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The differentiation hypothesis in cognitive development states that cognitive abilities become
progressively more independent as children grow older. Studies of phenotypic development in
children have generally failed to produce convincing support for this hypothesis. The aim of the
present study is to investigate the issue of differentiation at the genetic and environmental level.
Six psychometric measures assessing verbal and nonverbal cognitive abilities were administered
to 209 Dutch twin pairs at ages 5, 7, and 10 years. Longitudinal results provided little evidence
for the differentiation hypothesis. Stability in subtest performance is due mainly to genetic in-
fluences. The shared environment contribution to phenotypic stability is small. The unique en-
vironment contributes to age-specific variance only. 
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INTRODUCTION

The structure of individual differences in cognitive abil-
ities during development has received considerable at-
tention in cognitive developmental theory (Schaie,
1994; Vernon, 1976). One important hypothesis, dating
back to Garrett (1946; see also Carroll, 1993; Reinert,
1970; Wohlwill, 1973), states that cognitive abilities
become increasingly more differentiated during devel-
opment.4 In operational terms, this means that the inter-
correlations among psychometric measures of ability
decrease during normal cognitive development in chil-
dren. So far, support for this hypothesis has been poor.
In an early review of about 60 factor analytic studies,

Reinert (1970) suggested that a trend toward increased
differentiation was present. However, this conclusion
was based on the selection of studies that actually re-
ported a change. In a more recent review, Carroll (1993)
failed to find clear evidence for the differentiation of abil-
ities. More recent cross-sectional studies of the changes
in abilities in both children and adults are consistent
with Carroll’s finding in that age-related differentiation
of cognitive abilities was not observed (Bickley et al.,
1995; Deary et al., 1996; Juan-Espinosa et al., 2000;
Werdelin and Stjernberg, 1995). 

Although support for the differentiation is appar-
ently weak, comparative factor analytic studies have two
drawbacks. First, studies vary in the definition of dif-
ferentiation within the factor model and in the criteria
used to evaluate such change. A number of approaches
have been suggested to assess factorial invariance. A
comprehensive summary of theories of factorial invari-
ance is given in Cunningham (1991; see also Horn,
1991). Factorial change and stability across time may
be judged by criteria that vary in restrictiveness. A sec-
ond drawback is the limitation of most studies to analy-
ses at the phenotypic level. It has long been recognized
in behavior genetics that the phenotypic covariance
structure does not always reflect the latent covariance
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invariance, namely configural invariance (Horn and
McArdle, 1992; Schaie et al., 1998). We present detailed
results relating to the changes over time in genetic and
environmental effects and to their contribution to the
phenotypic stability. In these longitudinal analyses, we
hope to establish the contributions, if any, of genetic and
environmental effects to differentiation.

METHODS

Sample

This study is part of a longitudinal study of the
development of intelligence and problem behavior.
The sample was obtained from the Netherlands Twin
Registry, which is maintained at the Vrije Universiteit
in Amsterdam. The registry contains around 50% of all
twins born in the Netherlands since 1986 (Boomsma,
1998). The recruitment of the initial sample of 209
twin pairs took place on the basis of age, zygosity,
and city of residence. Mean ages at the three mea-
surement occasions were 5.3 years (80% ranging from
5 years, 1 month to 5 years, 6 months), 6.8 years (80%
ranging from 6 years, 6 months to 7 years, 1 month),
and 10 years (80% ranging from 9 years, 11 months
to 10 years, 1 month). All children had started ele-
mentary school at the beginning of the study. Zygos-
ity of the same-sex twins in the initial sample was
established by either blood group polymorphism (137
pairs) or DNA analyses (24 pairs), and in 9 twin pairs
by physical resemblance as assessed by the test ad-
ministrator. The sample comprised 47 monozygotic
(MZ) female pairs, 37 dizygotic (DZ) female pairs,
42 MZ male pairs, 44 DZ male pairs, and 39 DZ
opposite-sex pairs. At the three measurement occa-
sions the number of participating pairs was 209 (age 5),
192 (age 7), and 197 (age 10). Five families did not
participate at both age 7 and age 10. At the age of 5,
one child failed one subtest due to difficulties during
testing. One twin pair was assigned missing values on
the verbal subtests measured at all three ages, because
they suffered from hearing difficulties. A sample of
184 pairs provided complete data on all subtests at all
three ages.

The demographic characteristics of the employed
twin mothers agree with those in the norm population
(Central Bureau of Statistics, 2001). However, the oc-
cupational status of the employed twin fathers is not
quite representative of the Dutch population. The twin
sample is somewhat underrepresented in the lower end
of the socioeconomic scale.

structures due to genetic and(or) environmental factors
(Plomin, 1983). The failure to establish phenotypic dif-
ferentiation does not necessarily imply the absence of
differentiation at the genetic and environmental level.
Many papers have been devoted to the development of
longitudinal behavior genetic models (Boomsma and
Molenaar, 1987; DeFries and Fulker, 1986; Meyer et al.,
1999; Plomin and DeFries, 1981; McArdle, 1986;
McArdle and Goldsmith, 1990). Several behavior ge-
netic studies have addressed the issue of stability and
change in cognitive development (Bishop et al., 2003;
Bartels et al., 2002; Cardon and Fulker, 1993; Eaves
et al., 1986; Fulker et al., 1993; Hay and O’Brien, 1983;
Hewitt et al., 1988; Plomin et al., 1994; Reznick et al.,
1997; Wilson, 1983). Although these studies vary in the
age range of the samples, psychometric instruments used
to assess cognitive abilities, and statistical methods, the
results show a considerable degree of agreement. Over-
all, genetic effects acting on specific cognitive abili-
ties display both developmental stability (variance
common to different ages) and change (age-specific
variance). Genetic effects become increasingly more
important in explaining individual differences as chil-
dren grow older. In contrast to the differentiation hy-
pothesis, the correlation between genetic factors that
represent different domains of intelligence appear to
increase with age (Casto et al., 1995; Price et al., 2000).
The shared environmental effects contribute both to the
correlation among psychometric subtests and to the cor-
relation among these subtests over time. However,
these effects diminish as children grow older (Patrick,
2000). Unshared environmental effects are important
at every age but show little to no stability over time.
Thus, with respect to the genetic and environmental
contributions, no simple picture emerges with respect
to the differentiation hypothesis. However, most re-
search has involved univariate measures of cognitive
abilities and has usually focused on the analyses of gen-
eral intelligence (e.g., Bartels et al., 2002; Bishop
et al., 2003). The number of behavior genetic studies
incorporating a longitudinal design and multivariate
measures is limited.

In the present study, we investigate the differenti-
ation hypothesis using twin data. A multidimensional
test of cognitive abilities was administered to 209 twin
pairs at ages 5, 7, and 10 years. In part these are the same
data as analyzed in Bartels et al., (2002) and Boomsma
and Van Baal (1998). However, rather than modeling a
single repeated measure of general intelligence, here we
model repeated measures of six specific cognitive abil-
ities. We consider the least strict version of factorial
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blocks. Children at age 5 were given only 12
discs out a set of 18 discs.

Hidden Figures requires visual analysis, pattern
recognition, matching, and the ability to ignore
irrelevant stimuli. A large drawing consisting
of many lines and six smaller simplified draw-
ings are shown to the child. The child has to find
out which one of the smaller drawings is present
in the more complex drawing. The number of
correct judgments is the total score. Besides a
difference in the number of items presented, chil-
dren of older age are allowed less time to reach
a decision.

Verbal Meaning assesses knowledge of concepts,
and verbal conceptualization. In this vocabulary
test, the child is shown four drawings represent-
ing familiar objects or acts. The tester reads the
name of one object or act aloud and the child is
asked to choose which of the drawings best suits
the word. The number of correct items is the total
score. Older children are presented with a large
number of items than the younger children.

Learning Names is a verbal memory task, which is
used to assess the ability to learn and recall
names with pictures. The tester shows the child
a book containing pictures of cats and butterflies
and states the proper (fictional) name of each an-
imal. At times, the tester explains why a given
animal was given a particular name. The child
has to recall the names of the animals within a
certain time limit when shown the pictures. Five-
year-old children are shown fewer pictures than
the older children. The total score is the number
of correct responses.

Idea Production is a measure of verbal fluency.
Several simple questions are posed, like “what
items can you put in your coat pocket?”. The
child has to respond by producing as many an-
swers as possible within a certain time limit. The
questions asked, the maximum time for an-
swering, and the evaluation of the answers is the
same for each age group. The number of ac-
ceptable answers forms the total score.

Age-corrected norms are based on an interval of four
months. Raw subtest total scores are corrected for age
and transformed into standardized scores with a mean of
15 and a standard deviation of 5. The reliabilities (inter-
nal consistency) of the subtests are stable across age,
varying from .69 to .90. The concurrent validity with the
WISC-R is .86 for total IQ (see also Bartels et al., 2002).

Procedure

When the twins were 5 and 7 years old, they par-
ticipated in a combined study of the development of
cognitive abilities and brain function (Van Baal et al.,
1996). At these occasions, the children and their par-
ents visited the laboratory at the university. While one
of the twins participated in the electro-physiological
experiment, the co-twin completed the intelligence test.
At the third measurement occasion (when the twins
were about 10 years old), parents were invited by let-
ter to make an appointment for testing in their own
home or at the university. The majority of the families
preferred testing at home (70%). No difference in full
IQ score was observed between children tested at home
and children tested at the university.

Intelligence Test

A shortened version of the Revised Amsterdam
Children Intelligence Test, or the RAKIT, to use the
Dutch abbreviation (Bleichrodt et al., 1984) was ad-
ministered at all three occasions. The RAKIT is a Dutch
psychometric intelligence test for children, with sub-
tests covering a broad spectrum of intellectual capabil-
ities. The test is designed for children between about 4
and 11 years. The items in the subtests are organized by
both age level and difficulty, and are arranged in over-
lapping sets. Each set is tailored to a specific age group.
The overlap in items between the three measurement oc-
casions decreases with the increasing interval between
ages. The shortened version of the RAKIT includes six
subtests measuring verbal and nonverbal abilities:

Exclusion measures understanding of figural
classes or similarities. The child is presented
with four figures, of which three figures have
some common characteristic. After establishing
the relationship between these figures, the child
is asked to identify the odd one out. Total score
is the number of correct decisions. Since chil-
dren of older ages are shown more items, the
raw total score is not comparable across ages.

Discs is a measure of spatial orientation and speed
of spatial visualization. This test consists of a
wooden board with pins fixed in a particular
shape and of small wooden discs with holes in
a particular shape. The child is required to fit the
right discs onto the pegs at the right place and
in the proper position as quickly as possible. The
score is the total time required to place all the
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are unique environmental influences (e2). If multiple
measures on the same twins are available, the associ-
ation between measurements is also analyzed as a func-
tion of A, C and E (Boomsma and Molenaar, 1986;
Martin and Eaves, 1977), where A, C, and E them-
selves may be uni- or multidimensional. 

Model Fitting

All models were fit using the program Mx (Neale
et al., 1999). Parameter estimates were obtained by
maximizing the raw data likelihood. Given the pres-
ence of missing data, albeit limited in number in the
present study (8% at age 7; 6% at age 10), this method
is preferable to the analysis of covariance matrices
(e.g., Wothke, 2000). To test various hypotheses con-
cerning the genetic and environmental covariance
structures, we fitted a number of models to the longi-
tudinal, multivariate data. Some of these models were
nested, in the sense that one model was derivable from
a second, less restrictive model by fixing selected pa-
rameters in the second model to equal certain values
or by imposing equality constraints on selected param-
eters in the second model. Given this nesting, minus
twice the difference in log-likelihood between the
models may be used to evaluate the imposed restric-
tions. This statistic is asymptotically chi-square dis-
tributed if the restrictions are tenable. The number of
degrees of freedom of this test statistic equals the dif-
ference in the number of estimated parameters
between the two models. If the chi-square test is not
significant, we consider the restrictions tenable (e.g.,
Loehlin, 1992).

Two series of model fitting took place; analyses of
the cross-sectional data followed by analyses of the lon-
gitudinal data. The aim of the cross-sectional analyses
was to provide an initial insight into the multivariate
data, to test for sex differences in covariance structure,
and to obtain a starting point for the longitudinal analy-
ses. The cross-sectional data were initially modeled as
a Cholesky decomposition. Sex differences were evalu-
ated by constraining the covariance structures to be equal
for boys and girls. Cross-sectional analyses proceeded
with the specification of a more parsimonious and
hypothesis-driven factor model, derived from model-
fitting results obtained in our previous study of cogni-
tive abilities at age 5 (Rietveld et al., 2000). The genetic
covariance structure was specified as a correlated two-
factor structure with subtest-specific factors. The shared
environmental covariance structure was modeled as one
general factor, without subtest-specific factors. The
unique environmental covariance structure was modeled

Modeling of the Data

Standard genetic (co)variance modeling of twin
data was used to estimate the size and the structure of
the genetic and environmental effects (Neale and
Cardon, 1992). Phenotypic variance is assumed to be
due to shared environmental (C), unique environmental
(E), and additive genetic (A) effects (Plomin et al.,
2001). Although meta-analyses suggest that nonaddi-
tive effects do contribute to individual differences in
IQ test scores (15% of the variance according to
Daniels, Devlin, and Roeder, 1997), we do not consider
possible nonadditive genetic effects (dominance, epis-
tasis) here. There is in fact little evidence of dominance
effects in the present sample (Bartels et al., 2002;
Boomsma and Van Baal, 1998), while the correlations
do suggest the presence of shared environmental ef-
fects (see Table I below). In addition, the present sam-
ple sizes do not confer sufficient power to detect
relatively small nonadditive genetic effects (Eaves,
1972; Posthuma and Boomsma, 2000; Rietveld et al.,
in press). In view of these considerations, and the fact
that the present twin design does not provide sufficient
information to fit a model including C and dominance
effects simultaneously, we limit our attention to models
including A, C, and E.

On the individual level an observed phenotype (P)
can be represented as a function of a subject’s additive
genetic, common environmental, and unique environ-
mental deviations: 

Pij = aAij + cCij + eEij

where i = 1,2 (members within a twin pair) and j =
1, . . . N (number of twin pairs). The coefficients a, c,
and e are population invariant and can be considered
as regression coefficients or factor loadings of P on the
latent factors A, C, and E. If the latent factors are con-
strained to have unit variance (Neale and Cardon,
1992), the decomposition of the phenotypic variance is 

Vp = a2 + c2 + e2

The different degree of genetic relatedness between
monozygotic (MZ) and dizygotic (DZ) twin pairs is
used to estimate the contributions of the latent factors
to the phenotypic variation in cognitive abilities. Sim-
ilarity (covariances) between MZ twins can be due to
additive genetic influences (a2) and/or environmental
influences that are shared by both twins (c2). DZ co-
variances equal 1/2a2, in addition to the shared envi-
ronmental influences (c2). Environmental influences
that make MZ and DZ twins different from one another
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of the genetic and familial environmental group factors
was evaluated by constraining the relevant factor load-
ings at zero. Third, it was explored whether the influ-
ences of the genetic group factors and the shared
environmental group factors were of equal magnitude
at different ages.

RESULTS

Phenotypic Analyses

Evaluation of skewness and kurtosis of each sub-
test measured at each age indicated no serious depar-
ture from normality. Visual inspection revealed no
outliers, so we included all data in subsequent analy-
ses. Mean differences due to gender, zygosity, and birth
order of the twins were found to be absent. Nonparti-
cipation at ages 7 (N = 17) and 10 (N = 12) was not
related to the twins’ full-score IQ at age 5. By confir-
matory age-specific factor analyses using structural
equation modeling, the covariance matrix of the six
subtest scores was best described by an oblique two-
factor model with subtest specifics (age 5, �2 = 8.09
(8), p = .43; age 7, �2 = 2.74 (8), p = .95; age 10,
�2 = 11.35 (8), p = .18). The subtests Verbal Meaning,
Learning Names, and Idea Production loaded on one
common factor. Exclusion, Discs, and Hidden Figures
loaded on the other common factor. The common fac-
tors thus represented verbal and nonverbal (spatial)
abilities. The consistency of these results across mea-
surement occasions suggests that configural invariance
at the phenotypic level is tenable. 

Cross-Sectional Genetic Analyses 

A first impression of the relative magnitude of
genetic and environmental influences is obtained by the
inspection of twin correlations. Because correlations of
male, female, and opposite twin pairs did not differ by
formal testing, they were pooled. Correlations for each
subtest at the three ages are provided in Table I. 

Although there is considerable variation in the ob-
served correlations, the MZ twin correlations are con-
sistently larger than the DZ twin correlations. With the
possible exception of scores on the Learning Names
and Idea Production subtests at age 10, nonadditive ge-
netic effects appear to be absent. The mean correlations
show that MZ twins increase and DZ twins decrease in
similarity over time. This suggests that genetic effects
gain importance in explaining phenotypic individual
differences. Shared environmental effects appear to de-
crease over time. Because the MZ correlations are well

as subtest-specific factors only. This model served as a
reference for the final three analyses, in which the im-
portance of the latent factors was evaluated by con-
straining the relevant factor loadings at zero.

To establish that the same trait is being measured
at different ages, we imposed the minimal condition of
configural invariance. Configural invariance implies
that the factor pattern is invariant over time but that the
factor loadings may vary in size. Below we do consider
the more restrictive hypothesis that factor loadings are
in fact equal over time. Configural invariance does not
imply stability, in that similar factor patterns at each
age do not imply high correlations over time between
the genetic and environmental factors. The issue of sta-
bility was addressed by model fitting of the longitudi-
nal dataset. These analyses were initiated with the
specification of an autoregressive, or simplex model
(Boomsma and Molenaar, 1987; Guttman, 1954). This
particular model was chosen because it provides a
straightforward account of the stability of individual
differences over time. Figure 1 represents a path dia-
gram of the simplex model that was applied to the
genetic covariance matrix. The model supposes that
genetic variance at any age is partly a function of ge-
netic variance at the previous age, via paths t, and partly
determined by other genetic factors, via paths i. The
former paths represent transmission effects and the lat-
ter represent innovation effects. The Nonverbal and Ver-
bal innovation factors are correlated within age 7 and
10 (paths r(Inv, Iv)). To accommodate shared variance
between the genetic Nonverbal and Verbal factor at age
5, we added an interfactor correlation, path r(Anv, Av).

Figure 2 illustrates the environmental parts of the
model. Since the shared environmental structure was
originally modeled as a single common factor, only two
transmission parameters were added to the model to
account for the variance transmitted from age 5 to 7
and from age 7 to 10 (paths t). Innovation effects or
unshared variance at age 7 and age 10 are represented
by paths i. The unique environmental contributions
were found specific in origin. As with the genetic
specifics, each subtest-specific factor was allowed to
correlate over time in the longitudinal model. 

Having established that this model was acceptable
by comparison with a Cholesky decomposition, longi-
tudinal analyses proceeded by testing various hy-
potheses within this model. First, the correlations that
were specified between the genetic specific factors and
the unique environmental specific factors were con-
strained at zero. In so doing we investigated whether
the stability in subtest scores is accounted for com-
pletely by the common factors. Second, the importance

Differentiation of Cognitive Abilities 371



372 Rietveld, Dolan, van Baal, and Boomsma

Fig. 1. Path diagram depicting the genetic part of the model. The simplex structure with correlated specifics (Asp) suggests that both genetic
common factors and subtest-specific residuals are needed to explain variance in subtest performance. The correlation between the Nonverbal
(Anv) and Verbal (Av) factor at age 5, and the correlation between innovation factors (I) at age 7 and age 10 accommodate the covariation be-
tween nonverbal and verbal subtests. The variance that is shared across age is accounted for by autoregressive parameters (t), as specified be-
tween the common factors, and by the correlations as specified between the subtest-specific residuals. Each individual parameter (a, t, i, and
r) is freely estimated. Exclusion, nv1; Discs, nv2; Hidden Figures, nv3; Verbal Meaning, v1; Learning Names, v2; Idea Production, v3.
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Fig. 2. Path diagram depicting the environmental part of the model. The simplex structure with three shared environmental common factors
(C) suggests that the verbal and nonverbal subtests share all their age-specific variance. The variance that is shared among verbal and nonver-
bal subtests across age is accounted for by the autoregressive parameters (t) specified between the general C factors. Innovation factors (I) sug-
gest time-specific variance for C. The subtest-specific unique environmental factors (Esp) explain all variance in subtest performance at a specific
age. The correlations as specified between the subtests-specific E factors account for variance shared by the same subtest across age. Each
individual parameter (c, e, t, and i) is freely estimated. Exclusion, nv1; Discs, nv2; Hidden Figures, nv3; Verbal Meaning, v1; Learning Names,
v2; Idea Production, v3.



Model 3 (different factor structure for A, C, and E) gives
an acceptable description of the data at all ages. Indi-
cated by the significant detoriation in goodness of fit,
we found that both the genetic common factors (Model
4, drop A correlated factors) and the genetic specific
factors (Model 5, drop A correlated specific factors) are
important at every age. The one-factor shared environ-
mental structure accounts for a significant part of the
total variation at ages 5 and 7, but not at age 10 (Model
6, drop C). On the basis of the agreement in model fits
across age, we note that configural invariance appears
to be tenable, with the exception of the apparent absence

below unity, moderate to large unique environmental
effects are expected to be present at each age (Plomin
et al., 2001). Systematic differences in results between
the verbal and nonverbal subtests are absent. In Table II
a summary of the cross-sectional analyses is given. 

The nonsignificant difference between Model 1
(Cholesky decomposition with sex differences) and
Model 2 (Cholesky decomposition without sex differ-
ences) suggests that sex differences are absent at all
three ages. This result is consistent with other studies
on general IQ in which the same twins were included
(Bartels et al., 2002; Boomsma and Van Baal, 1998).
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Table I. Pearson Correlations for MZ and DZ for 6 Subtests, Measured at Age 5, 7 and 10 

Age 5 Age 7 Age 10

MZ DZ MZ DZ MZ DZ
N = 89 N = 120 N = 79 N = 113 N = 82 N = 115

Exclusion .60 .38 .42 .29 .65 .40
Discs .44 .23 .61 .30 .39 .18ns

Hidden Figures .63 .43 .53 .32 .62 .31
Verbal Meaning .61a .46a .32a .22 .76a .48
Learning Names .73a .44 .69a .50 .81a .30
Idea Production .63a .38 .52a .44 .68a .17ns

Mean .61 .39 .52 .35 .65 .31 

Note: MZ = monozygotic twins; DZ = dizygotic twins; N = number of twin pairs. 
a Based on N − 1 pairs; ns = nonsignificant at p < .05.

Table II. Cross-Sectional Analyses 

Age 5 Age 7 Age 10 

Model −2 LL (df ) �2 (df ) −2 LL (df ) �2 (df ) −2 LL (df ) �2 (df )

1. Cholesky decomposition ACE with sex differences 13785.9 13192.1 13307.2
(2315) (2112) (2172)

2. Cholesky decomposition ACE, no sex differences 13840.5 54.5 (63) 13263.1 71.0 (63) 13361.0 53. (63)
(2378) (2175) (2235) 

3. A: correlated two-factor structure + specifics 13868.9 28.4 (38) 13304.1 40.9 (38) 13395.1 34.1 (38)
(2416) (2213) (2273) 

C: one-factor structure
E: specifics only 

4. Drop A correlated factors, keep C and E 13929.0 60.0 (7)* 13392.4 88.3 (7)* 13523.4 128.2 (7)*
(2423) (2220) (2280) 

5. Drop A specifics, keep C and E 13958.1 89.1 (6)* 13325.8 21.7 (6)* 13444.3 49.1 (6)*
(2422) (2219) (2279) 

6. Drop C, keep A and E 13901.2 32.2 (6)* 13317.2 13.1 (6)* 13402.6 7.44 (6)
(2422) (2219) (2279) 

Note: LL = log-likelihood, �2 = chi-square, difference in −2LL between nested models. Model 2 is nested with Model 2; Model 3 is nested
with Model 2; Model 4, 5, and 6 are nested with Model 3. * = significant at p < .05.



sets of unique environmental correlations indicated that
the correlations between ages 5 and 10 (Model 7) and
between ages 7 and 10 (Model 8) were insignificant and
that the correlations between ages 5 and 7 were mar-
ginally significant (Model 6). In view of this marginal
effect, we dropped the correlations between subtest-
specific unique environmental residuals. This implies
that unique environmental effects do not contribute to
the stability in subtest performance between ages (Model
9; E correlations between specifics at ages 5, 7, and 10
are dropped). This model served as the new reference
model for subsequent analyses. The second series of
analyses evaluated the importance of latent group fac-
tors. It was decided not to evaluate the genetic effects
because their significant contribution to the observed
(co)variance was already established by the age-specific
analyses. Evaluation of the shared environmental effects
confirmed the earlier obtained age-specific result, that
is, the significant contribution at ages 5 and 7 (Model
10, drop C at age 5; Model 11, drop C at age 7). Here,
as opposed to the cross-sectional analyses, the shared
environment explained a significant part of the (co)vari-
ance at age 10 (Model 12, drop C at age 10). Presum-
ably this was due to the fact that the shared envir-
onmental common factor served both to explain the
covariance between the subtest scores at age 10 and part
of the covariance between ages 7 and 10. The third and
final analyses were carried out to explore the varying
magnitude of the genetic and shared environmental in-
fluences at the three occasions. The log-likelihood

of the shared environmental factor at age 10. The ge-
netic structure displays a close resemblance to the phe-
notypic structure in that the subtests cluster around two
correlated genetic factors, which are interpretable as the
verbal and nonverbal abilities. We limit the detailed dis-
cussion of results in terms of the actual parameters to
the longitudinal analyses.

Longitudinal Genetic Analyses 

Although the shared environmental factor ap-
peared to be absent at the age of 10, it was decided to
retain this factor in the initial stage of the longitudinal
analyses. Model fit indices are given in Table III. 

The log-likelihood difference between Model 1
(Cholesky decomposition) and Model 2 (simplex struc-
ture) suggested that the longitudinal model (see Figs. 1
and 2) provided an acceptable point of departure. Three
series of analyses were performed. First, the correla-
tions between the subtest-specific factors were evalu-
ated. The correlations obtained after fitting the factor
model to the longitudinal data ranged from −1.00 to
1.00 for the genetic specifics and from −.13 to .23 for
the unique environmental specifics. The worsening in
goodness of fit of Models 3 (drop A correlations be-
tween specifics at ages 5 and 7), Model 4 (drop A cor-
relations between specifics at ages 5 and 10), and Model
5 (drop A correlations between specifics at ages 7 and
10) suggested that the three sets of genetic correlations
were significantly different from zero. Tests of the three
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Table III. Longitudinal Analyses 

Model −2 LL (df ) Comparison �2 (df )

1. Cholesky decomposition ACE, no sex differences 39463.0 (6608)
2. A: simplex structure with 3 verbal and 3 nonverbal factors, 39801.5 (7025) Model 1 338.5 (417), ns

18 correlated specifics
C: simplex structure with 3 general factors 
E: 18 correlated specifics 

3. Drop A correlations specifics between ages 5–7 39835.6 (7031) Model 2 34.1 (6), p < .05
4. Drop A correlations specifics between ages 5–10 39818.3 (7031) Model 2 16.8 (6), p < .05
5. Drop A correlations specifics between ages 7–10 39843.6 (7031) Model 2 42.1 (6), p < .05
6. Drop E correlations specifics between ages 5–7 39814.1 (7031) Model 2 12.7 (6), p = .05
7. Drop E correlations specifics between ages 5–10 39807.2 (7031) Model 2 5.7 (6), ns
8. Drop E correlations specifics between ages 7–10 39812.4 (7031) Model 2 10.9 (6), ns
9. Drop E correlations specifics between every age-interval 39828.3 (7043) Model 2 26.8 (18), ns

10. Drop C age 5 39860.5 (7032) Model 9 32.2 (8), p < .05
11. Drop C age 7 39860.6 (7032) Model 9 32.3 (8), p < .05
12. Drop C age 10 39850.7 (7032) Model 9 22.4 (8), p < .05
13. A factor loadings age 5 = age 7 39846.9 (7049) Model 9 18.7 (6), p < .05
14. A factor loadings age 7 = age 10 39847.8 (7049) Model 9 19.6 (6), p < .05
15. C factor loadings age 5 = age 7 39843.9 (7049) Model 9 15.6 (6), p < .05
16. C factor loadings age 7 = age 10 39847.0 (7049) Model 9 18.7 (6), p < .05



explained by the common genetic factors increases over
time. Judging by the explained variance in the subtest
Idea Production, it appears that this subtest is not well
represented by the verbal common factor. With respect
to the genetic subtest specifics, the results relating to
the nonverbal and verbal abilities differ. As opposed to
the verbal subtests, the nonverbal subtests display a de-
crease in the variance of these genetic residuals. Unique
environmental influences are large, accounting for
around one third to one half of the total variance for
each measurement at all ages.

The longitudinal structure of the common genetic
and shared environmental factors were modeled using
(first-order) autoregressions.

The regressions were used to calculated the cor-
relations among these factors over time. The correla-
tions and confidence intervals are shown in Table V. 5

difference tests suggested that the equality constraints
on the factor loadings were tenable neither in the genetic
part of the model (Model 13, A factor loadings age 5
equal to age 7; Model 14, A factor loadings age 7 equal
to age 10) nor in the shared environmental part of the
model (Model 15, C factor loadings age 5 equal to age
7; Model 16, C factor loadings age 7 equal to age 10).
Strictly speaking, changes in factor loading indicate
qualitative changes in the traits that are measured by the
RAKIT. However, the interpretation of these results is
complicated by the fact that the item content of the
RAKIT is tailored to each age group. The overlap in
items is large but not complete. The observed results
may therefore be due to a true developmental effect
and/or changes in item content.

Based on the best-fitting longitudinal model
(Model 9), we calculated the decomposition of pheno-
typic variance of each subtest at each occasion. The
results are shown in Table IV. 

The contribution of the shared environment is ei-
ther small at all three occasions (Discs, Idea Produc-
tion), or decreases with time (Exclusion, Hidden
Figures, Learning Names). The subtest Verbal Meaning
forms an exception in that the contribution is variable,
but consistently large. Generally, the subtest variance
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Table IV. Percentages of Total Variance Explained by Additive Genetic and Environmental Factors 

% Variance accounted for by genetic and environmental effects with 95% confidence intervals 

Subtest Age Anv Av Asp h2 95% c2 95% e2 95%

Exclusion 5 28 10 38 .23–.53 19 .09–.31 43 .32–.55
7 37 3 40 .28–.53 5 .01–.13 55 .42–.66

10 55 3 58 .46–.69 7 .01–.17 35 .26–.45

Discs 5 24 — 22 46 .35–.57 3 .00–.09 51 .41–.62 
7 30 — 28 58 .45–.68 5 .01–.16 37 .28–.47

10 29 — 15 44 .34–.54 4 .00–.11 52 .42–.61 

Hidden 5 8 — 40 48 .33–.60 11 .03–.23 41 .31–.54
Figures 7 29 — 8 37 .20–.50 14 .06–.29 49 .38–.62 

10 36 — 12 48 .34–.61 8 .02–.19 44 .32–.56 

Verbal 5 — 11 10 21 .08–.37 39 .24–.53 40 .31–.49
Meaning 7 — 9 10 19 .06–.33 17 .06–.29 64 .53–.75 

10 — 25 17 42 .23–.60 32 .16–.48 26 .18–.36 

Learning 5 — 49 4 53 .38–.66 17 .06–.31 30 .23–.39 
Names 7 — 23 16 39 .23–.60 32 .12–.48 29 .22–.39 

10 — 58 18 74 .65–.83 4 .00–.13 22 .15–.29 

Idea 5 — 8 50 58 .45–.68 5 .01–.14 37 .28–.42 
Production 7 — 2 56 58 .43–.68 4 .00–.14 38 .29–.51 

10 — 11 49 60 .45–.71 4 .00–.12 36 .26–.50 

Note: Anv = nonverbal genetic factor, Av = verbal genetic factor, Asp = specific genetic factors. h2 = proportion of total variance explained by
genetic factors (Anv + Av + Asp), c2 = proportion of total variance explained by the shared environmental general factor, e2 = proportion of
total variance explained by unique environmental specific factors. h2 + c2 + e2 = 100%.

5 In the earlier study (Rietveld et al., 2000) the 95% confidence interval
of the nonsignificant genetic correlation was reported incorrectly
(−.26 to .10). The correct confidence interval is −.26 to +.43. The
confidence intervals between the present and earlier study overlap
greatly. As opposed to the age-specific study, the genetic correlation
between A-verbal and A-nonverbal at age 5 differs significantly from
zero in the present study.



expected correlations in the subtests Discs and Idea
Production. With the exception of the subtest Verbal
Meaning, the contribution of shared environment to the
stability is relatively small. Thus, although the corre-
lations between the shared environmental factors are
large (Table V), the relatively minor and, over time, di-
minishing contributions of the shared environment at
each occasion (Table IV) render the contribution to the
phenotypic stability of subtest performance. 

DISCUSSION

The aim of the present study is to investigate the
differentiation hypothesis at the level of the genetic and
environmental covariance structure. To this end, multi-
variate data were analyzed of 209 twin pairs, who were
tested at ages 5, 7, and 10 years. As a point of departure
of comparison of factor structures over time, we consid-
ered configural invariance (Horn and McArdle, 1992).
Configural invariance implies that the same observed
variables load on the same factors across measurement
occasions. Configural invariance was established in phe-
notypic factor analyses of the data observed at each oc-
casion.An oblique two-common-factor model fit the data

Judging by the correlations between the genetic
common factors over occasions, the stability of genetic
individual differences on these factors is large (corre-
lations between .87 and .99). The common shared en-
vironmental factor likewise contributes greatly to the
stability of individual differences over time (correla-
tions equal .82, .97, and .79). 

Table VI lists the contributions of genetic and
environmental effects to the between-occasion subtest
correlations.

Most of the expected phenotypic correlations are
estimated between about .40 and .60. The correlations
between ages 7 and 10 are larger than those between ages
5 and 7 in four subtests (Exclusion, Discs, Hidden Fig-
ures, Idea Production). The decomposition of the corre-
lations reveals that genetic effects are an important
source of stability. This is due to both the relative mag-
nitude of the genetic effects at each occasion and to the
large genetic correlations over time. On average, genetic
effects explain around 74% of the observed stability in
subtest performance from age 5 to age 7 and over 80%
from age 7 to age 10.

As already suggested by the results in Table IV,
specific genetic factors contribute substantially to the
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Table V. Correlations for Genetic Common Factors (top) and Shared Environmental Common Factors
(bottom). The boundaries of 95% confidence intervals are shown in parentheses. 

Genetic correlations

Age 5 Age 5 Age 7 Age 7 Age 10 Age 10
Nonverbal Verbal Nonverbal Verbal Nonverbal Verbal 

Age 5 1.00
Nonverbal

Age 5 .25 1.00
Verbal (.07–.41) 

Age 7 .92 .23 1.00
Nonverbal (.80–1.00) (.07–.39)

Age 7 .25 .99 .28 1.00
Verbal (.07–.41) (.88–1.00) (.09–.43) 

Age 10 .87 .22 .94 .26 1.00
Nonverbal (.73–1.00) (.06–.37) (.86–1.00) (.08–.41) 

Age 10 .24 .94 .26 .94 .30 1.00
Verbal (.07–.40) (.79–1.00) (.08–.42) (.80–1.00) (.13–.45)

Shared environmental correlations 

Age 5 Age 7 Age 10 

Age 5 1.00
Age 7 .82 (.67–.92) 1.00
Age 10 .79 (.60–.92) .97 (.80–1.00) 1.00



tellectual abilities. Genetic effects not only increase in
importance as a source of individual differences at spe-
cific ages but also as a source of stability over ages. 

Shared environmental effects are highly stable
from infancy to middle and late childhood, but dimin-
ish in importance during this time period. At age 10, the
relative influence of the familial environment is esti-
mated at less than 10% of the total variance of five sub-
tests. In our previous paper (Rietveld et al., 2000) we
reported a correlation of .46 between parents for high-
est attained education. Given the association with IQ,
marital assortment for educational level may have con-
tributed to the detected shared environmental effects.
However, we do not believe that assortment can account
for the presence of shared environmental effects in these
data. First, on the assumption that assortment is pheno-
typic, the induced genetic correlation will be lower than
.46. Second, the phenotypic correlation between edu-
cational attainment and general intelligence is .5 (me-
dian value; e.g., Kline, 1991). Taken together, these
findings suggest that the genetic correlation for IQ tests
induced by assortment for educational attainment will
be low. In addition, we find that shared environmental
effects decrease over time. This decrease is known to
continue beyond 10 years. This is inconsistent with the
possible consequences of phenotypic assortment at the
genetic and environmental level.

relatively well. The common factors represented verbal
(Verbal Meaning, Learning Names, Idea Production) and
nonverbal cognitive abilities (Exclusion, Discs, Hidden
Figures). Configural invariance was also found to be ten-
able in the genetic and environmental factor models, es-
tablished in analyses of the cross-sectional data. The
unique environment did not contribute to the covariance
between the subtests. The genetic factor structure com-
prised two correlated, verbal and nonverbal common fac-
tors and six subtest-specific factors. A single common
factor without residuals accounted for the covariance
structure of the shared environmental effects. The com-
parison of the phenotypic results with the genetic and
environmental results indicates that the phenotypic two-
factor solution is due mainly to the genetic structure.

The analyses of the longitudinal dataset produced
various interesting results. With respect to the structure
and importance of the genetic and environmental ef-
fects, the results presented here are in agreement with
those presented by other twin studies (Cardon and
Fulker, 1993; McCartney et al., 1990; McGue et al.,
1993; Patrick, 2000). When outcomes from two large
infant studies (Price et al., 2000; Reznick et al., 1997)
are combined with the outcomes obtained here, it
emerges that between the age of 2 and the age of 5, and
up to the age of 10, genes become increasingly impor-
tant in explaining variation in verbal and nonverbal in-
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Table VI. Within-Trait, Across-Age Expected Correlations, Partitioned into Genetic 
and Environmental Contributions

Age interval E(rp) A group A specifics C

Exclusion Age 5 to 7 .41 .30 .03 .08
Age 7 to 10 .50 .43 .01 .06

Discs Age 5 to 7 .47 .25 .19 .03
Age 7 to 10 .53 .28 .20 .05

Hidden Figures Age 5 to 7 .27 .14 .02 .11
Age 7 to 10 .47 .31 .05 .11

Verbal Meaning Age 5 to 7 .41 .10 .10 .21
Age 7 to 10 .43 .14 .06 .23

Learning Names Age 5 to 7 .61 .34 .08 .19
Age 7 to 10 .58 .35 .13 .10

Idea Production Age 5 to 7 .39 .04 .31 .04
Age 7 to 10 .47 .04 .39 .04

Note: E(rp) = expected phenotypic correlation based on final model, being the sum of 
ai * ra* ak (calculated separately for A group and A specifics), and ci*rc* ck (C). Parame-
ters a and c represent the unstandardized path loadings at a specific age, i and k represent
the initial and subsequent test occasion, r represents the correlation between factors. The
unique environment does not contribute to stability of subtest performance. 



results concerning the unique environmental effects are
straightforward. These effects are specific to the subtests
and they do not contribute to the stability of individual
differences over time. An increase in the unique envi-
ronmental effect over time will result in differentiation
at the phenotypic level, by lowering the phenotypic in-
tersubtest correlations. The results show that there is
certainly no increase in the relative contributions to the
variance. We emphasize that these results are limited to
the age range from 5 to 10 years; we cannot extrapolate
beyond the age of 10. However, within this age range,
we find little support for the differentiation hypothesis
at the genetic or the environmental level.

ACKNOWLEDGMENTS

This work was financially supported by the USF
(grant number 96/22). The research of Conor Dolan was
made possible by a fellowship of the Royal Netherlands
Academy of Arts and Sciences. The Netherlands Or-
ganization for Scientific Research is acknowledged for
funding the work of Caroline van Baal (575-65-052). 

REFERENCES

Bartels, M., Rietveld, M. J. H., Van Baal, G. C. M., and Boomsma,
D. I. (2002). Genetic and environmental influences on the de-
velopment of intelligence. Behavior Genetics 32:237–249.

Bickley, P. G., Keith, T. Z., and Wolfle, L. M. (1995). The three-
stratum theory of cognitive abilities: test of the structure of in-
telligence across the life span. Intelligence 20:309–328.

Bishop, E. G., Cherny, S. S., Corley, R., Plomin, R., DeFries, J. C.,
and Hewitt, J. K. (2003). Development genetic analysis of gen-
eral cognitive ability from 1 to 12 years in a sample of adoptees,
biological siblings, and twins. Intelligence 31:31–49.

Bleichrodt, N., Drenth, P. J. D., Zaal, J. N., and Resing, W. C. M.
(1984). Revisie Amsterdamse Kinder Intelligentie Test [Revised
Amsterdam Child Intelligence Test]. Lisse, The Netherlands:
Swets & Zeitlinger B. V. 

Boomsma, D. I. (1998). Twin registers in Europe: An overview. Twin
Research 1:34–51.

Boomsma, D. I., and Molenaar, P. C. M. (1986). Using LISREL to
analyze genetic and environmental covariance structure. Be-
havior Genetics 16:237–250.

Boomsma, D. I., and Molenaar, P. C. M. (1987). The genetic analy-
sis of repeated measures. I. Simplex models. Behavior Genet-
ics 17:111–123. 

Boomsma, D. I., and Van Baal, G. C. M. (1998). Genetic influences
on childhood IQ in 5- and 7-year-old Dutch twins. Develop-
mental Neuropsychology 14:115–126.

Cardon, L. R., and Fulker, D. W. (1993). Genetics of specific cog-
nitive abilities. In: Plomin, R., and McClearn, G. E. (eds.),
Nature, Nurture & Psychology, American Psychological Asso-
ciation, Washington, D.C., pp. 99–120. 

Carroll, J. B. (1993). Human cognitive abilities: A survey of factor-
analytic studies. Cambridge: Cambridge University Press.

Casto, S. D., DeFries, J. C., and Fulker, D. W. (1995). Multivariate
genetic analysis of Wechsler Intelligence Scale for Children—
Revised (WISC-R) factors. Behavior Genetics 25:25–32.

The unique environmental influences are specific
to each age and to each subtest. Although the unique
environmental effects lack stability, they do remain
the most important environmental influence in ex-
plaining individual differences in cognitive abilities.
Specific factors account for one third to half of the
total variance for each subtest at each age. Numerous
studies of developmental intelligence have pointed at
the importance of the environment that make children
in the same family different from one another (for dis-
cussion see Plomin and Daniels, 1987; Plomin et al.,
1996; Turkheimer and Waldron, 2000). The large es-
timates for unique environmental effects at each age
cannot be explained by the degree of unreliability of
the administered RAKIT subtests (Bleichrodt et al.,
1984). From the reported internal consistencies that
vary between about .70 and .90, it is suggested that a
substantial part of the variance unique to the individ-
ual must result from influences different from test un-
reliability. The unique environmental effect may
include an effect due to the interaction between genetic
and environmental deviations (Boomsma and Martin,
2002; Plomin et al., 1977). This interaction implies
that variations in the environment affect individuals
differently depending on their genotypes. If such an
interaction is between genetic effects and unique en-
vironmental effects, the unique environmental effects
are overestimated.

The essence of the differentiation hypothesis, as
discussed in the Introduction, concerns the correla-
tions among the subtest scores. The phenotypic corre-
lations are expected to decrease during normal cognitive
development. In investigating this hypothesis, we must
consider genetic and environmental sources of individ-
ual differences to determine whether differentiation has
taken place. First, as noted above, we find that the cor-
relations between the common genetic factors at each
occasion display little support for this hypothesis at the
genetic level (.25, .28 and .30; see Table V). Second, we
find that the shared environmental effects are either con-
stant or decrease over time. The shared environmental
common factor at each occasion is certainly a source of
correlation among the subtest scores. Any decline in
these effects over time may thus be viewed as a contri-
bution to differentiation by decreasing the phenotypic
correlations among subtests. Clear decrease in factor
loadings is limited to the subtests Exclusion, Hidden
Figures, and Learning Names. However, the shared en-
vironment in general explains relatively little of the vari-
ance, and thus the differentiation due to the decrease in
shared environmental effects is thus weak at best. The

Differentiation of Cognitive Abilities 379



nurture, & psychology (pp. 59–76). Washington, D.C.: Ameri-
can Psychological Association. 

Meyer, J. M., Silberg, J. L., Eaves, L. J., Maes, H. H., Simonoff,
E., Pickles, A., Rutter, M. L., and Hewitt, J. K. (1999). Variable
age of gene expression: Implications for developmental genetic
models. In LaBuda, M. C., and Grigorenko, E. L. (eds.), On
the way to individuality: Current methodological issues in
behavioral genetics (pp. 23–52). Commack: Nova Science
Publishers, Inc. 

Neale, M. C., Boker, S. M., Xie, G., and Maes, H. H. (1999). Mx:
Statistical Modeling (5th Ed.), Medical College of Virginia
Department of Psychiatry, Box 126 MCV, Richmond, 
VA 23298.

Neale, M. C., and Cardon, L. R. (1992). Methodology for genetic
studies of twins and families. Boston, MA: Kluwer. 

Patrick, C. L. (2000). Genetic and environmental influences on the
development of cognitive abilities: Evidence from the field of
developmental behavior genetics. Journal of School Psychology
38:79–108.

Plomin, R. (1983). Developmental Behavior Genetics. Child Devel-
opment 54:253–259.

Plomin, R., and Daniels, D. (1987). Why are children in the same
family so different from one another? Behavioral and Brain
Sciences 10:1–60.

Plomin, R., and DeFries, J. C. (1981). Multivariate behavioral ge-
netics and development: Twin studies. In Gedda, L., Parisi, P.,
and Nance, W. E., (eds.). Twin research 3: Part B (pp. 25–33).
New York: Alan R. Liss. 

Plomin, R., DeFries, J. C., and Loehlin, J. C. (1977). Genotype-
environment interaction and correlation in the analysis of human
behavior. Psychological Bulletin 84:309–322.

Plomin, R., DeFries, J. C., McClearn, G. E., and McGuffin, P. (2001).
Behavioral genetics (4th ed.). New York: W. H. Freeman. 

Plomin, R., Pedersen, N. L., Lichtenstein, P., and McClearn, G. E.
(1994). Variability and stability in cognitive abilities are largely
genetic later in life. Behavior Genetics 24:207–215.

Plomin, R., Petrill, S. A., and Cutting, A. L. (1996). What genetic
research on intelligence tells us about the environment. Journal
of Biosocial Science 28:587–606.

Posthuma, D., and Boomsma, D. I. (2000). A note on the statistical
power in extended twin designs. Behavior Genetics 30:147–158.

Price, T. S., Eley, T. C., Dale, P. S., Stevenson, J., Saudino, K., and
Plomin, R. (2000). Genetic and environmental covariation be-
tween verbal and nonverbal cognitive development in infancy.
Child Development 71:948–959.

Reinert, G. (1970). Comparative factor analytic studies of intelli-
gence throughout the human life-span. In Goulet, L. R., and
Baltes, P. B., (eds.). Life-span developmental psychology
(pp. 467–484). New York: Academic Press. 

Reznick, J. S., Corley, R., and Robinson, J. A. (1997). A longitudinal
twin study of intelligence in the second year. Monographs of the
Society for Research in Child Development, serial no. 249, 62(1).

Rietveld, M. J. H., Posthuma, D., Dolan, C. V., and Boomsma, D. I.
(in press). ADHD: Sibling interaction or dominance, an evalu-
ation of statistical power. Behavior Genetics.

Rietveld, M. J. H., Van Baal, G. C. M., Dolan, C. V., and Boomsma,
D. I. (2000). Genetic factor analyses of specific cognitive abil-
ities in 5-year-old Dutch children. Behavior Genetics 30:29–40. 

Schaie, K. W. (1994). The course of adult intellectual development.
American Psychologist 49:304–313.

Schaie, K. W., Maitland, S. B., Willis, S. L., and Intrieri, R. C. (1998).
Longitudinal invariance of adult psychometric ability factor
structures across 7 years. Psychology and Aging 13:8–20.

Turkheimer, E., and Waldron, M. C. (2000). Nonshared environment:
A theoretical, methodological, and quantitative review. Psycho-
logical Bulletin 126:78–108.

Van Baal, G. C. M., de Geus, E. J. C., and Boomsma, D. I.
(1996). Genetic architecture of EEG power spectra in early

Central Bureau of Statistics (2001), Enquête Beroepsbevolking 1999
[Official Inquiry of Working Population 1999], Central Bureau
of Statistics, Voorburg/Heerlen, The Netherlands (information
obtained at http://statline.cbs.nl/statweb/index_NL.stm).

Cunningham, W. R. (1991). Issues in factorial invariance. In L. M.
Collings and J. L. Horn (eds.), Best methods for the analysis of
change (pp. 106–113). Washington, D.C.: American Psycho-
logical Association. 

Deary, I. J., Egan, V., Gibson, G. J., Austin, E. J., Brand, C. R., and
Kellaghan, T. (1996). Intelligence and the differentiation hy-
pothesis. Intelligence 23:105–132.

DeFries, J. C., and Fulker, D. W. (1986). Multivariate behavioral ge-
netics and development. Behavior Genetics 16:1–10.

Daniels, M., Devlin, B., and Roeder, K. (1997). Of genes and IQ. In:
Intelligence, genes & success. Scientists respond to the bell
curve. Devlin, B., Fienberg, S. E. Resnick, D. P., and Roeder, K.,
(eds.). New York: Springer Verlag.

Eaves, L. J. (1972). Computer simulation of sample size and exper-
imental design in human psychogenetics. Psychological Bulletin
77:144–152.

Eaves, L. J., Long, J., and Heath, A. C. (1986). A theory of devel-
opmental change in quantitative phenotypes applied to cogni-
tive development. Behavior Genetics 16:143–162.

Fulker, D. W., Cherny, S. S., and Cardon, L. R. (1993). Continuity
and change in cognitive development. In Plomin, R., and Mc-
Clearn, G. E., (eds.), Nature, nurture & psychology. Washing-
ton, D.C.: American Psychological Association.

Garrett, H. E. (1946). A developmental theory of intelligence. Amer-
ican Psychologist 1:372–378.

Guttman, L. (1954). A new approach to factor analysis: The radex.
In P. F. Lazarsfeld (ed.), Mathematical thinking in the social
sciences (pp. 258–348). Glencoe, IL: The Free Press. 

Hay, D. A., and O’Brien, P. J. (1983). The La Trobe twin study: A
genetic approach to the structure and development of cognition
in twin children. Child Development 54:317–330.

Hewitt, J. K., Eaves, L. J., Neale, M. C., and Meyer, J. M. (1988).
Resolving causes of developmental continuity or “tracking.”
I. Longitudinal twin studies during growth. Behavior Genetics
18:133–152.

Horn, J. L. (1991). Comments on issues in factorial invariance. In
L. M. Collings and J. L. Horn (eds.), Best methods for the analy-
sis of change (pp. 114–125). Washington, D.C.: American Psy-
chological Association. 

Horn, J. L., and McArdle, J. J. (1992). A practical and theoretical
guide to measurement invariance in aging research. Experi-
mental Aging Research 18:117–144.

Juan-Espinosa, M., García, L. F., Colom, R., and Abad, F. J. (2000).
Testing the age-related differentiation hypothesis through the
Wechsler’s scales. Personality and Individual Differences
29:1069–1075.

Kline, P. (1991). Intelligence: The psychometric view. London:
Routledge.

Loehlin, J. C. (1992). Latent Variable Models: An Introduction to
Factor, Path, and Structural Analysis Hillsdale, New Jersey:
Lawrence Erlbaum Associates.

Martin, N. G., and Eaves, L. J. (1977). The genetical analysis of co-
variance structure. Heredity 38:79–95.

McArdle, J. J. (1986). Latent variable growth within behavior ge-
netic models. Behavior Genetics 16:163–200.

McArdle, J. J., and Goldsmith, H. H. (1990). Alternative common
factor models for multivariate biometric analyses. Behavior Ge-
netics 20:569–608.

McCartney, K., Harris, M. J., and Bernieri, F. (1990). Growing up
and growing apart: A developmental meta-analysis of twin stud-
ies. Psychological Bulletin 107:226–237.

McGue, M., Bouchard, T. J., Jr., Iacono, W. G., and Lykken, D. T.
(1993). Behavioral genetics of cognitive ability: A life-span
perspective. In: Plomin, R., and McClearn, G. E. (eds.), Nature,

380 Rietveld, Dolan, van Baal, and Boomsma



Wohlwill, J. F. (1973). The Study of Behavior Development. New
York: Academic Press. 

Wothke, W. (2000). Longitudinal and multigroup modeling with miss-
ing data. In Little, T. D., Schnabel, K. U., and Baumert, J., (eds.),
Modeling longitudinal and multilevel data; Practical issues,
applied approaches and specific examples. Mahwah, N.J.:
Lawrence Erlbaum Associates, Publishers. 

Edited by Stacey Cherny 

life. Electroencephalography and Clinical Neurophysiology
98:502–514.

Vernon, P. E. (1976). Development of intelligence. In Hamilton, V.,
and Vernon, M. D., (eds.), The development of cognitive
processes (pp. 507–541). London: Academic Press Inc. 

Werdelin, I., and Stjernberg, G. (1995). Age differences in factorial
structure: A study of the “differentiation hypothesis.” Interdis-
ciplinaria 12:79–97.

Wilson, R. S. (1983). The Louisville twin study: Developmental syn-
chronies in behavior. Child Development 54:298–316.

Differentiation of Cognitive Abilities 381


