CHAPTER 0

Conclusions and Perspectives

In Chapter 2 of this thesis, similarities and differences among members of
(mainly MZ) twin families in their blood plasma lipidomics profiles were inves-
tigated. The results of these analyses suggested that shared genetic background
and shared environmental experiences contribute to similarities in blood plasma
lipidomics profiles among individuals. Male and female participants segregated
almost perfectly at the highest level in the dendrogram resulting from hierar-
chical clustering analysis. Clustering of MZ co-twins was assessed by counting
the number of branching points in the dendrogram separating both twins, and
comparing the observations with reference distributions based on permutation
testing. Indeed, based on these comparisons it could be concluded that in gen-
eral more MZ twins belonging to the same twin pair clustered together than was
expected on the basis of chance. However, for some MZ twin pairs the distances
between co-twins were larger than was expected on the basis of their genetic
similarity. Such dissimilarity of lipid profiles between MZ co-twins appeared
to correlate positively with female gender, relatively high CRP concentration
and, in a number of cases, with recent illness.

In Chapter 3, a data transformation method was presented to make com-
binable (with the variables as the shared mode) data sets obtained with the
same semiquantitative analytical chemical method but in different measure-
ment “blocks”. Such “blocks” can arise, for example, when the measurements
of all samples for a particular study can not be performed at the same time.
The application of the data transformation method, referred to as “quantile
equating”, was demonstrated with data sets obtained by LC-MS analysis of
blood plasma lipids, and by 'H NMR spectroscopy of blood plasma and urine
samples from twin families.
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The combined LC-MS data sets obtained after application of the “quantile
equating” method described in Chapter 3, were used for the analyses described
in Chapter 4. In this Chapter it was demonstrated in hierarchical cluster-
ing analysis that quantile equating had indeed been beneficial for making the
LC-MS data sets combinable. Furthermore, on the basis of this larger data
set including notably more DZ twin families, the general findings described in
Chapter 2 could be replicated. That is, the results described in Chapter 4
also supported the hypothesis that shared genetic background and shared en-
vironmental exposure contribute to similarities in lipidomics profiles among
individuals. Also, in general dissimilarities in lipidomics profiles between fe-
male MZ co-twins were larger than between male MZ co-twins. However, the
positive correlation between dissimilarity of lipid profiles between MZ co-twins,
recent illness and relatively high CRP concentration was not as apparent as on
the basis of the analyses described in Chapter 2.

Finally, Chapter 5 describes the results of uni- and multivariate quantita-
tive genetic analyses of blood plasma LC-MS and 'H NMR data on the basis of
structural equation modeling. Univariate analyses of the LC-MS data, which
were generated using a “targeted” method for the analysis of lipids, suggested
different patterns of heritability for lipids belonging to different lipid classes.
Interestingly, within the triglyceride class we observed different heritabilities for
lipids with different numbers of C-atoms and/or different numbers of double
bonds in the fatty acid backbone. The dendrogram resulting from hierarchi-
cal clustering analysis of the genetic correlations among all lipids suggested
shared genetic factors contributing to the phenotypic covariance of lipids from
the same lipid class. The heritabilities of the features detected in the 'H NMR
data, which were generated using a “global” method to obtain an overview
of metabolites from different classes, displayed much larger heterogeneity with
respect to those of the lipids detected with LC-MS. Also, considerable hetero-
geneity was observed in the genetic correlations among all features, which was
again as expected on the basis of the “global” nature of NMR, spectroscopy.

6.1 Between-block effect correction methods in
metabolomics

The method described in Chapter 3 of this thesis appears to be one of the
first to address the issue of “between-block” effect correction with application
to semi-quantitative analytical chemical data. It is argued in Chapter 3 that
systematic nonbiological differences between semi-quantitative data obtained in
different measurement “blocks” can exist, for example due to small analytical
changes between the blocks that are not avoidable by good analytical practice
alone. The method of univariate “quantile equating” is introduced to address
this issue when there are nonlinear differences between the distributions of the
data obtained on the same variables in different measurement blocks.

That “between-block” effect correction at “low” level (i.e., at data level)
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appears to be a relatively unexplored area of research in the context of semi-
quantitative metabolomics measurements, is somewhat surprising in view of
the large number of publications on similar topics within the transcriptomics
field. In transcriptomics, the analogue of what we in Chapter 3 of this thesis
refer to as “between-block” effects is often referred to as “batch effects”. Sev-
eral authors'®6192 give similar considerations to correct for “batch effects” in
microarray studies, as we do for correcting for what is called “between-block ef-
fects” in Chapter 3. Demetrashvili et al. 86 applied the empirical Bayes method
of Johnson et al.'®! to correct for “batch effects” after application of the loess
normalization within arrays, which implies that normalization alone was not
sufficient in their case for between-batch effect correction. Other authors have
described similar findings. 13%:1°1 This reported insufficiency of normalization to
correct for between-batch effects in microarray studies is in concordance with
our finding that it is not sufficient for correction for between-block effects in
metabolomics data. Jiang and colleagues*8® developed the “disTran” method
for between-batch effect correction of microarrays, which is probably equiva-
lent to our “quantile equating” method that we used for between-block effect
correction in the context of a metabolomics study. Several authors (e.g.,'%3)
have even presented methods to make combinable (with the variables as the
shared mode) data sets obtained with different gene expression measurement
techniques.

The difference in nomenclature employed in the context of microarray stud-
ies (i.e., “batch effect correction”) and in the context of semiquantitative me-
tabolomics studies (i.e., “between-block effect correction”) might reflect a dif-
ference in application domain of highly similar data pretreatment methods.
Indeed, the severity of “batch effects” as generally described within the con-
text of metabolomics studies, appears to be relatively limited with respect
to that of the “batch effects” described for microarray studies. Therefore, in
metabolomics studies, data obtained in different batches but within the same
“block” are often reported to be combinable either without correction, or with
batch effect correction using for example repeatedly measured quality control
samples. 2117128194 However, apparently in contrast to the situation within
gene expression studies, the possibility and even necessity to consider data pre-
treatment techniques for between-block effect correction does not appear to be
accepted yet by the metabolomics community. Rather, currently there seems
to be a preference for perfection of the stability and robustness of the used
analytical chemical platforms, such that data obtained with the same analyti-
cal chemical method in different measurement blocks can be combined without
additional correction. For example, efforts are being undertaken to standard-
ize working protocols. 221195197 However, among transcriptomics researchers
a keen interest in methods that correct for “batch effects” still exists, despite
similar efforts in that field.'®” With the demand to discover biological effects
of ever smaller effect size on the basis of metabolomics data,''” it is foreseeable
that the application domain of methods to correct for “between-block” effects
increases in response to this demand as well. 198
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Finally, a caveat for the application of methods for block effect correction to
semiquantitative metabolomics data sets might be in place. Currently complete
identification of all detected compounds in metabolomics studies is often not
possible.?! The LC-MS data discussed in this thesis, for example, were based
on an analytical method that cannot distinguish among different isomers of
a detected lipid.'?” Therefore, it could not be verified whether for example
the ratios of different isomers of the ‘same’ lipid in data sets originating from
different measurement blocks were equal. However, an important assumption
when applying “equating” methods to make combinable data sets, is that data
from the same variables (e.g., the same isomers of a particular lipid) are equated
in different data sets. Any indications that this assumption might be violated
in a given study might preclude the application of equating methods in order
to avoid bias. Nevertheless, it is concluded that useful methodology to correct
for batch and/or block effects in semi-quantitative metabolomics studies might

be adopted from microarray research. A similar case was made by Redestig et
al. 199

6.2 Multivariate quantitative genetic analysis

In Chapters 2 and 4 of this thesis, multivariate quantitative genetic analysis
was performed based on the distances among objects, computed on the basis
of blood plasma lipidomics profiles. In Chapter 5, multivariate quantitative
genetic analysis was performed on the basis of structural equation modeling.
In Chapters 2 and 4, we have used the ‘unsupervised’, hypothesis-free data
analysis method of hierarchical clustering. As has been explained in the Gen-
eral Introduction, the aim of hierarchical clustering analysis is to “see what the
data are trying to tell us”.*! Nevertheless, the results in Chapters 2 and 4 were
consistent with our hypothesis that shared genetic background and shared en-
vironment contribute to similarities in blood plasma lipidomics profiles among
individuals.

Structural equation modeling, which was used in Chapter 5, is initiated by
the specification of a model that formalizes a hypothesis about the causal rela-
tionship between predictors and predicted variables. Hence, structural equation
modeling could be regarded a ‘hypothesis-driven’ method. However, in Chap-
ter 5 we have used structural equation modeling in a relatively hypothesis-free
way. That is, a structural model based on Cholesky composition of the variance
component matrices was used, which is a relatively hypothesis-free model.?"
Also, the genetic correlations for all pairs of variables, estimated using this
hypothesis-free model, were analyzed using the ‘unsupervised’, hypothesis-free
method of hierarchical clustering. Nevertheless, the patterns of clustering of
lipids on the basis of their genetic correlations were consistent with the hy-
pothesis that metabolites from the same metabolite class correlate positively
because of shared genetic factors of phenotypic variation.

This methodology for multivariate quantitative genetic analysis on the basis
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of SEM might be further enhanced by the development or application of meth-
ods that allow the joint analysis of all variables in one multivariate analysis,
rather than the ‘multistep multivariate’ approach. That is, from a purely math-
ematical point of view, the results from “multiple bivariate” analyses cannot
be jointly analyzed because they are not in the same multivariate space.

Furthermore, as explained below, the results of the analyses based on the
distances among objects could provide indications which ‘moderators’ might
be placed where in a structural equation model to be used for quantitative
genetic analysis. In structural equation modeling, moderators are covariates
that influence for example the weight of predictor variables.?% It can be hy-
pothesized, for example, that gender ‘moderates’ the relative contribution of
genetic variance to phenotypic variance and such a hypothesis can be formal-
ized as a moderator on the path coefficients in a structural equation model.
The analyses based on the distances among objects, as in Chapters 2 and 4 of
this thesis, might be used to explore the heterogeneity among the individuals
in the study sample, to find indications whether there are potential covariates
that might be included as moderators in a structural equation model. For
example, in Chapter 2 in hierarchical clustering analysis we observed almost
perfect segregation of male and female participants at the highest level in the
dendrogram. This suggests that gender might be included as a covariate on
the means in structural equation models.

6.3 Medical relevance of our findings

In Chapters 2 and 4, individual differences were studied on the basis of dis-
tances among objects (lipidomics profiles) in multivariate space. The results of
these analyses suggested that for example disease might increase such individ-
ual differences in blood plasma lipid concentrations. Indeed, our results on the
basis of blood plasma lipid profiling support the hypothesis that “because of
biological individuality, each individual will have a particular location within
the larger distribution of quantitative values that describe the parameter in
the population; the private homeostatic value may then be seen to be dis-
placed because the individual’s system is [...] overwhelmed by experience”. 2%t
The power to detect the effects on individual differences of particular impor-
tant factors, such as disease, might be enhanced in analyses on the basis of
distances among objects with respect to univariate analysis. This increase in
statistical power should be due to the fact that in the multivariate distances
among objects, the effects of factors that influence phenotypic variation in the
individual variables (as can be assessed for example in univariate analysis on
the basis of structural equation modeling, as was performed in Chapter 5) are
“pooled”. This “pooling” occurs during the summation of the dissimilarities
among the objects for the individual variables (see for example equation 1.5
in the General Introduction). Further studies are necessary to determine the
magnitude of this gain in statistical power due to studying distances among
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objects rather than studying the variation in individual variables.

The results of the univariate analyses based on structural equation mod-
eling as described in Chapter 5 of this thesis are informative of the relative
contribution of genetic variation and environmental variation to the quantita-
tive variation in individual metabolites.

The genetic correlations as estimated in the multivariate quantitative ge-
netic analyses described in Chapter 5 are informative of the genetic structure
that underlies the phenotypically observable quantitative relationships among
different metabolites. These results might be relevant for the study of common

diseases,*™%6 and might enhance the interpretation of the findings from e.g.
GWA studies.



