

Aggression in Children: Unraveling gene-environment interplay to inform Treatment and InterventiON strategies

www.action-euproject.eu

info@action-euproject.eu

The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement no 602768

Biomarkers and Metabolomics of Childhood Aggression

F.A. Hagenbeek^{1,2}, C. Kluft³, A. Harms^{4,5}, R. Berger^{4,5}, T. Hankemeier^{4,5}, M. Bartels^{1,2,6} & D.I. Boomsma^{1,2,6}

¹Dept Biological Psychology, VU Amsterdam. ²EMGO+ Institute for Health and Care Research, Amsterdam. ³Good Biomarker Sciences Leiden. ⁴Analytical Biosciences, Leiden Academic Center for Drug Research, Leiden Univ. ⁵The Netherlands Metabolomics Centre, Leiden. ⁶Neuroscience Campus Amsterdam.

Contact: f.a.hagenbeek@vu.nl

Introduction

- Research in the biochemical basis of aggressive disorders has focused on putative biomarkers of various classes in isolation:
 - Aggression biochemistry research will benefit from a more holistic approach as provided by metabolomics (Hagenbeek, et al. 2016).
 - A previous metabolomics study suggested at a relationship between serum amino acid levels with aggression and psychopathy in adult males (Gulsun, et al. 2016).
- By identifying urinary biomarkers of aggression **ACTION** aims to unravel processes and pathways leading to childhood aggression.

Table 1. List of candidate biomarkers for ACTION		
Substance P	Cholecystokinin	Total oxidative capacity
Enkephalin- Methionine	Serum amyloid albumin	8-hydroxydeoxyguanosine
Enkephalin-Leucine	Interleukin-6	Ox-bilirubin (biopyrin)
Beta-endorphin	Procalcitonin	Hexanoyl lysine adduct
Dynorphin	Albumin	Malondialdehyde
Neurotensin	Creatinine	Neopterin
C-peptide	Glucose	Cotinine

Data collection & Pilot Studies

- ACTION aims to simultaneously collect DNA material, urine samples, health information & aggression score in children of 7 to 12 years of age registered with the Netherlands Twin Register (NTR).
- Prior to start data collection a **Practical Pilot** was conducted to test the urine collection protocol in 6 non-aggressive children.

Invitation & informed consents

Urine collection material & questionnaires

DNA collection kit

- In the **Technical Pilot** the temporal stability of our selected biomarkers (see **Table 1**), the **GC-MS biogenic amines** platform and the **UPLC-MS/MS organic acids** platform was evaluated in 20 non-aggressive twin children (60% males).
 - Temporal stability was assessed by comparing urine samples from two separate days (approximately 19 days apart).
 - Of the 19 selected biomarkers, 5 are discontinued, the remaining 14 biomarkers and 2 additional biomarkers will be continued in the next phase.
 - Both metabolomics platforms will be continued in the next phase, as well as an additional metabolomics platform targeting steroids.

Biochemical Study

- Aim: Attempt to detect contrast between aggression cases and controls using a broad metabolomics approach.
- Participants: 222 twin children (50% females) of 6-12 years of age selected for high- or low-aggression status (89 cases & 133 controls).
 - After cleaning, metabolomics data and current aggression status was available for 100 cases and 90 controls.
- Lasso regression: lasso regression was unable to find significantly predictive metabolites for the amines platform. Lasso regression for the organic acids resulted in a model with 4 metabolites:2-hydroxybutyric acid, Succinic acid, Aspartic acid & Uracil.
 - The predictive value of the model including the 4 organic acids is relatively poor (see **Fig 1**), though it outperforms age only and adding age to the model increases the predictive accuracy.
- Univariate Follow-up: GEE models correcting for family structure and including age, vitamin use and batch effect as covariates found a significant association with aggression for 2-hydroxybutyric acid (β = 0.31, p = 0.04).
- **Further Analyses:** The lasso model selection analyses will be repeated in a mixed-model framework in order to correct for family structure.

Sensitivity

Wetabolites AUC = 0.667

Age AUC = 0.586

Age + metabolites AUC = 0.694

Fig. 1: Predictive accuracy lasso regression

metabolites organic acids platform.

Discovery Phase

 The aim of the **Discovery Phase** is the establishment of putative childhood aggression biomarkers as identified by the **Biochemical Study** in 600 monozygotic (**MZ**) twin pairs selected for their aggression (dis-) concordance status.

Conclusions & Future Directives

- Metabolites can be reliably and reproducibly measured in urine samples of 7-12 year old children as shown in the **Technical Pilot**.
- Lasso regression for the organic acids identified a model including 4
 metabolites as best predicting aggression case/control status in
 children in the Biochemical Study.
- The biomarkers and the steroid metabolomics platform of the Biochemical Study are currently being analyzed, statistical analyses will follow a.s.a.p.
- Recruitment and sample collection for the **Discovery Phase** will continue, with an anticipated end in the summer of 2017.
- After discovery of putative biomarkers in the **Discovery Phase**, these findings will be validated in a clinical cohort.

