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C-reactive protein (CRP), a pentameric molecule, is the 
most widely studied inflammatory marker.1 Elevated lev-

els of serum CRP have been associated with increased risks 
of cancer,2 type 2 diabetes mellitus,3 hypertension,4 coronary 
heart disease,5 stroke,6 bipolar disorder,7 and overall mortal-
ity.8 However, its causal contribution to the pathophysiology 
of chronic diseases remains controversial.9–12 Serum levels of 
CRP are regulated by both genetic and environmental fac-
tors.11,13 Its heritability has been reported to range from 10% to 
65%,14–17 and genome-wide association studies (GWASs) have 
successfully identified several genetic variants associated with 

CRP levels.12,18 A recent meta-analysis of 25 GWAS studies, 
including >80 000 subjects, identified 18 CRP genetic variants 
at genome-wide significance.19
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One important limitation of GWASs is that the identified 

single nucleotide polymorphisms (SNPs) are not necessarily 
causally related to their associated traits or diseases. Many 
GWAS SNPs merely flag causal variants in their vicinity.20 
Hence, identifying associated SNPs by GWAS does not neces-
sarily provide sufficient information on the biological mecha-
nisms or pathways underlying their corresponding phenotype. 

Background—Genome-wide association studies (GWASs) have successfully identified several single nucleotide 
polymorphisms (SNPs) associated with serum levels of C-reactive protein (CRP). An important limitation of GWASs 
is that the identified variants merely flag the nearby genomic region and do not necessarily provide a direct link to the 
biological mechanisms underlying their corresponding phenotype. Here we apply a bioinformatics-based approach to 
uncover the functional characteristics of the 18 SNPs that had previously been associated with CRP at a genome-wide 
significant level.

Methods and Results—In the first phase of in silico sequencing, we explore the vicinity of GWAS SNPs to identify all linked 
variants. In the second phase of expression quantitative trait loci analysis, we attempt to identify all nearby genes whose 
expression levels are associated with the corresponding GWAS SNPs. These 2 phases generate several relevant genes that 
serve as input to the next phase of functional network analysis. Our in silico sequencing analysis using 1000 Genomes 
Project data identified 7 nonsynonymous SNPs, which are in moderate to high linkage disequilibrium (r 2>0.5) with the 
GWAS SNPs. Our expression quantitative trait loci analysis, which was based on one of the largest single data sets of 
genome-wide expression probes (n>5000) identified 23 significantly associated expression probes belonging to 15 genes 
(false discovery rate <0.01). The final phase of functional network analysis revealed 93 significantly enriched biological 
processes (false discovery rate <0.01).

Conclusions—Our post-GWAS analysis of CRP GWAS SNPs confirmed the previously known overlap between CRP and 
lipids biology. Additionally, it suggested an important role for interferons in the metabolism of CRP.   (Circ Cardiovasc 
Genet. 2015;8:487-497. DOI: 10.1161/CIRCGENETICS.114.000714.)
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Therefore, after a successful GWAS study, it is essential to per-
form additional post-GWAS analyses to translate the GWAS 
findings represented by index SNPs into biological knowl-
edge.21 For example, we previously demonstrated that serum 
protein levels are regulated by ribosomal functioning, protea-
somal degradation, and immune-response signaling pathways, 
leading to a better functional understanding of the GWAS 
findings for serum protein levels.22 However, an in-depth post-
GWAS analysis for CRP variants has not yet been performed,19 
which means that CRP GWAS findings have been insuffi-
ciently translated into biological function. Consequently, the 
gain in knowledge on underlying mechanisms controlling CRP 
level has been limited. Given the clinical relevance of CRP as 
an established biomarker for many complex chronic disorders, 
an extended post-GWAS analysis of CRP variants may unravel 
new mechanisms, which will improve our understanding of the 
metabolism of CRP and its relevance to disease pathology.

Here we applied a bioinformatics-based approach to uncover 
the functional characteristics of the 18 CRP-associated vari-
ants.19 We first performed an in silico sequencing analysis 
using 1000 Genomes Project data23 to identify nearby nonsyn-
onymous coding variants. Second, we performed an expres-
sion quantitative trait loci (eQTL) analysis using a large 
data set of blood expression probes to find regulatory vari-
ants. Third, we integrated the findings of the abovementioned 
phases by performing a functional network analysis to unravel 
the underlying biological processes.

Methods
We followed a bioinformatics-based approach, including 3 distinct 
phases, each consisting of multiple steps as described later (Figure 1).

Phase I: In Silico Sequencing

Identifying Linked Variants
First, we converted the chromosome positions of the GWAS SNPs 
(gSNPs) from the National Center for Biotechnology Information 
Build 36 (Human Genome 18) to National Center for Biotechnology 
Information Build 37 (Human Genome 19) using the LiftOver tool 
from the University of California Santa Cruz (UCSC) Genome 
Project.24 Then, we targeted regions of 1 Mb at either side of each 
gSNP, resulting in a mini-genome of 36 Mb. The appropriate Variant 
Call Format25 file for each 2 Mb region was downloaded from the 
1000 Genomes Project ftp server using the Tabix software pack-
age.26 We used the data from the 1000 Genomes Project Full Phase 
1, November 2010 release (using August 2010 alignments), includ-
ing only the 283 subjects of European ancestry.23 Subsequently, 
for each Variant Call Format file, the r2 between the gSNP and all 
other biallelic SNPs residing within the corresponding 2 Mb area 
was calculated as a metric of linkage disequilibrium (LD) using 
VCFtools.25 Only those SNPs in moderate to high (r2>0.50) LD with 
the corresponding gSNP were used in the next step of the analysis 
(Figure 1).

Identifying Linked Nonsynonymous SNPs
All these SNPs in LD with any of the gSNPs were annotated by 
ANNOVAR software27 and then filtered in a stepwise manner. First, 
the SNPs were annotated to distinguish exonic variants from other 
variant types (intronic, intergenic, etc.). Nonexonic variants were ex-
cluded from further analyses. The remaining SNPs were annotated 
again to distinguish synonymous from nonsynonymous exonic SNPs, 
and synonymous SNPs were excluded. As a further step, the non-
synonymous SNPs (nsSNPs) were then characterized for their dam-
aging effect on the corresponding protein using Sorting Intolerant 
From Tolerant (SIFT)28 and Polymorphism Phenotyping (PolyPhen)29 

prediction scores. Their scores were obtained from Ensembl release 
71 (accessed June 8, 2013).30 Whenever multiple scores were avail-
able for a single nsSNP, we selected the most damaging prediction 
scores as the smallest SIFT and the largest PolyPhen scores. These 
scores are just provided as Data Supplement about linked variants and 
hence, were not used in the downstream analyses.

In Silico Pleiotropy Analysis
To extend our knowledge of the possible function of the 18 CRP-
associated loci, we sought to identify any trait or outcome associ-
ated with these 18 loci. Thus, for all gSNPs, as well as all SNPs in 
LD (r2>0.80) with any of the gSNPs, we checked for genome-wide 
significant (P<5×10−8) pleiotropic effects on other complex traits or 
diseases identified in previous GWAS studies as listed in the National 
Human Genome Research Institute GWAS Catalog (Catalog of 
Published Genome-Wide Association Studies)31 using ANNOVAR 
software (accessed June 13, 2013).27 However, as shown in Figure 1, 
the results of this step were not used in the downstream analyses, but 
were indeed used in the final interpretation of the results.

Phase II: eQTL Analysis
The data set of genome-wide expression probes and gene expression 
measurements have been described in more detail elsewhere.32,33

Subjects
The 2 parent projects that supplied data for the eQTL analysis are 
large-scale longitudinal studies: the Netherlands Study of Depression 
and Anxiety34 and the Netherlands Twin Registry.35 The Netherlands 
Study of Depression and Anxiety and the Netherlands Twin Registry 
studies were approved by the Central Ethics Committee on Research 
Involving Human Subjects of the VU University Medical Center, 
Amsterdam, and all subjects provided written informed consent. The 
sample used for eQTL analysis after quality control consisted of 5071 
subjects, 3109 the Netherlands Twin Registry (from 1571 families: 
614 dizygotic twin pairs, 1 monozygotic triplet, 668 monozygotic 
twin pairs, 394 siblings, and 148 unrelated subjects), and 1962 the 
Netherlands Study of Depression and Anxiety participants. The age 
of the participants ranged from 17 to 88 years (mean 38, SD 13), and 
65% of the sample was female.32

Blood Sampling, RNA Extraction, and Measurements
Venous blood samples were drawn in the morning after an over-
night fast. Heparinized whole blood samples were transferred within 
20 minutes of sampling into PAXgene Blood RNA tubes (Qiagen) 
and stored at −20°C. Gene expression assays were conducted at the 
Rutgers University Cell and DNA Repository (http://www.rucdr.
org). Samples were hybridized to Affymetrix U219 arrays contain-
ing 530 467 probes summarized in 49 293 probesets. All probes are 
25 bases in length and designed to be perfect match complements to 
a designated transcript. Array hybridization, washing, staining, and 
scanning were performed in an Affymetrix GeneTitan System per the 
manufacturer’s protocol. Gene expression data were required to pass 
standard Affymetrix quality control metrics (Affymetrix expression 
console) before further analysis. Probes that did not map uniquely to 
Human Genome 19 or that contained a polymorphic SNP (dbSNP137 
common with minor allele frequency >0.01) were removed for down-
stream analysis, resulting in 423 201 probes, summarized in 44 241 
probesets, targeting 18 238 unique genes. Probeset expression values 
were obtained using robust multiarray average normalization imple-
mented in Affymetrix Power Tools (APT, v 1.12.0). Samples with low 
average correlation with other samples and samples with incorrect 
sex-chromosome expression were removed.32

Genotype Data
DNA extraction has been described earlier.36 Genotyping was done 
on multiple chip platforms for several partly overlapping subsets of 
participants. The following platforms were used: Affymetrix Perlegen 
5.0, Illumina 370, Illumina 660, Illumina Omni Express 1 mol/L, and 
Affymetrix 6.0. After array-specific data analysis, genotype calls were 
made with the platform-specific software (Genotyper, Beadstudio). 
The extensive genotyping quality control steps and 1000 Genomes 

http://www.rucdr.org
http://www.rucdr.org
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imputation procedures are described in the Data Supplement Text S1. 
Genotypes were coded into dosage format and filtered at minor allele 
frequency >0.01 and imputation quality of R2>0.30 for eQTL analysis.

eQTL Analysis
Inverse quantile normal transformation was applied to the individual 
probeset data to obtain normal distributions. The transformed probe-
set data were then residualized with respect to the covariates sex, age, 
body mass index, smoking status, several technical covariates, and 3 
principal components (PCs) from the genotype data. Genotype PCs 
were constructed using pruned GWAS data after removing ethnic 
outliers as described earlier.37 The residualized probeset data were 
subjected to a principal component analysis to remove the first 50 
PCs to adjust the gene expression levels for nongenetic variation, as 
proposed by Fehrmann et al. They have shown that removing expres-
sion PCs drastically increases the number of eQTLs.38 We observe the 
same phenomenon in our data. Removing expression PCs has become 
a standard procedure in many eQTL studies.33,39 Probesets at <1 Mb 
distance from the gSNPs were selected for eQTL analysis as follows: 
for each probeset–gSNP combination at maximally 1 Mb distance, 
a linear mixed model was fitted with expression level as dependent 
variable, genotype as fixed effect, and family ID and zygosity as ran-
dom effects to account for family and twin relations.40 Mixed models 
and resulting P values were computed using the function lmer from 
the lme4 R package (http://CRAN.R-project.org/package=lme4). To 
correct for multiple testing, false discovery rate (FDR) was computed 
using all P values from each probeset–gSNP combination at max-
imally 1 Mb distance using the function p.adjust from the stats R 
package, and any signal with FDR<0.01 was considered significant. 
The appropriate gene names of those significantly associated expres-
sion probes were then used in the next step as a set of prioritized 
biological candidate genes (Figure 1).

As a further step, for each locus with significant eQTL signal of 
FDR<0.01, we also identified the most significantly associated eQTL 
SNP (eSNP) for the corresponding transcript. We then performed 
conditional analyses to see if the gSNP is independently associated 
with the expression level. For conditional eQTL analysis, the trans-
formed probeset data were residualized with respect to the corre-
sponding eSNP before applying the mixed model. These eSNPs were 
not used in the downstream analysis (Figure 1).

Phase III: Network Analysis

Functional Interaction Network
To construct a functional association interaction network, we applied 
the GeneMANIA algorithm together with its large set of accompany-
ing functional association data on coexpression, physical interaction, 
genetic interaction, shared protein domains, colocalization, and pre-
dicted association networks. This data set comprises 286 extended 
association networks.41

We combined 4 biologically prioritized candidate gene sets into 
a single query gene set, which was used as input for the interaction 
network analysis: (1) closest genes to the gSNPs, (2) closest genes 
to the nsSNPs in high LD (r2>0.50) with the corresponding gSNP, 
(3) closest genes to other types of SNPs in very high LD (r 2>0.80) 
with the corresponding gSNP, and (4) expression probe gene names 
significantly (FDR<0.01) associated with gSNPs based on the eQTL 
analysis (Figure 1). We used different LD thresholds for nsSNPs than 
other types of SNPs as nsSNPs are more likely to be functionally 
important and also are more likely to reside within a lower frequency 
spectrum. Consequently, nsSNPs may be in modest LD with common 
gSNPs. Therefore, we used a more lenient LD threshold for nsSNPs 
(r2>0.50) to ensure not to miss potentially functional variants with 
modest frequency and a standard LD threshold of r2>0.80 for other 
types of SNPs.

Next, we constructed a weighted composite functional associa-
tion network using the Cytoscape software platform,42 extended by 
the GeneMANIA plugin.43 We selected all available networks option 
with a 100-gene output (accessed July 15, 2013).

Functional Enrichment Analysis
All the genes in the composite network, either from the query or the 
resulting gene sets, were then used for functional enrichment anal-
ysis against Gene Ontology terms (GO terms) to identify the most 
relevant GO terms using the same plugin.43 Each GO annotation 
has an evidence code indicating the type of experimental or com-
putational support for that association, for example, inferred from 
reviewed computational analysis (RCA) or inferred from electronic 
annotation (IEA). The first one (RCA) points to those predictions 
based on computational analyses of experimental data sets like pro-
tein–protein interaction or expression data. The latter (IEA) points 

Figure 1.  Flow diagram of the steps of CRP post-GWAS analysis. The inner grey boxes show the components of the pipeline, whereas 
the outer blue boxes show the main results of post-GWAS analysis of 18 genome-wide significantly associated CRP SNPs. CRP indicates 
C-reactive protein; eQTL, expression quantitative trait loci; GO, Gene Ontology; GWAS, genome-wide association study; gSNP, GWAS 
SNPs; nsSNP, nonsynonymous SNPs; and SNP, single nucleotide polymorphism.

http://CRAN.R-project.org/package=lme4
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to computationally assigned evidence codes, which have not been 
reviewed by a curator to verify their accuracy (http://www.geneontol-
ogy.org/GO.evidence.shtml).44 IEA is the least reliable, but the most 
prevalent evidence code, that is, about 47% of all of the human GO 
annotations are based on IEA codes (accessed July 26, 2013). As both 
RCA and IEA annotations are solely based on computational predic-
tions, the functional enrichment analysis was only performed against 
GO term annotations with non-IEA and non-RCA evidence codes to 
avoid circularity.44 We considered any GO term with FDR <0.01 as 
significantly and those GO terms with FDR between 0.01 and 0.1 as 
suggestively enriched. We then used the RamiGO R package45 for the 
visualization of significant GO terms within the appropriate GO tree.

Results
Here, we followed a bioinformatics-based approach as sum-
marized in Figure 1. We included the 18 SNPs that showed 
genome-wide significant association with CRP in the study by 
Dehghan et al19 (Table 1).

Phase I: In Silico Sequencing
In this phase, we aimed to explore thoroughly the genomic 
area around the 18 gSNPs to identify nearby nsSNPs as poten-
tially functional variants. We used 1000 Genomes Project data 
as the most detailed catalogue of human genetic variation.23 
The mini-genome of 36 Mb contains 167 003 SNPs. Of these, 
3801 SNPs are in LD with the nearby gSNP at r 2>0.10, of 
which only 48 are exonic, including 25 nsSNPs (Table I in the 
Data Supplement). Of the nsSNPs, 9 map to the same gene and 
16 map to other genes than the gSNPs. Please note that Tables 
I–III in the Data Supplement provide a thorough description 
of the vicinity of gSNPs by applying a liberal cutoff of r 2>0.1. 

These results are considered as complementary information. 
However, only 7 of the nsSNPs are in moderate to high LD 
(r2>0.5) with the gSNPs and were used in the downstream 
analyses (Figure 1). The nsSNPs were then characterized for 
their deleterious effect on the corresponding protein function 
using 2 different tools, SIFT28 and PolyPhen.29 Interestingly, 8, 
6, 4, and 10 of the nsSNPs are considered as damaging accord-
ing to SIFT alone, PolyPhen alone, both SIFT and PolyPhen, 
or any of the 2 prediction scores, respectively (Figure 2 drawn 
by Circos46; Tables I and II in the Data Supplement).

In silico pleiotropy analysis of all gSNPs, as well as all 
SNPs that are in LD with their nearby gSNP, identified sev-
eral genome-wide significantly (P<5×10−8) associated traits 
or diseases other than CRP that had already been reported in 
previous GWAS studies as listed in the GWAS catalog.31 By 
considering all gSNPs and only their highly linked variants 
(r2>0.80), 10 loci had effects on other traits, whereas 8 loci, 
including the CRP locus itself, did not show any pleiotropic 
effect. The locus harboring GCKR was the most pleiotropic 
region, having reported GWAS associations with a variety of 
metabolic-related traits. Most of the identified traits are met-
abolic-related traits, particularly lipid- and lipoprotein-related 
traits, for example, cholesterol, high-density lipoprotein, low-
density lipoprotein, and triglyceride levels (Figure 3; Table III 
in the Data Supplement).

Phase II: eQTL Analysis
In this phase, we aimed to perform an eQTL analysis to deter-
mine whether the gSNPs affect CRP levels through regulat-
ing gene expression levels. Here we used a large data set of 
genome-wide expression probes in peripheral blood consist-
ing of 5071 subjects. The eQTL analysis identified 23 expres-
sion probes that were significantly associated with 8 gSNPs at 
FDR<0.01. The 23 expression probes belong to 15 genes, of 
which 4 are the same genes and 11 are different genes from 
those mapping to the corresponding gSNPs. Those expression 
probe gene names were then used in the next step as a set of 
prioritized biological candidate genes (Figure 1).

Additionally, we identified the 23 SNPs that were most 
significantly associated with the corresponding expression 
probes (eSNPs; Figure 4; Table IV in the Data Supplement). 
eQTL analysis of the gSNPs conditional on the correspond-
ing eSNPs revealed that for the majority of expression probes, 
the corresponding gSNP is not independently associated with 
expression levels, that is, the observed effect of gSNPs on 
expression probes are mostly explained by the eSNPs (Table 
IV in the Data Supplement).

Phase III: Network Analysis
In this phase, we generated a list of biologically prioritized 
candidate genes based on the findings of phases I and II 
as input for the construction of a functional interaction 
network as detailed in the methods section. Four sets of 
query genes were combined to create the final input list 
of prioritized genes for the functional interaction network 
analysis (Figure  1). After removing duplicate entries, the 
combined query gene set contained 40 genes. Two genes 
(LOC157273 and PPIEL) could not be found in any of the 
available interaction resources, resulting in a final list of 38 

Table 1.  The 18 Genome-Wide Associated CRP SNPs Used as 
Primary Input to the Post-GWAS Analysis

No. of gSNP SNP ID Chr Position Alleles

1 rs2794520 1 159678816 C T

2 rs4420638 19 45422946 A G

3 rs1183910 12 121420807 G A

4 rs4420065 1 66161461 T C

5 rs4129267 1 154426264 C T

6 rs1260326 2 27730940 T C

7 rs12239046 1 247601595 T C

8 rs6734238 2 113841030 A G

9 rs9987289 8 9183358 A G

10 rs10745954 12 103483094 A G

11 rs1800961 20 43042364 C T

12 rs340029 15 60894965 C T

13 rs10521222 16 51158710 C T

14 rs12037222 1 40064961 G A

15 rs13233571 7 72971231 C T

16 rs2847281 18 12821593 A G

17 rs6901250 6 117114025 G A

18 rs4705952 5 131839618 G A

The SNPs are ordered according to the significance of their association with 
CRP in the meta-GWAS article. Alleles indicates ensembl reference/alternative 
alleles; Chr, chromosome; CRP, C-reactive protein; gSNP, GWAS SNP; GWAS, 
genome-wide association study; SNP, single nucleotide polymorphism; position, 
chromosome position build 37.

http://www.geneontology.org/GO.evidence.shtml
http://www.geneontology.org/GO.evidence.shtml
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genes (Table  2). The final composite association network 
contained those 38 query genes, as well as the output gene 
set, that is, the 100 genes connected to the query gene set. 
Altogether these were connected with 2225 associations, 
also known as edges (Figure I and Table V in the Data 

Supplement). All the genes in the composite network were 
then used for functional enrichment analysis against GO 
terms,47 which revealed 93 significantly (FDR<0.01) and 
79 suggestively (0.1<FDR<0.01) enriched terms (Table VI 
in the Data Supplement). The majority of enriched terms 

Figure 2.  Results of in silico sequencing (drawn by 
Circos).46 It illustrates the map of nsSNPs within the 
2 Mb vicinity of 18 CRP-associated SNPs. The rings 
from outermost to innermost represent (a) 18 CRP-
associated SNPs (gSNPs), (b) genomic regions of 2 
Mb surrounding each gSNP, (c) closest genes to the 
gSNPs, (d) 25 nsSNPs in LD with the gSNPs,  
(e) closest genes to the nsSNPs, (f) 3801 SNPs in 
LD with the gSNP at r2>0.10. The red color in rings 
d, e, and f indicates moderate to high LD (r2>0.50) 
with the corresponding gSNP. CRP indicates 
C-reactive protein; GWAS, genome-wide associa-
tion study; LD, linkage disequilibrium; gSNP, GWAS 
SNPs; nsSNP, nonsynonymous SNPs; and SNP, 
single nucleotide polymorphism.

Figure 3.  Results of in silico pleiotropy analysis. 
The 3 innermost rings show complex traits or dis-
eases other than CRP, identified in previous GWAS 
studies to be genome-wide significantly associated 
with any of the gSNPs or their highly linked vari-
ants (r2>0.80); Ala/Gln indicates alanine/glutamine; 
Cognit-decline, cognitive decline; CRP, C-reactive 
protein; eGFRcrea, estimated glomerular filtration 
rate by serum creatinine; Esophag-cancer, esopha-
geal cancer; GGT, gamma gluatamyl transferase; 
gSNP, GWAS SNPs; GWAS, genome-wide associa-
tion study; HDL, high-density lipoprotein; HDLC-
TG, HDL cholesterol-triglycerides; HDLC-WC, 
HDL cholesterol-waist circumference; Hyper-TG, 
hypertriglyceridemia; LDL, low-density lipoprotein; 
Lp-PLA2, lipoprotein-associated phospholipase A2; 
SHBG, sex hormone-binding globulin; sIL-6R, sol-
uble interleukin-6 receptor; SNP, single nucleotide 
polymorphism; TG-BP, triglycerides-blood pressure; 
and WC-TG, waist circumference-triglycerides; for 
full trait or disease names, please see Table III in the 
Data Supplement.
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can be broadly categorized into 2 major groups: (1) terms 
related to immunologic processes, cytokines, and especially 
interferons and (2) terms related to lipids and lipoprotein 
metabolism.

Thirty-three of the 93 significantly enriched terms belong to 
the first category, of which 7 have an FDR<5×10–15: cytokine-
mediated signaling pathway (GO:0019221, FDR=9.47×10–37), 
type I interferon-mediated signaling pathway (GO:0060337, 
FDR=1.05×10–34), cellular response to type I interferon 
(GO:0071357, FDR=1.05×10–34), response to type I interferon 
(GO:0034340, FDR=1.22×10–34), interferon-γ–mediated sig-
naling pathway (GO:0060333, FDR=5.78×10–16), response 
to interferon-γ (GO:0034341, FDR=5.78×10–16), cellular 
response to interferon-γ (GO:0071346, FDR=1.69×10–15). 
Figure 5 visualizes these 7 terms within their corresponding 
GO tree. Ten out of 33 significantly enriched terms of this 
first category are specifically related to interferons (Table 
VI in the Data Supplement). Forty-three of 93 significantly 
enriched terms belong to the second category, that is, they are 
all related to the metabolism of fatty acids (eg, GO:0042304: 
regulation of fatty acid biosynthetic process, FDR=1.01×10−4), 
triglycerides (eg, GO:0070328: triglyceride homeostasis, 
FDR=7.93×10−5), cholesterol (eg, GO:0042632: cholesterol 
homeostasis, FDR=2.71×10−4), and especially lipoproteins 
(eg, GO:0034361: very-low-density lipoprotein particle, 
FDR=3.45×10−5; Table VI in the Data Supplement).

Discussion
In the present study, we performed a post-GWAS analysis of 
18 genome-wide significantly associated CRP SNPs. This 
strategy yielded new information on biological processes 
involved in CRP metabolism.

Here we shed light on the genomic context of the vicinity 
of gSNPs in 2 steps. We first investigated the nearby genomic 
region to identify all linked variants, with emphasis on nsSNPs 
as potentially functional variants. A strength of this approach 
is the use of r2 as a metric of LD rather than predefined physi-
cal distance. Although nsSNPs have a high likelihood to be 
functional, they may constitute only a small fraction of the 
mechanisms involved. Therefore, we included all SNP types 
into the analyses. In the second step, that is, the eQTL analy-
sis, we identified any nearby gene whose expression level is 
associated with its corresponding gSNP. Here we used one 
of the largest single data sets of genome-wide expression 
probes in peripheral blood currently available worldwide of 
>5000 samples, which was analyzed by a stringent statisti-
cal approach. The 2 steps identified several relevant genes 
that were jointly used as the input to the next step, that is, 
the functional network analysis. The strength of this approach 
is including the genes from the eQTL analysis in the func-
tional network analysis, as we think these genes are at least as 
important as those genes to which gSNPs or their linked vari-
ants map. This approach has added value to stand-alone eQTL 
results as they are translated to biological insights in a broader 
context through integration to other data domains.

In the next step, we constructed a functional association 
interaction network followed by functional enrichment anal-
ysis against GO terms. Such an interaction network is con-
sidered to represent cofunctionality of the connected genes.41 
The large data set of functional association data that is used 
contains not only coexpression data, but also physical inter-
action, genetic interaction, shared protein domains, colocal-
ization, and predicted association networks. As a result, the 
constructed interaction network is a composite based on these 

Figure 4.  Results of eQTL analysis. The 3 inner-
most rings represent (d) gene names of significantly 
associated expression probes, (e) the most signifi-
cantly associated eQTL SNPs (eSNPs) for the corre-
sponding expression probes, (f) expression probes 
significantly associated with gSNPs. eQTL indicates 
expression quantitative trait loci; GWAS, genome-
wide association study; gSNP, GWAS SNPs; and 
SNP, single nucleotide polymorphism.
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different data sources.41 As described in the methods section, 
the functional enrichment analysis is performed against GO 
terms after excluding those annotations with computer-gener-
ated inferred from RCA and IEA evidence codes. Thus, about 
half of the GO annotations are disregarded to avoid circularity 
and to obtain more robust results (http://www.geneontology.
org/GO.evidence.shtml).44

Our post-GWAS analysis of CRP GWAS SNPs eventually 
yielded a range of enriched biological processes after several 
intermediate steps. Some processes like acute-phase response 
or acute inflammatory response with significant FDR values 
are expected and appropriate terms for CRP providing con-
fidence in our results. Interestingly, about one third of the 
significantly enriched terms were related to immunologic pro-
cesses, cytokines, and interferons. Even more interesting, 10 
of the significantly enriched terms, including 6 of the top most 
significant ones, are those pointing to the biology of interfer-
ons. In particular, type I interferon associated biological pro-
cesses are highlighted with 3 significant enriched terms with 
FDR<1×10−30.

The link between interferons and CRP has not been well 
established, probably because the measurement of interferons 
is complicated by their short half-lives. Although few studies 
have addressed the direct link between CRP and interferons 
and although this link has not been appreciated as a potential 
mechanism underlying the biology of CRP, our finding is in 
fact amply supported by those few in vitro and clinical obser-
vations. An in vitro observation by Enocsson et al showed that 
interferon-α, the main representative of the type I interferon 
family, inhibits CRP secretion in a dose-dependent fashion 
mediated by the type I interferon receptor.48 Furthermore, 
although CRP levels are highly associated with most inflam-
matory states, as CRP level is a well-known metric for the 
detection and evaluation of many inflammatory diseases,10 
elevated CRP levels correlate poorly with those inflammatory 
conditions that are characterized by high levels of interferon-α, 
such as systemic lupus and viral infections.49–54 This observa-
tion is in line with the abovementioned in vitro observation 
that increased levels of interferon-α suppress CRP levels.48 
Likewise, there are yet unexplained phenomena in lupus 
patients as there is a 10- to 50-fold increased risk of myo-
cardial infarction,55,56 whereas there is no association between 
cardiovascular disease and CRP levels in these patients.53 This 
lack of an association is unexpected because CRP is an estab-
lished risk factor for coronary heart disease.5,6 Moreover, in 
lupus patients, lack of correlation between interleukin-6, the 
main stimulant of CRP secretion, and CRP has been reported.57 
These related observations may be explained by the fact that 
lupus patients are known to have a high level of interferon-α 
and that interferon-α is an inhibitor of CRP secretion. Another 
line of evidence comes from infectious diseases. In viral infec-
tions, in contrast to bacterial infections, there is generally a 
mild, poorly correlated increase of CRP level, making CRP a 
widely used diagnostic tool in distinguishing viral from bac-
terial infections.54 This can be explained by the notion that 
patients with viral infections have high levels of interferon-α49 
and by an inverse relation between interferon-α and CRP 
levels.48 Finally, although the analysis had started with CRP 
gSNPs, it interestingly returned 4 significantly enriched terms 

Table 2.  Biologically Prioritized Candidate Gene Set Used as 
the Input Query to the Network Analysis

No. of gSNP Gene Name Ensembl Gene ID Query Gene Set

1 CRP ENSG00000132693 i; iii

2 APOC1 ENSG00000130208 i; iii

2 APOE ENSG00000130203 ii

2 APOC1P1 ENSG00000214855 iii

3 HNF1A ENSG00000135100 i; ii; iii

3 CAMKK2 ENSG00000110931 iv

3 OASL ENSG00000135114 iv

4 LEPR ENSG00000116678 i; iii

5 IL6R ENSG00000160712 i; ii; iii; iv

5 ADAR ENSG00000160710 iv

6 GCKR ENSG00000084734 i; iii

6 NRBP1 ENSG00000115216 iv

6 SNX17 ENSG00000115234 iv

7 NLRP3 ENSG00000162711 i; iii; iv

8 IL1F10 ENSG00000136697 i; iii

8 IL1RN ENSG00000136689 iii; iv

8 SLC20A1 ENSG00000144136 iv

9 LOC157273 ENSG00000254235 i; iii

10 ASCL1 ENSG00000139352 i; iii

10 C12orf42 ENSG00000179088 iii

11 HNF4A ENSG00000101076 i

12 RORA ENSG00000069667 i; iii

13 SALL1 ENSG00000103449 i; iii

14 PABPC4 ENSG00000090621 i; iii; iv

14 MACF1 ENSG00000127603 ii; iv

14 HEYL ENSG00000163909 iii

14 PPIEL ENSG00000243970 iii

14 BMP8A ENSG00000183682 iii

14 KIAA0754 ENSG00000255103 iv

15 BCL7B ENSG00000106635 i; iii

15 MLXIPL ENSG00000009950 ii; iii

15 BAZ1B ENSG00000009954 iii

15 TBL2 ENSG00000106638 iii

16 PTPN2 ENSG00000175354 i; iii

17 GPRC6A ENSG00000173612 i; iii

17 RFX6 ENSG00000185002 iii

17 FAM162B ENSG00000183807 iii

17 FAM26F ENSG00000188820 iv

18 IRF1 ENSG00000125347 i; iv

18 SLC22A4 ENSG00000197208 iv

The query gene set includes the following: (i) closest genes to the 18 gSNPs, 
(ii) closest genes to the nsSNPs in high LD (r 2>0.50) with the corresponding 
gSNP, (iii) closest genes to other types of SNPs in very high LD (r 2>0.80) with 
the corresponding gSNP, and (iv) expression probe gene names significantly 
associated with gSNPs (FDR<0.01) based on the eQTL analysis. The combined 
query gene set contained 40 genes, of which, 2 genes, LOC157273 and PPIEL, 
could not be found in any of the interaction resources. The order of genes follows 
the order of gSNPs in Table 1. eQTL indicates expression quantitative trait loci; 
FDR, false discovery rate; GWAS, genome-wide association study; LD, linkage 
disequilibrium; gSNP, GWAS SNPs; nsSNP, nonsynonymous SNPs; and SNP, 
single nucleotide polymorphism.

http://www.geneontology.org/GO.evidence.shtml
http://www.geneontology.org/GO.evidence.shtml
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specifically related to defense responses to viruses (Table VI 
in the Data Supplement). Considering the blunted response 
of CRP levels to viral infections,54 this unexpected finding 
once again suggests an important role of interferon-α in CRP 
metabolism.

The in silico pleiotropy analysis revealed several pleiotro-
pic effects between CRP gSNPs and other metabolic traits, 
particularly lipid- and lipoprotein-related traits. These results 
show strong concordance with those from our functional net-
work analysis, as about half of the significantly enriched GO 
terms point to biological processes related to lipids and lipo-
proteins metabolism. These findings are also fully in line with 
existing knowledge of overlap between the biology of CRP 
and lipids with metabolism of both CRP and lipids related to 
the liver. Further, CRP levels are significantly associated with 

weight, waist-circumference, body mass index, cholesterol, 
triglycerides, low-density lipoprotein (weakly) and negatively 
associated with high-density lipoprotein concentrations.6,58–61 
Both CRP and lipids are well-known risk factors for coronary 
heart disease.61 Thus, our results show extensive genetic over-
lap between CRP and lipid metabolism, although the exact 
mechanisms underlying these significant associations remain 
to be elucidated.

In early 2010, Dickson et al suggested that observed GWAS 
associations between a common SNP and trait of interest can 
be explained by multiple rare variants at the locus in LD with 
that SNP, so-called synthetic associations.62 However, there 
are several lines of evidence indicating that GWAS associa-
tions are rarely caused by synthetic associations with rare 
variants.63–65 Later on, Visscher and colleagues state that 

Figure 5.  The most significantly enriched GO terms with FDR<5×10–15. They are visualized as highlighted boxes within their correspond-
ing GO tree, as red for those with FDR<1×10–30 and purple for those with 5×10–15<FDR<1×10–30. The relations between the boxes have 
standard colors: black (regulates), blue (is_a), or light blue (part_of) (http://www.geneontology.org/GO.ontology-ext.relations.shtml).45  
FDR indicates false discovery rate; and GO, Gene Ontology.

http://www.geneontology.org/GO.ontology-ext.relations.shtml). 45 
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instead the combined evidence supports a highly polygenic 
model of disease susceptibility which is built on causal vari-
ants across the entire range of the allele-frequencies.66 Hence, 
our approach of including all gSNPs, as well as their linked 
SNPs and eQTL results, is more consistent with the polygenic 
model than with the synthetic association model.

Despite using one of the largest single data sets of genome-
wide expression probes for eQTL analysis, it contained only 
blood expression probes. This limitation may have affected 
the list of associated genes. A similar approach but using a 
large data set of tissue-specific expression data, particularly 
liver cells of healthy individuals, may better reveal the associ-
ated gene expressions. However, to the best of our knowledge, 
such a homogenous large data set of liver cells from healthy 
individuals does not exist yet. Furthermore, if there is cryptic 
relatedness among our subjects, it is possible that our eQTL 
results might be slightly biased. However, our population is 
relatively outbred and known relationships among subjects 
were taken into account in the analysis. Under these circum-
stances, Voight and Pritchard suggest that the bias is expected 
to be negligible.67 Our functional enrichment analysis was 
done using GO terms; one may suggests a more extended 
approach by including other annotation sources like KEGG 
and Reactome pathways. However, as these resources only 
contain a limited number of pathways, it is unlikely this would 
have affected our main conclusions.

Finally, the results of this in silico study need to be followed 
up by further in vitro, in vivo, and epidemiological studies. 
The association of interferon-α with coronary heart disease 
and other CRP-associated traits or diseases, as well as the 
association of CRP gSNPs or CRP genetic risk scores with 
clinical conditions like systemic lupus, are yet to be investi-
gated. These results also highlight the need and potential for 
a GWAS on serum levels of interferon-α. Finally, although 
those CRP gSNPs are based on a large meta-GWAS, includ-
ing >80 000 subjects, the explained variance in CRP level by 
all those 18 gSNPs is only around 5%.19 To further unravel 
the underlying genetic mechanisms controlling CRP levels, a 
larger meta-GWAS on CRP is needed to find additional com-
mon variants, whereas other approaches, such as meta-anal-
yses of exome chip data, will be needed to find variants of 
lower frequency affecting serum levels of CRP.

In summary, in this in silico study, we followed a bioin-
formatics-based approach aiming to translate CRP GWAS 
signals into biological insights. Our post-GWAS analysis of 
CRP GWAS SNPs reemphasizes the previously known over-
lap between the biology of CRP and lipids. Additionally, it 
suggests an important role for interferons in the metabolism 
of CRP.

Accession numbers: Gene expression and genotype data 
used for this study will be available at dbGaP, accession num-
ber phs000486.v1.p1 (http://www.ncbi.nlm.nih.gov/projects/
gap/cgi-bin/study.cgi?study_id=phs000486.v1.p1).
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CLINICAL PERSPECTIVE
Genome-wide association studies (GWAS) have successfully identified genetic variants associated with complex traits or 
diseases. One important limitation of GWAS is that the identified variants merely flag the nearby genomic region and do 
not necessarily provide insight into the biological mechanisms underlying the investigated phenotype. A large GWAS on 
serum levels of C-reactive protein (CRP) had successfully identified 18 single nucleotide polymorphisms associated with 
serum levels of CRP at genome-wide significance. However, those CRP GWAS findings had been insufficiently translated 
to biological knowledge. Here, we applied an efficient integrated pipeline of sequential bioinformatics-based approaches for 
post-GWAS analysis of the 18 CRP single nucleotide polymorphisms. Our in silico analyses eventually yielded enrichment 
of biological processes (1) confirming the previously known overlap between the biology of CRP and lipids and (2) sug-
gesting an important role for interferons in the metabolism of CRP. Although CRP levels are highly associated with most 
inflammatory states, elevated CRP levels correlate poorly with those inflammatory conditions that are characterized by high 
levels of interferons, such as systemic lupus and viral infections. Furthermore, there is a 10- to 50-fold increased risk of myo-
cardial infarction in lupus patients, whereas there is no association between cardiovascular disease and CRP levels in these 
patients. This lack of an association is unexpected because CRP is an established risk factor for coronary heart disease. These 
odd clinical observations may be explained by the suggested role of interferons in CRP metabolism because interferon-α can 
serve as an inhibitor of CRP secretion.


