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Additive Genetic Variance

The starting point for gene finding is the observa-
tion of population variation in a certain trait. This
‘observed’, or phenotypic, variation may be attributed
to genetic and environmental causes. Although envi-
ronmental causes of phenotypic variation should not
be ignored and are highly interesting, in the following
section we will focus on the biometric model under-
lying genetic causes of variation, specifically additive
genetic causes of variation.

Within a population, one, two, or many different
alleles may exist for a gene (see Allelic Association).
Uniallelic systems will not contribute to population
variation. For simplicity, we assume in this treatment
one gene with two possible alleles, alleles Al and
A2. By convention, allele Al has frequency p, while
allele A2 has frequency ¢, and p + g = 1. With two
alleles, there are three possible genotypes: AlAl,
A1A2, and A2A2, with corresponding genotypic fre-
quencies p2, 2pg, and g2 (assuming random mating,
equal viability of alleles, no selection, no migration
and no mutation, see [3]). The genotypic effect on a
phenotypic trait (i.e., the genotypic value) of genotype
A1Al, is by convention called ‘a’ and the effect of
genotype A2A2 ‘ —a’. The effect of the heterozygous
genotype A1A2 is called ‘d’. If the genotypic value of
the heterozygote lies exactly at the midpoint of the
genotypic values of the two homozygotes (d = 0),
there is said to be no genetic dominance. If allele
Al is completely dominant over allele A2, effect d
equals effect a. If d is larger than a, there is over-
dominance. If d is unequal to zero and the two alleles
produce three discernable phenotypes of the trait, d
is unequal to a. This model is also known as the
classical biometrical model [3, 6] (see Figure 1 for a
worked example).

The genotypic contribution of a gene to the
population mean of a trait (i.e., the mean effect of
a gene, or p) is the sum of the products of the
frequencies and the genotypic values of the different
genotypes:

Mean effect = (apz) + (2pqd) + (—aqz)
=a(p - q) +2pqd. )

This mean effect of a gene consists of two
components: the contribution of the homozygotes
[a(p — q¢)] and the contribution of the heterozygotes

[2pgd]. If there is no dominance, that is d equals zero,
there is no contribution of the heterozygotes and the
mean is a simple function of the allele frequencies. If
d equals a, which is defined as complete dominance,
the population mean becomes a function of the square
of the allele frequencies; substituting d for a gives
a(p — q) + 2pga, which simplifies to a(1 — 2¢2).

Complex traits such as height or weight are not
very likely influenced by a single gene, but are
assumed to be influenced by many genes. Assuming
only additive and independent effects of all of these
genes, the expectation for the population mean (u) is
the sum of the mean effects of all the separate genes,
and can formally be expressed as u = > _a(p — q) +
2> dpq (see also Figure 2).

Average Effects and Breeding Values

Let us consider a relatively simple trait that seems to
be mainly determined by genetics, for example eye
color. As can be widely observed, when a brown-eyed
parent mates with a blue-eyed parent, their offspring
will not be either brown eyed or blue eyed, but may
also have green eyes. At present, three genes are
known to be involved in human eye color. Two of
these genes lie on chromosome 15: the EYCL2 and
EYCL3 genes (also known as the BEY 1 and BEY 2
gene respectively) and one gene lies on chromosome
19; the EYCL1 gene (or GEY gene) [1, 2]. For sim-
plicity, we ignore one gene (BEY1), and assume
that only GEY and BEY?2 determine eye color. The
BEY?2 gene has two alleles: a blue allele and a brown
allele. The brown allele is completely dominant over
the blue allele. The GEY gene also has two alle-
les: a green allele and a blue allele. The green allele
is dominant over the blue allele of GEY but also
over the blue allele of BEY2. The brown allele of
BEY2 is dominant over the green allele of GEY.
Let us assume that the brown-eyed parent has geno-
type brown—blue for the BEY2 gene and green—blue
for the GEY gene, and that the blue-eyed parent has
genotype blue—blue for both the BEY2 gene and the
GEY gene. Their children can be (a) brown eyed:
brown—blue for the BEY2 gene and either blue—blue
or green—blue for the GEY gene; (b) green eyed:
blue—blue for the BEY2 gene and green—blue for the
GEY gene; (c) blue eyed: blue—blue for the BEY?2
gene and blue—blue for the GEY gene. The possibil-
ity of having green-eyed children from a brown-eyed
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Figure 1 Worked example of genotypic effects, average effects, breeding values, and genetic variation. Assume body
height is determined by a single gene with two alleles Al and A2, and frequencies p = 0.6, ¢ = 0.4. Body height differs
per genotype: A2A2 carriers are 167 cm tall, A1A2 carriers are 175 cm tall, and A1A1 carriers are 191 cm tall. Half the
difference between the heights of the two homozygotes is a, which is 12cm. The midpoint of the two homozygotes is
179 cm, which is also the intercept of body height within the population, that is, subtracting 179 from the three genotypic
means scales the midpoint to zero. The deviation of the heterozygote from the midpoint (d) = —4 cm. The mean effect of
this gene to the population mean is thus 12(0.6 —0.4) +2 % 0.6 % 0.4 x —4 = 0.48 cm. To calculate the average effect of
allele Al (1) ¢, we sum the product of the conditional frequencies and genotypic values of the two possible genotypes,
including the A1 allele. The two genotypes are A1A1 and A1A2, with genotypic values 12 and — 4. Given one Al allele,
the frequency of A1Al is 0.6 and of A1A2 is 0.4. Thus, 12 % 0.6 —4 % 0.4 = 5.6. We need to subtract the mean effect of
this gene (0.48) from 5.12 to get the average effect of the Al allele («;): 5.6 — 0.48 = 5.12. Similarly, the average effect
of the A2 allele («2) can be shown to equal —7.68. The breeding value of A1AI carriers is the sum of the average effects
of the two Al alleles, which is 5.12 + 5.12 = 10.24. Similarly, for A1A2 carriers this is 5.12 — 7.68 = 2.56 and for A2A2
carriers this is —7.68 — 7.68 = —15.36. The genetic variance (V) related to this gene is 82.33, where Vj is 78.64 and Vp
is 3.69
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Figure 2 The combined discrete effects of many single genes result in continuous variation in the population. *Based on
8087 adult subjects from the Dutch Twin Registry (http://www.tweelingenregister.org)
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parent and a blue-eyed parent is of course a conse-
quence of the fact that parents transmit alleles to their
offspring and not their genotypes. Therefore, parents
cannot directly transmit their genotypic values a, d,
and —a to their offspring. To quantify the transmis-
sion of genetic effects from parents to offspring, and
ultimately to decompose the observed variance in the
offspring generation into genetic and environmental
components, the concepts average effect and breed-
ing value have been introduced [3].

Average effects are a function of genotypic val-
ues and allele frequencies within a population. The
average effect of an allele is defined as ‘.. the mean
deviation from the population mean of individuals
which received that allele from one parent, the allele
received from the other parent having come at random
from the population’ [3]. To calculate the average
effects denoted by o) and «; of alleles Al and A2
respectively, we need to determine the frequency
of the Al (or A2) alleles in the genotypes of the
offspring coming from a single parent. Again, we
assume a single locus system with two alleles. If there
is random mating between gametes carrying the Al
allele and gametes from the population, the frequency
with which the A1 gamete unites with another gamete
containing Al (producing an A1A1 genotype in the
offspring) equals p, and the frequency with which
the gamete containing the Al gamete unites with a
gamete carrying A2 (producing an A1A2 genotype
in the offspring) is ¢g. The genotypic value of the
genotype A1Al in the offspring is a and the geno-
typic value of A1A2 in the offspring is d, as defined
earlier. The mean value of the genotypes that can be
produced by a gamete carrying the Al allele equals
the sum of the products of the frequency and the
genotypic value. Or, in other terms, it is pa + qd.
The average genetic effect of allele Al («;) equals
the deviation of the mean value of all possible geno-
types that can be produced by gametes carrying the
Al allele from the population mean. The population
mean has been derived earlier as a(p — q) + 2pqd
(1). The average effect of allele Al is thus: o) =
pa+qd — la(p — q) +2pqd] = qla +d(q — p)].
Similarly, the average effect of the A2 allele is o, =
pd —qa —la(p —q) +2pqd]l = - pla+d(g - p)l.
o] — ap is known as o or the average effect of
gene substitution. If there is no dominance, «; = ga
and op = — pa, and the average effect of gene
substitution « thus equals the genotypic value a
(x =1 —ay =qga+ pa=(q+ pa=a).

The breeding value of an individual equals the
sum of the average effects of gene substitution of an
individual’s alleles, and is therefore directly related
to the mean genetic value of its offspring. Thus, the
breeding value for an individual with genotype A1A1
is 2a; (or 2qa), for individuals with genotype A1A2
it is o + a0y (or (¢ — p)a), and for individuals with
genotype A2A2 it is 2ap (or —2pa).

The breeding value is usually referred to as the
additive effect of an allele (note that it includes
both the values a and d), and differences between
the genotypic effects (in terms of a,d, and —a,
for genotypes AlAl, AlA2, A2A2 respectively)
and the breeding values (2q«, (¢ — p)a, —2pa, for
genotypes A1A1, A1A2, A2A2 respectively) reflect
the presence of dominance. Obviously, breeding
values are of utmost importance to animal and crop
breeders in determining which crossing will produce
offspring with the highest milk yield, the fastest race
horse, or the largest tomatoes.

Genetic Variance

Although until now we have ignored environmental
effects, quantitative geneticists assume that popula-
tionwise the phenotype (P) is a function of both
genetic (G) and environmental effects (E): P =G +
E, where E refers to the environmental deviations,
which have an expected average value of zero. By
excluding the term GxE, we assume no interac-
tion between the genetic effects and the environ-
mental effects (see Gene-Environment Interaction).
If we also assume there is no covariance between
G and E, the variance of the phenotype is given
by Vp = Vg + Vg, where Vi represents the vari-
ance of the genotypic values of all contributing loci
including both additive and nonadditive components,
and Vg represents the variance of the environmen-
tal deviations. Statistically, the total genetic variance
(Vi) can be obtained by applying the standard for-
mula for the variance: o2 = > filxi — w)?, where
fi denotes the frequency of genotype i, x; denotes
the corresponding genotypic mean of that genotype,
and p denotes the population mean, as calculated
in (1). Thus, Vg = p*la — (a(p — q) +2pqd)]* +
2pqld — (a(p — q) + 2pgd)* + ¢*[—a — (a(p —
q) +2pgd))>. This can be simplified to Vg =
p*[2q(a — dp))* + 2pqlalg — p) +d(I —2pg)*+
q*[—2p(a +dq)]?, and further simplified to Vg =
2pgqla +d(q — p))* + 2pgd)* = Va+ Vp [3].
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If the phenotypic value of the heterozygous geno-
type lies midway between A1A1 and A2A2, the total
genetic variance simplifies to 2 pga®. If d is not equal
to zero, the ‘additive’ genetic variance component
contains the effect of d. Even if a =0, V4 is usu-
ally greater than zero (except when p = g). Thus,
although V, represents the variance due to the addi-
tive influences, it is not only a function of p, ¢, and
a but also of d. Formally, V represents the variance
of the breeding values, when these are expressed in
terms of deviations from the population mean. The
consequences are that, except in the rare situation in
which all contributing loci are diallelic with p = ¢
and a = 0, V, is usually greater than zero. Models
that decompose the phenotypic variance into com-
ponents of Vp, without including Vj, are therefore
biologically implausible. When more than one locus
is involved and it is assumed that the effects of these
loci are uncorrelated and there is no interaction (i.e.,
no epistasis), the Vg’s of each individual locus may
be summed to obtain the total genetic variances of all
loci that influence a trait [4, 5].

In most human quantitative genetic models, the
observed variance of a trait is not modeled directly
as a function of p, ¢, a, d, and environmental devi-
ations (as all of these are usually unknown), but
instead is modeled by comparing the observed resem-
blance between pairs of differential, known genetic

relatedness, such as monozygotic and dizygotic twin
pairs (see ACE Model). Ultimately, p, ¢, a, d,
and environmental deviations are the parameters that
quantitative geneticists hope to ‘quantify’.
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