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Abstract In the present article, multivariate genetic item

analyses were employed to address questions regarding the

ontology and the genetic and environmental etiology of the

Anxious/Depressed, Withdrawn, and Somatic Complaints

syndrome dimensions of the Internalizing grouping of the

Child Behavior Checklist/6–18 (CBCL/6–18). Using

common and independent pathway genetic factor model-

ing, it was examined whether these syndrome dimensions

can be ascribed a realist ontology. Subsequently, the

structures of the genetic and environmental influences

giving rise to the observed symptom covariation were

examined. Maternal ratings of a population-based sample

of 17,511 Dutch twins of mean age 7.4 (SD = 0.4) on the

items of the Internalizing grouping of the Dutch CBCL/

6–18 were analyzed. Applications of common and inde-

pendent pathway modeling demonstrated that the Inter-

nalizing syndrome dimensions may be better understood as

a composite of unconstrained genetic and environmental

influences than as causally relevant entities generating the

observed symptom covariation. Furthermore, the results

indicate a common genetic basis for anxiety, depression,

and withdrawn behavior, with the distinction between these

syndromes being driven by the individual-specific envi-

ronment. Implications for the substantive interpretation of

these syndrome dimensions are discussed.

Keywords CBCL � Internalizing problems �
Depression � Anxiety � Common pathway model �
Independent pathway model � Genetic item analysis

Introduction

The development of taxonomy of psychiatric symptoms has

traditionally been challenging. Difficulties in delineating

between diagnostic categories, arising from issues such as

overlapping features of multiple disorders, inconsistent

empirical evidence regarding the factor structure of psy-

chometric instruments, definitional issues arising from high

comorbidity rates, debates regarding dimensional versus

categorical conceptualization, and unknown degree of etio-

logical overlap between symptoms or sets of symptoms, have

notoriously hampered the attempts of arriving at a classifi-

cation of psychopathology that would gain univocal support

from the empirical researchers and the clinical practitioners

alike. In children, these issues are further exacerbated by the

developmental aspect of the disorders: for instance, the same

disorder may manifest itself through different symptoms

over time, while identical symptoms may reflect distinct,

temporally changing underlying conditions.

Symptoms of anxiety and depression, for instance,

famously illustrate the aforementioned issues (Clark and

Watson 1991; Brown 1996; Brady and Kendall 1992; Ra-

pee et al. 2009; Mineka et al. 1998). The definitional and

etiological questions surrounding these disorders (and their

extremely high comorbidity rates) are as old as the sys-

tematic study of the disorders itself. Are these two highly
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comorbid disorders manifestations of a single syndrome, or

separate entities with overlapping features? To what extent

are their etiologies shared? Is their symptom overlap a

reflection of inadequacies of the current diagnostic sys-

tems, or an indication of a shared etiology? These and

similar questions have stimulated ample and diverse theo-

retical development, and motivated a vast amount of

research. The theories range from those postulating anxiety

and depression as different points along a single contin-

uum, to those conceptualizing them as conceptually and

empirically distinct phenomena (Clark 1989).

This complexity, inherent to the study of psychiatric

disorders, is further compounded by a lack of agreement

in evaluating and understanding the structure of psycho-

metric instruments used to assess psychopathology. The

Child Behavior Checklist (CBCL, Achenbach and Resc-

orla 2001), for instance, is one of the most widely used

instruments in assessing childhood psychopathology. It

has been translated into over 85 languages, and more than

6,000 publications from over 65 countries report its

applications in both the practical and the research context.

However, when faced with critical empirical and psy-

chometric evaluations, the syndrome dimensions postu-

lated in the CBCL do not always stand up to scrutiny. In

possibly the most comprehensive critical psychometric/

empirical evaluation of the CBCL to date, Hartman et al.

1999 compellingly demonstrated that the 8-factor cross-

informant model of the CBCL (Achenbach and Rescorla

2001, described below) fails to adequately describe the

empirical data across multiple cultures under study, in

both population-based and clinical samples. Furthermore,

if violations of distributional assumptions, invariably

present in the analysis of CBCL data, are taken into

account when evaluating model fit, the conclusions of the

studies indicating acceptable or nearly acceptable fit are

often undermined (see Hartman et al. 1999). Upon close

scrutiny, it therefore appears that the postulated 8-factor

structure of the CBCL does not consistently survive

critical confrontation with empirical data. This, naturally,

raises questions about the instrument’s validity: what do

the CBCL syndrome dimensions measure, given the lack

of unambiguous empirical support for the proposed

8-factor structure?

In the present paper, we propose that multivariate

genetic item analyses (e.g., Heath et al. 1989; Kendler et al.

1987; van den Berg et al. 2007; Eaves 1983; Neale et al.

2005; Waller and Reise 1992; Franic et al. 2012b), as first

applied to individual psychiatric symptoms by Kendler

et al. (1987), can be used to illuminate some of the

aforementioned issues. Specifically, genetic item analyses

can be employed to examine how some of the difficulties in

delineating the CBCL syndrome dimensions may arise as a

function of the complexity of the latent genetic and

environmental structures that underlie the observed symp-

tom covariation. In addition, the applications of this type of

analysis can contribute to the discussion on whether the

current CBCL dimensions may be conceptualized as well-

defined, coherent entities exerting causal influence on item

covariation (i.e., whether they can be ascribed a realist

ontology; Borsboom et al. 2003), or are better considered

an unconstrained amalgamation of genetic and environ-

mental influences. In the present article, we focus on the

Internalizing grouping of the CBCL (items of the CBCL

pertaining to intropunitive emotions and moods), with the

aim of answering two principal questions: (1) Can one

interpret the Internalizing syndrome dimensions of the

CBCL substantively and causally? (2) What is the structure

of the genetic and environmental influences giving rise to

the observed (i.e., phenotypic) symptom covariation? We

do not place primary emphasis on detailed phenotypic

dimensionality assessment, and use it mainly insofar as it

serves as a gateway into exploring the latent genetic and

environmental dimensionality.

Methods

Data

The data were obtained from the Netherlands Twin Reg-

ister at VU University Amsterdam (Bartels et al. 2007; van

Beijsterveldt et al. 2012), and consist of maternal ratings of

a population-based sample of 17,511 twins (including

3,023 MZ and 5,599 DZ complete twin pairs) of mean age

7.4 (SD = 0.4) on the Internalizing grouping of the Dutch

version of the Child Behavior Checklist for ages 6–18

(CBCL/6–18; Achenbach and Rescorla 20011). The CBCL/

6–18 is a 140-item questionnaire used to assess problem

behaviors and competencies in children, as reported by

their parents. The cross-informant model of the CBCL

(Achenbach and Rescorla 2001) was derived through the

application of principal components analysis, and consists

of eight correlated syndrome dimensions, broadly clustered

into those pertaining to internalizing problems (the Inter-

nalizing grouping) and those pertaining to externalizing

problems (the Externalizing grouping). The Internalizing

grouping of the CBCL is a scale designed to measure

disturbances in intropunitive emotions and moods in chil-

dren, and consists of three subscales (i.e., syndrome

dimensions): Anxious/Depressed (AD), Withdrawn (W),

and Somatic Complaints (SC), containing 31 discrete items

(listed in Fig. 1) in total. Responses are given on a three-

point scale: ‘‘not true’’, ‘‘somewhat or sometimes true’’,

1 The study had permission to permission to use, reproduce and

reformat the CBCL.

Behav Genet (2014) 44:254–268 255

123



and ‘‘very true or often true’’. A path-diagrammatic rep-

resentation of the three syndrome dimensions of the

Internalizing grouping is given in Fig. 1.

Approach

Genetic covariance structure modeling (Martin and Eaves

1977) is the application of structural equation modeling

(Bollen 1989; Kline 2005) to data collected in genetically

informative samples, such as samples of twins (Neale and

Cardon 1992; Franic et al. 2012b). In the classical twin

design, the sample consists of monozygotic (MZ) and

dizygotic (DZ) twin pairs. DZ twins share an average of

50 % of their segregating genes, while MZ twins entirely

share their segregating DNA (Falconer and Mackay 1996;

van Dongen et al. 2012). In the present analyses, the

covariance structure of the phenotypes (i.e., observed

traits, symptoms) is modeled as a function of latent fac-

tors representing three sources of individual differences:

additive genetic (A), shared environmental (C) and indi-

vidual-specific environmental (E) sources. Additive

genetic influences are modeled by one or more A factors,

which represent the total additive effects of genes relevant

to the phenotypes. Based on quantitative genetic theory

(Falconer and Mackay 1996; Mather and Jinks 1971), the

A factors are known to correlate 1 across MZ twins and

0.5 across DZ twins. Environmental influences affecting

the phenotype of both twins in an identical way, thereby

increasing their similarity beyond what is expected based

on genetic resemblance alone, are represented by one or

more C factors. Therefore, by definition, the C factors

correlate unity across twins (regardless of zygosity). All

environmental influences causing the phenotype of two

family members to differ are represented by one or more

E factors. Thus, by definition, the E factors are correlated

0 across twins.2 The expected covariance structure in a

multivariate twin model is thus:

R11R12 ¼ RA þ RC þ RE rARA þ RC

R21R22 rARA þ RCð Þt RA þ RC þ RE;
ð1Þ

where, given p phenotypes, R11 (R22) is the p 9 p

covariance matrix of twin 1 (twin 2), R12 (R21) is the twin

1–twin 2 p 9 p covariance matrix, and RA, RC and RE are

the additive genetic, shared environmental, and unique

environmental p 9 p covariance matrices, respectively.

The coefficient rA is the additive genetic twin correlation

(1 for MZ twins, 0.5 for DZ twins).

Figure 2 depicts two examples of the multivariate twin

models used in the present study. The first model is a

common pathway model (Kendler et al. 1987), also known

as the psychometric factor model (McArdle and Goldsmith

1990). In a common pathway model, all of the A, C, and E

influences on the item responses are mediated by a latent

variable, henceforth referred to as the psychometric factor

(factors P1 and P2 in Fig. 2). P1 and P2 may be viewed as

latent phenotypic factors, e.g., ‘anxiety’ or ‘depression’. In

common pathway models, the psychometric factor acts as a

mediator of the genetic and environmental effects, and the

factor loadings represent common pathways from the A, C,

and E factors to the observed item responses.

The second model is the independent pathway model

(Kendler et al. 1987), also known as the biometric factor

Fig. 1 The syndrome

dimensions and item content of

the CBCL/6-18 Internalizing

grouping. AD Anxious/

Depressed, W Withdrawn,

SC Somatic Complaints

2 In addition, the phenotype may be influenced by non-additive

genetic effects (D), which are the result of interactions of alleles

within the same locus (genetic dominance) or across different loci

(epistasis). These will not be modeled in the present paper, as the

classical twin design does not allow for simultaneous estimation of A,

D, C, and E effects. The choice between modeling C and D effects

was informed by preliminary univariate item analyses, which showed

most of the items to conform better to an ACE than to an ADE model.

We note, however, that this does not exclude the presence of non-

additive genetic influences (Keller and Coventry 2005).
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model (McArdle and Goldsmith 1990). This model is

represented in the right panel of Fig. 2. In the indepen-

dent pathway model, there is no phenotypic latent vari-

able that mediates the genetic and environmental effects

on the item responses. Rather, the A, C, and E factors

influence item responses directly. In terms of the pheno-

typic (i.e., observed) covariance matrix of the item

responses (i.e., R11 = R22), we can convey the common

and the independent pathway models, respectively, as

follows:

R11 ¼ R22 ¼ KUKt þHcp ¼ K UA þ UC þ UEð ÞKt þHcp

¼ K CACt
A þ CCCt

C þ CECt
E

� �
Kt þHcp

R21 ¼ Rt
12 ¼ K UA þ UCð ÞKt þHcp21

¼ K rACACt
A þ CCCt

C

� �
Kt þHcp21; ð2Þ

and

R11 ¼ R22 ¼ KAWAKt
A þ KCWCKt

C þ KEWEKt
E þHip

¼ KAKt
A þ KCKt

C þ KEKt
E þHip

R21 ¼ Rt
12 ¼ rAKAKt

A þ KCKt
C þHip21: ð3Þ

Here WA, WC, and WE are the covariance matrices of the A, C,

and E factors in the two models. In the common pathway

model the covariance matrix of the psychometric factor, U,

equals UA þ UC þ UE, i.e., CACt
A þ CCCt

C þCECt
E, where

UA, UC, and UE denote the A, C, and E variance components

of U, and CA, CC, and CE are the vectors of factor loadings

CA = [a], CC = [c], CE = [e]. Note that in both models the

diagonal matrices H (denoted Hcp and Hip, as they may vary

over the models) contain the residual variances of the items

in the model. The residual covariance matrices may be

subjected to their own decomposition, i.e., H ¼ HA þHC þ
HE and H21 ¼ rAHA þHC (Neale and Cardon 1992).

In the present paper, we distinguish between genetic

factor models (introduced above), and phenotypic factor

models. By ‘phenotypic factor model’ we refer to the factor

model as usually formulated and applied in psychological

research. The term ‘phenotypic’ is used because the model

is applied only to the observed (i.e., phenotypic) covaria-

tion; no genetic information is used.3 The 8-factor cross-

informant model of the CBCL and the 5-factor model of

personality (McCrae and Costa 1999; McCrae and John

1992) are examples of a phenotypic factor model.

The common pathway model bears a number of simi-

larities to the phenotypic factor model. Notably, both the

phenotypic factor model and the common pathway model

are based on the premise that all covariation in item

responses is attributable to one or more latent variables. In

phenotypic factor modeling, this can be formulated in

terms of measurement invariance: influences of all external

variables affecting covariation in item responses run only

via the latent variable (Mellenbergh 1989; Meredith 1993).

Likewise, in common pathway modeling one assumes that

all of the A, C, and E influences on item covariation run

only via the psychometric factor. That is, there are no

direct effects of A, C, and E on the items. The assumption

Fig. 2 A common pathway (left) and an independent pathway (right) genetic factor model. Matrix names on the sides correspond to the notation

in the text

3 This is the standard application of the factor model to data collected

in unrelated subjects, or when no information is available on genetic

relatedness. We note, however, that if genome-wide DNA marker

data are available in unrelated subjects, these could be used in a

GTCA-like approach (Yang et al. 2011) to explore genetic covariance

structures.
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of full mediation of external influences by a latent variable

has strong implications. For instance, different external

variables affecting a set of item responses via the same

latent variable exert the same magnitude of influence rel-

ative to each other on all the items that depend on that

latent variable. For instance, if an A and a C variable affect

a set of items via the same psychometric factor, then the

magnitude of influence exerted by the variable A on any

individual item will be a scalar multiple of the magnitude

of influence exerted by the variable C on that same item,

and this scalar multiple (k) will be a constant across all the

items depending on this psychometric factor. This means

that one can derive a common pathway model from an

independent pathway model by imposing proportionality

constraints on the factor loadings, such that a1/a2 = c1/

c2 = e1/e2 = k (following the notation in the right panel of

Fig. 2).

Thus, the common pathway model makes explicit an

assumption of the phenotypic latent variable model con-

cerning the sources of item covariation—all influences on

item covariation run via the phenotypic latent variable.

This means, barring cases of model equivalence, that a

latent variable model cannot hold unless the corresponding

common pathway model holds (Franic et al. 2012a).

Because any given latent variable hypothesis implies a

corresponding common pathway model, a refutation of that

common pathway model constitutes evidence against the

latent variable hypothesis.

For this reason, one may test the latent variable

hypothesis by comparing the fit of a common pathway

model to that of a corresponding independent pathway

model. Specifically, if a model in which all of the A, C,

and E factors exert direct influence on the phenotype fits

the data statistically better than a model in which these

influences are mediated by a phenotypic latent variable,

this would provide evidence against the hypothesis that

the effects on the observed item covariation are com-

pletely mediated by the phenotypic latent variable. In that

case the latent factors employed in the phenotypic factor

model are no more than an amalgamation of the direct

influences of the A, C, and E factors on the observed item

responses. If, on the other hand, an independent pathway

model does not fit the data better than the corresponding

common pathway model, this would provide support for

the structure employed in the common pathway model,

and substantiation for the corresponding phenotypic latent

variable model. Comparison of an independent pathway

model and a common pathway model may be conducted

using a likelihood ratio test, because, as shown above, a

common pathway model can be derived from an inde-

pendent pathway model by imposing appropriate propor-

tionality constraints on the factor loadings (i.e., the

models are nested).

Analyses

In the present analyses, the outlined methodology was used

to examine the substantive interpretability of the Internal-

izing syndrome dimensions of the CBCL (Anxious/

Depressed, Withdrawn, Somatic Complaints). The pheno-

typic dimensionality of the 31 items was assessed using

exploratory (EFA) and confirmatory (CFA) factor analysis.

In this part of the analyses, the data were treated as if the

sample consisted of genetically unrelated individuals. As

treating observations from the same family as independent

may result in biased test statistics, we performed a correction

for clustering available in MPlus, which has been shown to

work well in this context (Rebollo et al. 2006). The EFA was

performed using the oblique geomin rotation. Split-half

validation was used, i.e., EFA was performed on one ran-

domly selected half of the sample (N = 8756), and CFA on

the other (N = 8755).

Based on the results of the phenotypic dimensionality

assessment, a common pathway model was formulated: in

this model, the phenotypic factors obtained in the EFA and

the CFA were retained, and their variation decomposed

into A, C, and E components, as illustrated in the top panel

of Fig. 4. Subsequently, an independent pathway model

was specified. This model is equal to the common pathway

model in the number of the latent A, C, and E factors (i.e.,

the dimensions of the WA, WC, and WE matrices are equal

across the two models), but it disposes of the phenotypic

factors, i.e., it allows for the items to load directly on the A,

C, and E factors. By comparing the fit of the common and

the independent pathway model, we address the first focal

question of whether one can interpret the syndrome

dimensions of the CBCL Internalizing grouping substan-

tively and causally.

To address the second research question, namely one

concerning the dimensionality and the factor structure of

the genetic and environmental effects that underlie the

observed symptom covariation, independent pathway

modeling was employed in an exploratory manner. First,

the covariance matrix of the 31 symptoms was decomposed

into A, C, and E components, i.e., the unconstrained

31 9 31 RA, RC, and RE matrices (Eq. 1) were estimated.

Subsequently, EFA was applied to each of these matrices to

obtain an indication of their dimensionality. Examining the

dimensionality and the factor structure of the genetic and

environmental effects which jointly act to produce the

observed symptom structure provides insight into the

observed symptom covariation, as the structure emerging

in the phenotypic analyses (EFA, CFA) depends directly on

the structure and relative magnitude of the underlying

genetic and environmental components; for instance, a

strongly prevailing unidimensional C component will make

the phenotypic structure appear unidimensional.
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The analyses were performed using Mplus (Muthén and

Muthén 2007), Mx (Neale 2000), and R (R Core Team

2013). Given the discrete nature of the items, we fitted

discrete factor models (i.e., we assumed the discrete indi-

cator variables to be a realization of a continuous normal4

latent process, and modeled polychoric correlations; Flora

and Curran 2004; Wirth and Edwards 2007) using the

robust weighted least squares estimator (WLSMV; Muthén

and Muthén 1998–2007). The polychoric correlations

between the 31 items and between the 62 (31 per twin)

items served as input in the phenotypic and the genetic

factor analyses, respectively. In evaluating model fit, the

comparative fit index (CFI), the Tucker Lewis index (TLI),

and the root mean square error of approximation (RMSEA)

were used. As both the sample size and the models

employed were large, the Chi square statistic was of lim-

ited use as an overall fit measure (Jöreskog 1993), and was

used only to test local hypotheses concerning comparisons

of nested models, as these comparisons are associated with

a smaller approximation error.

Table 1 Standardized factor loadings obtained in the phenotypic EFA and CFA

Item EFA (N = 8756) CFA (N = 8755)

3-Factor solution 4-Factor solution 3-Factor model 4-Factor model

AD W SC D A W SC AD W SC D A W SC

Lonely 0.734 -0.068 0.001 0.670 -0.054 0.090 0.016 0.680 0.706

Cries a lot 0.438 0.039 0.103 0.390 0.008 0.124 0.111 0.555 0.578

Fears doing bad 0.393 0.165 0.049 0.309 0.471 -0.050 0.005 0.580 0.619

Must be perfect 0.314 0.174 0.062 0.245 0.453 -0.042 0.019 0.499 0.530

Feels unloved 0.988 -0.268 -0.055 0.885 0.008 -0.103 -0.061 0.708 0.736

Others out to get

him

0.852 -0.141 0.001 0.767 -0.006 0.013 0.004 0.695 0.725

Feels worthless 0.819 0.012 -0.028 0.720 0.249 0.006 -0.052 0.791 0.821

Nervous, tense 0.277 0.303 0.142 0.215 0.363 0.148 0.122 0.634 0.678

Fearful, anxious 0.197 0.426 0.121 0.139 0.388 0.250 0.105 0.650 0.695

Feels too guilty 0.499 0.183 0.046 0.411 0.470 -0.019 0.004 0.710 0.759

Self-conscious 0.079 0.622 0.032 -0.002 0.569 0.347 -0.002 0.620 0.664

Suspicious 0.628 0.032 0.028 0.556 0.030 0.139 0.037 0.640 0.664

Sad 0.729 0.027 0.010 0.653 0.056 0.126 0.017 0.768 0.796

Worries 0.484 0.191 0.100 0.406 0.366 0.061 0.072 0.740 0.767

Rather be alone 0.141 0.408 -0.039 0.139 -0.048 0.474 0.006 0.542 0.541

Would not talk -0.001 0.675 -0.031 0.004 0.026 0.678 0.027 0.661 0.662

Secretive -0.019 0.812 -0.083 -0.033 0.090 0.806 -0.029 0.743 0.743

Shy, timid -0.191 0.795 -0.017 -0.228 0.424 0.562 -0.019 0.569 0.572

Stares blankly 0.174 0.457 0.050 0.180 -0.096 0.546 0.112 0.668 0.667

Sulks 0.403 0.065 0.106 0.356 0.000 0.154 0.117 0.547 0.546

Lacks energy 0.134 0.339 0.050 0.150 -0.134 0.441 0.099 0.567 0.566

Withdrawn 0.141 0.718 -0.145 0.138 0.026 0.740 -0.082 0.778 0.778

Feels dizzy 0.205 -0.011 0.478 0.193 -0.001 0.031 0.476 0.620 0.620

Overtired 0.216 0.164 0.318 0.197 0.035 0.192 0.329 0.752 0.753

Aches, pains 0.026 0.018 0.726 0.023 0.038 0.015 0.720 0.778 0.778

Headaches -0.050 0.024 0.709 -0.042 0.017 0.022 0.703 0.639 0.638

Nausea 0.022 -0.089 0.883 0.032 -0.046 -0.043 0.876 0.741 0.741

Eye problems -0.025 0.077 0.334 -0.015 0.001 0.078 0.337 0.380 0.380

Skin problems -0.017 0.060 0.280 -0.023 0.072 0.023 0.274 0.302 0.302

Stomachaches 0.004 0.020 0.732 -0.007 0.120 -0.036 0.719 0.722 0.722

Vomiting -0.049 -0.017 0.724 -0.040 -0.009 -0.004 0.718 0.609 0.609

Factor

determinacies

0.963 0.963 0.963 0.953 0.873 0.935 0.946

4 Tests of departures from underlying bivariate normality indicated

that the normality assumption was tenable for all items.
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Results

Phenotypic analyses (EFA and CFA)

The results of phenotypic dimensionality assessment are

presented in Fig. 3 and Table 1. EFA produced two well-

fitting solutions: a 3- and a 4-factor solution (Fig. 3).

Interestingly, in both solutions, the items of the Anxious/

Depressed scale appear to cluster into those pertaining to

anxiety (‘Fears doing something bad’, ‘Must be perfect’,

‘Nervous, tense’, ‘Fearful, anxious’, ‘Feels too guilty’,

‘Self-conscious’) and those pertaining to depression

(‘Lonely’, ‘Cries a lot’, ‘Feels unloved’, ‘Others out to get

him’, ‘Feels worthless’, ‘Suspicious’, ‘Sad’, ‘Worries’). In

contrast to the Anxious/Depressed scale, the Somatic

Complaints scale displayed a clearly unidimensional

structure. The same is true of the Withdrawn scale, with the

exception of the item ‘Sulks’, which consistently clustered

with the items pertaining to depression, and the item ‘Shy,

timid’, which in the 4-factor solution cross-loaded highly

on the ‘Anxious’ factor.

The 4-factor solution, in which anxiety and depression

form separate clusters, and the standard CBCL cross-

informant model containing the Anxious/Depressed,

Withdrawn, and Somatic Complaints scales, were subse-

quently tested in CFA. The models and the fit measures are

shown in Fig. 3. As can be seen from the Figure, the two

models differed only minimally in terms of model fit:

CFI = 0.877 versus 0.891, TLI = 0.944 versus 0.950,

RMSEA = 0.037 versus 0.035 for the 3- versus the

4-factor models, respectively. In the light of the well-

established difficulty in distinguishing phenotypically the

dimensions of anxiety and depression, this finding is per-

haps not entirely unexpected.

Genetic covariance structure modeling

Based on the results of the phenotypic dimensionality

assessment, a 3- and a 4-factor common pathway model

were formulated. These are depicted in the top panel of

Fig. 4. In both models, the common factors obtained in the

phenotypic analyses (Anxious/Depressed, Withdrawn, and

Somatic Complaints for the 3-factor model, and Anxious,

Depressed, Withdrawn, and Somatic Complaints for the

4-factor model) were retained, and the contributions of the

A, C, and E factors to their variation were assessed. As can

be seen in Fig. 4, the fit of the two common pathway

models was virtually indistinguishable: CFI = 0.947 ver-

sus 0.952, TLI = 0.962 versus 0.966, RMSEA = 0.028

versus 0.026 for the 3- versus the 4-factor model,

respectively.

Subsequently, based on the two common pathway

models, the two independent pathway models depicted in

the lower panel of Fig. 4 were formulated. In these models,

the A, C, and E factors employed in the common pathway

analyses were retained, but the psychometric factors were

disposed of, i.e., the items were allowed to load directly on

the A, C, and E factors. Again, the fit of the two inde-

pendent pathway models was virtually indistinguishable:

CFI = 0.977 versus 0.976, TLI = 0.982 versus 0.982,

RMSEA = 0.019 versus 0.010 for the 3- versus the

4-factor-based model, respectively.

Addressing the first focal question of whether an inde-

pendent pathway model fits the data appreciably better than

a common pathway model, we compared the general fit of

the models, and carried out likelihood ratio tests of the

proportionality constraints mentioned above.5 These tests

revealed both the 3- and the 4-factor-based independent

pathway models to fit the data better than their common

pathway versions (v2 = 1554, df = 24, p \ 0.0001 for the

3-factor-based models, v2 = 1084, df = 21, p \ 0.0001

for the 4-factor-based models). This implies that the

common pathway models, in which phenotypic latent

variables mediate all of the A, C and E influences, fail to

convey entirely accurately the genetic and environmental

effects on the items.

In the second set of analyses, EFA was employed to

evaluate separately the dimensionality and the factor

structure of the genetic and environmental influences that

underlie the observed symptom covariation. Specifically,

we evaluated the dimensionalities of the RA, RC and RE

covariance matrices given in Eq. 1. The results are shown

in Fig. 5. An inspection of the scree plots in the Figure

clearly indicates a 1-dimensional C structure. The struc-

tures of A and E matrices remain, however, somewhat less

clear. To explore the A and E structures further, the present

EFA results were used as a basis for specifying a number of

competing independent pathway models with varying di-

mensionalities of the RA, RC and RE covariance matrices.

An overview of these models, including the fit measures

and inter-factor correlations, is given in Supplementary

Table 1. Overall, a comparison of the models suggested a

model with 2A, 1C, and 4E factors as the best-fitting model

with acceptable inter-factor correlations (CFI = 0.978,

TLI = 0.983, RMSEA = 0.018). This model is depicted in

Fig. 6, and parameter estimates are given in Table 2. It

should, however, be noted that the models did not differ

considerably in terms of model fit; therefore the structure in

Fig. 6 need not necessarily be conclusive. What the present

results do strongly suggest, however, is a unidimensional C

5 For WLSMV estimators the standard approach of taking the

difference between Chi square values and the corresponding degrees

of freedom is not appropriate because the chi-square difference is not

chi-square distributed (Muthén and Muthén 1998–2007). We there-

fore performed chi-square difference testing using scaling correction

factors (Satorra and Bentler 2001).
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Fig. 3 Results of the phenotypic EFA and CFA. In EFA solutions only the highest factor loading for each item is depicted (the omitted factor

loadings equal 0.057 on average; the depicted factor loadings equal 0.57 on average)
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Fig. 4 The common (upper

panel) and independent (lower

panel) pathway models fitted to

the data
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structure, and multidimensional (but mutually differing) A

and E structures. These structures may also be discerned in

Fig. 7, which gives a graphical representation of the RA,

RC, and RE covariance matrices (Epskamp et al. 2012).

Finally, the results of variance component estimation are

given in Table 2. Overall, around 50 % of the variance in

the CBCL Internalizing symptoms is explained by the

common A, C, and E factors, the remaining half being due

to residual (symptom-specific) factors. The overall symp-

tom heritability (defined as the heritability due to both the

common and the symptom-specific factors) is 50 % on

average. The mean proportions of the phenotypic variance

explained by the C and E factors are 20 and 30 %,

respectively (last three columns Table 2). These propor-

tions are relatively stable across all symptom clusters, with

symptoms of depression being somewhat less heritable

than the others (41 vs. 51–65 % on average). Interestingly,

the high item heritability is predominantly due to the item-

specific, rather than the common A factors, while the C

component is primarily due to the common C factor, with

the item-specific factors accounting for a negligible portion

of the variance.

Discussion

The present article aimed at answering two principal

questions: one pertaining to the ontological nature of the

syndrome dimensions postulated in the CBCL cross-

informant model, and the other pertaining to the factor

structure of the genetic and environmental influences that

underlie the observed symptom covariation.

The first question relates to a longstanding discussion in

philosophy of science. The latent variable model, arguably

the predominant measurement model in psychology,

invariably invokes a latent variable which is hypothesized

to underlie a set of observed variables (i.e., item responses,

symptoms). The ontological nature of such latent variables
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has long been a subject of debate. On the theoretical side of

the debate, broadly speaking, two principal (and mutually

opposing) accounts of the latent variable are commonly

invoked. In the realist view, the latent variable signifies a

real entity which is assumed to exist independently of

measurement, and is characterized by a causal relationship

with its indicators: for instance, because a child is

depressed, they exhibit symptoms such as excessive crying

and feelings of sadness and worthlessness. The opposing,

constructivist account, posits the latent variable as nothing

more than a statistical construct used to simplify observa-

tions; in this view, this construct need not exist indepen-

dently of measurement (Borsboom et al. 2003).

Empirical contributions to this debate have, to our

knowledge, been scarce, although the existence and causal

relevance of specific latent constructs such as depression

and general intelligence have long been a source of con-

troversy. Genetic factor modeling, as applied in the present

article, may inform the discussion from an empirical per-

spective: by comparing the fit of a common pathway

model, in which the latent phenotypic variables mediate all

genetic and environmental effects on item covariation (the

model therefore incorporating a realist hypothesis con-

cerning the nature of those variables, or at least bring

consistent with a realist perspective), to the fit of an

independent pathway model (which bears no realist com-

mitment regarding the phenotypic variable), one may test

the latent variable hypothesis.

In the present case, neither the common pathway model

featuring the three Internalizing syndrome dimensions of

the CBCL (Anxious/Depressed, Withdrawn, and Somatic

Complaints), nor the common pathway model postulating

anxiety and depression as separate entities, survived con-

frontation with the independent pathway models. This

invites reconsideration of the substantive interpretation of

the dimensions in question, as it follows that these

dimensions are better understood as a composite of

unconstrained genetic and environmental influences than as

well-defined entities that plausibly exist independently of

measurement and statistical procedures (e.g., as natural

kinds, Kendler et al. 2011).

This does not necessarily undermine the practical utility

of the CBCL; we do not doubt its usefulness for diagnostic

purposes, especially given that the broad structure found in

Fig. 6 The 2A 1C 4E independent pathway model. Item residuals are not depicted but are estimated in the model. The mean percentages of item

variance explained by each factor are given. Items are listed below, and their allocation to factors is indicated by the color of the panels
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Table 2 The 2A 1C 4E model: Proportions of item variance

explained by the common A, C, and E factors (first three columns),

by the item-specific A, C, and E factors (next three columns), by all

common factors relevant to the item k2
common ¼ k2

A þ k2
C þ k2

E

� �
,

by all residual factors relevant to the item k2
residual ¼ k2

resA þ k2
resCþ

�

k2
resEÞ , and by all the A, C, and E factors relevant to the item,

respectively Total k2
A ¼ k2

A þ k2
resA; etc:

� �

Item k2
A1 k2

C k2
E2 k2

resA k2
resC k2

resE k2
common k2

residual Total k2
A Total k2

C Total k2
E

Lonely 0.01 0.17 0.36 0.37 0.02 0.08 0.54 0.46 0.37 0.18 0.44

Cries a lot 0.02 0.23 0.06 0.56 0.00 0.13 0.30 0.70 0.58 0.23 0.19

Feels unloved 0.00 0.16 0.45 0.39 0.00 0.00 0.61 0.39 0.39 0.16 0.45

Others out to get him 0.01 0.24 0.34 0.38 0.00 0.04 0.58 0.42 0.39 0.24 0.38

Feels worthless 0.05 0.21 0.44 0.29 0.00 0.01 0.70 0.30 0.34 0.21 0.45

Suspicious 0.04 0.30 0.10 0.37 0.08 0.11 0.44 0.56 0.41 0.38 0.21

Sad 0.03 0.27 0.30 0.36 0.01 0.03 0.60 0.40 0.39 0.28 0.33

Worries 0.11 0.21 0.19 0.31 0.10 0.07 0.51 0.49 0.42 0.32 0.27

k2 0.03 0.22 0.28 0.38 0.03 0.06 0.54 0.46 0.41 0.25 0.34

k2
E1

Fears doing something bad 0.08 0.10 0.21 0.36 0.26 0.00 0.39 0.62 0.44 0.36 0.21

Must be perfect 0.06 0.08 0.18 0.42 0.00 0.26 0.32 0.68 0.48 0.08 0.44

Nervous, tense 0.12 0.19 0.11 0.40 0.00 0.18 0.42 0.58 0.52 0.19 0.29

Fearful, anxious 0.18 0.16 0.12 0.36 0.00 0.18 0.46 0.54 0.53 0.16 0.30

Feels too guilty 0.08 0.22 0.30 0.35 0.06 0.00 0.59 0.41 0.43 0.28 0.29

Self-conscious 0.42 0.08 0.07 0.25 0.00 0.17 0.58 0.42 0.67 0.09 0.24

k2 0.16 0.14 0.17 0.36 0.05 0.13 0.46 0.54 0.51 0.19 0.30

k2
E3

Rather be alone 0.04 0.09 0.22 0.37 0.00 0.28 0.35 0.65 0.41 0.09 0.50

Would not talk 0.14 0.15 0.15 0.40 0.16 0.00 0.44 0.56 0.54 0.31 0.15

Secretive 0.21 0.11 0.32 0.31 0.00 0.05 0.64 0.36 0.52 0.11 0.37

Shy, timid 0.43 0.03 0.04 0.33 0.00 0.17 0.50 0.50 0.77 0.03 0.20

Stares blankly 0.04 0.21 0.23 0.48 0.00 0.05 0.47 0.53 0.51 0.21 0.28

Sulks 0.03 0.25 0.02 0.49 0.00 0.21 0.30 0.70 0.52 0.25 0.23

Lacks energy 0.02 0.17 0.12 0.66 0.00 0.03 0.31 0.69 0.68 0.17 0.15

Withdrawn 0.14 0.09 0.43 0.37 0.00 0.00 0.65 0.37 0.51 0.09 0.43

k2 0.13 0.14 0.19 0.43 0.02 0.10 0.46 0.54 0.56 0.16 0.29

k2
A2 k2

E4

Feels dizzy 0.07 0.22 0.08 0.25 0.04 0.34 0.37 0.63 0.32 0.26 0.43

Overtired 0.03 0.37 0.08 0.41 0.00 0.11 0.47 0.53 0.44 0.37 0.19

Aches, pains 0.22 0.15 0.24 0.30 0.09 0.00 0.61 0.39 0.52 0.23 0.24

Headaches 0.26 0.09 0.11 0.23 0.00 0.30 0.47 0.53 0.49 0.09 0.42

Nausea 0.46 0.11 0.10 0.09 0.13 0.10 0.68 0.32 0.55 0.25 0.20

Eye problems 0.03 0.04 0.10 0.70 0.00 0.14 0.17 0.83 0.73 0.04 0.23

Skin problems 0.06 0.05 0.00 0.64 0.00 0.24 0.11 0.89 0.70 0.05 0.24

Stomachaches 0.30 0.14 0.13 0.25 0.00 0.19 0.56 0.44 0.55 0.14 0.31

Vomiting 0.44 0.10 0.00 0.00 0.33 0.12 0.54 0.46 0.44 0.44 0.12

k2 0.21 0.14 0.09 0.32 0.07 0.17 0.44 0.56 0.53 0.21 0.27

Overall k2 0.13 0.16 0.18 0.37 0.04 0.12 0.47 0.53 0.50 0.20 0.30

The k2 rows give the mean proportion of item variance explained per item cluster (Depressed, Anxious, Withdrawn, and Somatic Complaints,

respectively), and the Overall k2 row gives the mean proportion of item variance explained across all items
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our analyses is in line with the current item allocation of

the CBCL. Furthermore, the reasons for rejecting the

common pathway structure may be local (due only to a

subset of observed variables) and therefore the violation

may be accommodated by addition of parameters or by

removal of offending variables. What the present results do

suggest, however, is that the three syndrome dimensions, as

currently defined, do not appear to represent homogeneous

entities in the Borsboom et al. (2003) sense, but are rather

an amalgam of several different genetic and environmental

structures. Clearly, the ascription of causal forces to such

amalgams is problematic.

The second research question pertains to the structure of

the genetic and environmental influences that give rise to the

observed symptom covariation. Interestingly, the results

suggest mutually differing additive genetic, common envi-

ronmental and unique environmental structures. The

2-dimensional additive genetic structure distinctly affects

symptoms of anxiety, depression, and withdrawal, on the one

hand, and somatic complaints, on the other. The 4-dimen-

sional unique environmental structure affects each of these

symptom clusters distinctly, while the common environment

acts uniformly across the entire range of internalizing

symptoms. This partly replicates the findings of previous

Fig. 7 Graphical representation of the correlation structures of the

RA, RC, and RE matrices. Nodes (i.e., circles) represent symptoms.

The thickness of the edges (i.e., of the lines connecting the nodes)

represents the strength of correlations between the symptoms. For

instance, the thickness of the line connecting item 1 (‘‘Lonely’’) to

item 13 (‘‘Sad’’) in the ‘‘A’’ graph represents the magnitude of the

additive genetic correlation between these two symptoms
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multivariate investigations into the genetic and environ-

mental sources of symptom covariation, which demonstrate

a common genetic diathesis for anxiety and depression, with

the distinction between these disorders being driven by the

individual-specific environment (e.g., Kendler et al. 1987;

Middeldorp et al. 2005; Kendler et al. 1992).

The present results put the aforementioned difficulties in

delineating between the diagnostic categories of anxiety

and depression into a clearer perspective. Anxiety and

depression appear to share a common genetic basis: a

single set of genes affects the individual differences in

predisposition to developing general anxiety-, depression-

and withdrawal-related symptomatology. Previous research

and theoretical work have amply demonstrated a possibility

of a general factor accounting for shared symptoms of

anxiety, depression, and possibly more broad neurotic

symptomatology (with more specific factors accounting for

the specific subtypes of symptoms) (e.g., Clark and Watson

1991). This general factor can conceivably be identified

with the shared genetic predisposition found in the present

analyses. While this shared predisposition constitutes a

broad genetic vulnerability which may predispose children

to developing general internalizing symptomatology, the

specific form of symptomatology (anxiety, depression or

withdrawal) will depend on the children’s unique envi-

ronmental influences. The common family environment,6

interestingly, exerts an overall protective or predisposing

effect on the entire set of internalizing symptoms, either

increasing or lowering the chance of developing internal-

izing psychopathology across the board.

If one takes into account not only the structure, but also

the relative magnitude of the A, C, and E influences found

in the present analyses, an illuminating picture emerges.

Consider the set of items pertaining to anxious, depressed,

and withdrawn behaviors. Under the model depicted in

Fig. 6, this item set is influenced by a unidimensional A

and a unidimensional C structure. These unidimensional

latent structures, which act to make the symptoms act alike

(i.e., covary), collectively explain around a quarter of their

total phenotypic variance (10.2 and 17 % of the relevant

item variance is explained by the A1 and by the C factor,

respectively). The factors which facilitate the clustering of

these symptoms into three separate groups (in particular,

the E1, E2, and E3 factors) explain around 22 % of their

phenotypic variance. The remainder (*50 %) of the phe-

notypic variance is explained by item-specific factors.

Given the balance in the magnitude of influence that these

mutually differing structures exert on the item set, the

inability of the phenotypic modeling to distinguish between

several different models is not surprising. In fact, one could

wonder how the phenotypic analyses could converge on a

single model, if several different models, each equally

relevant to the phenotypic structure, are correct.

Finally, it should be mentioned that problems regarding

the validity and reliability of children’s self-reports and the

consequent use of raters (parents, teachers) in the assess-

ment of children’s behavior may complicate assessment

and subsequent interpretation. Rater bias (i.e., systematic

effects on ratings originating from rater characteristics) is a

widely recognized problem in research involving infor-

mants. In the context of twin and family studies, unmod-

eled rater bias is known to result in an overestimation of the

shared environmental variance (Neale and Cardon 1992).

Previous studies on internalizing symptoms have demon-

strated a modest to nonexistent role of shared environment

in the development of anxiety (Rapee et al. 2009; Gregory

and Eley 2007; Hettema et al. 2001; Legrand et al. 1999),

and a modest to moderate role of shared environment in the

development of depression (Rice et al. 2002; Boomsma

et al. 2005). Although this is consistent with the present

findings, the extent to which our estimate of the shared

environmental component is confounded by rater bias

remains to be examined.

In summary, the present article utilized genetic item

analyses to examine the ontology and the genetic and

environmental etiology of the latent constructs ‘Anxious/

Depressed’, ‘Withdrawn’, and ‘Somatic Complaints’, as

defined in the CBCL/6–18 cross-informant model. The

results (1) invite reconsideration of the substantive inter-

pretation of these latent constructs, and (2) consistently

with results of previous studies, demonstrate that additive

genetics, common environment, and individual-unique

environment each exert a distinct and mutually differing

pattern of influence on internalizing symptoms. These

results provide an informative context to the discussion on

the phenotypic delineation between different syndromes or

disorders, and contribute to our understanding of both the

nature of the Internalizing syndrome dimensions and the

etiology of internalizing behavior.
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