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Abstract

Using multi-group covariance and means structure analysis (MG-CMSA), this study investigated whether sex differences were

present on the Dutch WAIS-III, and if so, whether these sex differences were attributable to differences in general intelligence ( g).

The sample consisted of 294 females and 228 males between 18 and 46 years old. Both first and second order common factor

models were fitted, the latter including g as second order factor. The results indicated that on the level of the subtests, females

outperform males on Digit–Symbol Substitution, and males outperform females on Information and Arithmetic. In addition, the

subtests Information proved to be biased in favor of males. With respect to the first order common factors, no sex differences were

found with respect to the factor Verbal Comprehension (once Information was effectively removed from the model). Yet, males

outperformed females on the factors Working Memory and Perceptual Organization, and females outperformed males on

Perceptual Speed. These sex difference on the level of the first order common factors were however not attributable to sex

differences in g. Summarizing, the present study showed that males and females do differ with respect to specific cognitive

abilities, but that g cannot be viewed as the source of these differences.

D 2005 Elsevier Inc. All rights reserved.
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1. Introduction

In comparing groups with respect to their cognitive

ability, one question of interest is whether mean group

differences observed on specific cognitive subtests are

attributable to differences in general intelligence, or dgT.
g is defined as the general factor underlying all aspects

of cognitive ability. It is assumed that all tests of
0160-2896/$ - see front matter D 2005 Elsevier Inc. All rights reserved.

doi:10.1016/j.intell.2005.08.002

* Corresponding author. Biological Psychology, VU Van der Boe-

chorststraat 1, 1081 BT Amsterdam, The Netherlands.

E-mail addresses: S.van.der.Sluis@psy.vu.nl (S. van der Sluis),

C.V.Dolan@uva.nl (C.V. Dolan).
cognitive ability measure g to some extent (Carroll,

1997; Jensen, 1981, 1998). Yet, an overall mean differ-

ence between groups on a collection of IQ (sub)tests,

even if significant, is not necessarily attributable to

differences in g (Jensen, 1998). Mean group differences

may also be due to bias at the level of the subtests, or

indicate sex differences in specific cognitive abilities

(i.e., broad primary factors of intelligence such as spa-

tial ability, or verbal ability), rather than sex differences

in general mental ability. The present study is

concerned with sex differences in cognitive ability,

and especially with the role of g in these differences.

Several studies report mean differences between

males and females with respect to specific cognitive
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abilities. For example, females have been reported to

outperform males on perceptual speed (Kimura, 1999)

and verbal ability (although see Hyde & Linn, 1988),

while males outperform females on spatial ability

(Voyer, Voyer, & Bryden, 1995), and on tests measur-

ing general knowledge, such as the Information subtest

of the Wechsler intelligence batteries (e.g., Born &

Lynn, 1994; Jensen & Reynolds, 1983; Lynn, 1998).

These differences on specific abilities notwithstanding,

the received view is that males and females do not

differ with respect to general intelligence or g. In the

last decade, however, Rushton (1992), Lynn (1994,

1999), and Nyborg (2003) challenged this view and

stated that males show on average a 4 IQ-point advan-

tage over females. Lynn argued that these differences

have long been underestimated, because researchers

studying sex differences in adolescents and young

adults, have failed to take into account the fact that

females on average mature somewhat earlier than

males. According to Lynn, males do show slight but

consistent cognitive advantage over females once males

and females have reached adulthood, and the matura-

tional advantage of females has disappeared. Colom

and Lynn (2004) recently offered support for this dif-

ferential maturation hypothesis.

Sex differences in psychometric IQ have been studied

in adolescent and adult samples using the method of

correlated vectors. Jensen (1998) designed this method

to investigate the role of g in the relationship between

subtest scores on the one hand, and variables such as sex,

race, and scholastic attainment on the other. Within this

procedure, the g-loadings of every subtest are estimated

in the groups separately either in a Schmid–Leiman

factor analysis (Schmid & Leiman, 1957), or through

the extraction of the first unrotated principal factor.

Subsequently, the correlation is calculated between

these vectors of g-loadings across the groups. Large

correlations have been reported between the vectors of

g-loadings of males and females (.99, Aluja-Fabregat,

Colom, Abad, & Juan-Espinosa, 2000; .97, Carretta &

Ree, 1995; .99, Carretta & Ree, 1997; .99, Colom, Juan-

Espinosa, Abad, & Garcı́a, 2000; .95, Escorial, Juan-

Espinosa, Garcı́a, & Rebollo, 2003). These large corre-

lations have been taken to mean that the g-factor is

(virtually) identical across sex. However, as a test of

measurement invariance (see below), this is insufficient.

In addition, researchers have investigated whether

tests with higher g-loadings show greater sex differences

by calculating the correlation between the vector of g-

loadings as estimated across sex, and the vector of

standardized mean differences between males and

females. These correlations are usually low (e.g., .00,
Colom et al., 2000; .06, Colom, Abad, Garcı́a, & Juan-

Espinosa, 2002; .116, Jensen, 1998), as are the correla-

tions between g and sex (e.g., � .25 to .13, Aluja-Fab-

regat et al., 2000;� .07 to .36, and� .09 to .35, Colom et

al., 2000). These results have led researchers to conclude

that g is not the source of the observed differences

between males and females on the level of the subtests.

Another method that is used to investigate group

differences in psychometric IQ is multi-group covari-

ance and means structure analysis (MG-CMSA). In MG-

CMSA, one first fits the confirmatory factor model

separately in the different groups. The specific structure

of this baseline model is based on empirical or theoretical

considerations. Subsequently, different hypotheses can

be evaluated and compared by constraining parameters

to be equal across groups. This method provides a com-

prehensive, model-based means to investigate whether

the general factor g is the only, or main, source of group

differences, or whether the primary (first-order) factors

are the main source of group differences. Besides, MG-

CMSA provides the possibility to detect bias at the level

of the subtests. MG-CMSA has been applied in the

investigation of ethnic differences in psychometric IQ

(e.g., Dolan & Hamaker, 2001; Dolan, Roorda, &

Wicherts, 2004; Gustafsson, 1992; Lubke, Dolan, Kel-

derman, & Mellenbergh, 2003), and in the study of the

Flynn effect (Wicherts, et al., 2004). Recently, Dolan,

Colom, Abad, Wicherts, Hessen, and van der Sluis (sub-

mitted for publication) used MG-CMSA to study sex

differences on Spanish WAIS-III data obtained from 16–

35 year old males and females. They found that males

outperformed females on five of the fourteen subtests

(Arithmetic, Digit Span, Information, Letter Number

Sequencing, and Block Design), and that four subtests

were biased in favor of males (Vocabulary, Arithmetic,

Information, and Picture Completion). Once these biased

subtests were effectively removed from the structural

model, sex differences were limited to the primary fac-

tors Working Memory and Perceptual Organization. The

secondary factor g could not account for these differ-

ences, and could therefore not be considered the source

of these differences. Lynn, Fergusson, and Horwood

(2005) performed similar analyses on WISC-R data

obtained in a sample of 8–9-year-old children from

New Zealand. Boys performed significantly better than

girls on Objects Assembly, Block Design, Information,

and Vocabulary, while girls performed better than boys

on the subtest Coding. Again, these differences on the

level of the subtests could not be attributed to differences

in g.

The exact relation between these two methods of

studying group differences, and the advantages of MG-



Table 1

Attained educational level for males and females in percentages

Males Females

Level 1 .4% 1.4%

Level 2 12.5% 14.9%

Level 3 54.5% 46.9%

Level 4 32.6% 36.8%

Mean 3.19 3.19

(SD) (.66) (.73)

Level 1=primary school only; Level 2=lower general, and vocationa

education; Level 3=intermediate vocational, and intermediate/highe

general education; Level 4=higher vocational, college and university

1 This test was not part of the final WAIS-III battery.
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CMSA over the method of correlated vectors, have

been discussed in detail elsewhere (e.g., Ashton &

Lee, 2005; Dolan, 2000; Dolan & Hamaker, 2001;

Dolan et al., 2004; Lubke, Dolan, & Kelderman,

2001; Lubke et al., 2003; Millsap, 1997). Advantages

of MG-CMSA over the method of correlated vectors

include higher sensitivity to model violations, and the

possibility to test more specific and competing hypoth-

eses. We therefore chose to use MG-CMSA in the

following analyses. Below we first outline the MG-

CMSA models that we use to investigate the source(s)

of sex difference on the Dutch WAIS-III. We fit both

first-, and second-order factor models, with the second-

order factor representing g. We then present the results

of the MG-CMSA analyses. Finally we discuss the

results in the light of former studies.

2. Method

2.1. Subjects

Subjects were recruited from the Netherlands Twin

Registry (Boomsma, 1998). All subjects participated in

a large and ongoing project on the genetics of cognition.

Data were available of 262 families, the total group

consisting of 522 subjects (228 males and 294 females)

aged 18 to 46 years. The sizes of the families ranged

between sibships of size 1 (N =13), size 2 (N =149), size

3 (N =88), and size 4 (N =12). Data were available from

231 complete twin pairs (37 monozygotic males, 46

monozygotic females, 24 dizygotic males, 41 dizygotic

females, and 41 dizygotic opposite twins), and, due to

missingness, 10 single twins. In addition, data were

available from 128 siblings, and 2 triplets.

Table 1 shows the percentages of attained education-

al level for males and females separately. Four educa-

tional categories were distinguished (following e.g.,

Schrijvers, Stronks, van de Mheen, & Mackenbach,

1999; Stronks, van de Meehn, & Mackenbach, 1997):

primary education only (1), lower general and voca-

tional education (2), intermediate vocational education,

and intermediate/higher general education (3), and

higher vocational education, college and university

(4). Mean educational level proved equal for males

and females (F b1, ns).

2.2. Tests

Psychometric IQ was measured with an abridged

version of the Dutch adaptation of the WAIS-IIIR

(Wechsler, 1998), the Dutch WAIS-III (WAIS-III,

1997). The following ten (of the original fourteen)
l

r

.

subtests were administered. The subtest Information

(IF) measures general knowledge and information gath-

ered from daily life. In the subtest Similarities (SIM),

subjects are asked to indicate the similarity between

two verbally presented concepts. In the Vocabulary

(VOC) subtest, subjects are asked to verbally describe

the meaning of a given term. The subtest Arithmetic

(AR) requires subjects to solve as many verbally pre-

sented arithmetic problems as possible within a given

time limit without the use of paper or pencil. Letter–

Number Sequencing (LN) requires subjects to repeat a

random sequence of up to eight letters and numbers,

and to put them into numerical and alphabetical order.

In the subtest Block Design (BP), subjects are required

to copy red and white patterns using red and white

blocks within a given time limit. In Matrix Reasoning

(MX), subjects are asked to select the missing part of a

logical sequence out of five alternatives. In Picture

Completion (PC), subjects have to indicate what essen-

tial part has been omitted from a picture. The subtest

Digit–Symbol Substitution (SUB) requires subjects to

replace numbers with specified symbols as fast and

accurately as possible. Copying (CO) requires subjects

to copy as many symbols as possible within a given

time limit.1

Following the WAIS-III guidelines (WAIS-III,

1997), four dimensions are distinguished: Verbal Com-

prehension (VC, indicated by Information, Similarities

and Vocabulary), Working Memory (WM, indicated by

Arithmetic and Letter–Number Sequencing), Perceptual

Organisation (PORG, indicated by Block Design, Ma-

trix Reasoning and Picture Completion), and Perceptu-

al Speed (PSPD, indicated by Digit–Symbol

Substitution and Copying). The presence of these four

dimensions was recently confirmed by a re-analysis of

the WAIS-III manual data by Deary (2001).
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2.3. Statistical analyses

Multi-group confirmatory covariance and means

structure analysis (MG-CMSA) was used to study sex

differences in means and covariances within the com-

mon factor model. Before we examine the exact nature

of sex differences in the common factors, we need to

establish that the Dutch WAIS-III is measurement in-

variant with respect to sex. Measurement invariance

with regard to sex means that the distribution of the

observed scores on an indicator (i.e., subtest) of case i

(yi) depends only on his or her value on the latent

variable (gi) and not on sex: f [ yi|gi, sex]= f [ yi|gi]
(Mellenbergh, 1989; Meredith, 1993). Given normally

distributed data, measurement invariance can be de-

fined in terms of the means and the variances of the

yi given gi, For the means, for instance, this would

imply E[ yi|gi, sex]=E[ yi|gi]. In terms of the common

factor model, the requirement for measurement invari-

ance translates into specific constraints on the model

parameters over groups, i.e., in this case, over sex

(Meredith, 1993). Viewing factor analysis as essentially

involving the linear regression of an observed variable

(indicator) on latent variable (common factor), the

requirements are 1) equality of the factor loadings, or

regression coefficients, 2) equality of the observed

means, or intercepts (while factor means are allowed

to differ over groups), and 3) equality of the residual

variances, i.e., the variance not attributable to the factor.

If these equalities hold to reasonable approximation, the

function relating the observed variables to the latent

variables can be considered identical over sex, and we

can interpret individual differences and group differ-

ences in terms of differences on the common factors. In

factor analytic terms, the above constraints give rise to

strict factorial invariance (SFI), which in turn can be

interpreted as measurement invariance (in this context

of the factor model; see Meredith, 1993). Failure of

strict factorial invariance can have a variety of causes,

including measurement bias. We refer the reader to

Lubke et al. (2003) and Dolan et al. (2004) for discus-

sion of the concept of SFI.

Below, we discuss the sequence of models fitted first

to establish the presence of measurement invariance,

and second to establish the source of the observed mean

sex differences on IQ subtest.

2.4. Sex difference: model-fitting strategy

Adhering to the theoretical factor structure of the

WAIS-III, four first-order factors are distinguished:

Verbal Comprehension (VC), Working Memory (WM),
Perceptual Organization (PORG), and Perceptual Speed

(PSPD). In order to test the hypothesis that males and

females differ with respect to g, we first need to establish

measurement invariance among the 10 WAIS-III sub-

tests. We begin by fitting a series of first-order factor

models (F1–F4) with correlated factors (as illustrated in

Fig. 1), in order to test for measurement invariance

across sex. Subsequently, we introduce the second-

order factor dgT (i.e., hierarchical factor model, as illus-

trated in Fig. 3), and fit a series of second-order factor

models (S1–S4) to test the hypothesis that g is the source

of observed mean differences between males and

females.

We start by fitting the least constrained first-order

factor model, i.e., the model that tests for configural

invariance (Horn & McArdle, 1992; Widaman &

Reise, 1997). We denote this model F1. In this model,

the configuration of the regressions of the 10 subtests

on the common factors is identical in males and

females. The configuration is based on the expected

Dutch WAIS-III factor structure (see Fig. 1). However,

the exact values of the factor loadings are allowed to

differ across sex. The means are included in this model

as well, yet the means are unconstrained; i.e., in both

males and females, the observed means (i.e., the means

of the 10 subtests) are estimated freely. Model F1 serves

as a baseline model by which subsequent more con-

strained models are tested. We do not further consider

the specific fit of this baseline model, as the assumed

factor structure of the Dutch WAIS-III has been con-

firmed elsewhere (e.g., Deary, 2001). Note that we

fixed the four factor variances to 1 in both groups, in

order to establish identification of the model (e.g., see

Bollen, 1989).

In model F2 we test for metric invariance (Horn &

McArdle, 1992; Widaman & Reise, 1997). Here we

introduce the constraint that the first-order factor load-

ings are identical in males and females. This constraint

renders fixation of the first-order factor variances in

both groups superfluous, so in model F2, these para-

meters are estimated freely in the females. Identical

factor loadings over sex are a necessary condition to

compare males and females with respect to their com-

mon factors. If the fit of model F2 is not significantly

worse than the fit of model F1, metric invariance is

considered to be tenable.

In model F3, the model for strong factorial invari-

ance (Horn & McArdle, 1992; Widaman & Reise,

1997), we introduce the structure for the means. Here,

the observed means of the 10 subtests are constrained to

be identical across sex, and the means of the four

factors are estimated. If the fit of this model is not



VC PSPD

IF SIM VOC SUB COD

WM

AR LN

λ11 λ 21 λ31 λ42 λ52 λ94 λ10 4

PORG

BD MX PC

λ73 λ83λ63

ψ21

ψ31

ψ41

ψ32

ψ42

ψ43

ε1 ε2 ε3 ε4 ε5 ε6 ε7 ε8 ε9 ε10

Fig. 1. First-order factor model as based on the theoretical factor structure of the WAIS-III, where the ks denote the regressions of the 10 subtests on
the factors, the Ws denote the correlations between the factors, and the es denote those parts of the variances in the subtests that are not predicted by
the factors, i.e., the residual variances.
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significantly worse than the fit of model F2, the as-

sumption that expected values of the subtest scores

depend only on the latent factor scores, and not on

sex (i.e., E[ yi|gi, sex]=E[ yi|gi]), is tenable. It is how-
ever not possible to estimate the factor means in males

and females simultaneously. Following Sörbom (1974),

we fix the factor means of one group, in this case the

males, to zero, and estimate the factor means of the

females. Modeled as such, the male function as a

reference group, and the estimated factor means of

the females should be interpreted as deviations from

the means of the males. This model tests whether

differences in observed subtest means between males

and females, can actually be attributed to differences

between males and females in means on the four pri-

mary factors VC, WM, PORG and PSPD. If model F3
VC WM

ψ21

ψ31

ψ41

ψ32

1

α1 α2 α3 α

Fig. 2. Model for the means as introduced in model F3. Note that the triangle

e.g., McArdle and Epstein, 1987). The a-parameters are fixed to zero in the

denoting the deviations from the means of the males. The Ws denote the co
is tenable (i.e., if the fit of model F3 is not significantly

worse than the fit of model F2), the four latent factors

account for the differences in observed means between

males and females. In that case, we can meaningfully

compare males and females with respect to their first-

order factor means, i.e., with respect to the means of the

broad primary factors of intelligence. However, if

model F3 does not hold, some, or all, differences in

observed subtest means between males and females

cannot be accounted for by the first-order factors, and

can thus not be attributed to differences in the broad

primary factors of intelligence. In that case we conclude

that (some) subtest may be biased with respect to sex.

This model for the means is illustrated in Fig. 2.

Finally, in model F4 we test for strict factorial

invariance (Horn & McArdle, 1992; Meredith, 1993;
PSPDPORG

ψ42

ψ43

4

represents a unit constant (notation introduced by John J. McArdle, see

male population, and are estimated in the female population, as such

rrelations between the factors.



VC PSPD

IF SIM VOC SUB COD

ε1 ε2 ε3 ε9 ε10

WM

AR LN

ε4 ε5

λ11 λ21 λ31
λ42

λ52 λ94 λ10 4

PORG

BD MX PC

ε6 ε7 ε8

λ73 λ83
λ63

g

ζ1
ζ2 ζ3 ζ4

γ1 γ2 γ3 γ4

Fig. 3. The hierarchical factor model as based on the theoretical factor structure of the WAIS-III, where the ks denote the regressions of the 10

subtests on the factors, the cs denote the regressions of the first-order factor on the second-order factor g, and the fs and es denote those parts of the
variances in the subtests and first-order factors that are not predicted by the first-order factors and the second-order factor, respectively.
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Widaman & Reise, 1997). In this model the residual

variances of the 10 subtests are constrained to be equal

across sex. If model F4 is tenable (i.e., does not fit

significantly worse than model F3), we conclude that all

differences between males and females concerning the

means and variances of the 10 subtests can be

accounted for by the four first-order factors.

Only if factorial invariance can be established, i.e., if

either model F3 or model F4 is tenable, do we introduce

the second-order factor g. Whether this second-order

factor is introduced in model F3 or F4 depends on the

tenability of the constraints introduced in F4. The fitted

model is illustrated in Fig. 3. In this first hierarchical

factor model, which will be denoted S1, we simply test

whether a hierarchical factor model is tenable in both
VC WM

g

ζ
1

ζ
2 ζ

γ 1
γ 2 γ

1

α1 α2 α3 α4

Fig. 4. Model for the means as introduced in model S3. Note that the triangl

male population, and are estimated in the female population, as such deno

regressions of the first-order factor on the second-order factor g, and the fs
males and females. At this point, the second-order

factor loadings are allowed to differ across sex.

Model S1 simply tests whether all relations between

the first-order factors VC, WM, PORG and PSPD, can

be accounted for by 1 second-order factor g. Note that

the means of the second-order factor are fixed to zero in

both groups, while the first-order factor means are

estimated for females, and fixed to zero for males (as

in F3 and F4). This model for the means is illustrated in

Fig. 4. Note also that we fixed the second-order factor

variances to 1 in both groups, in order to establish

identification of the model.

In model S2, we test whether the values of the second-

order factor loadings are equal across sex. Model S2
implies that the loadings of the first-order factors on
PSPDPORG

3 ζ
4

3

γ4

e represents a unit constant. The a-parameters are fixed to zero in the

ting the deviations from the means of the males. The cs denote the

denote the residual variances of the first-order factors.



VC PSPDWM PORG

g

ζ 1 ζ 2 ζ 3 ζ 4

γ1 γ2 γ3

γ4

1
κ1

Fig. 5. Model for the means as introduced in model S5. Note that the triangle represents a unit constant. The j-parameter is fixed to zero in the male

population, and is estimated in the female population, as such denoting the deviation from the mean of the males. The cs denote the regressions of
the first-order factor on the second-order factor g, and the fs denote the residual variances of the first-order factors.

2 Missingness was present on the following tests. COD: 4 males, 3

females; SUB: 3 males, 2 females; PC: 2 males, 2 females; BD: 2

males, 2 females; MX: 1 male. Taken together there were 21 missing

values, which is less than .5% of the data.
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the second-order factor are equal in males and females.

This constraint renders fixation of the second-order fac-

tor variances in both groups superfluous, so in model S2,

this parameter is estimated freely in the females.

In model S3, we constrain the first-order factor

means to be equal across sex. In practice, this implies

fixing the first-order factor means of the females to

zero, while freely estimating the second-order factor

mean. As in model F3, it is impossible to simulta-

neously estimate the second-order means of the males

and the females. We therefore constrain the second-

order factor mean of the males to zero, and estimate

the mean of the females. So again, the males function

as a reference group, and the second-order factor mean

of the females should be interpreted as deviation of the

mean of the males. This model for the means is

illustrated in Fig. 5. Note that in this model, mean

differences between males and females are described

entirely in terms of the means of the second-order

factor g. If model S3 holds (i.e., does not fit signifi-

cantly worse than model S2), we conclude that mean

difference between males and females on the level of

the subtests and the first-order factors, can completely

be accounted for by differences in g. However, if the

model S3 does not fit, males and females may differ

with respect to the broad primary factors of intelli-

gence (i.e., specific abilities) but these differences

cannot be attributed to differences in general intelli-

gence. Note that it is possible in principle to estimate

p�1 first-order factor means (where p is the total

number of first-order factors in the model) in addition

to the second-order factor mean. In that case, one

allows that some first-order factor mean differences

between the groups are accounted for by the second-

order factor, while some are not.

Finally, in model S4 we test whether the mean of the

second-order factor g is equal across sex. If model S4
does not fit significantly worse than S3, we conclude

that males and females do not differ with respect to g. If

the fit of model S4 is significantly worse than the fit of

model S3, it is concluded that males and females differ

with respect to general intelligence or g. In Appendix

A, models F1 to F4 and S1 to S4 are presented in matrix

notation.

2.5. Estimation

Since the sample consisted of sibships of varying

size, and scores on some subtests were missing,2 mod-

els were fitted to the raw data (rather than directly to the

covariance matrices) using Full Information Maximum

Likelihood (FIML). FIML uses all observed values

(e.g., Arbuckle, 1996; Finkbeiner, 1979). The Mx pro-

gram (Neale, Boker, Xie, & Maes, 2003) was used for

all analyses, as this program can handle such incom-

plete and unbalanced data. Mx calculates twice the

negative loglikelihood for each model (�2LL). The

difference in the �2LL of two nested models (were

the nested model is the more restricted model) is as-

ymptotically distributed as v2 if the restrictions are

tenable (Azzelini, 1996). The number of degrees of

freedom for the test comparing two nested models

(the so-called v2 difference test, v2
diff test from here

on), is equal to the difference in the number of para-

meters being estimated in the two compared models.

The more restricted model is accepted as the preferred

model, if its fit is not significantly worse than the fit of

the more lenient model, i.e., if the v2
diff test is not

significant. When comparing the fit of two nested



Table 2

Means and standard deviations for males (N =228) and females

(N =294) on the 10 WAIS-III subtests (standardized scores)

Factors Subtests Males Females d

M SD N M SD N

VC INF 10.74 2.92 224 8.82 2.91 291 .66

SIM 7.35 2.28 225 6.96 1.98 292 .18

VOC 9.97 2.80 226 9.79 2.44 292 .07

WM AR 10.84 3.09 226 9.56 3.02 292 .42

LN 11.61 3.18 227 11.03 2.99 294 .10

PORG BD 9.58 2.69 228 8.88 2.75 294 .26

MX 10.84 1.71 228 10.46 2.04 294 .20

PC 11.01 2.56 228 10.45 2.38 294 .23

PSPD SUB 9.74 2.67 228 11.73 2.90 294 � .71
CO 26.60 3.34 228 18.55 3.15 294 � .19

VIQ 98.62 13.07 228 93.04 12.12 293 .44

PIQ 102.02 10.85 228 102.86 11.89 293 � .07
FIQ 99.19 10.92 227 96.63 10.75 292 .24

VC=Verbal Comprehension, WM=Working Memory, PORG=Percep-

tual Organization, PSPD=Perceptual Speed, INF=Information, SIM=

Similarities, VOC=Vocabulary, AR=Arithmetic, LN=Letter–Number

Sequencing, BD=Block Design, MX=Matrix Reasoning, PC=Picture

Completion, CO=Copying, SUB=Digit–Symbol Substitution. Follow-

ing the WAIS-III manual, VIQ is based on the subtests INF, SIM,

VOC and AR, PIQ is based on the subtests BP, MX, PC and SUB, and

FIQ is based on the subtests INF, SIM, VOC, AR, BP, MX, PC and

SUB. d is Cohen’s effect size d, calculated as (Mmales�Mfemales) /

rpooled
2 . Negative ds denote higher means for females.
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models, a criterion level of a =.01 was considered

reasonable given the complexity of the models.

Because the focus of this paper is on sex differences,

we are not concerned with the correlations among the

family members. Yet, as siblings share both genetic and

environmental effects, and individual differences in

cognitive ability tests are known to be quite heritable

(e.g., Daniels, Devlin, & Roeder, 1997), correlations

between family members are expected to be present. In

some former studies, data gathered within families were

treated as independent observations (e.g., Jensen, 1994;

Pennington et al., 2000; Wickett, Vernon, & Lee, 2000).

Treating the cases as independently distributed is how-

ever not advisable in the present context, because it

results in incorrect v2 values. We therefore fitted the

factor models to the individual sibships (ranging from 1

to 4 sibs), rather than to individual cases. In so doing,

we were able to estimate the covariances between the

monozygotic twins, the dizygotic twins, and between

the ordinary sibs, respectively.3 These sets of covar-

iances are considered as nuisance parameters, which are

not of interest here. The actual factor model was thus

fitted to the male and female data while taking into

account the inherent dependency of the data. The pro-

cedure is outlined in Appendix B, and the details of the

Mx specification are provided in Van der Sluis and

Dolan (http://users.fmg.uva.nl/cdolan/).

3. Results

All following analyses were performed on the raw,

unstandardized IQ scores. Correlations between raw

scores and standardized norm scores ranged between

.95 and .99.

3.1. Preliminary analyses

Table 2 shows the means and standard deviations of

the norm scores for males and females separately, as

well as the effect sizes (Cohen’s d) for each subtest,

calculated as the differences between the means of the

males and females (lm � lf) divided by their pooled

standard deviation. The table also shows the composite

scores Verbal IQ (VIQ, based on INF, SIM, VOC and

AR), Performance IQ (PIQ, based on BP, MX, PC, and
3 Although dizygotic twins and ordinary sibs are characterized by

the same degree of genetic relatedness, dizygotic twin often covary

more strongly, because they are matched at a variety of variables

including sex and age. We therefore chose to estimate the covariance

separately for dizygotic twins. Opposite sex twins were however

treated as ordinary sibs.
SUB), and Full scale IQ (FIQ, based on VIQ and PIQ).

In the norm population, the means of VIQ, PIQ, and FIQ

are 100, with a standard deviation of 15. Table 2 shows

that the means of the males and females in our sample

were close to the population means. Only the mean VIQ

for females was lower (M =93.04, SD=12.12).

To gain some insight into the mean sex differences on

the level of the subtests and on the level of the composite

scores, multivariate analyses of variance (MANOVA),

and t-tests for independent samples were conducted in

SPSS. Because of the mutual dependence of the data,

these analyses were not performed on all 522 cases

simultaneously. Rather, the analyses were conducted

separately for all first (83 males, 111 females), and all

second (81 males, 108 females) members of each family

for who complete data were available (see Table 3 for an

overview).4 The MANOVAs for the subtests showed

main effects for sex (first family members:

F(10,183)=6.79, p b .000; second family members:

F(10,178)=7.31, p b .000). Adopting an a of .01, we

found that in both samples females outperformed males

on SUB, and males outperformed females on INF and
4 Analyses were not performed for the third and fourth members of

e families, as these groups were rather small in comparison to the
th
groups of first and second family members.

http://users.fmg.uva.nl/cdolan/


Table 4

Results of all multi-group covariance and mean structure analyses

Model df �2LL
F1 Configural invariance 4962 33,259.99

F2 Metric invariance 4968 33,261.30

F3 Strong factorial invariance 4974 33,336.86

F3a Strong factorial invariance,

bar INF

4973 33,275.41

F4a Strict factorial invariance 4983 33,291.27

F4b1 lmales,VC=lfemales,VC 4984 33,293.80

F4b2 l males,WM=lfemales,WM 4984 33,310.48

F4b3 lmales,PORG=lfemales,PORG 4984 33,304.93

F4b4 lmales,PSPD=lfemales,PSPD 4984 33,327.78

S1 Introduction g 4987 33,295.35

S1a WM equals g in females 4988 33,295.77

S2 Metric invariance on 2nd

order level

4990 33,295.56

S3 Strong factorial invariance

on 2nd order level

4993 33,361.06

S3, b1 Strong factorial invariance

on 2nd order level, bar PSPD

4992 33,297.96

S4 lmales, g =lfemales, g 4993 33,317.46

Table 3

Results of t-tests for first family members (83 males vs 111 females) and second family members (81 males vs 108 females), and paired t-tests for

38 pairs of opposite sex twins

Factors Subtests 1st family members 2nd family members DOS pairs

t df p t df p t df p

VC INF 3.42 192 .001* 5.61 187 .000* 6.10 37 .000*

SIM .96 192 .338 1.36 187 .177 .64 37 .528

VOC � .06 192 .953 .54 187 .593 .64 37 .528

WM AR 2.78 192 .006* 3.08 187 .002* 3.35 37 .002*

LN .03 192 .980 1.99 187 .048 .66 37 .511

PORG BD 2.55 192 .012 2.56 187 .011 2.08 37 .045

MX 3.42 192 .001* 2.01 187 .046 1.83 37 .076

PC 1.21 192 .227 2.43 187 .016 1.58 37 .122

PSPD SUB �4.88 192 .000* �3.03 187 .003* �3.20 37 .003*

CO �1.36 192 .174 �1.31 187 .194 �1.03 36 .310

VIQ 2.57 196 .011 3.54 192 .001* 4.12 37 .000*

PIQ � .67 196 .503 .23 192 .817 � .29 37 .77

FIQ 1.096 196 .274 2.24 192 .027 1.60 37 .12
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AR. In addition, males outperformed females on MX in

the sample of first family members, while this difference

was not significant in the sample of second family mem-

bers ( p =.065). The MANOVAs for the composite

scores also showed a main effect for sex (first family

members: F(3,194)=4.37, p b .01; second family mem-

bers: F(3,190) =5.58, p b .01). Adopting an a of .01, we

found that males outperformed females on VIQ

( p b .01), but differences between males and females

on PIQ and FIQ were not significant (although with a

p-value of .03, the difference for FIQ approached

significance for the second family members).

Although the males and females in our sample did

not differ with respect to their educational level, it is

possible that the sex differences for SUB, INF, AR and

VIQ, were the result of sex differences with regard to

other SES related variables. This possibility cannot be

ruled out entirely. However, our sample contained 38

complete pairs of DOS twins, i.e., 76 males and females

who were perfectly matched on SES. Table 3 shows an

overview of the paired t-tests, which were conducted

for these 38 pairs. The results of these paired t-tests

copied the results for the first and second family mem-

bers: females outperformed males on SUB, but males

outperformed females on INF, AR, and VIQ. We there-

fore consider it unlikely that the sex differences in our

sample were the result of sex differences in SES.

3.2. First-order factor models

The �2LL’s of models F1 to F4, and the models S1
to S5, are presented in Table 4. All following model

comparisons are summarized in Table 5. Model F1, in

which only configural invariance over males and

females was presumed, served as the baseline model.
In model F2, the factor loadings were constrained to be

equal across sex (metric invariance). The v2
diff test, in

which the fit of model F2 was compared to the fit of

model F1, was not significant (v
2
diff (6)= 1.31, ns), and

the factor loadings could thus be considered equal

across sex. In model F3, all intercepts were constrained

to be equal across sex (strong factorial invariance), and

latent differences in factor means were estimated. The

fit of model F3 was significantly worse than the fit of

model F2 (v
2
diff (6)=75.56, p b .000), suggesting that not

all sex differences on the level of the subtests could be

accounted for by the first-order factors. In model F3a,

all intercepts were constrained to be equal across sex,

except the intercept for INF. The fit of model F3a was



Table 6

Correlations between the first-order factors Verbal Comprehension

(VC), Working Memory (WM), Perceptual Organization (PORG) and

Perceptual Speed (PSPD) of the WAIS-III for females (above diago-

nal) and males (below diagonal), and male and female means and

standard deviations on the first-order factors

VC WM PORG PSPD

VC – .685 .556 .224

WM .608 – .826 .496

PORG .539 .813 – .383

PSPD .273 .448 .370 –

Males Mean 0 0 0 0

SD 1 1 1 1

Females Mean � .16 � .48**** � .42*** .67****

SD .99 .96 1.08 .98

The means of the females should be interpreted as deviations from the

means of the males. *** and **** denote statistical significance at

a =.001 and a =.0001, respectively.

Table 5

Model comparisons

Models v2 df p

F2 vs F1 1.31 6 .97

F3 vs F2 75.56 6 b .001

F3a vs F2 14.11 5 .02

F4a vs F3a 15.86 10 .10

F4b1 vs F4a 2.53 1 .11

F4b2 vs F4a 19.21 1 b .001

F4b3 vs F4a 13.66 1 b .001

F4b4 vs F4a 36.51 1 b .001

S1 vs F4a 4.07 4 .40

S1a vs S1 .42 1 .52

S2 vs S1 .21 3 .98

S3 vs S2 65.50 3 b .001

S3a vs S2 2.40 2 .30

S4 vs S3a 19.50 1 b .001
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not significantly worse than the fit of model F2 (v2diff
(5)=14.11, ns). The hypothesis of strong factorial in-

variance thus proved tenable for all subtests, bar INF. In

order to test for strict factorial invariance, the residual

variances were constrained to be equal across sex in

model F4a. The fit of model F4a was not significantly

worse than the fit of model F3a (v2diff(10)=15.86, ns).
Summarizing, we conclude that strict factorial in-

variance was tenable, except for the subtest INF. Thus,

the sex related mean difference in the subtest INF could

not be accounted for by the sex related mean difference

in the factor VC. As it turns out, the female mean on the

subtest INF is too low given the mean difference be-

tween males and females on the factor VC. For all other

9 subtests, the mean differences between males and

females could be accounted for by the first-order factors

VC, WM, PORG and PSPD.

Having established measurement invariance on the

level of nine out of ten subtests, we tested whether sex

differences existed with respect to the means of the four

primary factors VC, WM, PORG and PSPD. Remem-

ber that these primary factor means were fixed to zero

in males, while the factor means of the females were

estimated as deviation of the mean of the males. The

factorial means of the females are thus interpreted as

deviations from the means of the males, with positive

means favoring females, and negative means favoring

males. Whether the factorial means of the females differ

significantly from the factorial means of the males, can

be established by fixing the means of the females to

zero one at a time (model F4b1 to F4b4), and comparing

the fit of the resulting models, to the fit of the model in

which all female means were estimated freely.

Females scored higher than males on the PSPD

factor (the mean equals .67, SD=.98), but lower than

males on the factors VC, WM, and PORG (the means
being � .16, � .48, and � .42, with SDs of .99, .96 and

1.08, respectively). Fixing the mean of the VC factor to

zero in model F4b1 did not result in a significant de-

crease in fit (v2diff (1)=2.53, ns). For the other factors,

however, fixing the means of the females to zero (F4b2
to model F4b4) did result in significantly poorer fit (for

WM: v2
diff (1)=19.21, p b .0001; for PORG: v2diff

(1)=13.66, p b .001; for PSPD: v2
diff (1)=36.51,

p b .0001). Bearing in mind that the subtest INF was

effectively removed from the structural model for the

means, and does therefore not contribute to the com-

mon factor mean differences, we conclude that males

scored significantly higher than females on WM and

PORG, and that females scored significantly higher

than males on PSPD. Sex differences on the VC factor

(but excluding INF) were however absent. Table 6

contains the correlations between the four primary fac-

tors for males and females separately, and the mean

differences and standard deviations between males and

females on the four factors.

3.3. Second-order factor models

In model S1, the factor g was introduced as a second-

order factor, taking model F4a as point of departure.

Note that, as in model F4a, the means are still modeled

on the level of the first-order factors in model S1. The

fit of this model was not significantly worse than that of

model F4a (v
2
diff(4)=4.07, ns), suggesting that the sec-

ond-order factor could account for the covariances

between the four primary factors. In the male sample,

the second-order factor explained 41% of the variance

in the factor VC, 23% in PSPD, 69% in PORG, and

93% in WM. In the female sample, the second-order

factor explained 42% of the variance in the first-order
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factor VC, 22% in PSPD, 65% in PORG, and 100% in

WM. The estimate of the residual variance of the factor

WM was negative in the females. Fixing this residual

variance to zero did not result in significant loss of fit,

which suggests perfect prediction of WM by the g-

factor (Model S1a, v2diff(1)= .42, ns).
In model S2, the second-order factor loadings were

constrained to be equal across sex. The fit of model S2
was not significantly worse than the fit of model S1
(v2diff (3)= .21, ns), suggesting that the second-order

factor loadings could be considered identical for

males and females. In model S3, the first-order factor

means differences were fixed to zero, and the mean

difference with respect to g was estimated. In model

S3, g is the only source of mean differences between

males and females. This model was not tenable, as its

fit was significantly worse than the fit of model S2
(v2diff (3) =65.50, p b .000). This suggests that the

mean differences between males and females on the

first-order factors could not be described as mean

differences between males and females in g. Above

we established that females outperformed males on

PSPD, and that males outperformed females on WM

and PORG, while sex differences were absent with

respect to VC. Also, Table 6 shows that all four factors

were positively correlated. Considering these varied

mean differences, combined with the positive factor

correlations, it is not surprising that g could not ac-

count for the first-order mean differences between

males and females. After all, one factor cannot account

for positive (PSPD) and negative (WM, PORG) mean

differences simultaneously, when these occur on fac-

tors that are positively correlated. The positive sign of

the mean of PSPD was thus the main cause of the

misfit in S3. In model S3a, the mean of the females on

PSPD was estimated freely, while the means of VC,

WM and PORG were constrained to be equal across

sex. This implies that the mean of the factor PSPD was

effectively removed from the model of the means. The

fit of this model was not significantly worse than the

fit of model S2 (v
2
diff (2)=2.40, ns), suggesting that the

second-order factor could account for the differences

between males and females on the factors VC, WM,

and PORG. When the mean of the resulting/conse-

quent second-order factor was subsequently con-

strained to be equal across sex in model S5, the fit

worsened significantly (v2diff (1)=19.50, p b .000). The
mean of this second-order factor could therefore not be

considered equal across sex. However, the mean of

this second-order factor can also no longer be inter-

preted as representing g, as the mean of PSPD was

effectively removed from the model. That is, the sec-
ond-order factor had degenerated into a factor describ-

ing the advantages of males over females on WM and

PORG, i.e., on a subset of the original primary factors.

We therefore conclude that males and females differ

with respect to the broad primary factors WM, PORG

and PSPD, and that these differences were not attrib-

utable to, or could not accurately be described by

differences in general intelligence, or g.

4. Discussion

In the present study we used multi-group covariance

and mean structure analysis (MG-CMSA) to investigate

whether sex differences observed on the subtests of the

Dutch WAIS-III were attributable to sex difference in

general intelligence ( g). Males were found to outper-

form females on 3 of the 10 subtests (Information,

Arithmetic, and Matrix Reasoning), while females out-

performed males on 1 subtest, namely, Digit–Symbol

Substitution. We first established whether the subtests

of the Dutch WAIS-III were measurement invariant

across sex, i.e., whether bias was absent on the level

of the subtests. These analyses showed that the subtest

Ifnformation was biased in favor of males. This subtest

was therefore excluded from subsequent analyses in

which males and females were compared with respect

to their means on the primary factors Verbal Compre-

hension, Working Memory, Perceptual Organization,

Perceptual Speed, and with respect to their means on

the secondary factor for general intelligence, g. Males

and females showed no mean differences with respect

to the primary factor Verbal Comprehension. However,

males had significantly higher means than females on

the factors Working Memory and Perceptual Organiza-

tion, while females showed higher means than males on

the factor Perceptual Speed. Because some primary

factors showed a male advantages, while other showed

a female advantages, and all four primary factors were

positively correlated in both groups, the secondary

factor g could not account for all mean differences

between males and females simultaneously. We there-

fore conclude that g is not the source of sex differences

observed on the Dutch WAIS-III subtests and on the

primary factors.

The presence of sex differences on the level of the

subtests of intelligence batteries such as the WISC, the

WAIS and the DAT, is not unusual, and has been

reported on in former studies (e.g., Colom & Lynn,

2004; Dolan et al., submitted for publication; Lynn,

1998; Lynn, Irwing, & Cammock, 2001; Lynn et al.,

2005). Especially sex differences with respect to tests

measuring general knowledge, such as the subtest In-
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formation of the WAIS, are well documented (e.g.,

Dolan et al., submitted for publication; Jensen & Rey-

nolds, 1983; Lynn, 1998; Lynn et al., 2001; Lynn et al.,

2005).

Our finding that males outperform females on the

primary factors for Working Memory and Perceptual

Organization, and that males and females do not differ

with respect to Verbal Comprehension, is in concor-

dance with the results reported by Dolan et al. (submit-

ted for publication). The females in their sample did

however not show any advantages over males with

respect to Perceptual Speed.

In the present data set, the secondary factor g proved

highly correlated to the Working Memory factor, pre-

dicting 93% of the variance in males, and 100% of the

variance in females. The finding that g is strongly, or

even perfectly, related to one of the first-order factors, is

not unique. g has been found to relate strongly to broad

primary factors such as verbal intelligence (Gv), fluid

intelligence (Gf), crystalized intelligence (Gc), quanti-

tative ability (Gq), and retrieval ability (Gr) (e.g.,

Bickley, Keith, & Wolfle, 1995; Dolan, 2000; Gustafs-

son, 1984; Undheim & Gustafsson, 1987), as well as to

factors for working memory (e.g., Colom, Rebollo,

Palacios, Juan-Espinosa, & Kyllonen, 2004; Conway,

Cowan, Bunting, Therriault, & Monkoff, 2002; Kyllo-

nen & Christal, 1990). With respect to the WAIS-III and

the WAIS-IIIR, the relation between g and the four

primary factors appears to be population dependent.

For example, in their re-analysis of the data gathered

from the Spanish standardization sample, Dolan et al.

(submitted for publication) report correlations between

WM and g of .66 and .62 in males and females,

respectively. In contrast, in a re-analysis of the Amer-

ican standardization sample (i.e., the WAIS-III manual

data) Deary (2001) reports a correlation of .95 between

WM and g (calculated across sex). The fact that the

correlations between g and the broad primary factors

vary across test batteries and across samples (i.e., across

countries) seems to indicate that the extracted second-

ary factor g is not always the same. The interpretation,

strength, value and importance of g, and its relation to

the primary factors, depend on the specific choice of

subtests in the battery, and on the population from

which the data are gathered (see also Horn & Noll,

1997).

The present study illustrated the advantages of MG-

CMSA in the investigation of mean group differences:

MG-CMSA allows for explicit, integrated model spec-

ification, goodness of fit testing, and explicit compari-

son of competing hypotheses within the model

framework. The advantages of MG-CMSA over the
method of correlated factors were shortly mentioned

in the introduction, and are discussed in more detail

elsewhere (e.g., Ashton & Lee, 2005; Dolan, 2000;

Dolan & Hamaker, 2001; Dolan et al., 2004; Lubke

et al., 2001; Lubke et al., 2003; Millsap, 1997). In the

present data, the method of correlated vectors yielded a

correlation (Spearman’s rho) between the g-loadings

(obtained in a Schmid–Leiman factor analysis) and

standardized mean differences of .68. Jensen (1998)

reported an average value of about .60 for Black–

White differences, and interpreted this as strong support

for Spearman’s hypothesis. The value of .68, as found

for the present data, may thus suggest that g is the main

source of sex differences. The results of the MG-CMSA

clearly show that this conclusion is hardly tenable: the

configuration of factor mean differences (see Table 6)

in combination with the positive manifold among the

four primary factors (i.e., implying that the second

order factor loadings on g are all positive), renders

the hypothesis that g is the main source of sex mean

differences unlikely. This again illustrates the point that

the method of correlated vectors is too blunt an instru-

ment to reliably unveil the nature of latent mean differ-

ences (see also Ashton & Lee, 2005; Dolan, 2000;

Dolan & Hamaker, 2001; Dolan et al., 2004; Lubke

et al., 2001). We note that Lynn (1999) adopted a

different approach. He calculated the sum of the prima-

ry common factor scores, and presented this summation

as a measure of the mean g. Application of this proce-

dure to the present data would imply summation of the

differences between males and females in their first-

order factor means. The mean difference in g between

males and females would then turn out to be

+.67� .16� .48� .42=� .39 (see Table 6), and we

would conclude that males are endowed with higher

general intelligence than females. However, to establish

that these first order mean differences are a function of

g, we have to (1) actually fit the model that represents

this hypothesis (model S3 above), and (2) compare the

results of this models and competing models both with

respect to goodness of fit and interpretability. Calculat-

ing the sum of the differences between males and

females in their first-order factor means may create

the impression that g is the source of the differences,

but it cannot be put forward as evidence that this is

indeed the case. Specifically, Jensen’s statement that

significant group differences on a collection of IQ

subtests are not necessarily attributable to differences

in g (Jensen, 1998) holds equally for significant group

differences on first-order factors of intelligence.

Summarizing, the present study showed that males

and females do differ with respect to specific cognitive
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abilities, but that g could not be put down as the source

of these differences. Finally, we emphasize that the

establishment of measurement invariance is not only

important in the investigation of latent mean differences

between groups, as we have discussed in detail here.

Measurement invariance is also important in investigat-

ing group differences in the relationships of latent

variables such as the primary cognitive factors or g

with external variables such as brain volume, educa-

tional attainment, and age.

Appendix A

In the present Appendix, we present the models

discussed above in matrix notation of the LISREL

program (Jöreskog & Sörbom, 2001). Let yij denote

the observed r-dimensional random column vector con-

taining the observed scores of subject j in population i.

The following common factor model is assumed to hold

for observation yij:

yij ¼ nyi þ Kihij þ eij; ðA1Þ

where hij is a p-dimensional vector of first-order factors,

and eij is a r-dimensional vector of residuals. Note that

these residuals contain both measurement error and sys-

tematic error. �i is a r�p dimensional matrix of first-

order factor loadings, which can be interpreted as regres-

sion coefficients, in the regression of the subtest scores

yij on the first-order factors hij. nyi is a r-dimensional

vector of intercepts in this same regression.

In a hierarchical second-order factor model, where

the first-order factors are themselves regressed on a

second-order factor (i.e., on g), the following model

is assumed to hold for the first-order factors hij:

hij ¼ ai þ G ixij þ zij ðA2Þ

where x ij is a q-dimensional vector of second-order

factors (as we have only 1 second-order factor, this is a

scalar), &i is the p�q dimensional matrix of second-

order factor loadings, which can be interpreted as the

regression coefficients in the regression of the first-order

factors hij on the second-order factor x ij. The ( p�1)

vector ai can be interpreted as a vector of regression

intercept terms. The p-dimensional vector of z ij contains
residuals. So, for a hierarchical factor model with first-

and second-order factors, the complete common factor

model for observation yij is given as:

yij ¼ nyi þ�i &ixij þ zij
� �

þ eij: ðA3Þ

We further assume that eij is independent of z ij and
x ij, and that z ij and x ij are independent. Given these
assumptions, and given that the observed variables yij
are normally distributed yij ~ Nr(li, Ri), the model

implied covariance matrix Ri for group i is given as:

Si ¼ Li &i%i&i t þ8ið ÞLt
i þ0i; ðA4Þ

where 8 denotes the p�p covariance matrix of the

first order factors, % denotes the q�q covariance

matrix of the second-order factors, and 0 is the

r� r covariance matrix of the residuals. The super-

script t denotes transposition. The model implied vec-

tor for the means is given as:

mi ¼ ni þ Liai þ Li&iki; ðA5Þ

where n i denoted the r-dimensional vector of ob-

served intercepts, ai denotes the p-dimensional vector

of first-order factor means, and ki the q-dimensional

vector of second-order factor means.

We fit the following sequence of first-order factor

models in the male (subscript m) and female (subscript

f) samples. Model F1 can be denoted as:

Sm ¼ �m8m�t
m þ0m; and mm ¼ nm;

Sf ¼ �f8f�
t
f þ0f ; and mf ¼ nf : ðA6Þ

In model F1, �m and �f have the same configura-

tion of first-order factor loadings, as based on the

expected WAIS-III factor structure, but equality con-

straints over sex are absent. Note that the intercepts

nm and n f are estimated freely and the factor means

are fixed to zero.

In model F2, the first-order factor loadings are con-

strained to be equal across sex, i.e., �m=�f =�*:

Sm ¼ �48m�t
4 þ0m; and mm ¼ nm;

Sf ¼ �48f�
t
4 þ0f ; and mf ¼ nf : ðA7Þ

where �* denotes the matrix with constrained first-

order factorloadings.

In model F3, the structure for the means is intro-

duced. That is, the vectors with observed means are

constrained to be identical across sex, i.e., nm=n f=n*.

As the factor means cannot be estimated simultaneously

in males and females, the factor means of the males are

fixed to zero, while the factor means of the females are

estimated freely.

Sm ¼ �48m�t
4 þ0m; and mm ¼ n4;
Sf ¼ �48f�
t
4 þ0f ; and

mf ¼ n4 þ�4 am �afð Þ ¼ n4 þ�4aD; ðA8Þ
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where aDdenotes (am�af), i.e., the difference be-

tween the factor means of the males and the females.

In model F4, the residual variances are constrained

to be equal across sex, i.e., 0m=0f =0*:

Sm ¼ �48m�t
4 þ04; and mm ¼ n4;

Sf ¼ �48f�
t
4 þ04; and

mf ¼ n4 þ�4aD: ðA9Þ

In model S1, the second-order factor is introduced in

either model F3 or F4, depending on whether model F4
is tenable. Let us suppose strict factorial invariance (i.e.,

model F4) is tenable. Model F4 then functions as a

baseline model in which the second-order factor g is

introduced. In model S1, &m and &f have the same

configuration of second-order factor loadings, but

equality constraints over sex are absent.

Sm¼�4 &m%m&
t
mþ8m

� �
�t

4þ04; and mm ¼ n4;

Sf ¼ �4 &f%f&
t
f þ8f

� �
�t

4 þ04; and

mf ¼ nf þ�4aD: ðA10Þ

In model S2, we test whether the second-order factor

loadings can be considered equal across sex, i.e.,

&m=&f =&*:

Sm¼�4 &4%m&
t
4 þ8m

� �
�t

4 þ04; and mm ¼ n4;

Sf ¼ �4 &4%f&
t
4 þ8f

� �
�t

4 þ04; and

mf ¼ n4 þ�4aD: ðA11Þ
In model S3, the first-order factor means are con-

strained to be equal across sex, i.e., am=af. As the

means of the males (am) were fixed to zero, this

implies fixing the means of the females (af) to zero

as well. Due to lack of identification, it is impossible to

estimate the second-order mean in males (km) and

females (kf), simultaneously, so km is fixed to zero,

while kf is estimated:

Sm ¼ �4 &4%m&
t
4 þ8m

� �
�t

4 þ04; and mm ¼ n4;

Sf ¼ �4 &4%f&
t
4 þ8f

� �
�t

4 þ04; and

mf ¼ n4 þ�4&4 jm�jfð Þ; ¼ n4 þ�4&4KD; ðA12Þ

where kD denotes km�kf, i.e., the difference between

the second-order factor mean of the males and the

females.

In principle it is possible to estimate p�1 first-order

factor means a (where p is the total number of first-

order factors in the model), besides estimation of the
mean of the second-order factor k. In that case, one

creates a model in which some first-order factor mean

differences between the groups are accounted for by the

second-order factor, while some are not:

Sm ¼�4 &4%m&
t
4 þ8m

� �
�t

4 þ04; and mm ¼ n4;

Sf ¼ �4 &4%f&
t
4 þ8f

� �
�t

4 þ04; and

mf ¼ n4 þ�4aD þ�4&4KD: ðA13Þ

In model S4, the mean of the second-order factor g is

constrained to be equal across sex. As the mean of the

males (km) was fixed to zero, this implies fixing the

mean of the females (kf) to zero as well:

Sm ¼ �4 &4%m&
t
4 þ84

� �
�t

4 þ04; and mm ¼ n4;

Sf ¼ �4 &4%f&
t
4 þ84

� �
�t

4 þ04; and

mf ¼ n4: ðA14Þ

Appendix B

To explain how we dealt with dependence in the

data, we consider a simple situation in which we have

observed data in 4 individuals: y1, y2, y3, and y4. Each

data vector yi comprises p observed variables. Suppose

that we fit some covariance and mean model to the data

using raw data maximum likelihood estimation. Let S*

and m* denote the model implied covariance and mean

structure, respectively. E.g., S* may be a single com-

mon factor model. If the 4 cases are independent, their

individual contributions to the loglikelihood function

may be simply added:

LogL ¼
X4
i¼1

log jS4j�1=2 2kð Þ�p=2
�

� exp � 1=2 yi � m4ð ÞtS4�1 yi � m4ð Þ
� �� ��

ðB1Þ

Note that in the case of multi-group analyses, in

which males and females are modeled separately, the

above function is fitted separately for males and

females, and separate covariance and mean structures

are constructed, i.e., Sm* and mm* , and Sf* and mf*,

respectively.

In the present data, dependence of the 4 cases arises

because they are members of the same family. To

accommodate the dependence, we treat each family as

a case, rather than treating each individual as a case. We
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achieve this by specifying the following covariance

matrix and mean vector for each family separately:

S- ¼

S4

S21 S4

S31 S32 S4

S41 S42 S43 S4

2
664

3
775; and ðB2Þ

m-t ¼ tm4 m4 m4 m4b: ðB3Þ

Suppose that the four cases are members of family j,

then the data are collected in a single vector:

ytj ¼ ty1 y2 y3 y4b; ðB4Þ

and the contribution of this family to the loglikelihood

function is:

LogL ¼ log jS-j�1=2 2kð Þ� 4pð Þ=2
�

� exp � 1=2 yi � m-ð ÞtS-�1
�
yj � m-

�� �h i�
: ðB5Þ

Here we estimate the same parameters as for the

model for S* and m* in Eq. (B1), but in addition we

estimate the off-diagonal covariance matrices S21 to

S43. These off-diagonal matrices accommodate the

covariance between family members that are due to

their shared genes and shared environment. In prac-

tice, the number of off-diagonal matrices is limited by

the number of familial relationships. In fact, we lim-

ited ourselves to just three off-diagonal matrices: SMZ,

the off-diagonal covariance matrix for monozygotic

twins, SDZ, the off-diagonal covariance matrix for

dizygotic twins, and Ssibs, the off-diagonal matrix for

full sibs.

For instance, suppose a family j consists of one pair

of monozygotic female twins, and 2 male sibs. The

model implied covariance matrix for this family is

then specified as:

Sj- ¼

Sf
SMZ Sf
Ssib Ssib Sm
Ssib Ssib Ssib Sm

2
664

3
775; ðB6Þ

where the subscripts dMZT and dsibT denotes the pres-

ence of monozygotic and ordinary sib relations between

family members, respectively. In addition, the subscript

df T denotes the covariance matrix for the females, the

subscript dmT denotes the covariance matrix for the

males. That is, the data from the female sibs are used

in the composition of the overall covariance matrix for

the females, i.e., across all families, and the data from

the males sibs are used to compose the overall covari-
ance matrix for the males. For the present example, the

mean vector is:

mj-
t ¼ tmf mf mm mmb: ðB7Þ

Again, the data gathered in the female family mem-

bers are used to establish the overall means for the

females, i.e., means across families, while the data

from the males are used to establish the overall means

for the males.

If the family j consists of one pair of dizygotic male

twins, and 1 male and 1 female sib, the matrices Sj8 and
mj8 are:

Sj- ¼

Sm
SDZ Sm
Ssib Ssib Sm
Ssib Ssib Ssib Sf

2
664

3
775; and ðB8Þ

mj-
t ¼ tmm mm mm mf b: ðB9Þ

If the family j consists of one pair of dizygotic

opposite sex twins, and 1 male and 1 female sib, the

matrices Sj8 and mj8 are:

Sj- ¼

Sm
Ssib Sf
Ssib Ssib Sm
Ssib Ssib Ssib Sf

2
664

3
775; and ðB10Þ

mj-
t ¼ tmm mf mm mf b: ðB11Þ

In summary, dependence in the data was dealt with

by considering families rather than individuals as the

unit of analysis. This set-up creates the possibility to

estimate the additional covariance matrices between

family members, which then function in the model as

nuisance parameters. Implementation of this procedure

in Mx is discussed in Van der Sluis and Dolan (http://

users.fmg.uva.nl/cdolan/).
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