample measurements in B2, resulting in high RSDs. In B1, the
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mean RSDs for the remaining 59 lipids as computed on basis of
the measurements of the QC sample prepared in B1 were 13.3%
(SD, 5.6; range, 5.2-25.5%). Notably, the RSDs of all LPCs, PhCs,
and SPMs were below 15%. In B2, the mean RSDs of these same
59 lipids, computed on basis of the measurements of the QC
sample prepared in B2, were 7.5% (SD, 1.4; range, 4.9-10.9%).

In the plasma NMR data, after application of the “80% rule”,
75 features (variables) were kept for analysis.

B1-B2 Comparison before Equating. PCA Scores Plots.
Panels A and C of Figure 2 display the PCA scores plots for the
LC-MS and the NMR plasma data, respectively, before equating.
As expected, the scores of almost all pooled B1 and B2 QC sample
aliquots are in the centers of the clusters corresponding to B1
and B2, respectively. However, in particular in case of the LC-MS
data, the scores of the measurements from both blocks display
notable separation along the PC1 axis (Figure 2A). This phenom-
enon might have been caused, for example, by slightly different
IS concentrations. Another possible cause is that for each block
a separate target table was constructed on basis of the QC sample
measurements in that block. This might have led to different
detection thresholds for the same peaks in both blocks and
thereby to systematic differences in peak integrals. The scores
based on the B1 and on the B2 plasma NMR measurements

overlapped only partially (Figure 2C). This may have been caused,
at least in part, by different CPMG parameter sets in both blocks.
Furthermore, in Figure 2C, it can be observed that the NMR
measurements in B2 of the 12 individual samples that were
measured in B1 as well are not representative for the measure-
ments in B2. We suspect that this is among others due to the
additional freeze-thaw cycle that these repeatedly measured
samples underwent and that is known to affect plasma NMR
spectra.33 Therefore, Figure 2C gives a visual illustration of a case
where methods that employ such repeatedly measured samples
for equating, e.g., the method described in ref 14, cannot be used.

B1-B2 Correlation of Quantile Values. The average Pearson
correlation for all variables between the B1 and the B2 quantile
values before equating was 0.97 (SD, 0.03) for the LC-MS data
and 0.92 (SD, 0.09) for the plasma NMR data. In case of the
LC-MS data, notably a group of TGs displayed nonlinear
relationships between the quantile values of both blocks (Sup-
porting Information Table S3A). Among the lipids, TGs are
particularly likely to display nonlinear differences in data distribu-
tion shapes among data blocks because they can form dimers
during ionization and MS detection. This effect is dependent on

(33) Deprez, S.; Sweatman, B. C.; Connor, S. C.; Haselden, J. N.; Waterfield,
C. J. J. Pharm. Biomed. Anal. 2002, 30, 1297–1310.

Figure 2. PCA scores on PC1 and PC2 for the combined (concatenated) B1-B2 data sets before (panels A and C) and after (panels B and
D) quantile equating. Panels A and B, plasma LC-MS data; panels C and D, plasma NMR data. In panels A and B, B1 QC sample aliquots
measured in B1 are indicated by (4). In panel C, scores based on NMR measurements of individual plasma samples that were measured in
both B1 and B2 are connected by lines. The percentages of variance explained by the respective PCs are given between brackets in the axes
labels. PC1-PC2 loadings plots are given in the Supporting Information (Figures S4 and S5). b, B1 individual study sample; O, B2 individual
study sample; 2, B2 QC sample aliquot measured in B2; ×, B1 QC sample aliquot (panel A) or B1 individual study sample (panel C) measured
in B2.
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concentration and on ion source tuning. Unlike LC-MS systems,
NMR spectrometers are regarded to be linear detectors,34 imply-
ing that signal intensity should be linearly related to compound
concentration over the complete dynamic range. Therefore, in case
of the NMR data, nonlinear relationships between the distributions
of the B1 and the B2 data at lower intensities (Supporting
Information Table S3B) might have been caused by differences
in the sensitivity of the NMR probe heads used for the acquisitions
of the NMR data between both blocks, as well as by differences
in peak detection thresholds between both blocks.

Multivariate Parameters. The values of parameters that char-
acterize the similarity of the B1 and B2 data sets in the PC space
before and after quantile equating are given in Table 1. For both
the LC-MS data and the plasma NMR data, the values for the P
parameter as well as the values for the C parameter with inclusion
of two PCs suggest that the structures of the B1 and B2 data are
already comparable before equating (Table 1, sections A and C).
This is important because it suggests that the compositions of
the object groups are indeed balanced between both measurement
blocks. Therefore it might be reasonable to assume that with
application of the quantile equating method, relatively much
analytical between-block variation will be removed with respect
to biological variation. However, the zero values for the R

parameter in case of both the LC-MS as well as the NMR data
suggest that there is a multiplicative difference between the B1
and B2 data, which is in concordance with what can be observed
in the PCA scores plots on the combined data sets (Figure 2,
panels A and C). Moreover, in Table 1, sections A and C, the
values for the C parameter decrease considerably with inclusion
of more than two PCs, suggesting that the higher PCs are
influenced by differences in data distribution shapes between B1
and B2.

B1-B2 Comparison after Equating. PCA Scores Plots. After
quantile equating of the data, the systematic nonbiological differ-
ences between the B1 and B2 data are not manifest anymore in
the PCA scores plots (Figure 2, panels B and D). In these plots,
the scores based on the individual study samples measured in
B1 and B2 are dispersed among each other. Also, the scores based
on the measurements of the pooled QC samples in both B1 and
B2 are located in the centers of the plots. This is consistent with
the expectation that the B1 and B2 pooled QC samples should
represent the average sample measured in each of the blocks.
Given that this expectation is correct, the location in the centers
of the plots of the QC sample measurement scores from both B1
and B2 in turn is a direct consequence of making the data
distributions of each variable equal for both blocks by quantile
equating.

Multivariate Parameters. For both LC-MS and NMR, the
increase in the values of the R parameter after equating (Table 1
sections B and D) suggests that in particular the distance between
the centroids of the B1 and B2 data sets has decreased. The values
for the P and C parameters have increased as well. The values
for all parameters are not equal to 1 after equating, which is
consistent with the notion that although our univariate equating
method causes equal or nearly equal data distributions among
data blocks at the univariate level, the ranking of objects at this
univariate level is retained. Therefore, differences among data
blocks at the multivariate level are not necessarily removed by
univariate quantile equating as well.

CONCLUSIONS
Combination of semiquantitative metabolomics data sets orig-

inating from different measurement blocks where the same
metabolites have been measured can be challenging due to
nonbiological systematic differences among the blocks. These
differences are caused by unwanted, though sometimes practically
unavoidable, between-block differences in experimental conditions.
We have presented a solution for such data combination problems
in the form of the quantile equating method. We have demon-
strated the successful application of the quantile equating method
to LC-MS and 1H NMR metabolomics data obtained in human
plasma samples. We successfully applied our equating method
to urine 1H NMR metabolomics data as well (see the Support-
ing Information for methods and results). It is conceivable that
the quantile equating method is equally applicable for other types
of semiquantitative metabolomics data, e.g., GC/MS data. Due
to its univariate nature, this equating method will remain to
provide satisfactory results even when the data sets to be
combined contain data for (much) larger numbers of variables
than the examples considered in this article. Moreover, the
applicability of the equating method presented in this article may
not be limited to data from metabolomics studies. For example,

(34) Mehr, K.; John, B.; Russell, D.; Avizonis, D. Anal. Chem. 2008, 80, 8320–
8323.

(35) Frisby, J. P.; Clatworthy, J. L. Perception 1975, 4, 173–178.

Table 1. B1-B2 Similarity of Data Sets in PC Space
before and after Quantile Equatinga

A (LC-MS Data, before Equating)

1 PC 2 PCs 3 PCs 4 PCs 5 PCs 6 PCs

P 0.9615 0.9423 0.9339 0.9315 0.9463 0.9513
C 0.9829 0.9504 0.6682 0.6527 0.6181 0.4553
R 0 0 0 0 0 0

B (LC-MS Data, after Equating)

1 PC 2 PCs 3 PCs 4 PCs 5 PCs 6 PCs

P 0.9958 0.9952 0.9897 0.9926 0.9954 0.9941
C 0.9984 0.9935 0.9902 0.9844 0.9645 0.9392
R 0.9997 0.9985 0.9988 0.9988 0.999 0.9988

C (1H NMR Data, before Equating)

1 PC 2 PCs 3 PCs 4 PCs 5 PCs 6 PCs 7 PCs

P 0.949 0.9143 0.9125 0.9057 0.8919 0.8962 0.8936
C 0.9964 0.9947 0.713 0.6732 0.5372 0.3266 0.2944
R 0 0 0 0 0 0 0

D (1H NMR Data, after Equating)

1 PC 2 PCs 3 PCs 4 PCs 5 PCs 6 PCs 7 PCs

P 0.9892 0.951 0.975 0.97 0.9684 0.9684 0.9679
C 0.999 0.9716 0.805 0.721 0.6402 0.5964 0.5572
R 0.9996 0.9985 0.9866 0.9857 0.9874 0.9879 0.9881

a Sections A and B, similarity of B1 and B2 plasma LC-MS data
sets before (section A) and after (section B) quantile equating. Sections
C and D, similarity of B1 and B2 plasma 1H NMR data sets before
(section C) and after (section D) quantile equating. P, B1-B2 similarity
of PCA loadings patterns; C, B1-B2 similarity of variance-covariance
matrices; R, B1-B2 similarity of data set centroid locations.
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in DNA methylation measurements in the context of epigenetics
studies the data distributions may vary between arrays and
equating methods have the potential to correct the data obtained
in such experiments. Of course, the possibility to apply equating
methods in an “omics” context leaves unimpeded the importance
of good analytical practice. This includes that, if possible, all study
samples should be measured in one block to minimize process
variability. However, in a typical large metabolomics study, where
in total hundreds or thousands of samples are measured, it is often
not feasible both from a practical and cost perspective to measure
new and previously measured samples together in one block.
Because of such practical limitations, and because not all system-
atic differences between measurements in different analytical
blocks can be prevented by good analytical practice alone, we
believe that equating methods have the potential to enable joint
analysis of valuable data sets, which would not be possible without
using such methods.

ACKNOWLEDGMENT
We thank all the twins and siblings who participated in this

study. We acknowledge support from The Netherlands Bioinfor-

matics Centre (NBIC) through its research programme BioRange
(project no. SP 3.3.1), Spinozapremie NWO/SPI 56-464-14192, the
Center for Medical Systems Biology (CMSB), Twin-family data-
base for behavior genetics and genomics studies (NWO-MaGW
480-04-004), and NWO-MaGW Vervangingsstudie (NWO no. 400-
05-717).

SUPPORTING INFORMATION AVAILABLE
Methods and results for application of the quantile equating

method to data from 1H NMR analysis of urine samples; for
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