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BACKGROUND:Overweight and obesity impose a considerable individual and social burden, and the urban environmentsmight encompass factors that con-
tribute to obesity. Nevertheless, there is a scarcity of research that takes into account the simultaneous interaction of multiple environmental factors.

OBJECTIVES: Our objective was to perform an exposome-wide association study of body mass index (BMI) in a multicohort setting of 15 studies.
METHODS: Studies were affiliated with the Dutch Geoscience and Health Cohort Consortium (GECCO), had different population sizes (688–141,825),
and covered the entire Netherlands. Ten studies contained general population samples, others focused on specific populations including people with
diabetes or impaired hearing. BMI was calculated from self-reported or measured height and weight. Associations with 69 residential neighborhood
environmental factors (air pollution, noise, temperature, neighborhood socioeconomic and demographic factors, food environment, drivability, and
walkability) were explored. Random forest (RF) regression addressed potential nonlinear and nonadditive associations. In the absence of formal meth-
ods for multimodel inference for RF, a rank aggregation-based meta-analytic strategy was used to summarize the results across the studies.
RESULTS: Six exposures were associated with BMI: five indicating neighborhood economic or social environments (average home values, percentage
of high-income residents, average income, livability score, share of single residents) and one indicating the physical activity environment (walkability
in 5-km buffer area). Living in high-income neighborhoods and neighborhoods with higher livability scores was associated with lower BMI.
Nonlinear associations were observed with neighborhood home values in all studies. Lower neighborhood home values were associated with higher
BMI scores but only for values up to e300,000. The directions of associations were less consistent for walkability and share of single residents.
DISCUSSION: Rank aggregation made it possible to flexibly combine the results from various studies, although between-study heterogeneity could not
be estimated quantitatively based on RF models. Neighborhood social, economic, and physical environments had the strongest associations with BMI.
https://doi.org/10.1289/EHP13393
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Introduction
Overweight and obesity impose a considerable individual and
social burden, with global rates that have nearly tripled since
1975.1 This striking rise could be attributed to changes in the living
environment and behavior occurring due to industrial and techno-
logical advances. The combination of these environmental factors
is also known as the exposome.2

The current evidence base regarding exposome risk factors for
overweight and obesity points toward a range of characteristics of
the built environment, including urban sprawl and measures of
land use.3,4 Many studies have investigated the associations of the
physical activity environment (neighborhood walkability, access
to public transport, sport facilities, etc.) and food environment with
obesity, but for both of these domains, the results are inconsis-
tent.4,5 Further inconsistent results were found for green space, air
pollution, and road traffic noise.6–10

Several factors could have contributed to the heterogeneity in
findings: differences in the operationalization of environmental
factors, violation of assumptions that relations are linear, or small
sample sizes. Moreover, most studies focused on single exposures
in isolation, although in real life exposures exist simultaneously
and are often correlated due to shared causal factors (e.g., urban
planning). To address this issue, some studies used composite
index scores. A drawback of this method, however, is that a large
volume of data is condensed into a single score, leading to a loss of
information, difficulties in interpretation, and measurement error,
as the weighting of individual components may not reflect the true
importance of factors.

Given the potentially complex interplay between risk factors, it
is important to study exposures collectively and to incorporate non-
linear and nonadditive associations in statistical models. More
advanced statistical methods, including random forest (RF), are
advocated for use in the context of multiple exposures.11,12 A
recent study reported that RF had a good balance between the
capacity of addressing complex datasets, the computational bur-
den, and the availability of user-friendly software packages for
model training and interpretation.13

To accurately assess the associations with environmental risk
factors, which tend to have relatively small effect sizes, it is

necessary to gather data from large populations. This can be
achieved by combining multiple cohorts covering extensive geo-
graphical areas. However, it is challenging to combine results
from RF or other machine-learning models from different studies
into a single, pooled estimate. The reason for this is that the com-
plexity introduced by nonlinear and nonadditive effects in statisti-
cal models poses a challenge for estimating precise effect sizes
that are required for a meta-analysis.

To quantitatively combine results, meta-analytic methods are
necessary, but in their absence, rank-aggregation (RA) methods
could serve as a helpful intermediate step for identifying the most
important variables across studies and for exploring whether differ-
ent models consider the same variables as important. Rank aggrega-
tion has been applied in genetic studies, which used weighted rank
aggregation to determine the most important genes across different
studies.14,15 We apply the RA approach here in the context of an
exposome-wide association study comprising 15 Dutch cohorts to
identify environmental determinants of bodymass index (BMI).

Methods

Study Design and Population
We conducted cross-sectional analyses in 15 cohort studies affili-
ated with the Dutch Geoscience and Health Cohort Consortium
(GECCO).16 The studies included cover different target popula-
tions across the Netherlands. The studies varied by population size,
ranging between 688 and 141,825 participants. Five studies were
nationwide, four included participants from more sparsely popu-
lated northern regions, three were studies from southern regions,
and threewere from the center of the country (Table 1). Ten studies
included general population samples, and others were conducted in
specific populations (hearing impairment, diabetes, women, fetal
exposure to famine). Details of the 15 studies can be found in the
Supplemental Material (“Description of the included cohort stud-
ies and analytical samples”).

The analytical sample included data of adult participants (≥18
years) from each cohort, having available data on geocoded
residential addresses (matched with geocoded environmental

Table 1. Description of 15 included cohort studies affiliated with the Dutch Geoscience and Health Cohort Consortium (GECCO).

Cohort study Participants (n) Year of assessment Population Geographic area covered

Lifelines17 141,825 2006 General population Northern region
LIFEWORK18 76,567 2011–2012 General populationa Nationwide
Donor InSight (DIS)19 30,866 2007 Dutch blood donors Nationwide
Healthy Life in an Urban Setting

(HELIUS)20
19,054 2011 General population with oversampling

of six specific ethnic groups
Amsterdam

The Maastricht Study (TMS)21 7,583 2010–2020 Adults 40–75 years oldb Maastricht and Heuvelland
Netherlands Mental Health Survey and

Incidence Study (NEMESIS)22
6,526 2007–2009 General population Nationwide

Netherlands Twin Registry (NTR)23 5,933 2004–2008 Adult twins or their family members Nationwide
Doetinchem Cohort Study (DCS)24 3,983 2008–2012 General population Doetinchem
The Hoorn study (Hoorn)25 2,798 2006 General population West-Friesland
Dutch Cohort Study On Socioeconomic

Health Inequalities (GLOBE)26
2,422 2014 General population Eindhoven and surrounding

municipalities
Tracking Adolescents’ Individual Lives

Survey (TRAILS)27
1,832 2012–2013 Adults born in 1989–1990 Northern region

Longitudinal Aging Study Amsterdam
(LASA)28

1,411 2008–2009 Adults 55–85 years old North, south, and secular
parts

Maastricht Aging Study (MAAS)29 1,106 2005 Adults >50 years old Province of Limburg
Dutch famine birth cohort (DFBC)30 796 2002 Adults with prenatal exposure to Dutch

famine
Born in Amsterdam

National Longitudinal Study on Hearing
(NL-SH)31,32

688 2016–2017 Adults 28–80 years with or without
hearing impairmentc

Nationwide

Note: Additional information can be found in the Supplemental Material “Description of the included cohort studies and analytical samples.”
aCombination of Nightingale, EPIC-NL, and AMIGO studies and consists of a large majority of women.
bWith an oversampling of participants with type 2 diabetes.
cWith an oversampling of adults with hearing impairment.
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exposures) and outcome, i.e., BMI. All participants gave informed
consent.

Study Outcome and Covariates
Self-reported (seven studies) or measured (eight studies) height
and weight were used to calculate the outcome, BMI (kg=m2), as
a continuous variable. Expert knowledge was used to select the
relevant confounders. Several individual sociodemographic char-
acteristics were considered as confounders in this study: age, sex
(male/female), ethnicity or country of birth (the Netherlands/
other), living situation (with/without a partner), highest degree of
education (high/medium or low), employment status (employed/
unemployed/student/retired), and smoking (yes/no). For studies
where an oversampling of certain groups occurred, the models
were further adjusted for relevant group-membership [partici-
pants with hearing impairment for the Netherlands Longitudinal
Study on Hearing (NL-SH) and those with type 2 diabetes for
The Maastricht Study (TMS)]. Ethnicity was not available in the
Dutch famine birth cohort (DFBC) and Maastricht Aging Study
(MAAS), so models for these studies did not adjust for ethnicity.
To ensure the comparability of our models across the studies, we
grouped the confounders in similar categories whenever this was
possible; however, the confounders were not standardized across
the cohorts. Table S1 and S2 give a detailed description of the
confounder categories and whether the outcome was measured or
self-reported in each cohort.

Description of the Exposome
Based on the data availability and associations reported in previous
studies, we linked 69 exposome factors to the geocoded residential
addresses of each participant. The exposure groups included air pol-
lutants (14 factors); traffic noise due to roads, aircraft, or railway
(one factor); mean summer temperature (one factor), urbanization
degree (one factor); neighborhood built environment (27 factors)
including drivability, walkability, green space, food environment,
accessibility of public transport and services; neighborhood socio-
demographic (15 factors); and economic factors (10 factors). A brief
description of the linked data is provided in Table 2.

All environmental data were assessed for three different time
points (2000, 2006, 2011) depending on availability and matched
with individual-level data as closely as possible to data-collection
period of each study. Table S3 provides a detailed description of
years of data assessment by study and by exposure.

All environmental data were operationalized and supplied by
GECCO. A more comprehensive description of these data is
available via GECCO’s website.33

Statistical Analysis
General considerations. Statistical analyses were conducted sep-
arately for each cohort study because there were obstacles for fit-
ting a single model on merged data, as some cohort data could
not be shared and had to be analyzed locally. This was evidently
a disadvantage. Nevertheless, an advantage of this approach is
that it avoided the imposition of a single model on rather hetero-
geneous datasets.

To address the issue of possible nonlinearity and varying inter-
actions among studies, the use of RF models was deemed neces-
sary. Consequently, a meta-analytic strategy for synthesizing the
results from each individual studywas developed.

Missing data. For each study, data quality control was per-
formed prior to imputation. Generally, the missing data percen-
tages were low across the studies and ranged between 0.4 and
5.3% (Table S4). We imputed missing data using the RF algo-
rithm from the Multivariate Imputation by Chained Equations

(MICE) package, in R. A single imputation was used. For contin-
uous variables, records with missing values were imputed by ran-
dom draws from independent normal distributions centered on
conditional means predicted using RF. For binary or unordered
categorical variables, individual regression trees were fitted to a
bootstrap sample of the data, and each missing value was imputed
as the prediction of a randomly chosen tree.40

Study-specific analysis using random Forest. For each study,
exposome-wide associations of BMI were explored using the
randomForestSRC package in R. In all models, BMI was the de-
pendent variable, and all exposures and confounders were consid-
ered simultaneously, as independent variables. The optimal values
of hyperparameters “mtry” and “node size” were decided sepa-
rately for each study using model-based optimization through the
tuneRanger package. To build the trees, we used subsampling
without replacement and adhered to the default sample size, which
equated to 63.2% of the original dataset size in each study. In all
studies, 1,000 trees were used.

We used permutation-based variable importance scores
(VIMP) to rank each predictor by its importance. Higher positive
values of VIMP scores indicated greater importance. We
assessed the stability of rankings by a novel subsampling-based
RF approach, implemented in the randomForestSRC package.41

The idea behind this method is that it takes a small subratio of the
data, in a way that subsamples are independent and estimates the
variance of VIMP scores across the number of subsamples. We
used a constant subratio (n3=4) for subsampling and 100 inde-
pendent subsamples in all studies. The ranking stability of each
exposure was assessed by calculating interquartile ranges of the
attributed ranks across the subsamples.

To further enhance the interpretation of RF models and gain
insights into the nature of the relationship between a specific expo-
sure andBMI (whether it is positive, negative, or has nonlinear asso-
ciations), we used visualizations of fast approximate Shapley
values, calculated using the fastshap package in R. Shapley values
are a concept from coalitional game theory, which recently gained
popularity for the interpretation of machine learning models,
because they indicate the average contribution of a feature value to
the prediction when different combinations of features are used to
build the model.42 Shapley values differ across samples, acknowl-
edging the nonlinear and interactive effects. We also assessed the
strongest pairwise interactions in each study using the function find.
interactions() from the randomForestSRC package. Calculating the
interactions was very costly computationally and especially prob-
lematic for the two largest studies (LIFEWORK, Lifelines). Hence,
pairwise interactions in these studieswere assessed usingmodelsfit-
ted to a random sample of 10%of the data only.

Description of meta-analytical approach.We employed a RA
approach to assess the most important exposures across the 15
study-specific lists containing ordered rankings of VIMPs for each
of the 69 exposures that were common to all studies.14,43 Cross-
entropy Monte Carlo iterative algorithm was used to find the
“super”-list of exposures, based on Spearman’s footrule distance
function.43–45 The latter is a measure of distance between the
ranked lists, summing up the absolute value of the element-
wise rank-differences between lists. For each element, these values
were averaged across the pairwise comparisons of ordered lists.45

The RA was conducted using the RankAggreg() function from the
R package of the same name.

We used the ranking stability (assessed by the interquartile
ranges of ranks across the RF subsamples) to weight the expo-
sure ranks (Figure S3). Plus, for each study, we used two im-
portance weighting schemes. First, simply the square root
values of the study size. Second, discrete importance weights
were assigned: studies with n<1,000 were given a discrete
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Table 2. Description of exposure data and the sources for each variable from the Dutch Geoscience andHealth Cohort Consortium (GECCO).More comprehensive
details on themeta-data are available.33

Exposome factor Description Map resolution

Average summer temperature (�C) Monthly average temperature dataa (June–September) were inter-
polated based on 10 automatic monitoring stations.34,35

25 × 25 m

Traffic noise [dB(A)] Daily average levels of noise (combining road, rail, and air) were
modeled and expressed as Lden (Level day-evening-night) in
decibels [dB(A)]. This measure considers a higher penalty for
noise exposure during the evening (5 dB) and night (10 dB).b

25× 25 m

Urbanization degree Urbanization level was based on residential density and had the
following categories: 1 = very highly urban ≥2,500 addresses
per km2; 2= highly urban 1,500–2,500 addresses;
3 =moderately urban 1,000–1,500 addresses; 4 = less urban
500–1,000 addresses; 5 = nonurban <500 addresses.36

Administrative
neighborhood

Neighborhood drivabilitya

Accessibility of jobs (two variables) Average road travel time (in minutes) to access 10,000 and
100,000 jobs.

100× 100 m

Distance to train station (km) The closest train station. 100× 100 m
Distance to motorway exit (km) The closest motorway exit. 100× 100 m
Driving destination accessibility index The index quantifies the ease of reaching different types of desti-

nations (commercial, recreational, and services) by car. It was
computed based on a weighting system for areas that are more
suitable for active transportation or walking. Index values were
normalized to a scale of 0 (low drivability) to 100 (high
drivability).

100× 100 m

Paid parking Percentage of paid parking places in 1-km buffer area. 100× 100 m
Parking pressure Ratio of registered cars and number of parking places. 100× 100 m
Air pollutants Annual average concentrations of below-listed air pollutants were

modeled by land-use-regression models (data source
ESCAPE)37,38 and a combination of dispersion model calcula-
tions and measurements (data source RIVM).33

—

Benzene (C6H6) (lg=m3) Dispersion model and measurements. 1 × 1 km
Carbon monoxide (CO) (lg=m3) Dispersion model and measurements.
Ammonia (NH3) (lg=m3) Dispersion model and measurements.
Ozone (O3) (lg=m3) Dispersion model and measurements.
Soot (EC) Dispersion model and measurements.
Sulfur dioxide (SO2) (lg=m3) Dispersion model and measurements.
NO2 (lg=m3) Land-use-regression model. Point density
NOx (lg=m3) Land-use-regression model.
PM10 (lg=m3) Land-use-regression model.
PM2:5 (lg=m3) Land-use-regression model.
PM2:5 absorbance (10-5 m-1) Land-use-regression model.
PM coarse (lg=m3) Land-use-regression model.
Oxidative potential of PM2:5 (two variables) Oxidative potential was estimated by dithiothreitol or electron

spin resonance methods in Land-use regression model.37
Neighborhood demographic characteristics36
Neighborhood students Share of students in neighborhood (%). Administrative

neighborhood
Neighborhood employment status Share of employed residents in neighborhood (%).
Neighborhood age groups (five variables) Shares of residents 0–14, 15–24, 25–44, 45–65, and 65+ years of

age (%).
Neighborhood marital status (four variables) Shares of single, married, divorced, widowed residents in neigh-

borhood (%).
Neighborhood household sizes (two variables) Shares of one-person households, households with children (%).
Neighborhood immigration status (two variables) Shares of immigrants from high-, low-, and middle-income coun-

tries (%).36
Neighborhood economic characteristics36
Accessibility of housing People living in private households divided by the number of pri-

vate households.
Administrative

neighborhood
Neighborhood home values Average home values (×1,000 euros). Administrative

neighborhood
Neighborhood income (seven variables) Number of income recipients in neighborhood, mean neighbor-

hood income (×1000 euros), percentages of residents with high
(above 80th percentile) or low (below 40th percentile) average
income, the average ownership of passenger cars or motor-
cycles per household, socioeconomic status scores which took
into account education, income, and employment status.36

Neighborhoods were defined by four-digit postal code areas.

Administrative
neighborhood

Livability score Neighborhoods were categorized into livability classes ranging
from 1 (very insufficient) to 9 (excellent). The score was com-
puted based on factors such as population composition, social
cohesion, public space, safety, resources, and housing.33

100× 100 m
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importance of one, studies with 1,000< n<10,000 an impor-
tance of two, and the largest studies with n>10,000 were allo-
cated an importance of three.

We chose the top 10 exposures as the cut-off point for our RA
method. The rationale behind the use of this cut-off is that not all var-
iables within a model have strong predictive capabilities, and we
aimed to select only the most important predictors. Consequently,
beyond a certain threshold, these variables tend to lose their signifi-
cance in prediction and become noisy. Determining an entirely
objective initial cut-off point is challenging, particularly in the con-
text of multiple studies. Given that the number of influential predic-
tors in our RF models were generally few, we opted for a cut-off of
ten to select the top important predictors across the studies.
Additionally, we rigorously tested various scenarios of RAwith dif-
ferent cut-off values (top 10, top 15, top 20, and top 30). To test if a
variable was ranked among the top 10 exposures more often than
expected by chance, we used one-sided binomial tests with
Bonferroni-corrected p-values for all exposures. Thus, the null-
hypothesized probability of success was set to 10/69 (for 69 expo-
sures), and the alternative hypothesis was set to greater than the
null-hypothesized success.

Rank aggregation enabled the flexible combination of ordered
lists regardless of the levels of heterogeneity. However, a down-
side of this method is that it did not make it possible to estimate
the heterogeneity. Instead, we visually assessed the ranking con-
sistency of the most important exposures using a heatmap.

Sensitivity Analyses
Several sensitivity analyses were conducted to test the robustness of
our findings: a) We assessed the results using only the studies where
BMI was objectively measured; b) We excluded the two studies with
oversampling for particular groups (NL-SH: hearing impairment,
TMS: diabetes) and the two studies in which ethnicity was not

assessed (DBFC,MAAS); c)We performed an additional analysis of
nationwide studies [LIFEWORK, Donor InSight (DIS), Netherlands
Mental Health Survey and Incidence Study (NEMESIS), Netherlands
Twin Registry (NTR), NL-SH], as these have more variability in
environmental exposures than localized studies; d) We included only
the studies with a more homogeneous age range (40–60 years old),
because individuals fromvery different age groupsmayhave different
daily routines and dietary habits, hence the Tracking Adolescents’
Individual Lives Survey (TRAILS), Longitudinal Aging Study
Amsterdam (LASA), and Dutch cohort study on socioeconomic
health inequalities (GLOBE)were excluded.

Results
Overall, we analyzed data of 303,660 participants. The average
BMI ranged between 23 and 27 kg=m2 across the studies.
Participant characteristics are listed in Table 3. Exposome factors
weremostly similarly distributed across studies, but some differen-
ces were related to geographic location and urbanization degree
(Table S5). Correlation patterns (based on Spearman’s correlation
coefficient) between the exposures were also consistent across the
studies. The highest correlations were observed among tempera-
ture, degree of urbanization, drivability, air pollutants, and socioe-
conomic and demographic factors. Generally, the correlations
were weaker in studies from small towns [Hoorn, MAAS,
DoetinchemCohort Study (DCS)] (Figure S1).

The values of explained variance of BMI from multivariable
RFmodels showed that the total explainability of BMI by the expo-
some factors was rather low in some of the studies (Table S6). The
results from individual RF models showed that the most important
exposures were factors of neighborhood social, economic (neigh-
borhood income, livability score), demographic (household types,
share of immigrants), built environment (walkability, distance to
medical facilities), and urban characteristics (air pollution). In

Table 2. (Continued.)

Exposome factor Description Map resolution

Built environment
Neighborhood walkability (three variables) Dutch Walkability Index integrated seven components: popula-

tion density, retail and service destination density, land-use
mix, street connectivity, green space, sidewalk presence, and
public transport density. The components were summed and
normalized to a score 0–100, with higher values indicating
higher walkability. It was assessed for 0:5-km, 1-km, and 5-km
buffer areas.39

25 × 25 m

Green space (three variables) Green space density was obtained by aggregating z-scores of land
use data of trees, shrubs, and low vegetation. It was assessed
for 0, 0:5-km, 1-km, and 5-km buffer areas.33

25 × 25 m

Land use mix (three variables) Land Use Mix Entropy Index was calculated as the sum of
z-scores of different land use classes, such as residential, com-
mercial, social-cultural services, offices and public services,
green space, and recreation. It was assessed for 0:5-km, 1-km,
5-km buffer areas.36

25 × 25 m

Accessibility of neighborhood facilities (three
variables)

Average distance to the nearest medical, recreational, or educa-
tional facilities in neighbourhood.36

Administrative
neighborhood

Accessibility of sport facilities (two variables) Density of sport accommodations was assessed for 0:5-km and
1-km buffer areas. Only sports requiring significant physical
effort were considered.33

25 × 25 m

Accessibility of public transport (three variables) Density of public transport stops was assessed as sum of the
z-scores of the entire public transport network in the
Netherlands (bus, ferry, metro, taxi, tram). It was assessed for
0:5-km, 1-km, 5-km buffer areas.33

25 × 25 m

Neighborhood food environment (three variables) The Food Environment Healthiness Index was employed to assess
food retailer healthfulness. Food retail outlets were assigned
values between −5 (very unhealthy) and +5 (very healthy).
The score was assessed for 0:5-km, 1-km, 5-km buffer areas.33

25 × 25 m

Note: —, no data; PM2:5, fine particulate matter with aerodynamic diameter ≤2:5 lm; PM10, particulate matter with aerodynamic diameter ≤10 lm.
aSee GECCO (https://www.gecco.nl/).
bSee Planbureau voor de Leefomgeving (https://www.pbl.nl/en).
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GLOBE, TRAILS, and LASA, the top exposures also included air
pollutants [carbon monoxide, soot, benzene, and oxidative poten-
tial of fine particulate matter with aerodynamic diameter ≤2:5 lm
(PM2:5)]. It is worth noting that in GLOBE, TRAILS, and NL-SH
the air pollutants and physical aspects of neighborhoods weremore
important than socioeconomic factors (Table S7).

Rank aggregation technique identified the 10 most important
neighborhood exposures across the studies: average home values,
average income, share of high-income residents, livability score,
shares of single inhabitants, one-person households, immigrants
from low- to middle-income countries (LMICs), density of public
transport stops in 5-km buffer area, the accessibility of jobs
(10,000), and walkability (5 km) (Table 4). The results of rank
aggregation were mostly similar across the application of differ-
ent weighting scenarios (ranking stability, study size) (Table S8).

The ranking patterns were broadly consistent for the top vari-
ables (Figure 1). The frequency of being among the top 10 expo-
sures across the studies were as follows: neighborhood home

values (12/15), high-income residents (10/15), livability score
(10/15), neighborhood average income (9/15), walkability (5 km)
(8/15), share of single residents (7/15), accessibility of jobs
(10,000) (6/15), density of public transport stops (5 km) (5/15),
shares of LMIC immigrants (4/15), and one-person households in
neighborhood (4/15).

One-sided binomial tests helped to select the five exposures
ranked below the 10th rank significantly more often across stud-
ies. Four factors reflected neighborhood social and economic
environments (livability score, neighborhood home values, share
of inhabitants with high income, neighborhood average income),
and one factor reflected the physical activity environment walk-
ability index (5 km) (Table 4). The exploration of pairwise inter-
actions revealed that they were quite heterogeneous across the
studies with no clear patterns (Table S9).

Plots based on Shapley values illustrated how changing the
exposures (from maximum to minimum values) affected the BMI
predictions. Generally, the effect sizes were modest (Figure 2;
Figure S2A–S2E). Living in neighborhoods with a higher share of
high-income residents or a higher mean income or a better livability
score (Figure 2; Figure S2A–S2E) was associated with a lower
BMI. Lower neighborhood home values (e150,000–300,000) were
associated with higher BMI scores, but no associationwas found for
higher values. In the majority of studies, higher walkability index
(5-km buffer) was associated with lower BMI, but no associations
were found in NEMESIS, NTR, LASA, and MAAS, perhaps
because of lower variability of the index in these studies. The direc-
tions of associations were inconsistent across the studies for the
share of single residents. Positive associations were observed in
large, nationwide studies, and negative associations or no associa-
tions were observed in studies covering smaller geographical areas.

Sensitivity analyses limited to studies that measured BMI, only
nationwide studies, only studies without additional confounders,
studies that adjusted for ethnicity, and studies with more homoge-
neous average age range (40–60 years old) revealed that the
selected exposuresmostly remained consistent (Table S10).

Discussion
In a large, multicohort study, we found that home values, share
of high-income residents, livability score, average income, and

Table 3. Individual characteristics of participants in 15 cohort studies affiliated with the Dutch Geoscience and Health Cohort Consortium (GECCO).

Cohorta
Participants

(n)
BMI

(mean±SD)
Age

(mean±SD)
Female
[n (%)]

Ethnicity:
Dutch originb

[n (%)]

Civil status:
living with
a partner
[n (%)]

High education
[n (%)]

Employed
[n (%)]

Currently
smoking
[n (%)]

Lifelines 141,825 26:1± 4:3 44:4± 12:8 88,999 (58.5%) 138,088 (97.4%) 113,574 (80.1%) 42,114 (29.7%) 110,535 (77.9%) 30,057 (21.2%)
LIFEWORK 76,567 25:3± 4:3 50:4± 12:8 68,130 (89.0%) 73,548 (96.1%) 62,411 (81.5%) 32,425 (42.3%) 55,804 (72.9%) 9,473 (12.4%)
DIS 30,866 25:4± 6:3 45:6± 12:7 10,777 (56.6%) 29,917 (96.9%) 24,585 (79.7%) 10,861 (35.2%) 24,916 (80.7%) 4,954 (16.1%)
HELIUS 19,054 27:1± 5:3 44:7± 13:2 10,777 (56.6%) 4,166 (21.9%) 9,538 (50.1%) 4,939 (25.9%) 11,462 (60.2%) 8,171 (42.9%)
TMS 7,583 27:0± 4:5 59:8± 8:7 3,772 (49.7%) 7,483 (98.7%)a 6,014 (79.3%) 2,804 (37.0%) 3,111 (41.0%) 1,006 (13.3%)
NEMESIS 6,526 25:2± 4:4 44:4± 12:5 3,600 (55.2%) 5,630 (86.3%) 4,446 (68.1%) 2,305 (35.3%) 4,538 (69.5%) 1,936 (29.7%)
NTR 5,933 24:7± 3:8 43:8± 14:4 3,660 (61.7%) 5,497 (92.7%) 4,553 (76.7%) 2,144 (36.1%) 3,170 (53.4%) 1,218 (20.5%)
DCS 3,983 27:2± 4:3 59:9± 9:6 2,098 (52.7%) 3,783 (95.0%) 3,194 (80.2%) 957 (24.0%) 1,925 (48.3%) 674 (16.9%)
Hoorn 2,798 26:2± 4:0 53:4± 6:7 1,494 (53.4%) 2,591 (92.6%) 2,282 (81.6%) 716 (25.6%) 1,840 (65.8%) 590 (21.1%)
GLOBE 2,422 26:3± 4:9 62:9± 13:1 1,338 (55.2%) 2,264 (93.5%) 1,800 (74.3%) 828 (34.2%) 895 (35.5%) 314 (13.0%)
TRAILS 1,832 23:3± 4:0 21:2± 1:4 939 (51.3%) 1,676 (91.3%) 566 (30.9%) 983 (53.7%) 1,177 (64.2%) 686 (37.4%)
LASA 1,411 27:6± 4:4 74:8± 7:6 776 (55.0%) 1,395 (98.9%) 906 (64.2%) 278 (19.7%) 233 (16.5%) 203 (14.4%)
MAAS 1,106 26:9± 4:4 59:4± 14:3 549 (49.6%) Not available 773 (69.9%) 271 (24.5%) 498 (45.0%) 179 (16.1%)
DFBC 796 28:6± 4:9 58:4± 1:0 434 (54.5%) Not available 601 (75.5%) 135 (17.0%) 418 (52.5%) 195 (24.5%)
NL-SH 688 26:0± 4:5 57:6± 11:6 432 (62.8%) 658 (95.6%) 501 (72.8%) 420 (61.1%) 361 (52.5%) 72 (10.5%)

Note: BMI, body mass index; SD, standard deviation. DCS, Doetinchem Cohort Study; DFBC, Dutch famine birth cohort; DIS, Donor InSight; GLOBE, Dutch cohort study on socioe-
conomic health inequalities; HELIUS, Healthy Life in an Urban Setting; LASA, Longitudinal Aging Study Amsterdam; MAAS, Maastricht Aging Study; NEMESIS, Netherlands
Mental Health Survey and Incidence Study; NL-SH, Netherlands Longitudinal Study on Hearing; NTR, Netherlands Twin Registry; TMS, The Maastricht Study; TRAILS, Tracking
Adolescents’ Individual Lives Survey.
aComplete cohort names are provided in Table 1. For additional information please see the Supplemental Material “Description of the included cohort studies and analytical samples.”
bFor the TMS cohort, the presented percentage of ethnicity refers to European origins rather than native Dutch.

Table 4. Aggregated top important exposures associated with body mass
index and their consistency for being ranked below the 10th rank across the
studies based on random forest (RF) models. Results from the one-sample
binomial tests.

Top exposusresa
Probability
of selectionb p-Valuec

Neighborhood home values 0.80 <0:01*

High-income residents (%) 0.67 <0:01*

Livability score 0.67 <0:01*

Neighborhood average income 0.60 <0:01*

Walkability (5 km) 0.53 0.03*

Single residents (%) 0.47 0.17
Job accessibility (mean travel time to

10,000 jobs)
0.40 0.84

Public transport (5 km) 0.33 1.00
Immigrants from low- or middle-income

countries (%)
0.27 1.00

One-person households (%) 0.27 1.00
aOther exposures are not shown because the corrected p-value= 1.
bProbability of being among the top 10 ranked exposures from the RF model for each
study (n=15).
cCorrected p-values for multiple testing by Bonferroni method (with n=69).
*Asterisks indicate the variables that were ranked below the 10th rank significantly
more often than expected by chance.
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walkability in residential neighborhoods were the most important
aspects of the external exposome associated with adult BMI.
Living in high-income neighborhoods was associated with lower
BMI. The associations were nonlinear for the neighborhood home
values, with an inverse association up to e300,000, after which the
association plateaued. Walkability was inversely related to BMI in
most studies, but results were heterogeneous between studies. A
unique feature of this study was that nonparametric estimates from
different RF models were combined in single results, using a rank-
ing based meta-analytical approach. We supplemented the RF
analyses with Shapley plots to assess the direction and shape of the
association between themost important exposures and BMI.

The same nonlinear shape of association between neighbor-
hood home values and BMI was found in all 15 studies. Living in
high-income neighborhoods may be beneficial for health, by pro-
viding healthier environments, accessibility of services, better
social support, and lower stress levels due to safer surroundings.
A recent meta-analysis of 21 observational studies from high-
income countries found a strong negative association between the
neighborhood socioeconomic position and risk of obesity.46 The
association with BMI was found in studies with cross-sectional
and longitudinal design. However, only two of the studies
included had a longitudinal design. Another cross-sectional study
examined the associations of the neighborhood deprivation and
obesity risk in France.47 The research found similar nonlinear
associations, the strength of which varied according to the urban-
ization level. It was stronger in suburban areas of large cities and
weaker in small towns and rural areas. Despite these robust asso-
ciations, there is a need for caution in the causal interpretations
of these findings due to potential residential self-selection bias.

Another important finding was the association of high livabil-
ity score with lower BMI. Livability is a composite score that
was created to reflect the extent to which Dutch residents were
satisfied with their living environments. It comprised information
on multiple key axes: economic aspects of neighborhood, popula-
tion composition, housing accessibility, neighborhood social
cohesion, and safety. A possible explanation for this association

mechanism is that individuals who feel safer and more connected
to their community might spend more time outdoors, walking, or
exercising, and they might be more motivated to adopt healthy
eating.48–50 Further research could help to explain the mecha-
nisms through which these factors affect BMI.

Some might argue that the exposure domains with a greater
number of variables could have been more likely to be selected in
our study. The results showed, however, that certain domains
(neighborhood economic position) with fewer variables had a
higher number of selected variables (three selected out of 10
variables) compared to domains with more variables (i.e., built
environment—two selected out of 27, air pollution—nonselected
out of 14), highlighting the importance of this domain.

Addressing the challenge of high correlations was important in
our study; hence, we undertook some measures to mitigate this issue.
We excluded exposure variables with very high levels of correlations
(rSpearman > 0:95), as calculated across all the addresses, for the entire
Netherlands. We did not exclude pairwise high correlations in each
individual study because, despite the similar patterns of correlation
structures, there was some degree of variability from one study to
another. To ensure the comparability of our models, we chose to
maintain a consistent set of exposures across all of ourmodels.

Random forest is commonly applied in the setting of high-
dimensional and correlated data in thefield of genomics research.51
Despite this, simulation studies showed that the performance of RF
can be impacted when predictors strongly correlate.52 This is espe-
cially problematic when the variable importance score is assessed
with the Gini’s index, although the permutation importance score
can also be subject to this bias.53

In our exposome data, the correlations between different expo-
sures ranged from low to moderate, with a few stronger correlations
observed mostly within the same domain of exposures (air pollution,
neighborhood sociodemographic factors, etc.) (Figure S1). Despite
the robustness of our RF models using permutation importance
scores, as well as the lack of a large number of strong correlations and
large sample sizes in most individual studies, we cannot rule out the
possibility of feature importance instability due to correlation in

Figure 1. Distributions of ranks of the six most important exposures (see y-axis) associated with body mass index across the 15 cohorts in the Dutch
Geoscience and Health Cohort Consortium (GECCO), listed on the x-axis. The lower the value of the ranks, the more important the exposure. The columns are
ordered from right to left based on the number of observations in each cohort. Thus, Lifelines had the highest number of participants, and NL-SH had the low-
est number. Cohort names and participant numbers are provided in Table 1. Note: DCS, Doetinchem Cohort Study; DFBC, Dutch famine birth cohort; DIS,
Donor InSight; GLOBE, Dutch cohort study on socioeconomic health inequalities; HELIUS, Healthy Life in an Urban Setting; LASA, Longitudinal Aging
Study Amsterdam; MAAS, Maastricht Aging Study; NEMESIS, Netherlands Mental Health Survey and Incidence Study; NL-SH, Netherlands Longitudinal
Study on Hearing; NTR, Netherlands Twin Registry; TMS, The Maastricht Study; TRAILS, Tracking Adolescents’ Individual Lives Survey.
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individual studies. The current literature presents conflicting informa-
tion regarding the impact of correlated variables on permutation
importance scores. One simulation study suggested that highly corre-
lated variablesmight lead to an underestimation of their importance,54
while another study indicated that correlated variables could receive
higher importance values in random forestmodels.55

Random forest enabled us to study the combination of a large set
of exposures to reveal the important exposure–outcome associa-
tions, including nonlinear associations and interactions. However,
an important challenge in this study was how to combine the results
from different RF models, as there are no established meta-
analytical methods for combining estimates of associations. We

Figure 2. Shapley plots of neighborhood home values across the studies for each of the cohorts included in the Dutch Geoscience and Health Cohort
Consortium (GECCO). Shapley values represent the difference between a prediction and the average prediction of BMI (kg=m2). The size of Shapley values
vary; hence, the y-axes are on different scales depending on each cohort. The x-axis represents average administrative neighborhood-level home values, in
1,000s of euros. The solid line represents the smoothed relationship between the observed neighborhood home values and Shapley values for neighborhood
home values. Complete cohort names and numbers of participants per cohort are provided in Table 1. Note: BMI, body mass index; DCS, Doetinchem Cohort
Study; DFBC, Dutch famine birth cohort; DIS, Donor InSight; GLOBE, Dutch cohort study on socioeconomic health inequalities; HELIUS, Healthy Life in an
Urban Setting; LASA, Longitudinal Aging Study Amsterdam; MAAS, Maastricht Aging Study; NEMESIS, Netherlands Mental Health Survey and Incidence
Study; NL-SH, National Longitudinal Study on Hearing; NTR, Netherlands Twin Registry; TMS, The Maastricht Study; TRAILS, Tracking Adolescents’
Individual Lives Survey.
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applied rank aggregation because it is an interpretable method that
has several interesting properties. It enabled us to control the aggre-
gation process by usingweights on the ranks based on their stability,
as well as importance weights on the ordered lists based on cohort
size. We found that rank aggregation with cross-entropy Monte
Carlo had a good stability for identifying the top variables, but the
order in which aggregated variables appeared in the top list was less
stable. However, by using one-sided binomial tests to select the fac-
tors consistently ranked higher than 10th throughout the cohorts, we
circumvented this instability. Moreover, using rank aggregation
rather than a meta-analysis of regression coefficients provided the
possibility of ultimate standardization, meaning that the effect sizes
were standardized to ranks, allowing us to compare the relative im-
portance of variables across studies, which is particularly useful
when dealing with heterogeneous populations with disparate mod-
els or covariates.

This study has two main strengths. First, it disentangles the
relations of various interrelated aspects of the urban exposome
and BMI in a large population. The second strength of this study
is that it provides a first example of the use of a meta-analytical
approach for combining the results from a machine-learning
approach within the context of exposome research, thus pushing
the boundaries of the interpretability of such models and facilitat-
ing their further application in this field. This study also has some
limitations. First, compared to the standard meta-analysis, rank
aggregation does not allow for obtaining pooled estimates for
effect sizes. Despite this, in each individual study, we were able
to calculate Shapley values, which indicated by how much/to
what extent a factor was contributing to the predicted outcome
(Figure S2A–S2E). Another limitation of the RA approach is the

difficulty of estimating the between-study heterogeneity because
the rank aggregation does not account for the precision of these
measured ranks. Despite this, we evaluated the consistency of
ranks across the studies by means of visual assessment (Figure 1).
Third, we analyzed the data from each study cross-sectionally,
meaning that our findings could be subject to residential self-
selection bias, as the temporal link between the associations cannot
be established. Furthermore, some exposures were correlated and
could potentially serve as a proxy for other aspects of living envi-
ronment. Therefore, these findings cannot be interpreted from a
causal perspective. Fourth, the environmental data might be prone
to measurement error, as a mixture of modeled and measured
exposures was used, and also exposures and outcome data were
not always perfectly matched with the year. Measurement error
would under most scenarios lead to attenuation of the effects.
Therefore, more mismeasured exposures would have a lower prob-
ability of selection.

To the best of our knowledge, this is the first study to use a
meta-analytical approach that combines the results from nonpara-
metric RF models in an exposome context. Despite its explora-
tory nature, this study offers some important insight into the
relation of the neighborhood environment and high BMI risk
across various population groups. Neighborhood-level socioeco-
nomic factors, livability score, and walkability were the most im-
portant factors of the urban exposome, associated with BMI. The
importance of these factors was largely sustained across different
studies. Future studies should employ longitudinal or experimen-
tal designs to investigate causal pathways underlying the associa-
tions observed in this study and to help address issues related to
residential self-selection bias.

Figure 2. (Continued.)
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