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Abstract A large part of the variation in cognitive ability

is known to be due to genetic factors. Researchers have

tried to identify modifiers that influence the heritability of

cognitive ability, indicating a genotype by environment

interaction (G9E). To date, such modifiers include mea-

sured variables like income and socioeconomic status. The

present paper focuses on G9E in cognitive ability where

the environmental variable is an unmeasured environmen-

tal factor that is uncorrelated in family members. We

examined this type of G9E in the GHCA-database

(Haworth et al., Behav Genet 39:359–370, 2009), which

comprises data of 14 different cognition studies from four

different countries including participants of different ages.

Results indicate that for younger participants (4–13 years),

the strength of E decreases across the additive genetic

factor A, but that this effect reverts for older participants

(17–34 years). However, a clear and general conclusion

about the presence of a genuine G9E is hampered by

differences between the individual studies with respect to

environmental and genetic influences on cognitive ability.

Keywords Genotype by environment interaction �
Heritability � Environment � Intelligence � Development �
Ability differentiation

Genetic and environmental influences on individual differ-

ences in cognitive ability have enjoyed extensive investi-

gation (see Plomin and Spinath 2004, for an overview).

Using family-based designs, in which phenotypic variance is

decomposed into additive genetic, unique environmental,

and common environmental effects shared by family mem-

bers (denoted A, E, and C, respectively), heritability esti-

mates have been reported between roughly 0.5 and 0.7 for

adolescents and adults (see McGue 1997). For young chil-

dren the heritability is somewhat lower than 0.5 (see Haworth

et al. 2010), and for infants as young as 10 months, the heri-

tability is appreciably lower (Tucker-Drob et al. 2011).

Having established that, at least beyond childhood,

genetic factors explain a substantial part of the phenotypic

variance in cognitive abilities, the question arises whether

the heritability of cognitive ability is constant across the

range of environmental effects. We consider variation in

heritability as a function of an environmental variable to be
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a potential manifestation of Genotype by Environment

interaction (G9E; Eaves et al. 1977). Measures that have

shown to influence or moderate the heritability of cognitive

ability include parental income (Harden et al. 2007),

socioeconomic status (Tucker-Drob et al. 2011; Turkhei-

mer et al. 2003), parental education (Grant et al. 2010;

Rowe et al. 1999; Van der Sluis et al. 2008), and educa-

tional attainment (Johnson et al. 2009). It is clear that the

moderators in these studies are not strict environmental

measures, although they may have a strong influence on the

effective environment (Plomin and Daniels 1987).

The present paper focuses on the detection of genotype

by environment interaction in cognitive ability where the

environment variable is unmeasured (Jinks and Fulker

1970; Van der Sluis et al. 2006; Molenaar et al. 2012).

Testing for genotype by unmeasured environment is

important for a number of reasons, discussed below.

Screening. G9E can be studied in phenotypic variables

while relevant environmental variables—i.e., variables that

interact with genotype—are unknown or data on these

variables are lacking. This opens the possibility to screen

phenotypic variables for G9E, in the absence of any

explicit theory identifying potential environmental mod-

erators (see Molenaar et al. 2012). Once G9E is detected,

one could investigate which environmental variables con-

tribute to this interaction.

GWAS. Testing for gene by unmeasured environment is

of interest in the context of Genome-wide association

studies (GWAS). In GWAS, G9E interaction is usually not

modeled, although the presence of unmodeled G9E is

hypothesized to affect the power to detect genetic variants.

Several authors have suggested that the failure of GWAS to

detect associations between phenotypes and common

genetic variants (i.e., the ‘missing’ or ‘hidden’ heritability

problem) might at least partly be due to unmodeled G9E

(e.g., Eichler et al. 2010; Maher 2008; Manolio et al. 2009).

For those phenotypes that display G9E, the identification

of the environmental factors causing the G9E would be of

biological interest, and could facilitate the detection of

associated genetic variants in GWAS.

Ability differentiation. Genotype by unmeasured envi-

ronment interactions are relevant to substantive hypothe-

ses. Most notably, Molenaar et al. (2012) discussed how

the ability differentiation hypothesis (Spearman 1927) can

be investigated by testing for a G9E interaction on IQ test

scores in the ACE-model. Ability differentiation concerns

the hypothesis that correlations among IQ subtests scores

decrease for increasing levels of the underlying general

intelligence factor, g (Jensen 1998; Spearman 1927).

Ability differentiation has been operationalized as a non-

linear relation between g and the subtest scores (Tucker-

Drob 2009), a non-normal g-distribution (Molenaar et al.

2011), heteroscedastic residual variances (Hessen and

Dolan 2009), or smaller g variance at higher g levels

(Reynolds et al. 2010). G9E represents another important

avenue to the conceptualization and analysis of ability

differentiation. The observation that g is substantially

heritable (e.g., McGue 1997) may imply that the additive

genetic factor, A, underlying g is a relatively weaker source

of individual differences as the level of g increases. This

implication may result if the unique environmental vari-

ance is greater at higher levels of A, i.e., an interaction

between A and E.

Tucker-Drob (2009) related ability differentiation to

gene by observed environment interaction. Specifically,

they showed that when the environmental measure is cor-

related with g (as is the case with SES for instance), ability

differentiation can result in spurious interactions between

genotype and the observed environment measures. Other

research related to ability differentiation and G9E con-

cerns studies into the differential heritability of IQ (Det-

terman 1990; Sundett et al. 1994; Thompson et al. 1993;

Brant et al. 2012), which addressed the question whether A

is an equally strong source of individual differences across

all levels of IQ (i.e., AxIQ interaction). Here, we follow

Jinks and Fulker (1970) and address the question whether

the environmental influences on IQ are an equally strong

source of individual differences across all levels of A.

In the present article, we test for a genotype by

unmeasured environment interaction on cognitive ability in

a large dataset on cognitive ability from the GHCA con-

sortium (Genetics of High Cognitive Abilities; Haworth

et al. 2009). These data comprise IQ scores from 14 studies

conducted in Four different countries: US, UK, Australia,

and the Netherlands. We analyzed the GHCA database,

taking into account the variability of the IQ measures

within the individual studies. Note that the same data has

also been analyzed by Haworth et al. (2010). In this prior

study, a linear increase of heritability was found across age.

In the present study, we test for G9E in these data using

the method proposed by Molenaar et al. (2012). This

method is related to the test of Jinks and Fulker (1970, see

above; see also Van der Sluis et al. 2006), but has the

advantage of including data of both MZ and DZ twins

which increases power due to the separation of common

and unique environmental factors. In the present paper we

first present the G9E-model and describe the data in the

GHCA database, and then present and discuss the results of

fitting the G9E model to these data.

The heteroscedastic ACE-model

Let Yij denote the phenotypic score of the jth twin (j = 1,

2) of the ith twin pair (i = 1, …, N). In the standard ACE-

model, Yij is described by the following linear equation:
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Yij ¼ m þ Aij þ Cij þ Eij; ð1Þ

where m is an intercept. The additive genetic factor (Aij),

the common environmental factor (Cij), and the unique

environmental factor (Eij) are assumed to follow a normal

distribution with zero-means and variances rA
2 , rC

2 , and rE
2

respectively. In addition, it holds that cor(Ci1, Ci2) = 1,

cor(Ei1, Ei2) = 0, cor(Ai1, Ai2) = 1, in MZ twins, and

cor(Ai1, Ai2) = 0.5, in DZ twins. Under the assumption

that Aij, Cij, and Eij are uncorrelated, the phenotypic

variance rY
2 can be decomposed as follows:

r2
Y ¼ r2

A þ r2
C þ r2

E: ð2Þ

Within the ACE-model, Molenaar et al. (2012)

distinguished two possible G9E interactions, i.e., the

interaction between A and C, and the interaction between

A and E. To model these two interactions, we condition on

A, i.e.,

r2
YjA ¼ r2

CjA þ r2
EjA: ð3Þ

In Eq. (3), G9E can be modeled by allowing the

variance of C and E to depend on the level of A. For

instance, the variance of E can be decreasing across levels

of A, which would mean that the heritability effectively

increases. To this end, we specify a function to relate rE
2

and rC
2 to A. Van der Sluis et al. (2006) and Hessen and

Dolan (2009) proposed to use the exponential function, as

the range of this function is non-negative, which is

desirable for a variance parameter. Thus, the ACE-model

can be extended to include G9E in the following way:

r2
YjA ¼ r2

CjA þ r2
EjA ¼ exp c0 þ c1Að Þ þ exp b0 þ b1Að Þ;

ð4Þ

where c0 and b0 are baseline parameters which account for

the part of the variance of C and E that does not depend on

A, while c1 and b1 are linear interaction parameters, which

model the possible dependency of respectively the variance

of C and E on A. We refer to this model as the heteros-

cedastic ACE model, as the C and E factor are heteros-

cedastic across A. From now, we use the term ‘G9E’ to

refer to the general concept of ‘genotype-by-environment

interaction’ and we use the term A9C or A9E to refer to a

specific operationalization within the heteroscedastic ACE

model. Thus, G9E can be established by testing b1 to be

significantly different from 0 (indicating an A9E interac-

tion) and/or by testing c1 to be significantly different from

0 (indicating an A9C interaction).

In the heteroscedastic ACE-model, we cannot simply

use rA
2 as an estimate for the heritability as this parameter

is not appropriately standardized. In the presence of G9E

effects in the ACE model, rA
2 needs to be standardized by

using

h2 ¼ r2
A

r2
A þ exp c0 þ 1

2
c2

1

� �
þ exp b0 þ 1

2
b2

1

� �

The two terms involving exp(.) in the denominator

concern the marginal variance of C and E respectively (see

Hessen and Dolan 2009). If c1 and b1 are 0 (i.e., no A9C

and A9E interactions), the formula for h2 reduces to the

traditional formula for heritability, rA
2 /(rA

2 ? rC
2 ? rE

2). It

can therefore be seen that h2 and the traditional heritability

estimate diverge when the absolute value of c1 and/or b1

increases.

The tests of b1 and c1 discussed above (Eq. 4) concern

generalized linear G9E interactions.1 It is possible to test

for generalized curvilinear interactions by extending Eq.

(4) into

r2
YjA¼ r2

CjA þ r2
EjA ¼ exp c0 þ c1A þ c2A2

� �

þ exp b0 þ b1A þ b2A2
� � ð5Þ

Here, b2 and c2 are curvilinear interaction parameters

that can be tested on significance similarly as discussed

above.

The statistical properties of the model in Eq. (4) are well

documented (Jinks and Fulker 1970; Van der Sluis et al.

2006; Molenaar et al. 2012). It has been shown that

parameter recovery is satisfactory, that both A9E and

A9C interactions can be estimated together, and that

power to detect A9E is generally good. The detection of

A9C interactions, however, requires large samples

(Molenaar et al. 2012).2 It should be noted that the

approach in Eq. (4) does not take into account the possi-

bility that C and E interact (i.e., C9E). Molenaar et al.

showed that the presence of C9E does not appreciably

affect tests of A9C. However, if C is the main source of

variation, the detection of A9E is affected by the presence

of C9E (i.e., unmodeled C9E may be incorrectly detected

as A9E). Nevertheless, we found that, when A is the main

source of variation, the presence of C9E hardly affects the

detection of A9E. As A can be considered the predominant

source of variation in IQ data (at least from childhood

onwards), the presence of C9E in the data is not expected

to affect tests on G9E using the present method (see

Molenaar et al. 2012). We note, however, that there is

1 The interactions are not purely linear as we use exponential

functions in Eq. (4). However the interactions are linear in the

logarithm of the variance of E and C, we therefore refer to the

interactions as generalized linear interactions.
2 The exact sample size needed for sufficient power to detect A9C

interactions depends on a number of aspects (e.g., strength of A,

effect size of the A9C interaction, and the effect sizes of other

interactions in the data). In a ‘basic setting’ (A is the predominant

source of variation, A9C effect size is moderate, and there are no

other interactions in the data) a total sample size of 4,000 is needed

(2000 MZ and 2000 DZ twins) for a power of 0.8.

210 Behav Genet (2013) 43:208–219

123



empirical support for C9E in cognitive ability (Kremen

et al. 2005; Hanscombe et al. 2012). Thus, although pres-

ence of C9E does not appreciably affect tests on G9E,

heritability estimates might be affected. In a small simu-

lation study based largely on the setting of the simulation in

the Molenaar et al. paper (results are available upon

request), we found that the presence of C9E did not affect

heritability estimates (percentage bias were close to 0). In

addition, we found a minor effect on the estimate of rC
2 ,

i.e., percentages bias of 3 to 8 % for increasing effect size

of the C9E effect. We believe that such biases are within

the acceptable range given the purposes of the present

undertaking. We therefore conclude that the presence of

unmodeled C9E will not importantly affect the results as

reported below.

The G9E model can be fitted to data of both MZ and

DZ twins using marginal maximum likelihood (MML;

Bock and Aitkin 1981). In this procedure, the observed

data, conditional on A, are assumed to follow a normal

distribution. Note that unconditionally, the phenotypic data

may be non-normal, as the presence of G9E will generally

result in non-normality (Eaves et al. 1977). In principle, a

marginal test on normality could be conducted on singleton

data to test for G9E (e.g., the Shapiro-Wilks test on nor-

mality, Shapiro and Wilks 1965). However, as the present

tests on non-normality are more specific, power to detect

non-normality is larger as compared to the marginal tests

(see Molenaar et al. 2010). In addition, to be able to dis-

tinguish A9C from A9E, singleton data is not sufficient

and twin data is required. The model from Eq. (5) is fitted

using the freely available software package Mx (Neale

et al. 2006). As both A9C and A9E can be combined in a

single model, the free parameters to be estimated are: rA
2 ,

b0, b1, b2, c0, c1 and c2. Example script are available on the

website of the first author.

Application to GHCA data

Description of the data

The database comprises univariate IQ scores of 14 studies

conducted in four countries: US (Colorado, three studies;

Minnesota, two studies; Ohio, one study), UK (one study),

Australia (one study), and the Netherlands (six studies).

Aggregating all of these data yields a total of 10,897 twin

pairs (4911 MZ pairs and 5986 DZ pairs). The age of the

participants varies from 4 to 71. For each twin in the

database, an IQ measure is available. Across the different

studies, different test batteries have been used to obtain IQ

score. For instance, in one of the US studies, the short form

of the Stanfort-Binet Intelligence Scale was used; in

the UK study, Three subtests of the WISC-III were

administered together with Raven’s progressive matrices;

and in another study from the US, the full WISC-III was

used. We refer to Haworth et al. (2009) and the references

therein, for a detailed overview of the IQ test batteries used

in the different studies.

Analysis

As the aggregated data are heterogeneous with respect to

age, we follow Haworth et al. (2010), and perform the

analysis within more age-homogenous subgroups. Haworth

et al. considered Three age categories: 4–10, 11–13, and

14–34. All participants above age 34 are omitted as there

were too few participants in this age range to construct a

reasonably homogenous subgroup with respect to age. In

our analysis, we modified the age categories of Haworth

et al. because we considered it possible that the nature of

G9E differs between adolescents (who presumably are still

in school and live at home) and young adults. Specifically,

we created the categories: 4–10, 11–13, 14–16, and 17–34.

We note that the general pattern of results, as presented

below, does not depend on the exact age categories that are

used: results are generally the same for the Haworth et al.

age categories. However, our categorization does provide a

clearer picture of how G9E changes across age. See

Table 1 for the sample sizes within the age groups of both

Haworth et al. and our age categorization.

As can be seen in Table 1, in our alternative categori-

zation, the third category of Haworth et al. (2010) is split

into one relatively homogenous age group (14–16), and an

additional group (age 17–34). We also considered a second

alternative in which this additional group was made more

homogenous (i.e., participants of ages 17–20), but this

categorization did not alter the results.

The aggregated data are potentially heterogeneous as

they originated from 14 different studies. To establish

whether the results within the age groups hold across the

different studies, we conduct the analyses on both the

aggregated data and on the data of each of the 14 individual

studies. Table 2 provides the distribution of participants

Table 1 Number of MZ and DZ twin pairs (NMZ; NDZ) within the

age categories as used by Haworth et al. and as used in the present

study

Group no Haworth et al. Present

Age NMZ NDZ Age NMZ NDZ

1 4–10 1,140 1,613 4–10 1,140 1,613

2 11–13 2,195 2,722 11–13 2,195 2,722

3 14–34 1,507 1,582 14–16 807 966

4 - - - 17–34 700 616

Total N - 4,842 5,917 - 4,842 5,917
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over age categories and studies. Some studies include only

participants in one age category (e.g., Netherlands #1),

while other studies include participants in multiple age

categories (e.g., Colorado #1). In some cases, a study

contained too few participants in a given age category to

enable model fitting on this subsample (e.g., Netherlands

#4 only contains 13 MZ twins and 14 DZ twins between 14

and 16 years old). Therefore, for our analyses, we only

select 17 subsamples that we considered large enough to

provide stable parameter estimates. These samples are

shown in boldface print in Table 2. Note that we omitted

Netherlands #5 because we considered the total sample size

to be too small, and we omitted Netherlands #6, as this

study only contains participants of age 40–70. In the

analysis on the aggregated data however, we do include

Netherlands #5. The data are standardized within each

study by the original authors (Haworth et al. 2009). We

additionally standardized the data within each age group.

The resulting data thus are standardized in each age 9

study cell of the design.

Results

MZ and DZ twin correlations of the IQ measures in the 17

subsamples are presented in Table 3. In the Table the

skewness, kurtosis, and the Shapiro-Wilks test of normality

are also given as non-normality could be an indication of

G9E. As can be seen, normality is rejected in the first two

aggregated age categories. As indicated by the skewness,

the IQ distributions have a heavier lower tail (negatively

skewed), suggesting that the variance of E and or C might

be decreasing across A. However, these are just indica-

tions; more elaborate tests are possible with the heteros-

cedastic ACE model. We present these results next.

Table 4 gives the parameter estimates of the heteros-

cedastic ACE model with linear and curvilinear effects for

the A9E and A9C interactions on the aggregated data. In

the aggregated data, we investigated within each age group,

whether the linear and quadratic effects improved model

fit. These results are in Table 5. As can be seen, the model

with a linear A9E effect only is favored by the likelihood

ratio test (LRT), AIC and BIC in all age groups except age

group 14–16. In this age group, results are mixed as the

AIC favors the full model and the BIC indicates that none

of the G9E effects (i.e., A9E and A9C) are significant. As

the latter model is more parsimonious, we accept that in

age group 14–16, no interactions are present. As none of

the A9C interactions were significant and at most linear

A9E interactions were found, we focused on the results of

the ACE model with a linear A9E interaction in all age

groups for the remaining analyses. See Table 6 for the

heritability and standardized parameter estimates within

each age group for each individual study and the aggre-

gated data. As can be seen, in most cases h2 is close to rA
2

indicating that heritability as operationalized in the ACE

model (i.e., as the standardized estimate of rA
2 ) is only

mildly affected by the A9E.3

In Fig. 1, we plotted the heritability estimates within

each of the 17 subsamples against the average age of the

subsamples. The plot is consistent with the findings of

Haworth et al. (2010) in this dataset, i.e., that heritability

increases monotonically with age. As can be seen in the

figure, there are substantial differences in the heritability

estimates across studies. Some of these differences may be

attributed to sample size (i.e., the small studies of

approximately the same average age show differences due

Table 2 Number of MZ and

DZ twin pairs (NMZ; NDZ)

within each age category for

each study in the GHCA

database

Samples used for the analysis of

the individual studies are in

boldface

Study Total N Age 4–10 Age 11–13 Age 14–16 Age 17–34

Netherlands #1 125; 112 125; 112 0; 0 0; 0 0; 0

Netherlands #2 49; 63 49; 63 0; 0 0; 0 0; 0

Netherlands #3 79; 111 0; 0 79; 111 0; 0 0; 0

Netherlands #4 79; 108 0; 0 0; 0 13; 14 66; 94

Netherlands #5 36; 58 0; 0 0; 0 0; 0 36; 58

Netherlands #6 69; 69 0; 0 0; 0 0; 0 0; 0

Colorado #1 752; 1,025 391; 534 204; 280 126; 173 31; 38

Colorado #2 215; 175 17; 6 13; 14 153; 125 32; 30

Colorado #3 332; 364 0; 0 30; 44 99; 140 203; 180

Minnesota #1 777; 469 43; 16 734; 453 0; 0 0; 0

Minnesota #2 410; 214 0; 0 0; 0 92; 31 318; 183

Australia 338; 515 0; 0 0; 0 324; 483 14; 32

Ohio 121; 171 121; 171 0; 0 0; 0 0; 0

UK 1,529; 2,532 394; 714 1,135; 1,818 0; 0 0; 0

3 In the absence of both A9E and A9C (i.e., b1 = 0 and c1 = 0),

h2and standardized rA
2 are equivalent, see the formula for h2 above.
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to sampling fluctuations). However, results of some of the

larger studies also show substantial differences, even

though the average age is approximately the same over the

studies. We return to this point below.

The A9E interactions as obtained in each study and in

the aggregated data are depicted in Fig. 2 for each age

group. From the results of the aggregated data in Fig. 2a, b,

it appears that in age categories 4–10 and 11–13, the var-

iance of E is decreasing across levels of A. The decrease is

significant at a = 0.05, according to both the likelihood

ratio test and the 95 % confidence interval of b1 (see

Table 6).4 Within the individual studies some differences

in the form of the G9E are apparent, but individual study

results tend to follow the trend from the aggregated data.

Main departures are Colorado #1 in age group 4–10, and

Minnesota #1 in age group 11–13. Both studies show a

significant effect in the opposite direction as compared to

the effect in the aggregated data, i.e., the variance of E

increases with A. Other studies show no effect or an effect

consistent with the aggregated result.

In age category 14-16, no effect is observed in the

aggregated data according to the likelihood ratio test and

the confidence interval of b1 (see Table 6). Within the

individual studies some differences in the form of the A9E

are apparent, but results tend to follow the results from the

aggregated data. Some studies show an effect in the

opposite direction (i.e., Colorado #1, Ohio, Colorado #2,

and Minnesota #1). However, none of these effects are

significant at a = 0.05 (see Fig. 2c; Table 6).

In age category 17–34, Fig. 2d, the aggregated data show

an increase of rE
2 across A. This effect is significant

according to the likelihood ratio test and the confidence

Table 3 MZ and DZ correlations, skewness, kurtosis and a test on normality of the IQ measures in the 17 subsamples within each age category

Cat Study Cor Skewness Kurtosis p value S–W test

MZ DZ Twin 1 Twin 2 Twin 1 Twin 2 Twin 1 Twin 2

4–10 Netherlands #1 0.70 0.49 -0.41 -0.56 2.99 3.56 0.01 0.00

Netherlands #2 0.78 0.51 -0.16 0.21 3.73 2.99 0.23 0.27

Colorado #1 0.81 0.52 0.09 -0.12 3.12 3.19 0.05 0.03

Ohio 0.76 0.55 0.10 -0.06 2.85 3.03 0.69 0.69

UK 0.66 0.50 -0.33 -0.35 2.94 2.88 0.00 0.00

Aggregated 0.74 0.54 -0.12 -0.21 3.14 3.12 0.00 0.00

11–13 Netherlands #3 0.86 0.53 -0.02 -0.06 3.26 2.84 0.37 0.39

Colorado #1 0.87 0.55 0.10 0.17 2.74 2.75 0.29 0.09

Minnesota #1 0.76 0.51 0.17 0.05 3.10 3.35 0.01 0.06

UK 0.68 0.44 -0.58 -0.67 3.39 3.52 0.00 0.00

Aggregated 0.73 0.47 -0.31 -0.38 3.20 3.29 0.00 0.00

14–16 Colorado #1 0.84 0.52 0.29 0.20 3.27 3.25 0.05 0.38

Colorado #2 0.88 0.46 -0.12 -0.11 3.33 2.91 0.05 0.19

Colorado #3 0.77 0.49 0.21 -0.05 3.48 3.73 0.03 0.03

Minnesota #2 0.81 0.42 0.27 0.16 2.39 2.50 0.05 0.48

Australia 0.82 0.45 -0.13 -0.09 2.46 2.46 0.00 0.00

Aggregated 0.83 0.46 -0.02 -0.04 2.94 2.93 0.22 0.17

17–34 Netherlands #4 0.86 0.34 -0.21 -0.21 2.48 2.27 0.08 0.05

Colorado #3 0.86 0.57 -0.03 -0.03 2.74 2.89 0.44 0.82

Minnesota #2 0.80 0.52 0.53 0.52 3.23 3.07 0.00 0.00

Aggregated 0.82 0.49 0.13 0.13 3.00 3.08 0.16 0.05

‘Cor’ denotes twin correlation. p values of the S–W (Shapiro-Wilks) test smaller than one’s alpha level indicate non-normality. Normality is

characterized by skewness and kurtosis of 0 and 3, respectively. Note that the aggregated analysis does include the Netherlands #5 and

Netherlands #6 studies

Table 4 Parameter estimates of the heteroscedastic ACE model with

linear and curvilinear effects for the A9E and A9C interactions

Age group b0 b1 b2 c0 c1 c2

4–10 -1.46 -0.37 0.04 -1.15 0.02 0.03

11–13 -1.53 -0.47 -0.13 -1.53 -0.13 0.08

14–16 -1.81 -0.09 -1.08 -2.44 0.54 -0.04

17–34 -1.90 0.39 -0.27 -1.70 -0.03 0.06

4 We considered 95 % one-at-a-time confidence intervals as an

exploratory tool to see which parameters are significantly different

from 0 for a = 0.05. We also conducted likelihood ratio tests on b1

which can be used to provide a stricter test on the significance of this

parameter for any a( see Table 4).
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interval of b1 (see Table 6). The effect in the aggregated data

is reproduced in the Minnesota #3 study. However, the

Colorado #3 study shows an effect in the opposite direction.

If we compare the results from Table 6 to those from

Table 3, we can conclude that generally, G9E is present in

the data (Table 6) if normality is rejected (Table 3).

However, for some cases this does not hold. For instance,

the Colorado #3 study in age group 14–16 is not associated

with a G9E interaction, but normality is rejected. The

opposite is also observed, e.g., in the Colorado #3 study

G9E is present but normality is not rejected.

Conclusion on aggregated data

In the aggregated data, we observed that for participants

between the age of 4–10 and 11–13, the influence of the

unique environmental factor, E, decreases with increasing

levels of the additive genetic factor, A. In participants between

the age of 14 and 16, no effect was detected. In the participants

between 17 and 34, the influence of factor E increased with

increasing levels of A. Taken at face value, this pattern of

results suggests that the direction of the A9E on IQ reverts

during adolescence and young adulthood. However, as we

discuss next, given the differences in the results between the

samples, this conclusion should be drawn with care.

Different results across studies

The pattern of results as presented in Table 6

reveals substantial differences between the individual

studies.5 First, estimates of the additive genetic effects, rA
2 ,

within each age group vary considerably over the studies.

For age 4–10, 11–13, 14–16, and 17–34, estimates range

from 0.32 to 0.65, from 0.49 to 0.64; from 0.54 to 0.79; and

from 0.53 to 0.85, respectively. Part of these differences

can be explained by the small sample size of some of the

studies, which renders the estimate of rA
2 subject to large

sampling error. Still, some of the larger studies within the

same age group show substantial differences in the esti-

mates of rA
2 . For instance, in the age category of 4–10, the

estimate is 0.32 in UK study (N = 1,108), but 0.65 in the

Colorado #1 study (N = 925). In addition to the differ-

ences with respect to rA
2 , we see some differences with

respect to the effect of the common environment, rC
2 . For

age 4–10, 11–13, 14–16, and 17–34, estimates of rC
2 range

from 0.19 to 0.34; from 0.16 to 0.27; from 0.00 to 0.24; and

from 0.06 to 0.31, respectively. Again, some of these dif-

ferences may be due to sampling error, yet, large studies do

show variable results, for instance, the estimate of rC
2 is

Table 5 Model fit indices for the heteroscedastic ACE-model

Model Description Age group 4–10 11–13 14–16 17–34

Statistic

b1, b2, c1, c2 Full model LRT - - - -

AIC 3,121 5,657 1,795 1,239

BIC -14,706 -29,099 -8,789 -6,172

b1, b2, c1,– Drop curvilinear A9C LRT 0.28 1.83 6.76 2.97

AIC 3,120 5,656 1,799 1,240

BIC -14,710 -29,102 -8,790 -6,174

b1,–, c1,– Drop curvilinear A9E LRT 0.06 0.03 0.12 0.01

AIC 3,118 5,654 1,797 1,238

BIC -14,714 -29,106 -8,793 -6,177

b1,–,–,– Drop linear A9C LRT 1.87 0.07 2.55 0.17

AIC 3,118 5,652 1,798 1,237

BIC -14,717 -29,110 -8,796 -6,181

–,–,–,– Drop linear A9E LRT 42.06 258.91 0.01 18.93

AIC 3,158 5,909 1,796 1,253

BIC -14,699 -28,985 -8,800 -6,175

For the AIC and BIC, best values are in boldface. The unrounded AIC value for the third and fourth model equal respectively 3,117.691 and

3,117.565. The likelihood ratio test (LRT) concerns one degree of freedom

5 Our implementation of A9C involves fitting the model subject

to var(Cj) = exp(c0 ? c1Aj) where j = 1,2, with cov(C1,C2) =

sqrt(exp(c0 ? c1 A1)) 9 sqrt(exp(c0 ? c1A2)), (see Molenaar et al.

2012). This can be interpreted as a scalar effect of Aj on the variance

of C. In the light of comments by an anonymous reviewer, we also

fitted the AT-model with AxT interaction, where ‘T’ denotes the total

environment, i.e., T = C ? E, as proposed by Carey (2009). Our

results in terms of the interactions and their heterogeneity over

samples do not depend on our specific modeling choice. That is, in

the AT analyses, the direction of the effects in Table 6 were

replicated for all studies. These additional results are available from

www.dylanmolenaar.nl
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Table 6 Age descriptives, heritability, standardized parameter estimates, and number of MZ and DZ twins within each age category for both the

aggregated data and the data within each study

Cat Study NMZ NDZ Age Heritability Variance of A Variance of E baseline and A9E

parameter

Variance of C v2(1)

Mean sd h2 rA
2 b0 (baseline) b1 (A9E) rC

2

4–10 Netherlands #1 125 112 5.80 0.06 0.43 0.42

(0.18; 0.68)

-1.43

(-1.77; -1.13)

-0.70

(-1.09; -0.34)

0.26

(0.03; 0.50)

14.62

Netherlands #2 49 63 9.10 0.10 0.53 0.52

(0.18; 0.98)

-1.54

(-1.92; -1.11)

-0.16

(-0.64; 0.29)

0.24

(0.00; 0.60)

0.53

Colorado #1 391 534 8.92 0.80 0.64 0.65

(0.51; 0.84)

-1.82

(-2.04; -1.59)

0.42

(-0.17; 0.68)

0.19

(0.05; 0.32)

2.65

Ohio 121 171 6.07 0.68 0.42 0.42

(0.21; 0.65)

-1.46

(-1.71; -1.20)

0.13

(-0.19; 0.46

0.34

(0.12; 0.55)

0.62

UK 394 714 10.59 0.24 0.32 0.32

(0.18; 0.46)

-1.21

(-1.37; -1.06)

-0.53

(-0.72; -0.37)

0.34

(0.22; 0.45)

42.52

Aggregated 1,140 1,616 9.06 1.79 0.42 0.41

(0.34; 0.49)

-1.42

(-1.52; -1.33)

-0.33

(-0.45; -0.22)

0.34

(0.26; 0.41)

33.98

11–13 Netherlands #3 79 111 12.02 0.08 0.64 0.64

(0.41; 0.87)

-1.95

(-2.25; -1.62)

-0.02

(-0.49; 0.51)

0.21

(0.00; 0.47)

0.01

Colorado #1 204 280 11.85 0.81 0.65 0.64

(0.50; 0.80)

-2.06

(-2.26; -1.85)

0.14

(-0.13; 0.43)

0.22

(0.08; 0.38)

1.01

Minnesota #1 734 453 11.82 0.40 0.49 0.49

(0.36; 0.62)

-1.44

(-1.55; -1.33)

0.23

(-0.001; 0.42)

0.27

(0.14; 0.40)

3.82

UK 1,135 1,818 11.78 0.40 0.50 0.49

(0.41; 0.57)

-1.37

(-1.47; -1.28)

-0.73

(-0.83; -0.64)

0.16

(0.09; 0.23)

306.29

Aggregated 2,195 2,720 11.83 0.47 0.56 0.52

(0.46; 0.59)

-1.45

(-1.52; -1.38)

-0.52

(-0.60; -0.45)

0.21

(0.15; 0.27)

203.10

14–16 Colorado #1 126 173 14.74 0.77 0.80 0.79

(0.63; 0.93)

-2.12

(-2.36; -1.86)

0.09

(-0.26; 0.46)

0.08

(0.02; 0.26)

0.27

Colorado #2 153 125 16.00 0.00 0.75 0.76

(0.49; 0.96)

-2.03

(-2.31; -1.76)

0.57

(0.25; 0.93)

0.10

(0.02; 0.36)

11.58

Colorado #3 99 140 14.75 0.84 0.54 0.54

(0.28; 0.81)

-1.54

(-1.97; -1.21)

-0.33

(-0.95; 0.12)

0.24

(0.00; 0.50)

1.89

Minnesota #2 92 31 16.84 0.10 0.81 0.77

(0.62; 0.93)

-1.70

(-1.95; -1.42)

0.19

(-0.16; 0.52)

0.00

(0.00; 0.34)

1.13

Australia 324 483 15.93 0.26 0.73 0.72

(0.59; 0.82)

-1.75

(-1.91; -1.59)

-0.24

(-0.45; -0.03)

0.09

(0.02; 0.22)

5.12

Aggregated 807 966 15.66 0.81 0.71 0.71

(0.63; 0.78)

-1.77

(-1.86; -1.67)

-0.05

(-0.20; 0.10)

0.12

(0.06; 0.20)

0.41

17–34 Netherlands #4 66 94 17.62 0.38 0.80 0.85

(0.62; 1.00)

-1.93

(-2.28; -1.55)

-0.11

(-0.53; 0.35)

0.06

(0.00; 0.23)

0.24

Colorado #3 203 180 19.46 2.00 0.53 0.53

(0.36; 0.73)

-1.85

(-2.11; -1.61)

-0.38

(-0.74; -0.05)

0.31

(0.11; 0.50)

4.94

Minnesota #2 318 183 17.63 0.36 0.57 0.56

(0.38; 0.76)

-1.76

(-1.97; -1.57)

0.53

(0.27; 0.82)

0.23

(0.07; 0.43)

17.21

Aggregated 700 615 18.78 2.71 0.69 0.69

(0.57; 0.80)

-1.77

(-1.88; -1.65)

0.19

(0.01; 0.37)

0.14

(0.05; 0.26)

4.39

v2(1) denotes a likelihood ratio test on parameter b1. 95 % confidence intervals are in brackets. In a few cases we experienced numerical difficulties in

estimating the lower bound of c0 because the number of DZ twins was too small. ‘Aggregated’ is based on the aggregated data within the corresponding age

category including the Netherlands #5 and Netherlands #6 studies. As some samples are omitted in the analysis of the individual studies (see Table 2), NMZ and

NDZ will not necessarily add up to the aggregated NMZ and NDZ
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0.34 in the UK study, and 0.19 in the Colorado #1 study in

the age range 4–10.

Finally, we see similar variability with respect to the

estimates of the A9E effect, b1. Within age groups,

estimates vary widely and can even be of opposite sign.

Large studies also show substantial differences, e.g., within

age group 17–34, the b1 of the Colorado #3 study equals

-0.38, while the Minnesota #2 study is associated with an

opposite effect (b1 = 0.53).

Differences in additive genetic and shared

environmental influences

Given the variability we observed with respect to estimates

of rA
2 and rC

2 , even in the larger studies, the question arises

how these differences come about. Here, we discuss pos-

sible causes.

First, studies differ substantial in the IQ measures that

were used. Some studies used full test batteries (Colorado #1,

Colorado #2, Netherlands #3, and Netherlands #4); others

used only two subtests (Colorado #3), four subtests (Ohio,

UK, Minnesota #1, Minnesota #2), five subtests (Australia),

or six subtests (Netherlands #1 and Netherlands #2). These

psychometric differences result in variation in the exact

composition of the IQ measure. For instance, some studies

rely only on the subtest from the Verbal Comprehension and

Perceptual Organization domain (e.g., the Minnesota stud-

ies), while in other studies (e.g., Colorado #1 and #2 studies)

measures are included from all major cognitive domains

(working memory, perceptual speed, etc.). This variation is

Fig. 1 Heritability (h2), as estimated in the 17 samples from the 14

individual studies, plotted against the average age of the sample. Sizes

of the dots are proportional to the sample size of the corresponding

sample. Both the regression line and correlation coefficient take the

differences in sample size into account

Fig. 2 Variance of E (rE
2) as a

function of A within each age

group. Dashed lines represent

the results of the individual

studies; the solid bold line
represents the results of the

aggregated data
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important as genetic, unique and common environmental

influences and G9E may differ across specific cognitive

abilities (e.g., Finkel et al. 1995).

Another source of differences in results between the

individual studies are the possible differences on background

variables which are known to be related to heritability, e.g.,

parental income, educational attainment, or SES (Turkhei-

mer et al. 2003). First, representativity of the samples may

differ across countries. For instance, in the Australia study,

twins are mainly from the entire Brisbane area while in the

Minnesota studies, all twins lived close to the laboratory

were testing took place. Thus the Minnesota sample is from a

specific region (i.e., where the laboratory was located), while

in the Brisbane sample, participants are from much more

varied regions. In addition, there are differences between the

individual studies in the way in which participants were

recruited. Some studies relied on birth records (e.g., Colo-

rado #2), others relied on primary and secondary schools

(e.g., Australia) or media advertisements (e.g., Ohio). Such

variability in recruitment might have resulted in differences

on background variables across countries.

Differences in genotype by environment interaction

across studies

The differences in the estimates of the A9E effect, b1, are

such that they defy substantive explanation. From Table 6,

it appears that the b1 estimates vary, with opposite effects

across studies within the same age group. For instance, in

age group 14–16, the Colorado #2 study shows a significant

effect with b1 = 0.57, while the Australia study is associ-

ated with a significant effect in the opposite direction,

b1 = -0.24. Similarly, in age category 17–34, two oppo-

site yet significant effects are observed: Colorado #3 with

b1 = -0.38 and Minnesota #2 with b1 = 0.53. Such dif-

ferences across studies render substantive conclusion in

terms of genuine genotype-by-environment interaction

difficult. Whether the A9E effects on the aggregated data

can be interpreted substantively remains an open question.

We discuss this further below.

Discussion

In this study we used a heteroscedastic ACE model to

investigate the presence of G9E in cognitive ability in 14

different studies conducted in Four countries covering four

different age groups.

Similar to the standard ACE model, the heteroscedastic

ACE model assumes that A, C, and E are uncorrelated and

the question arises whether violations of this assumption

affect results on G9E (i.e., tests on A9C and/or A9E). In

the Molenaar et al. (2012) study, we showed that a linear

correlation between A and E due to shared genetic effects

between the phenotype and a measure of E did result in

spurious G9E. However, it remains to be investigated

whether a direct correlation between A and E influences

tests on G9E. For instance, it is possible that A9E as

operationalized in the heteroscedastic ACE model, could

arise due to difference in the A-E or A-C correlation across

environments or genotypes. This would imply a nonlinear

relation between A and E or A and C which can possibly

influence the results concerning A9E and A9C respec-

tively. This is an interesting topic for further research.

In the present study, it appeared that results on the

aggregated data are difficult to interpret in terms of a gen-

uine G9E effect because results differed considerably with

respect to presence, as well as direction of the G9E effect,

across countries and ages. The possibility that differences in

measurement instruments across countries caused artificial

G9E in different directions cannot be ruled out (see Eaves

et al. 1977). We would have been more confident about the

genuineness and interpretation of the G9E results on the

aggregated data if we had observed consistent effects across

countries, studies, and age groups.6

Representativeness of the samples analyzed in a G9E

analysis is another important issue. As mentioned by

Turkheimer et al. (2003) and Hanscombe et al. (2012)

unrepresentativeness can affect G9E results if the sample

under consideration differs from the population on impor-

tant background variables. For instance, it has been argued

that the direction of G9E may be different at the extremes

of SES (Scarr 1992), suggesting that G9E results can

diverge across samples that differ with respect to SES.

Another problem with unrepresentative samples is that the

unrepresentativeness itself may be an spurious source of

non-normality (e.g., by oversampling either extreme of the

IQ distribution), which in turn may result in the detection

of spurious G9E.

Given its relative statistical and substantive importance,

it is remarkable to see that the detection of G9E in general,

and genotype by unmeasured environment interactions in

particular, is a challenging task (see Eaves et al. 1977;

Eaves 2006). A main problem is that measurement issues

such as floor or ceiling effects, and poor scaling may give

rise to spurious G9E. The question rises how we may

overcome these problems. First, univariate applications, as

in this paper, are particularly vulnerable to scale problems

as the unique environment factor E in an ACE decompo-

sition includes measurement error (Turkheimer and

Waldron 2000; Loehlin and Nichols 1976). As a result,

6 Note that in such a situation, in principle, one still should be careful

as the same artificial scale effects could have been replicated across

countries (see Eaves 2006). However, as –in this study- different

instruments were used across countries, we think that this would not

have been the case.
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heteroscedastic measurement error due to floor, ceiling,

and poor scaling effects can give rise to G9E (see also

Tucker-Drob 2009). A possible solution to this problem is

to use multiple measures of the same phenotypic construct

(e.g., multiple subtests scores of a given IQ domain). Given

multiple measures, measurement error can be separated

from the E component in the common-pathway model

(McArdle and Goldsmith, 1984; see also Eaves et al. 1977).

To this end, a measurement model needs to be specified,

linking the observed phenotypic measures to the latent

phenotypic construct. In the measurement model, residuals

may be heteroscedastic to accommodate poor scaling

effects. G9E can then be tested at the level of the latent

phenotype, in a similar way as above. Results pertaining to

G9E at this level can then be more confidently interpreted

in terms of a true G9E effect, as all measurement problems

are captured in the residuals (Molenaar et al. 2012).

Another possible solution is to test for G9E on the

phenotypic item level instead of on test or subtest level.

Using the appropriate measurement models, e.g., a Rasch

model (Rasch 1960) or a two-parameter model (Birnbaum

1968), each answer category of the item is modeled

explicitly. As a result, floor, ceiling, and poor scaling

effects cannot give rise to spurious G9E. Tests for G9E on

item level are readily available in the case of a measured

environmental variable, see Medland et al. (2009), and in

case of an unobserved environment (the methodology

proposed by Molenaar et al. 2012, could be used).

Taking all together, using the heteroscedastic ACE

model we did not find a consistent pattern of results

between age groups, datasets, and countries. We think that

these results are a clear illustration of the profound scale

issues that make investigations on G9E a challenging

undertaking. However, we hope to have touched on some

promising possibilities above, to address these scale issues

in future research.
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