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DEGEUS, E. J. C. Genetic pathways underlying individual differences in regular physical activity. Exerc. Sport Sci. Rev., Vol. 51,
No. 1, pp. 2–18, 2023. Twin and family studies show a strong contribution of genetic factors to physical activity (PA) assessed by either self-report
or accelerometers. PA heritability is around 43% across the lifespan. Genome-wide association studies have implied biological pathways related to
exercise ability and enjoyment. A polygenic score based on genetic variants influencing PA could help improve the success of intervention programs.
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Key Points

• Family and twin studies show that for different types of
physical activity, and across device-based or self-report as-
sessment, meta-analyses showed broad sense heritability to
be around 26% for females and 35% for males in childhood,
to increase to around 42% in both sexes during adolescence,
and to remain around 45% throughout adulthood.

• Genetic correlations derived from multivariate twin studies
and genome-wide association studies (GWAS) results sug-
gest that the biology of exercise (train) ability and exercise
enjoyment are partly underlying the heritability of physical
activity.

• GWAS on physical activity have identified several repli-
cated genetic variants and allow the computation of poly-
genic scores (PGS) for physical activity.

• These PGS can be used to study the causal effects of physi-
cal activity on health, to test the interaction between genet-
ics and physical activity interventions, and to tailor physical
activity interventions to individual genotypes.
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INTRODUCTION
Despite the long-standing recognition that physical inactiv-

ity is a major burden on our health care systems (1,2), the adop-
tion of national physical activity (PA) guidelines, and govern-
mental policies building on these guidelines by many countries
(3,4), a large proportion of the population still does not engage
in enough physical activity for optimal health benefits (5,6).
There is even a striking stability of the percentage of sedentary
individuals from 2000 to 2015 in both the adult (7) and adoles-
cent (8,9) population. These alarmingly high levels of physical
inactivity are uniformly repeated across all countries and all
continents (7,8).

Why is PA so hard to change despite our many intervention ef-
forts? Strong forces seem to intercede between the intention to be
more physically active and the actual enactment, a discordance
alluded to as the intention-behavior gap (10). These forces can
be external to a person, including socioeconomic factors (11)
and physical factors like the built environment (12), but many
biological and psychological person-specific characteristics like
body composition (13), exercise ability (14), enjoyment (15),
and personality traits (16,17) also are at play. Whereas there
is no dispute among researchers about the multifactorial deter-
mination of PA, prioritizing one or more of the many possible
determinants for research (funding) does seem to divide the re-
search community. With the acknowledgment that it is an
oversimplification, two general perspectives can be found.
The first “epidemiological” perspective tries to identify all de-
terminants that explain the variance in PA encountered in a
target population, even if they are not (readily) modifiable like
sex, age, socioeconomic status, and genetics. The second “inter-
ventionist” perspective focuses explicitly on those determinants
of variance in PA that might be successfully modified in the tar-
get population. The interventionist's perspective would criti-
cize the epidemiological perspective for not yielding actionable
scientific results and, therefore, a failure to generate impact.
The epidemiological perspective would in turn point out that
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Figure 1. Genetics is about the variance; intervention is about the mean.
a focus on actionable determinantsmight ignore the largest sources
of variation between individuals and, therefore, overpromise on
the achievable increases in PA.

In this review, I aim to close the gap between these two per-
spectives on the theme where the divide in the focus of research
on the determinants of PA seems to be the strongest: the con-
tribution of genetic variation to differences between individuals
in their regular PA habits.

Figure 1 shows an imaginary example with the distribution of
the number of METminutes spent weekly on leisure time sports
and exercise activities1 before and after an intervention program
set up to encourage more regular participation in such activities,
for example, using one of the successful digital programs to in-
crease gym visits (18). Figure 1 is aptly summarized as “interven-
tion is about the mean, genetics is about the variance.” This
means that there will be a large difference between individuals
in METminutes weekly spent on exercise before, as well as after,
the intervention. This is true even if the intervention is success-
ful in raising the overall mean METminutes weekly spent on
exercise. The intervention on the mean may decrease the total
variance but may also increase it, because the impact of the inter-
vention may not be uniform across individuals. If those with a
high innate drive to exercise are the ones to increase their exer-
cise levels in response to the intervention the most, the genetic
variance will increase. If in contrast those with a low innate drive
to exercise are most activated in response to the intervention,
the genetic variance will decrease.

Figure 1 illustrates the idea that if the variance in regular
sports and exercise behaviors is explained to a substantial degree
by heritable factors (epidemiological perspective), this does not
detract from the possibility that such behaviors can be increased
by well-designed interventions (interventionist perspective). Her-
itability of a trait, in short, is not predestination and does not im-
pede the development of successful intervention programs. This
1

These METminutes weekly are often obtained by charting the type, frequency,
and duration of all sports and exercise activities done regularly using an interview
or a survey. Based on listings of the age-appropriate energy expenditure for the
type of activity in Metabolic Equivalents of Task (MET), weekly number of
times the activity is done, and the mean duration per time in minutes, the
METminutes are computed per activity. If multiple activities are performed reg-
ularly, the sum of METminutes weekly across all these activities is used.
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does not just apply to regular sports and exercise activities, which
was used as the example in Figure 1, but to the full breath of PA
behaviors depicted in Figure 2.

In genetic epidemiology, just as in any other area of science,
findings depend strongly on the exact definition of PA or, in ge-
netics parlance, the PA “phenotype.” A detailed discussion on
the methods used to quantify PA used in the exercise genetics
field is provided in Supplemental Digital Content 1, http://
links.lww.com/ESSR/A60. Briefly, total physical activity (TPA)
can be classified into light (LPA; 1.1 to 2.9 MET), moderate
(MPA; 3.0 to 5.9MET), and vigorous (VPA; ≥6.0MET) activity
based on fixed energy expenditure cutoffs, with the MPA and
VPA often grouped together as a single moderate to vigorous
physical activity (MVPA) category. When using “context” as
the classifying principle, PA can be subdivided in spontaneous
activity (e.g., fidgeting, rocking, restless legs, pacing, shivering,
tics, postural sway), occupational activity (e.g., manual labor,
standing at a desk, walking and lifting at work), transportation
(e.g., walking, cycling, skateboarding), and all leisure time
physical activity (LTPA). LTPA prominently incorporates vol-
untary sports and exercise activities, but it also contains play for
children and, for adults, hobbies like gardening, do-it-yourself
home repair, or dancing. Typically, LTPA assessment is focused
onmoderate to vigorous activities, with a large chunk related to
voluntary sports and exercise activities. Again, demonstrating
substantial heritability for total daily PA or any of its subclasses
shown in Figure 2 does not impede efforts to change these be-
haviors in a positive way. However, it would suggest large differ-
ences in the sensitivity of individuals to the current interven-
tional strategies to which the population is already exposed.
A better understanding of the pathways that lead from genetic
variation to variation in PA phenotypes may help identify vul-
nerable subpopulations at an early age and fuel the design of tai-
lored interventions that more effectively increase total PA or
PA in specific subclasses.

In later sections, I first review and meta-analyze the current
evidence for a role of genetics in the individual differences in
PA phenotypes from studies comparing the PA of nontwin sib-
lings, of parents and offspring, and of dizygotic (DZ) versus
monozygotic (MZ) twins. Subclasses of PA phenotypes used
are TPA, MVPA, LTPA, and voluntary exercise behavior
Genetics of Physical Activity 3
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Figure 2. Classification of physical activity (PA) phenotypes. Note: the left hand side (red text balloons) divides total PA into different levels of energy
expenditure/intensity, which are best detected by device-based or other objective measurement strategies. The right hand side (blue and yellow text balloons)
divides total PA based on the context in which it occurs, which is currently still best captured by using self-report.
(VEB), because these are dominant in the extant literature.
Next, I review the genetic variants identified by whole-genome
approaches and the biological pathways implicated by functional
annotation of these variants. Finally, I address how genetics can
assist us in addressing two key issues: 1) testing hypotheses on
biopsychological determinants of individual differences in PA
phenotypes, and 2) individual tailoring of intervention programs,
for example, by using polygenetic scores for PA phenotypes.

GENETIC CONTRIBUTION TO INDIVIDUALDIFFERENCES
IN PHYSICAL ACTIVITY

Family Studies
Engagement in regular PA “runs in the family,”meaning that

the chance of one family member being physically active increases
the chance of all other family members to be, or to become, phys-
ically active. Familial resemblance of PA can be investigated by
computing correlations among relatives such as siblings or parents
and their offspring (Table 1). Significant correlation between
related family members can be due to shared additive and non-
additive genetic factors and all environmental factors that they
have in common. Additive genetic factors (A) represent the
sum of all linear effects of the genetic loci that influence the
TABLE 1. Estimating sources of familial resembl

Correlation Between Caused by Familial Effec

Parent-offspring Combine the sharing of the family environment (Cf) with 50% sh
Siblings Combine the sharing of the family (Cf) and sibling environment (

genetic and up toa 25% of nonadditive variance
DZ twins Combine the sharing of the family (Cf), shared sibling (Cs), and s

of additive genetic and up toa 25% of nonadditive variance
MZ twins Combine the sharing of the family (Cf), shared sibling (Cs), and s

of additive genetic and 100% of nonadditive variance
Grandchild-grandparent Consist almost exclusivelyb of 25% sharing of additive genetic vari
First cousins Consist almost exclusivelyb of 25% sharing of additive genetic vari

a Most sources set this to 0.25 assuming that dominance is the main source of nonadditivity. How
tasis) will tend to reduce this number.

b Exceptions are children who spent a lot of time with their grandparents/cousins or live in the

4 Exercise and Sport Sciences Reviews
trait of interest. The ratio of the variance in a trait explained
by additive effects relative to the total variance is known as the
narrow sense heritability. Nonadditive genetic factors (D) include
intra-allelic dominance and cross-allelic interaction (epistasis)
effects. The part of the total trait variance explained by the
sum of additive and nonadditive genetic factors is the broad
sense heritability. The common environment (C) consists of
factors shared by parents and offspring (Cf), like family function-
ing, diet, socioeconomic status, and the neighborhood character-
istics, or intragenerational factors shared by siblings (Cs), like par-
enting behaviors, shared peers, school, and all generation-specific
factors. Twins share additional environment (Ct) including
maternal behavior during pregnancy and intrauterine conditions
and may also be more often in the same class or team.

There is now a substantive literature addressing the family-based
intra- and intergenerational resemblance in TPA, MVPA, LTPA,
and VEB in nuclear families (parents with multiple offspring)
or larger multigeneration pedigrees. This gist of this literature
is captured by Figure 3, which depicts sample size–weighted
mean parent-offspring and sibling correlations from studies that
reported both correlations (see Supplemental Digital Content 1,
http://links.lww.com/ESSR/A60, for detailed information and
references of the family studies). Figure 3 presents the correlations
ance from genetically informative designs.

ts, That Notation

aring of additive genetic variance 0.5*A + Cf
Cs) with 50% sharing of additive 0.5*A + ~0.25D + Cf + Cs

hared twin environments (Ct) with 50% sharing 0.5*A + ~0.25D + Cf + Cs + Ct

hared twin environments (Ct) with 100% sharing A + D + Cf + Cs + Ct

ance 0.25*A
ance 0.25*A

ever, as explained by Keller and colleagues (19) a larger role of gene-gene interaction (epis-

same neighborhood, which would add shared environment as a source of covariance.

www.acsm-essr.org
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Figure 3. Parent offspring and sibling correlations for physical activity (PA) phenotypes. Note: Sample size–weighted mean correlations for device-based
total physical activity (TPA)/moderate to vigorous physical activity (MVPA), self-reported TPA/MVPA, and leisure time physical activity (LTPA)/voluntary exercise
behavior (VEB) were computed for 5098, 29147, and 137695 parent-offspring pairs, respectively, (father-offspring: 900, 10716, 65989; father-son: –, 5276,
30522; father-daughter: –, 5300, 31150; mother-offspring: 1060, 11014, 71746; mother-son: –, 5334, 32590; siblings: 4342, 10480, 33605; sister-sister: –,
1355, 10480; brother-brother: 1355, 6526; brother-sister: –, 2711, 14086). Error bars indicate the weighted SD around the correlations, derived as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑N
i¼1

wi xi−xð Þ2
p

=M−1ð Þ
M ∑N

i¼1wi
.

by assessment strategy (device-based vs self-report) and by type
of PA, grouping overall (TPA/MVPA) and leisure time–based
activities (LTPA/VEB).

Parent-offspring correlations
Parent-offspring correlations on between 5098 and 137,695

pairs range from r = 0.05 for device-based TPA or MVPA to
r = 0.19 for self-reported LTPA/VEB. For TPA/MVPA, higher
mother-offspring than father-offspring correlations are found,
most notably for device-basedMVPA/TPA in two samples with
a relatively youngmean offspring age. The pattern of parent-offspring
correlations from the (extended) family studies in Figure 3 is con-
gruent with the conclusions of systematic meta-analyses (20,21)
that used the parent-offspring correlation as evidence for obser-
vational learning of the children through “parental modeling.”
Parental modeling means that children copy the PA activity be-
havior of their parents, yielding a parent-offspring correlation. It
is somewhat alarming that the additional possibility of genetic
transmission contributing to parent-offspring correlations is not
well recognized in this field of study.

Sibling correlations
Average full sibling correlations across the 4342 to 33,605

pairs in the studies depicted in Figure 3 were r = 0.19 for
self-reported TPA/MVPA, r = 0.25 for device-based TPA/
MVPA, and r = 0.33 for LTPA/VEB. Direct comparison of sib-
ling correlations to the parent-offspring correlations shows that
intragenerational family resemblance is about a factor two
larger than intergenerational family resemblance, even though
the amount of additive genetic sharing between parents and off-
spring and sibling pairs is the same (on average 50%). This sug-
gests that the environment shared by the siblings but not the
parents has a clear contribution to their PA resemblance, al-
though age-specific expression of genetic factors and nonadditive
Volume 51 • Number 1 • January 2023
genetic effects also can contribute to the lower intergenera-
tional resemblances.

Heritability estimates from family studies
To estimate the specific contribution of genetic effects to fa-

milial resemblance, nuclear and extended family studies need to
make specific assumptions about the shared environmental ef-
fects on PA, or they have to add information that allows the
separation of genetic and shared environmental effects. Quite
often shared environmental influences were simply assumed
to be negligible (22,23). In other studies, familial relation were
added that can be assumed to have only a limited shared envi-
ronment, like grandparents and grandchildren, first cousins,
and sib avuncular relations (24–27). Finally, a number of family
studies enriched the parent offspring design by adding MZ and
DZ twins (28,29). As can be seen in Table 1, adding either
MZ twins or second- and higher-degree relations yields a series
of solvable equations (“the model is identified”) for all compo-
nents. Of note, the genetic component are decomposed rarely
into separate additive and nonadditive effects, meaning that
heritability estimates from extended family studies mostly repre-
sent “broad heritability” estimates.

Using the estimates from the family studies described in Sup-
plemental Digital Content 1, http://links.lww.com/ESSR/A60,
I computed a random effect estimate for heritability across all
studies using a variance-weighted meta-analysis (30). When
multiple models with different covariates were reported, I pref-
erably selected those that only corrected for age and sex. This
avoids potential collider bias arising when heritable covariates
like body mass index are included in the twin or family model-
ing of genetic effects (31). The average heritability estimate
across device-based MVPA and TPA (48%; confidence interval
[CI], 30%–66%) was higher than for self-reported MVPA/TPA
phenotypes (21%; CI, 14%–28%). Self-reported LTPA/VEB
Genetics of Physical Activity 5
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showed an average heritability of 29% (CI, 22%–36%). Only
three studies also detected significant estimates of contribution
of the common environment to PA phenotypes (24,26,27)
ranging from 4% to 25%.

Twin Studies
Amore powerful design to disentangle the relative importance

of shared environmental and genetic influences on a trait or be-
havior is the classical twin design. This design compares the
intrapair resemblance between two types of twins: genetically
identical twins or MZ, a result of division of a single fertilized
egg during an early stage in embryonic development, and non-
identical twins or DZ, resulting from two separate fertilized eggs.
When twins are reared together, the amount of sharing of a
common childhood environment (Cf + Cs + Ct) is comparable
forMZ andDZ twins. The important difference betweenMZ and
DZ twins is that the former share identical genotypes, whereas
the latter share on average only half of the genotypes segregating
in that family. Consequently, MZ twins share 100% and DZ
twins on average 50% of their additive genetic variance, and
MZ twins share 100% and DZ twins on average ~25% of their
nonadditive genetic variance.
If the resemblance in a PA phenotype withinMZ pairs is larger

than that in DZ pairs, which can be tested by comparing the MZ
(rMZ) andDZ (rDZ) twin correlations, this suggests that additive
genetic factors influence PA. If theMZ resemblance is more than
double as large, it suggests the additional influence of nonaddi-
tive genetic factors on PA. If, however, the resemblance in the
PA phenotype in DZ twins is more than half as large as it is in
MZ twins, this points to the common environment as an addi-
tional cause of twin resemblance. Furthermore, the extent to
which MZ twins do not resemble each other is a direct estimator
of the contribution of unique environmental factors (E). These
include all person-specific experiences like differential jobs or
lifestyles, accidents, or other life events, and in childhood, differ-
ential treatment by the parents, going to different schools, and
having nonshared friends and peers, but also somatic mutations
and the stochastic part of epigenetic changes. Measurement error
will also be subsumed by the unique environmental factor.
A simple set of rules of thumb can be used to estimate the

contributions to the total variance in PA of the A, C, D, and
E variance components (Table 2).
Because just two covariances and the overall variance are

available in a classical twin study, only three of the four A, C,
D, and E factors can be tested simultaneously. The rules of
thumb are therefore divided into two different scenarios. One
where the MZ correlation is not larger than twice the DZ corre-
lation, suggesting that nonadditivity (D) can be ignored, and one
where the MZ correlation is substantially higher than twice the
DZ correlation, suggesting that genetic nonadditivity is in play.
TABLE 2. Rules of thumb to estimate sources of familial

If rDZ ≤ rMZ ≤ 2*rDZ (e.g., rMZ = 0.48, rDZ = 0.30)

A 2*(rMZ − rDZ0) .36 = 36%
C 2*rDZ – rMZ .12 = 12%
D 0 .00 = 0%
E 1 – (A + C + D) .52 = 52%
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Applying the rules of thumb in Table 2 gives a rapid impres-
sion of (non)additive genetic and shared environmental effects,
but often structural equationmodeling of the full variance-covariance
matrix for thePAphenotypes ofDZ andMZ twins is used to estimate
the contribution of the A, C/D, and E components to the total
variance. Formal tests of the model fit are often used to test as-
sumptions about equality of the means and variances inMZ and
DZ, about the existence of sex differences, and to establish
whether parsimonious models using just additive and unique
environmental factors sufficiently explain the patterns of twin
covariance.

Figure 4 plots the mean sex-specific and sample size–weighted
MZ and DZ twin correlations across twin studies where the mean
age of the twins was less than 12 yr (childhood), between 12 and
18 yr (adolescence), and more than 18 yr (adulthood) (see Sup-
plemental Digital Content 1, http://links.lww.com/ESSR/A60,
for detailed information on the twin studies and references).
Within each age group, plots are again ordered by assessment
strategy and by type of PA, grouping overall (TPA/MVPA)
and leisure time–based activities (LTPA/VEB).

In childhood,MZ and DZ correlations are both high, and the
MZ is substantially less than twice as large as the DZ correlation,
particularly for LTPA/VEB. In adolescence and adulthood, a
pattern of decreasing twin correlations can be seen, but the de-
crease is much stronger for the DZ than theMZ twins. By far the
largest amount of data is obtained by self-report, but across de-
cent sample sizes, data also are available for device-based TPA/
MVPA. Applying the rules of thumb as in Table 2, the pattern
of twin correlations points to a high contribution of the shared
environment that wanes from childhood to adolescence to give
rise to an increasing estimated additive genetic variance as the
main source of PA differences in adolescence and adulthood.

Differences between male and female same-sex twin correla-
tions indicate quantitative sex differences, but these are rela-
tively modest at all ages except for higher device-based female
DZ correlations. Throughout the lifespan, resemblance in PA
of DZ opposite sex (DOS) pairs is much lower than that in
DZ same sex pairs, showing that either different genetic factors
influence the PA of boys and girls or that they are exposed to
sex-specific environmental influences. These cannot be modeled
at the same time, but most studies, at least on VEB, have favored
models with the low DOS correlations explained by different
shared environmental factors for girls and boys in childhood
(32,33), but by different genetic factors in adulthood (28,34).

Heritability estimates from twin studies
An inverse variance–weighted meta-analysis on the estimates

for A and C was performed on the twin studies in Supplemental
Digital Content 1, http://links.lww.com/ESSR/A60,maintaining
the three age categories as before. For device-based TPA/MVPA,
resemblance from the pattern of twin correlations.

If rMZ > > 2*rDZ (e.g., rMZ = 0.70, rDZ = 0.25)

A 4*rDZ − rMZ .30 = 30%
C 0 .00 = 0%
D 2*rMZ – 4*rDZ .40 = 40%
E 1 – (A+ C + D) .30 = 30%

www.acsm-essr.org
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Figure 4. Twin correlations for physical activity (PA) phenotypes by zygosity and age group. Note: Sample-size weighted mean correlations for device-based
total physical activity (TPA)/moderate to vigorous physical activity (MVPA), self-reported TPA/MVPA, and leisure time physical activity (LTPA)/voluntary exercise
behavior (VEB) were computed for MZ males (MZM), DZ males (DZM), MZ female (MZF), DZ female (DZF), and DOS twin pairs in the age range of 2 to 12 years,
12 to 18 years, and older than 18. Studies were included only if they had N > 10 pairs in each zygosity group. Error bars indicate the weighted SD around the
correlations, derived as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑N
i¼1wi xi−xð Þ2

p
=M−1ð Þ

M ∑N
i¼1wi

.

no sex differences in broad sense heritability estimates were found.
In children younger than 12, the mean estimate for the contribu-
tion of genetic variance to total variance in device-based TPA/
MVPAwas 19% (95%CI, 10%–28%). Too few studies estimated
the heritability of device-based TPA/MVPA in adolescents or
self-reported TPA/MVPA in children and adolescents, but in
twins older than 18, the heritability estimate for device-based
TPA/MVPA was 54% (95% CI, 48%–59%), and for self-reported
TPA/MVPA, it was 37% (95% CI, 30%–44%). As in the family
studies, therefore, heritability across device-based MVPA and TPA
was clearly higher than for self-reportedMVPA/TPA phenotypes.

In keeping with previous reports, small but significant quan-
titative sex differences in heritability estimates for self-reported
LTPA/VEBwere found,most prominently at younger ages (35–39),
and results are reported separately for males and females. For males
younger than 12, the mean heritability estimate for LTPA/VEB
was 36% (95%CI, 28%–43%). For females younger than 12, lower
heritability estimate for LTPA/VEB are found of 24% (95% CI,
18%–30%). For males between 12 and 18, themean heritability es-
timate for LTPA/VEB was 47% (95% CI, 39%–55%). For females
between 12 and 18, again a lower heritability estimate of 42% (95%
CI, 35%–50%) for LTPA/VEB was found, although male and
female CIs largely overlapped. Above age 18, quantitative sex
differences disappeared with adult heritability for joint male
and female twins estimated at 48% (95% CI, 44%–52%).

Estimates of the role of common environment from twin studies
In parallel to the changing influence of genetic factors, we find a

symmetrical change in the role of the shared environment in
childhood and adolescence. For bothmales and females, the mean
estimate for the common environmental variance in device-based
TPA/MVPA was 55% (95% CI, 49%–61%) in children younger
Volume 51 • Number 1 • January 2023
than 12, but reduced to a nonsignificant 2% in adulthood.
Likewise, the common environmental variance in self-reported
TPA/MVPA (3%) was not significant in adulthood.

Estimates of common environmental variance in self-reported
LTPA/VEB were 51% (95% CI, 42%–60%) in male children
and 62% (95% CI, 57%–67%) in female children. Common
environmental influences strongly waned during adolescence,
averaging 23% (95% CI, 13%–33%) in male adolescents and
28% (95%CI, 19%–38%) in female adolescents. In adulthood,
little evidence for remaining effects of having shared an early
environment remains for LTPA and VEB. Indeed, results from
the largest study on VEB using an extended twin pedigree de-
sign (25) suggested that a shared environment by siblings
(Cf + Cs, typically up until age ~18) explains 4% of the variance
in adult exercise behavior, and sharing an environment by twins
(Cf + Cs + Ct) explains 8%. Sharing a household by spouses
yielded much higher (20%–24%) contributions to PA variance,
but this effect incorporates the increasing resemblance in part-
ners that occurs over time through marital interaction, which
should be considered part of the unique environment.

A few notable exceptions to the overall trends of no or low C
in adulthood deserve mention (34,40–43). These studies have
in common that they used a binary PA phenotype defined as
yes/no adherence to (a single type of) regular exercise or adher-
ence to a preset criterion. The largest contribution of a common
environment in adults was reported in 9654 Chinese twin pairs
(43). High and almost identical MZ (r = 0.87) and DZ
(r = 0.85) twin correlations were reported for PA defined as
150 min of MVPA per week. This study was so outlying that
it was not used in the meta-analyses above. Further studies are
needed to see if this intriguing deviant finding reflects the spe-
cific single-question phenotyping used, the relatively poor
Genetics of Physical Activity 7



performance of the zygosity-determining questions compared
with DNA testing, or a much stronger structuring environment
for family members in China — most other studies being from
Europe and the United States.

Synthesis From Twin and Family Studies
The studies reviewed by meta-analyses span a total of 70,200

members in family studies and 83,694 complete twin pairs that
contributed data at one or more ages and for one or more PA
phenotypes. Results unanimously support a strong genetic contri-
bution to PA, and this holds independent of design (family or
twin), PA phenotype examined (TPA, LTPA, MVPA, or VEB),
or method used (survey, interview, or accelerometer). This con-
clusion is fully congruent with earlier narrative and systematic
reviews (44–48) that supported “genetics” as the monolithic
determinant claiming the largest chunk of the observed interin-
dividual variation in PA behaviors.
Even so, the heritability of PA is not “fixed,” and there is a large

heterogeneity in estimates within and across studies. The heteroge-
neity in heritability estimates for PA phenotypes is often stipulated
in reviews by statements like “estimates of heritability vary widely,
from X% to Y%,”where X and Y take on intimidating large ranges
like “9% to 92%” (46), or “27% to 84%” (45), or 0% to 85% (49).
Although formally correct, these wide ranges misleadingly suggest
that twin and family studies yield heritability estimates that have lit-
tle heuristic value. As shown in Figure 5, the large heterogeneity in
heritability estimates is attenuated by grouping by study design
(twin vs family), sex, and PA phenotype, and an even stronger re-
duction in heterogeneity occurs when the age of assessment is con-
sidered. It is not surprising therefore that using an intergenerational
(parent-offspring) design yields systematically lower heritability
estimates than an intragenerational (twin) design.
Figure 5. Heritability estimates for physical activity (PA) phenotypes as a function of
scale) from61 twin or family studies. Color coding indicateswhether the estimate deriv
female twins (dark red), or studies inmale twins (blue). Different shapes indicate the subc
of the circle isweighted by square root of the sample size. The two fit lines reflect the gen
smooth functions using age as predictor. GAM estimates these nonparametric smoothe
estimates (solid line) and self-report estimates (dashed line), which take the study weigh
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Figure 5 also shows that slightly higher male than female es-
timates are seen in childhood, but after that, the sex differences
are not large from adolescence onward. Device-based estima-
tion yields higher heritability than self-report, as before. At
any specific age, CIs are relatively small for studies using
self-reported PA as these are based on sample sizes that are typ-
ically tenfold higher than studies using device-based PA.

Regarding age, a pattern of increasing heritability is seen from
childhood to a peak in late adolescence followed by a gradual de-
crease in adulthood until age 40. The apparent increase in esti-
mates after age 40 likely reflects data becoming sparser after the
middle age, also indicated by widening CIs. These age trends
are repeated in twin cohorts from many different countries and
surprisingly robust across different types of PA (e.g., total daily
or confined to leisure time) and assessment by self-report or de-
vices. The change in heritability across the lifespan can be caused
by age-related changes in the shared and unique environment, in
part caused by people gravitating toward environments that suit
their genetic propensity. The age-related change in heritability
can also reflect an increasing suppression of the genetic propen-
sity for PA by physiological aging and related disabilities. Finally,
the same genetic variants may contribute differently to PA at dif-
ferent ages, or different genetic variants may be expressed at dif-
ferent ages. This change in genetic architecture may be partly re-
lated to the substantial changes in the amount but also in the
intensity and type of PA that occurs across the lifespan (51–53).
For VEB, for example, team-based competitive activities strongly
increase from childhood to adolescence to gradually give way
to solitary recreational activities in the course of adulthood as
the main source of regular exercise (53). In other words, a true
change in the genetic effects may occur across the lifespan
if different types of exercise are favored by different gene sets. The
age. Note: The scatterplot depicts 295 heritability estimates (on a 0%-to-100%
es from family studies (black, note that no sex differenceswere tested), studies in
lass of PAmeasured (TPA, square;MVPA, triangle; LTPA, circle; VEB, plus). The size
eralized additivemodel (GAM) inwhich PA linearly depends on a set of unknown
rs via the backfitting algorithm (50). Separate lines are depicted for device-based
t into account. Red (device) and yellow (self-report) areas are the 95% CIs.
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empirical testing of such hypothesis would be greatly served by ac-
cess to the actual genetic variants underlying the heritability of
PA traits.

GENETIC VARIANTS FOR PHYSICAL ACTIVITY FROM
GENETIC ASSOCIATION STUDIES

Candidate Gene Studies
The early gene finding studies on TPA, MVPA, LTPA, and

VEB used a candidate gene approach, based on known biology.
A clear example is presented by variants involved in dopami-
nergic neurotransmission like the genes for dopamine receptors
DRD1, DRD2, DRD3, and DRD4 or for genes involved in do-
pamine turnover (DBH, COMT, MAOA, and TPH2). These
variants had high appeal because they have functional effects
on the efficacy of neurotransmission in the mesolimbic reward
system, and the corresponding genes were nominated by research
on spontaneous wheel running in rodents (54,55). However, the
obvious candidates in the synaptic turnover of dopamine or its re-
ceptors show equivocal association with PA phenotypes in
humans, with many failures of replication (56,57). These results
do not discredit a role for the neurobiology of dopaminergic reward
seeking, as only few studies have specifically tested for an associa-
tion of candidate genes with the reward value of PA compared
with alternative activities (58). In addition, gene-gene interac-
tions are not often tested, and genetic variants in dopaminergic
transmission may interact with each other and with those in, for
example, the endocannabinoid and glutaminergic systems (55,59).
Nonetheless, the current state of equivocal associations with candi-
date genes does illustrate that selecting genetic variants focused
purely on known neurotransmitter biology has not been fruitful.

In retrospect, the candidate gene strategy overestimated both
the effect sizes of single genetic variants and our ability to pinpoint
these variants a priori based on their location in the exomes or
promotor regions of plausible candidate genes. Rather than capi-
talizing on candidate genetic variants based on biological plausibil-
ity, genetic epidemiology has embraced genome-wide association
studies (GWAS) as the correct way forward (60). In a GWAS,
millions of single nucleotide polymorphisms (SNPs) spread across
the human genome are tested for their effect on a given trait se-
quentially. GWAS showed that the effect contributed by any sin-
gle variant to a phenotype is tiny rather than just small, with only
an increase of ~0.05 standard deviation per effect allele at best
(61). Moreover, only a part of the variants that affect gene func-
tion do so by a nonsynonymous change in the amino acid coding.
Instead, most functional genetic variants affect gene transcription
and are often not located in, or even near, genes (62). The regula-
tion of the expression of genes can be based on variants that are
millions of base pairs away or even on remote chromosomes.

By testing a wide range of SNPs known to vary between
humans, GWAS studies are free from selection of genetic vari-
ants based on existing biological knowledge and often yield re-
sults related to genes that would not have been selected based
on that prior knowledge. GWAS-derived genetic variants must
still demonstrate biological plausibility, but this is now done a
posteriori, once the contribution of the genetic variant to the
heritability of PA has first been firmly established.

Genome-Wide Association Studies
Table 3 summarizes the current evidence from the eight pub-

lished GWAS on PA (63–70).
Volume 51 • Number 1 • January 2023
The first genome-wide association (GWA) study on PA that
we conducted in 2009 (67) tested for an association with leisure
time exercise behavior in two independent samples comprising
1644 Dutch and 978 American subjects. In retrospect, unsur-
prisingly, neither sample yielded results that withstood the
scrutiny of the multiple testing correction that needs to be ap-
plied because of the millions of tests performed simultaneously
(P value less than 5 � 10−8). Additional studies in Korea, the
United States, and Japan also largely failed to detect significant
associations after the required stringent correction for the mul-
tiple testing burden (63,69). Success came when GWAS was
scaled up to hundreds of thousands of participants by using
the unique resource of the UK Biobank (UKB) assessing vari-
ous PA phenotypes with touchscreen-based surveys, among
which are MVPA and VEB (66).

After applying corrections for work-related PA and an indi-
cator of socioeconomic status, Klimentidis et al. (66) found as-
sociations with weekly energy expenditure in MVPA at nine
loci (see Table 3 for the lead SNPs indexing these loci). A di-
chotomy of zero versus 3 d of 25+ min of vigorous PA yielded
six loci that were associated with variation in this VPA mea-
sure. For VEB, a dichotomy of participant spending no versus
at least 2 d of sports or other exercises for 15+ min added an-
other five genome-wide significant loci, with the most strongly
associated variant in the CADM2 gene showing up in MVPA
as well. In a large trans-ancestry GWAS meta-analysis on sed-
entary behaviors and MVPA, combining results in up to
703,901 participants from 51 studies, Wang et al. (70) further
increased the yield for MVPA, even with a relatively “poor”
PA phenotype. For a dichotomy of not engaging versus regu-
larly engaging in 20 min·wk−1 of MVPA, lead SNPs from 11
loci were genome-wide significant (six not reported before),
and four of these had significant reverse effects on sedentary be-
haviors. Bivariate association using sitting time as an additional
phenotype increased the MVPA loci to 19.

The above demonstrates a main truism in the GWAS field,
namely, that a scale of hundreds of thousands of participants
is indeed needed to identify genetic variants in highly polyge-
netic phenotypes. A second truism is nicely illustrated by anal-
ysis in the UKB: increased reliability and heritability of the PA
phenotype can somewhat alleviate this need for large sample
sizes. Most genome-wide significant loci for PA traits so far have
been found using accelerometer-derived PA measures in UKB
participants, even if the subset of UKB participants that has
such data is only a quarter of the full set of participants with
survey-based PA measures. To date, there have been three
GWA studies based on accelerometry-derived activity pheno-
types in UKB (65,66,68). To be consistent with the earlier fam-
ily and twin studies, the focus here is exclusively on the TPA
and MVPA traits, but note that these studies also extensively
looked at the genetic association with sedentary time, light
PA, and sleep duration, finding significant results for these phe-
notypes as well (65,68).

Klimentidis et al. (66) extracted two measures from up to 7 d
of accelerometer wear. Overall acceleration was used as a mea-
sure of TPA, and the fraction of accelerations greater than
425mg as a measure of VPA.GWAS yielded two significant as-
sociations for TPA and one for MVPA. Doherty et al. (68) used
a machine learning approach to extract PA phenotypes, includ-
ing overall activity, sleep duration, sedentary time, walking, and
Genetics of Physical Activity 9



TABLE 3. Genome-wide Association Studies (GWAS) on Physical Activity (PA) phenotypes.

Study PA Phenotype
Genome Wide

Significant SNPs Locus Prioritized Genes Pathway/Tissue Enrichment

Self-report
De Moor et al., 2009
N = 2622
1,636,636 < N SNPs < 2051750
Reference NCBI, build 35

VEB None 2q33.1;
10q23.2;
18p11.32

DNATP6a;
PAPSS2a;
RP11–476 K15.1/C18orfa

Not performed.

Kim et al., 2014
N = 8842
N SNPs = 344,893
Reference NCBI, build 36

TPA None 6p22.3;
7q21.3;
6p21.33;
10q21.2;
9q33.1;
10q26.2;
4q21.1;
11p15.1;
14q31.1

CDKAL1a;
TFPI2a;
CCHCR1a;
RHOBTB1a;
ASTN2a;
ADAM12a;
CCNIa;
PTPN5a;
NRXN3a

Maturity onset diabetes of the young
(MODY).

Lin et al., 2018
N = 11,093 AA + 10,684 EA
8,258,952 < N SNPs < 13,892,960
Reference Hg19, build 37

LTPA None 1p36.23;
5q31.1;
14q24.1;
14q24.1

ENO1-AS1a;
SLC22A4a;
APT6V1Da;
MPP5a

The homeostatic drive coupled with the
reward system; the (development of the)
capacity to perform LTPA.

Hara et al., 2018
N participants = 16,016
7,094,228 <N SNPs < 11,070,774
Reference Hg19, build 37

VEB rs10252228 (EA = G) 7p14.3 DPY19L1/NPSR1 No enrichment survived multiple testing.
VEB 2q24.1 KCNJ3–NR4A2a

Klimentidis et al., 2018
N participants = 377,234
N SNPs = 11.8 M
Reference Hg19, build 37

MVPA rs7804463 (EA = T);
rs429358 (EA = T);
rs2854277 (EA = C);
rs7791992 (EA = C);
rs3094622 (EA = A);
rs149943 (EA = G);
rs2035562 (EA = A);
rs2988004 (EA = T);
rs1043595 (EA = G)

7q33;
19q13.32;
6p21.32;
7p12.1;
6p21.33;
6p22.1;
3p12.1;
9p13.2;
7q32.1

EXOC4;
APOE;
HLA-DQB1;
C7orf72/SPATA48b;
RPP21;
ZNF165;
CADM2;
PAX5;
CALU

Adrenal gland; thyroid gland; pituitary gland;
skeletal muscle; adipose tissue; brain
(cerebellum, frontal cortex, anterior
cingulate, amygdala, hypothalamus,
nucleus accumbens, caudate, putamen,
hippocampus)

Klimentidis et al., 2018 VPA rs1248860 (EA = G);
rs2764261 (EA = A);
rs13243553 (EA = G);
rs3781411 (EA = C);
rs328902 (EA = C)

3p12.1;
6q21;
7q33;
10q26.13;
7p14.2

CADM2;
FOXO3;
EXOC4;
CTBP2;
DPY19L1

Klimentidis et al., 2018 VEB rs62253088 (EA = T);
rs166840 (EA = G);
rs10946808 (EA = A);
rs159544 (EA = A);
rs75930676 (EA = T);
rs111901094 (EA = G)

3p12.1;
17p11.2;
6p22.2;
5q12.1;
14q24.2;
19p13.11

CADM2;
AKAP10;
HIST1H1D;
CTC-436P18.1;
SIPA1L1;
GATAD2A

Wang et al., 2022
N participants = 606,820
19.1 M < N SNPs < 22.5 M
(significance adjusted 10-fold
to 0.5 * 10−9)
Reference Hg19, build 35

MVPA rs1691471 (EA = T);
rs1625595 (EA = C);
rs13201721 (EA = T);
rs385301 (EA = C);
rs1160545 (EA = T);
rs142601240 (EA = AT);
rs7613360 (EA = C);
rs9903845 (EA = C);
rs182484063 (EA = C);
rs7946119 (EA = C);
rs10673865 (EA = T);
rs71604175 (EA = A);
rs4352559 (EA = T);
rs72834698 (EA = A);
rs11762545 (EA = T);
rs11989077 (EA = A);
rs568546 (EA = T);
rs1788761 (EA = A);
rs6063831 (EA = A)

3p12.1;
11q13.2;
6q24.1;
17p11.2;
2q11.2;
2p25.1;
3p21.31;
17q22;
4p15.1;
11p15.2;
4q25;
5p15.31;
5q12.1;
6p22.2;
7p22.3;
8q22.3;
11q22.3;
18q11.2;
20q13.2

CADM2;
CD248; ACTN3;
RN7SKP106;
AKAP10;
LINC01104;
PDIA6;
ACTBP13;
CA10;
MESTP3;
SOX6;
LEF1-AS1;
ADCY2c;
LINC02057c;
H2BC5c;
MAD1L1c;
RIMS2c;
CWF19L2c;
NPC1c;
LOC105372666c

Brain (visual information processing and the
reward system, including enrichment for
dopaminergic neurons), cell signaling,
wound healing, locomotion, and skeletal
muscle.

Wang et al., 2022 MVPA 3p12.1;
17p11.2;
3p21.31;
11p15.2;
17q22;
6q27;
2p25.1;
19p13.12;
19q13.31;
7q33;
11q13.12;
17p11.2;
3p21.31;
2q11.2;
2q11.2

CADM2b;
AKAP10b;
CAMKVb;
SOX6b;
CA10b;
PDE10Ab;
PDIA6b;
ILF3b;
NECTIN2b;
EXOC4b;
PACS1b;
SPECC1b;
MST1Rb;
LONRF2b;
CHST10b

Continued next page
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TABLE 3. (Continued)

Study PA Phenotype
Genome Wide

Significant SNPs Locus Prioritized Genes Pathway/Tissue Enrichment

Device-based
Doherty et al., 2018
N participants = 91,105
N SNPs = 9,926,106
Reference Hg19, build 37

TPA rs564819152 (EA = A);
rs2696625 (EA = A);
rs59499656 (EA = A)

10p12.31;
17q21.31;
18q12.3

SKIDA1;
KANSL1-AS1;
SYT4/RIT2

Adrenal gland; pancreatic; skeletal muscle;
brain (amygdala, anterior cingulate cortex,
basal ganglia, accumbens, caudate,
putamen, cerebellum, frontal cortex,
hippocampus, hypothalamus).Doherty et al., 2018 MVPA 12p13.32 KCNA6b

Klimentidis et al., 2018
N participants = 91,084
N SNPs = 11.8 M
Reference Hg19, build 37

TPA rs55657917 (EA = T);
rs59499656 (EA = A)

17q21.31
18q12.3

CRHR1;
SYT4/RIT2

Adrenal gland; thyroid gland; pituitary gland;
skeletal muscle; adipose tissue; brain
(cerebellum, frontal cortex, anterior
cingulate, nucleus accumbens).

Klimentidis et al., 2018 VPA rs743580 (EA = A) 15q24.1 PML
Klimentidis et al., 2018 VPA (+ VEB and

VPA self-report)
3p12.1; 15q24.1;
19q12

CADM2b; PMLb;
CCNE1b

Klimentidis et al., 2018 TPA (+ MVPA
self-report)

5q14.3;
14q32.31;
15q24.1
17q21.31

MEF2Cb;
RCOR1b;
STOML1b;
CHRH1b

Qi et al., 2022
N participants = 88,411
N SNPs = 8,951,705
Reference Hg19, build 37

TPA 6 p.m.–8 p.m. rs301799 (EA = T);
rs2909950 (EA = G)

1p36.23
5q33.1

SLC45A1;
NMUR2;

Brain, blood, and immune-related
mechanisms; digestive (esophagus, colon)
and endocrine tissues (thyroid, testis,
adrenal gland).

Qi et al., 2022 TPA 8 p.m.–10 p.m. rs2006810 (EA = T) 7q11.22 GALNT17
Qi et al., 2022 TPA rs1268539 (EA = A) 9q33.3 GAPVD1
Qi et al., 2022 TPA 8 a.m.–10 a.m. rs564819152 (EA = G) 10p12.31 SKIDA1
Qi et al., 2022 TPA 6 a.m.–8 a.m. rs2138543 (EA = A) 12q12 CPNE8
Qi et al., 2022 TPA and MVPA rs2532402 (EA = G) 17q21.31 KANSL1
Qi et al., 2022 TPA rs3837946 (EA = T) 19p13.2 PIN1
Qi et al., 2022 MVPA 1p35.1;

17q21.31
RN7SKP16b;
KANSL1b

Qi et al., 2022 TPA 1p36.23;
16q22.1;
5q33.1;
5q33.3;
10p12.31;
17q21.31;
19p13.2;
22q13.2

REREb;
PDXPC2Pb;
NMUR2b;
PBX3b;
DNAJC1b;
FMNL1b; KANSL1b;
ZNF846b; PIN1b;
LINC00634b

a Some studies prioritized PA genes based on a more lenient threshold (10−5 or 10−6) and one or more functional annotation strategies.
b Some studies prioritized PA genes based on one or more functional annotation strategies.
c Genome-wide significance based on directionally consistent bivariate associations across MVPA and a sedentary behavior phenotype.

EA, effect allele increasing PA.
moderate-intensity activity. This study identified a locus specif-
ically associated with MVPA and two loci with TPA, of which
rs59499656 near the SYT4 gene overlapped with the locus also
found by Klimentidis et al. (66). The third study more fully cap-
tured the complexity of 24-h PA patterns (65). It defined 27
accelerometry-derived PA measurements of which many related
to circadian rhythms and sleep, active to sedentary transition prob-
abilities, or were hard to interpret as a specific PA.Others could be
more readily classified as reflecting daytimeTPA andMVPAmea-
sures. GWAS in 88,411 individuals with these PA phenotypes
yielded six associations with TPA, one of which (rs2532402 near
the KANSL1 gene) also influenced MVPA.

Prioritized Genes
It is rare that the genetic variants identified by GWAS can

be readily translated into a well-defined biological mechanism.
The functional consequence of the effect allele in the lead SNP
of an associated genomic locus is often unknown before detailed
experimental follow-up has been done (71,72). To deal with
this, a plethora of “functional annotation” methods is available
Volume 51 • Number 1 • January 2023
that try to find patterns in the GWAS results, sometimes focus-
ing on the genome-wide significant SNPs only but often casting
a wider net of suggestive SNPs (P < 10−6). Many of these methods
focus on prioritizing the most likely genes responsible for the asso-
ciation to the phenotype. These methods use gene-based associa-
tion tests, identify effects of the significant SNPs on gene expres-
sion in phenotype-relevant tissues and cell types, or test for
enrichment of the associated SNPs for chromatin-based annota-
tions like promotor sites or DNase I hypersensitivity sites or con-
tact with enhancers (73–79). A caveat of this in silico gene prior-
itization is that different methods often nominate different genes
and that there is no gold standard. Therefore, triangulation is of-
ten used across a variety of gene prioritization approaches.

Table 3 gives a selection of the main genes prioritized by the
GWAS studies on PA, with the clear disclaimer that a much richer
set can be extracted from the (supplements to the) the original re-
ports (63,65,66,68,70). A list of genes that appear in more than
one study stand out for further scrutiny in future replication studies,
which include CADM2, KANSL1, SYT4, and AKAP10. Further-
more, a number of genomic regions seem to be enriched for loci
Genetics of Physical Activity 11



with significant association to PA in multiple studies (3p12.1;
17q21.31; 18q12.3; 17p11.2; 10p12.31; 15q24.1; 1p36.23).
The prioritized genes near significant (and suggestive) loci

have been used in follow-up analysis to detect their enrichment
in specific biological pathways. For PA, several pathways have
been nominated, with a few standing out for their recurrence.
The most often mentioned biological pathway leading to varia-
tion in PA involves the brain, with a clear emphasis on limbic
structures and more specifically structures associated with dopa-
minergic processing of reward signals in structures like the nu-
cleus accumbens. A second pathway relates to skeletal muscle bi-
ology, a third to the endocrine systems with the adrenal gland
most mentioned, and a fourth to blood cell physiology and
immune-related mechanisms. Experimental work, for example,
in animal models, on these pathways and their nominating genes
is required to confirm or refute their true role in PA.

SNP-Based Heritability
Apart from yielding biological clues, GWAS summary statis-

tics afford a set of alternative methods to estimate the heritability
of a phenotype without resorting to known degrees of relatedness
based on pedigree/family structure or twin zygosity. One method
Genome-wide Complex Trait Analysis (GCTA) computes the
genetic relatedness matrix across all SNPs for all possible pairs
of participants and regresses this relatedness on the phenotypic
resemblance of the pair (80). A secondmethod uses the summary
statistic from a GWAS meta-analysis to tests the regression of
the linkage disequilibrium (LD) score of each SNP (reflecting
how correlated it is with nearby SNPs) on the effect size of its
association to the phenotype, where the slope of this regression
corresponds to the SNP heritability (81). These SNP-based her-
itability (h2SNP) estimates will typically only be about one third of
twin-based heritability estimates, because tagging SNPs on
commonly used assays capture only part of the genomic vari-
ation, causing some genetic effects (e.g., nontagged alleles or re-
peat variants, copy number variants, rare alleles with frequency
<0.01, gene-sample population interactions, and nonadditive ef-
fects) to be missing in h2SNP compared with twin-based heritabil-
ity estimates (82).
Five studies computed h2SNP for PA traits, three of which used

self-reported PA (66,70) and three used device-based PA
(65,66,68). SNP-based heritability proved to be systematically
higher in the studies using accelerometers than in the self-report
studies. Based on self-report, h2SNP for VEB was between 3.3%
and 5.6%, and for MVPA between 4.6% and 8.6%. Based on
accelerometers, h2SNP for MVPA was between 10% and 18%
and for TPA h2SNP was 21%. This higher SNP-based heritability
for device-based than self-reported PA repeats the patterns seen
in family and twin studies earlier and may reflect a lower mea-
surement error in device-basedmeasures. It could also point to dif-
ferent genetic variants influencing self-report and device-based
measures, but this is not likely. The one study that used both
self-report and device-based PA showed substantial overlap be-
tween PA loci deriving from self-report and accelerometers (66).

Polygenic Scores
Currently, the number of genetic variants for PA that meets

genome-wide significance is still modest. At first sight, this does
not bode well for our ability to predict future PA behavior
by measuring genetic variation. However, as was done in the
12 Exercise and Sport Sciences Reviews
computation of h2SNP, the information across all associated
SNPs, even when they do not reach genome-wide significance
levels, can be used to obtain meaningful genetic predictors of
PA. The most used predictor is the polygenic score (PGS), also
referred to as a polygenic risk score (PRS) when used in the con-
text of disease phenotypes (83). A PGS for an individual can be
computed by summing the product of the size of effect of a single
effect allele (often expressed as the regression coefficient) times
the amount of effect alleles that individual carries (0, 1, or 2),
across all relevant genetic variants detected by the GWAS. A
PGS for a PA phenotype thus estimates the predicted change
in the PA phenotype compared with the population average
based on all genetic variants influencing that PA phenotype.

Because international GWAS consortia adhere to Open Sci-
ence principles, the relevant summary statistics of the SNP asso-
ciations to PA traits (dose of effect alleles and their effect size)
are almost always made freely available. This means that in
any other cohort or intervention study where participants have
supplied DNA, one can compute the genetic propensity for PA
in these participants based on public downloadable GWAS re-
sults. This was done, for example, in two large Finnish cohorts.
Participants' PGS that were based on theUKB summary statistics
for both accelerometer-based and self-report MVPA successfully
predicted MVPA in the independent cohorts, although the ex-
plained variance was low (84). For both self-reported and objec-
tively measured MVPA, individuals in the highest PGS deciles
of the Finnish cohorts had significantly (11%–28%) higher
MVPA volumes compared with the lowest PGS deciles.

BIOLOGICAL PATHWAYS UNDERLYING DIFFERENCES
IN REGULAR PHYSICAL ACTIVITY

The robust and repeated demonstration of contribution of her-
itable factors to all PA phenotypes requires that models of the de-
terminants of PA, which are now focused on the behavioral, so-
cial, and environmental pathways, incorporate the biological
pathways underlying this heritability. Combining the bottom-up
gene finding results above with the theory-driven nominations
by the consensus paper in Medicine & Science in Sports & Exer-
cise by the GenBioPAC consortium (47), two biological path-
ways that could lead from genetic variation to individual differ-
ences in PA behaviors stand out: cardiorespiratory and muscu-
loskeletal exercise ability traits, and motivational mechanisms
in the brain.

The current evidence from the field of genetics in support of
these pathways comes mostly from detecting a significant over-
lap between the genetic factors that influence key phenotypes
in the biological pathways (“intermediate” phenotypes) and
the PA phenotype of interest. Presence of a significant genetic
correlation between PA and intermediate phenotypes like aer-
obic fitness or the acute psychological response to exercise is
compatible with the idea that they are part of the biological
pathways leading from genetic variation to individual differences
in PA. In contrast, the absence of such a significant genetic
correlation — in sufficiently powered studies — directly falsifies
a causal role of the biological pathway.

There are a variety of ways to detect a genetic correlation be-
tween hypothesized determinants and actual PA phenotypes.
First, usingmultivariate extensions of twin or extended family de-
signs, the correlation between the latent genetic factors influenc-
ing PA and the intermediate phenotype can be computed from
www.acsm-essr.org
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the variance-covariance structure (14,85,86). Second, the
genome-wide genotypes across millions of SNPs can be used
to compute a genetic relation matrix between all individuals in
the study. Using similar logic as in the twin design, using the ge-
netic resemblance that exists even between unrelated individuals
and their resemblance for intermediate and PA phenotypes can
estimate the genetic correlation (87). This SNP-based method
(GCTA-GREML) requires access to the individual-level geno-
types in samples that assessed both intermediate and PA phe-
notypes. Another SNP-based method that estimates genetic
covariance by using LD score regression just needs the public
available GWAS summary statistics for intermediate and PA
phenotypes to compute genetic correlations (88). Third, if
there is genetic overlap, a polygenetic score based on genetic
variants influencing the intermediate phenotype should be able
to predict PA levels. For example, a genetic correlation between
“liking” exercise and PA would be reflected in the polygenetic
score for liking, significantly predicting actual PA levels.

Exercise Ability
To be able to engage in regular PA, in particular in the moder-

ate to vigorous class, requires the ability to do so. The importance
of exercise ability automatically nominates genetic variants that
reduce movement/exercise capability by causing congenital de-
fects in the cardiovascular and respiratory systems (89,90), sen-
sorimotor control systems (91), or the musculoskeletal system
(92) as candidates to influence PA. However, even when overt
physical disability due to rare disorders is used as an exclusion
criterion, there is abundant variation in exercise ability in the
general population because of more common variants. Most
physical fitness traits show a textbook normal distribution
across the population. It stands to reason that those who score
higher on parameters like endurance, strength, flexibility, mo-
tor speed, and coordination find it easier to engage in MVPA,
whereas those with lower capabilities or with (large) over-
weight will struggle. Given that people generally that people
generally like doing what they are good at and the strong posi-
tive cultural attitudes toward being good at exercise, a reasonable
expectation is that high levels of exercise ability will lead to more
PA. Exercise ability should, however, not only be defined in terms
of performance capacity but also in terms of being able to withstand
potential injuries. A downside of being a fervent exerciser is the
increased risk of sports injuries. Those with higher sensitivity to
injury, possibly linked to or aggravated by being overweight,
will be less motivated to engage in moderate to vigorous exer-
cise, like sports.

Most physical fitness characteristics (strength, endurance, speed,
flexibility, and balance) are known to be heritable (93,94). This
heritability partly reflects innate differences in basal levels but will
also incorporate genetic effects on the vast differences in the re-
sponses to a standardized training protocol. In the HERITAGE
family study, Bouchard et al. (95) have extensively demonstrated
this heritability of “trainability” for multiple exercise ability pheno-
types, including V̇O2max, skeletal muscle enzymes, and resting and
submaximal heart rate. Large differences exist in the response
to exercise-induced muscle damage (96), and genetic factors
have been repeatedly implicated in the susceptibility for sports
injuries (97,98).

Support for a genetic overlap between exercise ability and
PA phenotypes comes from bivariate modeling in twin studies
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that assessed physical fitness phenotypes and daily PA levels.
These confirm that PA ability and PA behavior are genetically
overlapping, with genetic correlations (rG) between PA and en-
durance capacity (V̇O2max) as high as 0.43 (14). Detection of
this genetic correlation using SNP-based methods is currently
hampered by the absence of GWAS-confirmed genes for exercise
ability (99). The field seeking exercise ability genes still almost
completely relies on candidate gene approaches (100–103). De-
spite the valid concerns about the reproducibility of these candi-
date genes for exercise ability, they do seem to be associated with
PA. Out of the 45 candidate genes for exercise ability examined
byWang et al. (70), 32 carried a variant that was associated with
MVPAwith a P value of 0.01 or lower. Traditional thresholds for
genome-wide significant association to MVPA were reached for
three of these (PPARD, APOE, and ACTN3).

Interestingly, the latter ACTN3 gene immediately demon-
strates that associations between PA ability and PA behavior
at the single variant level can be misleading. Extensive links
to exercise ability have been shown for a commonACTN3 var-
iant that introduces a premature stop codon (rs1815739,
R577X), but neither this variant nor nearby variants in LDwith
it were associated with PA phenotypes in the meta-analysis of
Wang et al. (70). Instead, the genome-wide significant association
between ACTN3 and MVPA found was due to a previously un-
identified missense variant (rs2229456) that was shown to lower
maximal force production during contraction, thus providing pro-
tection from exercise-induced muscle damage. Hence, ACNT3
does not play a role in PA through its effect on exercise ability
but seems to act almost entirely through its effect on injury sensi-
tivity.
Exercise Enjoyment
More positive affective responses to acute bouts of PA have

been systematically found to predict higher levels of participa-
tion in regular PA (104,105) as does a general enjoyment of ex-
ercise and sports activities (86,106–108). That this prediction
may reflect a causal effect receives support from twin studies
that have unveiled a high genetic correlation between affective
responding and enjoyment on the one hand, and regular en-
gagement in PA on the other (14,109). For example, Schutte
et al. (14,109) estimated the heritability of the affective re-
sponses during and after exercise and the overlap with the ge-
netic factors influencing regular VEB. Genetic factors explained
15% to 37% of the individual differences in various affective re-
sponses during and after (sub)maximal exercise tests in the cy-
cle ergometer and treadmill. Without exception, more positive
affective responses were associated with higher amounts of VEB
at the 2-year follow-up, and this association was accounted for
by an overlap in genetic factors influencing affective responding
and regular exercise behavior (0.09 < rG < 0.40). They also ob-
served a genetic correlation between extraversion and VEB at
follow-up (rG = 0.24). Two studies (85,106) reported significant
heritability estimates for intrinsic motives for LTPA (36% to
40%) and VEB (47% in males, 49% in females). Huppertz et al.
(85) further showed that the enjoyment of sports and exercise ac-
tivities was genetically correlated (male: rG = 0.70 ; female:
rG = 0.68) with the weekly METminutes spent on VEB. For the
other side of the spectrum, “embarrassment” during VEB, substan-
tial heritability (27% to 59%) was also shown, and embarrassment
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was negatively genetically correlated (−0.30 < rG < −0.40) with
the weekly METhours spent on VEB.
At the genome level, we recently tackled an individual's

self-reported liking of PA in over 157,000 individuals from the
UKB (109). GWA on self-reported liking of five PA behaviors
(going to the gym, working up a sweat, exercising with others,
exercising alone, and bicycling) plus an additional derived trait
of overall PA liking showed significant genetic correlations with
self-reported vigorous PA and strenuous VEB (rG = 0.38–0.80)
and accelerometry-derived (rG = 0.26–0.49) PA measures in the
UKB. Despite the PGS for PA liking being based on much older
UKB participants, its computation in an independent younger
sample allowed significant prediction, not just of PA liking but
also cross-prediction of regular VEB.Moreover, four of the loci sig-
nificantly influencing liking of PA (APOE, CADM2, HIST1H1D,
and SKIDA1) were previously found to be associated with the
actual level of engagement in PA (Table 3).
To summarize, bottom-up empirical gene finding and top-down

theoretical expectations most strongly converge on brain circuitry
related to the balance of punishments and rewards accrued by
engaging in PA, and on the ability to perform (intense or pro-
longed) PA, ideally at an above-average level compared with
peers (15) and without sustaining (repeated) injuries (97,98).

GENETIC TAILORING OF FUTURE
INTERVENTION PROGRAMS
The overwhelming evidence from twin and family studies—

corroborated by GWAS and SNP-based heritability— that ge-
netics make a major contribution to individual differences in
PA behaviors may lead to feelings of dismay in the interven-
tionist. If immutable genetic factors explain 50% of the vari-
ance, is our room to intervene restricted to “just” the remaining
50% environmental variance? This idea, that our ability to in-
tervene on a phenotype may be compromised if there is a large
genetic component, is widespread but mistaken. As was shown
in Figure 1, the idea confuses intervention effects on the mean
with those on the variance. Core risk factors for cardiac disease
like blood pressure, cholesterol, and smoking all show heritability
that are comparable to or even exceed that for PA (111–113).
This has not prevented us in any way to successfully intervene
on these factors. Interventions are about shifting the mean of
the distribution toward a more favorable value, for instance, to
higher levels of daily PA for all. Only when our intention is to
reduce each and all individual variation in the PA levels of a
population, we would run into genetics as a fierce opponent.
The above notwithstanding, it would be inappropriate to not

acknowledge that, based on their genotypes, it may be harder to
engage some people in PA behaviors than others. Just as in
pharmacogenetics where the prescriptions of type and dose of
medicine are made dependent on the genomic make-up of the
individual, balancing drug efficacy and the risk for adverse
events, some individuals may require different types of interven-
tions or be guided to different types of PA. Such a personalized
approach based on genotyping is an extra tool to help increase
the population levels of PA, not a replacement. Proven approaches
like goal setting, social support, reinforcement through self-reward,
and structured problem solving remain of unabated importance, as
is alerting the public to the hazards of inactivity through repeated
campaigns, obligatory physical education at school, commitment
of resources to safe and affordable opportunities for exercise and
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active transportation (mixed land use, bike lanes, and walking
trails), and the training of informed PA professionals and creation
of social networks that reinforce PA behaviors.

None of these proven approaches are to be abandoned, but
we need to seek ways to incorporate the new genetic knowledge
in these approaches to improve their success. How to achieve
this? There are broadly three current strategies to use genetic in-
formation in health care: 1) use genetic risk scores to focus our
resources for intervention on those who are likely to need the
intervention the most, 2) give feedback on where people fall
on the genetic risk scale to increase their motivation to engage
in the intervention to avert disease outcomes, and 3) tailor our
interventions to better fit the person's genetic risk profile.

Focus Interventions on at-Risk Individuals
By using the PGS for PA, we could identify vulnerable indi-

viduals who are genetically predisposed to low PA and therefore
may benefit more from early detection, enhanced monitoring,
and more frequent guidance. This idea of focusing our limited
resources for intervention and monitoring on those who may
need them the most has been advanced in the field of “person-
alized medicine.” Whereas early GWAS findings made only
modest contributions to typical metrics of clinical utility like
Number of Patients Reclassified, area-under-the-curve statistic,
sensitivity and specificity, and the C-index, recent increases in
the scale of GWAS consortia are rapidly changing this. At least
for breast cancer, type 2 diabetes, and coronary artery disease
(CAD), there are PRS available with sufficient predictive
power for clinical implementation (114). For example, using
data from 2.1 million individuals from the Clinical Practice Re-
search Datalink, it was estimated that adding the PRS to the
recommended current guidelines to initiate statin therapy al-
ready translates to the prevention of 7% more CAD events
than using conventional risk factors alone (115).

Of course, the genetic risks for CAD and breast cancer re-
main “unseen” until the disease becomes manifest, whereas we
do not need DNA to detect who is physically active and who
is not. The clear advantage of PGS over the assessment of ongo-
ing health behaviors is that a PGS can provide an estimate of
the risk trajectory across a lifetime, rather than the prediction
window of a few years covered by a single snapshot of the cur-
rent PA level. This means that in terms of forecasting who is
at risk of becoming low physically active as an adult, a PGS
can guide focused interventions in childhood and early adoles-
cence, when the genetic propensity is not yet as visible in be-
havior as in late adolescence and adulthood.

Providing Feedback on Genetic Risk
A second application of the PGS is to raise awareness in peo-

ple, or their custodians, of the heightened risk of turning into a
physically inactive person. The success of that approach is pred-
icated on the availability of methods to convey this information
in a digestible manner that avoids unwarranted fatalistic fears or
unwarranted optimism and effectively changes their PA habits
in the desired direction. A highly cited article on this topic pre-
sents a meta-analysis of studies trying to change a variety of
health behaviors by informing participants of their genetic risk
for disease outcomes or their risk for obesity (116). Overall,
feedback on genetic testing did not change risk behaviors, in-
cluding PA, with one or two exceptions (e.g., more suntan
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use when confronted with high melanoma risk). Even more so-
bering, a recent study that tested whether PA assessed by accel-
erometers was increased after clinical and genetic risk disclosure
did not detect any changes in PA behavior (117). Interestingly,
by presenting null findings for effects on health behaviors, in-
cluding PA, the extant literature also debunks the often voiced
concern that feedback on genetic testing might lead to unin-
tended worsening of health behaviors, by inducing anxiety
and defeatism in high genetic risk individuals or a loss of disci-
pline in low genetic risk individuals (118).

As is now widely recognized by theories of behavioral change,
just providing information that a behavior is beneficial for or det-
rimental to health does not suffice to change that behavior. If the
information on risk or protection is not paired to a concrete action
plan, it will not change health behaviors. In contrast, if risk
counseling is coupled to (online) health behavior coaching, it
may have a more positive impact. This was illustrated by the
GeneRISK study in Finland that evaluated the attitudes of
7342 middle-aged individuals upon receiving personal
genome-enhanced information on 10-year CAD risk, and pro-
spectively assessed the impact on the participants' health be-
havior (119). Altogether, 42.6% of individuals at high risk
self-reported to have made some health behavioral change
compared with 33.5% of persons at low/average risk such that
a higher baseline risk predicted a favorable change, with both
clinical and genomic factors contributing independently.
Similar benefits of disclosing genetic risk have been seen
for cancer (120). GeneRISK also further allayed the concern
that communication of genetic risk induces either defeatism
(high risk) or debauchery (low risk). As many as 97% believed
their CAD risk to be influenced by genetic factors. Despite that
belief, 99% of participants thought that they can impact on
their risk through lifestyle choices, and 89% indicated that their
personal risk information motivated them to take better care of
their health.

Tailoring Interventions to Genetic Risk
When we intervene on PA, we often advertise regular exer-

cise as something that will “make you feel good, improve your
cognition, buffer your stress reactivity, reduce your weight.”
This generic message completely fails to consider that such ben-
efits will not be experienced by, for example, those who struggle
above their preferred intensity level to keep up with the group/
expectations, those whose hypothalamus ruthlessly corrects for
the increased energy expenditure, and those who lack the out-
going personality or the athletic abilities that often determine
one's “rank order” in organized sports activities at school, work,
and sports clubs to enjoy such activities. In short, when we ad-
vertise the benefits of PA, we assume they apply to all, whereas
abundant evidence suggests that both mental and physical
health effects of regular PA show large individual differences
that are at least partly genetically determined (15,121).

A better grasp of an individual's innate propensity for PA as
well as a better grasp on what benefits and risks regular PA will
bring to a specific individual can help tailor programs to more
closely fit that individual and hence improve recruitment and
retention of the individual into regular PA habits. It could be
particularly beneficial to decompose the PGS for PA into
PGS for specific types of PA, for example, LTPA, MVPA,
LPA, or even sedentary behaviors, as differential odds to engage
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in these types of behaviors may require differentiated interven-
tion. Another strategy would be to focus on the potential path-
ways by creating a separate PGS for risk scores for aversive psy-
chological responding to exercise, low exercise ability, or high
sensitivity to injury.

Those who are expected based on their PGS to respond with
“feeling good” to moderate to vigorous exercise need a different
advice than those who do not have the neurobiology to enjoy
exercise at high-intensity levels. For those with low PGS for
PA liking, obtaining increased adoption and adherence to reg-
ular PA might be as simple as reducing exercise intensity and
presenting a different or larger selection of PA activities. For
those with low expected benefits in terms of weight loss, in-
creases in aerobic performance/muscle strength, or stress reduc-
tion, a cognitive (realistic) restructuring of expected mental
and physical benefits based on genotype predictions may be use-
ful, particularly in the initial phases of the PA intervention pro-
gram. More generally, a PGS pointing to low exercise ability/
trainability could be used to shape the intervention such that
it reduces direct comparison and competition, for example, by
advising solitary over team activities, or inclusive team-based
activities over competitive ones.

A PGS could also be used to identify specific risks for injury
and in turn lead to adaptation of the content and build-up of
exercises in training programs (98). Application of a PGS for
low bone mineral density in a screening program was seen to re-
duce the need for application of dual energy x-ray absorptiom-
etry by ~40% with high (>93%) sensitivity and specificity
(122). It is not hard to imagine that this PGS could also help
tailor PA intervention, specifically in the most vulnerable pop-
ulation of postmenopausal women. A person with a high sensi-
tivity to injury to any form of PA could lead to a focus on using
the appropriate warm-up, strengthen specific muscle groups, use
more cross-training, and better respect one's limits. If the PGS
could predict even more specifically injury risk as a function
of tissue (bone, tendon, and muscle), anatomical location (an-
kle, shoulder, and knee), or type of PA, this would help person-
alize training programs to maximize performance gain while
minimizing overload-induced injury risk.

FUTURE MISSION
At this point, the examples are mere speculations. The exact

strategy to optimize intervention based on genotype first requires
a furthering of our current understanding of genetic differences in
the propensity to engage in PA. Given the differences in genetic
factors expressed across the lifespan, the potential use of the var-
ious PGS described above will likely be age dependent. Children
may experience rather different enjoyment “gains” when they
adopt a physically active lifestyle (enjoyment) than they do in
adolescence (being good at it) or in adulthood (social and health
benefits). In essence, what the genetically tailored interventions
at each age should optimally look like, and if they work at all, re-
mains largely to be discovered.

A large gap in our knowledge is caused by the near absence of
PA intervention studies explicitly looking at gene-by-intervention
interaction effects. Whereas most intervention studies are too
small for a meaningful candidate gene approach, a PGS could
explain 1%–5% of the variance in PA intervention responses.
Adjusting for the PGS could help increase the power to detect
the effects of PA interventions, and the PGS further allows
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stratified analyses in subsets of individuals with low, moderate,
to high genetic propensity to engage in PA. This can be used
to explicitly test if, and which, health benefits are dependent
on having a more or less favorable genotype for PA.
To enable gene-by-intervention interaction testing, the only

three additions that interventionist need to make to their study
protocols are the explicit informed consent for biomaterial col-
lection, a secure and qualified biobank facility, and an extra U.
S.$35 per participant for the genome-wide array with bioinfor-
matics. These are nontrivial extra efforts, but entirely doable.
Paired to the increasing resource of freely available summary sta-
tistics of GWAS consortia, they would provide an unprecedented
opportunity to move the field of exercise genomics forward. Such
studies could show how the heterogeneity in the effects of inter-
ventions on PA adoption and the heterogeneity in the effects of
PA on the health outcomes is predicted by genotypes.
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