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INTRODUCTION

Recently a number of models have been suggested for the analysis of longitudinal twin
data (see Loehlin, 1991 for a brief overview). These models can be used to study the
genetic and environmental contributions to the variances and covariances of phenotypic
measures at a single measurement occasion and to the stability and change of individual
differences over time. McArdle (1986) applied the latent growth curve model to
longitudinal twin data, Boomsma and Molenaar (1987) proposed modeling development
by means of autoregressive or simplex models and Eaves, Long and Heath (1986)
suggested a model combining both autoregressive and confirmatory factor analysis
models (see also Boomsma, Martin and Molenaar, 1989; Hewitt, Eaves, Neale and
Meyer, 1988; Loehlin, Horn and Willerman, 1989; Molenaar, Boomsma and Dolan,
1991). Although these models incorporate different developmental hypotheses, they
share the basic assumption that the phenotypic deviation score at each measurement
occasion is related to latent genetic and environmental deviation scores according to a
simple linear (or additive) model:

P=hG+eE +cC @))

-where P stands for the phenotypic deviation score of an individual (subject subscript is
discarded) and G, E and C stand for the genetic, unshared and shared (common to family
members) environmental deviation scores. The coefficients h, e and c¢ are standardized
regression coefficients (factor loadings). All variables are expressed as deviations from
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the mean so that their expected values: E[P] = E[E] = E[G] = E[C] = 0. If the unobserved
or latent genetic and environmental factors are standardized to have unit variance then
the variance of the phenotype is equal to :

Ve=h*+e’+c? 2)

In this linear measurement model, possible non-linear effects arising through the
interaction among any combination of G, E and C are assumed to be absent. The absence
of genotype-environment interaction implies that an environmental effect (or 'treatment’)
has the same effect regardless of the genotype of the individual upon whom it is imposed
(Neale and Cardon, 1992, page 22). Plomin, DeFries and McClearn (1990) define
genotype-environment (GxE) interaction as follows: 'Genotype-environment interaction
denotes an interaction in the statistical sense of a conditional relationship: The effect of
environmental factors depend on the genotype' (page 250).

Statistical analysis of genotype-environment interaction can be conducted by means
of various approaches, including analysis of variance and regression analysis, in
combination with direct or indirect measures of the environment (Neale and Cardon,
1992, Chapter 11; Eaves, 1984; Freeman, 1973) or of the genotype (Martin, Eaves and
Heath, 1987) or both (Plomin, 1986, Chapter 5). If measures of either environment or
genotype are not available -i.e. in the majority of the quantitative genetic studies of
metric human phenotypes- the detection of genotype-environment interaction is more
difficult. One test for genotype by environment suggested by Jinks and Fulker (1970)
involves examing the association between the means and standard deviations of MZ twin
pairs. For MZ twins reared together, the difference between members of a twin pair
reflects the magnitude of environmental differences within families and the sum of their
scores reflects genetic (or environmental) differences between families. For MZ twins
reared together, this test thus detects interactions between genotype and individual-
specific environmental factors. For MZ twins reared apart, interactions with all postnatal
environmental effects are included in the test.

Another approach to test for genotype-environment interaction when measures of the
environment or the genotype are not available, has recently been suggested and is based
on the analysis of the higher-order moments of genetic and environmental factor scores.
Molenaar and Boomsma (1987) and Molenaar, Boomsma, Neeleman and Dolan (1990)
have shown that the effects of certain types of interaction cannot be detected at the level
of second-order moments (i.e. variances and covariances), but do lead to specific values
of the third- and fourth-order moments (i.e. skewness and kurtosis) of genetic and
environmental factor scores. These methods do not require measurements of the
environment or the genotype, but require multiple indicators of the phenotype for the
calculation of factor scores (Boomsma, Molenaar and Orlebeke, 1990) and the estimation
of the higher-order moments of these factor scores.

The object of this paper is to study the effects of genotype-environment interaction in
the context of longitudinal data using the genetic simplex model (Boomsma and
Molenaar, 1987). To explore the effects of interaction in the standard genetic model
based on second-order statistics we assume that measurements are available at three time
points on three congeneric tests (i.e. tests that are, except for errors in measurement,
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perfectly correlated). At each occasion a common additive genetic and a common
unshared environmental factor account for the covariance between the observations. The
variance specific to each variable at each occasion is error variance. The simplex part of
the model consists of the covariance between factors across time being attributable to the
first-order autoregressions of the common additive genetic and unshared environmental
factors. In a first-order autoregressive process latent factors are only influenced by the
latent factors directly preceeding them, so that the partial correlation between factors at
time points i and k rx; = 0, whenever i<j<k. We choose this somewhat simple model
because our main objective is a theoretical exploration of the consequences of genotype-
environment interaction in developmental data. In the illustrative simulations we will
look at the possibility that part of the developmental process consists of genotype X
unshared environment (G x E) interaction at each time-point. This simple scenario gives
rise to several interesting and unexpected results of genotype-environment interaction. In
order to arrive at a somewhat self-contained chapter, we first present a summary of
results from simulation studies on the estimation of individual factor scores in genetic
covariance structure models and on the detection of different types of interaction using
these factor scores. Next we introduce the analysis of longitudinal twin data by means of
the genetic simplex model and discuss the estimation of factor scores in a longitudinal
twin design. In the last part, we consider the detection of genotype-environment
interaction in this longitudinal model.

SUMMARY OF RESULTS RELATING TO THE CALCULATION OF
INDIVIDUAL GENETIC AND ENVIRONMENTAL FACTOR SCORES AND
STATISTICAL TESTS OF GENOTYPE-ENVIRONMENT INTERACTION

We consider the multivariate version of Equation 1 (Martin and Eaves, 1977) in matrix
notation (discarding the subject index):

P=hG+eE+cC+¢g 3)

where P = (Py,...,P,)' denotes a random p-dimensional vector of zero means phenotypes
and ' denotes transposition. The vectors G, E, and C represent common (i.e. to the
components of P) genetic, within family (unshared) and between family (shared)
environmental factors with p-dimensional loadings h, e, and c. The unique part in each
phenotype, e, is a random p-dimensional vector composed of influences unique to each
phenotype P;, j=1,....p. The common factors G, E, and C are taken to be mutually
uncorrelated normally distributed variables with zero mean and unit variance. On an
individual basis G, E and C represent individual factor scores, i.e. an individual's genetic,
unshared environmental and shared environmental deviation scores. Let ¥ denote the
correlation matrix of the 3 common factors G, E, and C, and let © denote the covariance
matrix of the unique components €. The (p x p) covariance matrix, Zp, of P is then:

Tp=A¥YA +© (C))
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Within individuals, the 3 x 3 matrix ‘¥ is an identity matrix and the p x 3 matrix A
contains the factor loadings: A = [h, e, c]. Assuming that all parameters are known (i.e.
the elements of A and ©), we may calculate an individuals deviation scores on the
common factors in a number of distinct ways (see McDonald and Burr, 1967; Lawley
and Maxwell, 1971; Saris, De Pijper and Mulder, 1978). We limit the discussion to the
regression method for estimating factor scores which is investigated extensively in
Boomsma, Molenaar and Orlebeke (1990) for the genetic common factor model and in
Boomsma, Molenaar and Dolan (1991) for the genetic simplex model. Factors scores of
individual i are calculated according to the regression method by multiplying the
observations P; for individual i by a weight matrix W. W is constructed in such a way
that the sum of squares of the difference between estimated and true factor scores is
minimized:

ni=WPp (5
W="PA' 3! (6)

where n;' = [G;, E;, C;]'. With data from genetically related individuals the weight matrix
W can be extended to include the observations from family members in the construction
of the factor scores. Standard errors of these scores can also be calculated so that
confidence intervals can be constructed around the individual genetic and environmental
deviation scores (Boomsma, Molenaar and Orlebeke, 1990). As an example of this
technique, Table 1 shows correlations between simulated factor scores and factor scores
estimated by the regression method for MZ and DZ twins. The simulated data consisted
of a S-variate factor model with low unique variance for all 5 variables. From
simulations such as these, it is clear that individual factor scores may be estimated
reliably, given that a good-fitting multivariate model has been obtained on the original
observations that supplies the parameter estimates of A and © needed to construct the
weight matrix for the computation of factor scores.

Table 1. Correlations of simulated and estimated factor scores for MZ and DZ twins (decimal point omitted)
using the regression method. Simulations were based on 100 MZ and 100 DZ twin pairs, using a 5-variate
common factor model for G, E, and C. Unique variances were between 5 and 11% for each variable.

MZ DZ
EG) E(E) E(C) E(G) E(E) E(C)
G 910* 081 211 884* 213 100
E 020 879* 096 295* TI3% 369*
C 124 100 936* 045 341* 897*

*p<.001

If each of the zero-mean unit-variance common factors G, C or E were replaced by
interaction terms, the presence of such interactions would not show up in the second-
order moments of the data. However, estimates of the higher-order moments of the
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distribution of factor scores would reveal genotype-environment interactions in the data
even when both the genotype and the environment are not directly observed. Molenaar
and Boomsma (1987) considered the case in which interactions give rise to additional
factors in the standard genetic covariance model. For instance, replacement of a second
genetic factor G by G*=GxE or a second shared environmental factor C by C*=CxE
gives rise to a model with two common unshared environmental factors. Replacement of
C by C*=CxG gives rise to a second common genetic factor. Molenaar and Boomsma
used a factor rotation method devised by McDonald (1967) to distinguish between a true
second environmental (or genetic) common factor and a second common factor
attributable to the mentioned forms of interaction. The test is based on a special rotation
of the multiple within family environmental (or genetic) factors that maximizes the third-
order moments of factor scores in order to determine whether the second factor that
behaves as an additional E (or G) factor really is an interaction factor.

Table 2. Characteristics of second and fourth-order moments of latent interaction factors

Model interaction characteristics of characteristics of
2nd-order statistics 4th-order moments

G*E.C *=GxC var(G*)=1 E[G%=9 and E[G’C’]=3
cor(G*,E)=0 when G*=GxC,
cor(G*,C)=0 whereas E[G*=3 and E[G’C?|=1
cor(G*,G*)mz = 1 when G* is not an interaction factor
cor(G*,G*)dz=0.5
G* behaves like G

GE'C E*=ExG var(E*)=1 E[EY=9 and E[E*G’=3
cor(G,E*)=0 when E*=ExG,
cor(C,E*)=0 whereas E[E*}=3 and E[G*E*]=1
cor(E*E*)mz =0 when E* is not an interaction factor
cor(E*E*)dz=0
E* behaves like E

G,E*,C E*=ExC var(E*)=1 E[E*=9 and E[E’C?=3
cor(G,E*)=0 when E*=ExC,
cor(C,E*)=0 whereas E[E¥)=3 and E[C*E’]=1

cor(E*E*)mz=0
cor(E*E*)dz=0
E* behaves like E

when E* is not an interaction factor

Molenaar, Boomsma, Neeleman and Dolan (1990) presented a more general approach
to the test of genotype-environment interactions underlying multivariate observations.
This test can be applied to covariance structure models in which only one common
genetic, one common within-family and one common between-family environmental
factor (or a subset of these factors) is present and in which the factors that make up the
interaction term are not present as separate factors in the model. Detection of interaction



58 Peter C.M. Molenaar, et al.

in this case requires a test of fourth-order moments of factor scores. Table 2 contains a
summary of the characteristics of the second- and fourth-order moments such interaction
factors. The interactions described in Table 2 cannot be detected at the level of second-
order statistics, but the fourth-order moment expressions can serve as simple tests for the
presence of of various forms of interaction. Simulation studies suggest that application of
these expectations to estimated factor scores makes it possible to detect genotype-
environment interaction even with realistic sample sizes. The test can also be generalized
to the case where genes that control sensitivity to the environment are different from
genes that control average response over all environments (Mather and Jinks, 1982:
Eaves, 1984; Martin, Eaves and Heath, 1987).

SPECIFICATION OF THE GENETIC SIMPLEX MODEL

In this section we introduce the genetic simplex model and discuss the estimation of
longitudinal individual genetic and environmental profiles. The stage will then be set for
a consideration of interactions of the type shown in Table 2 for developmental data. The
basic model that we employ is shown in Figure 1. We assume that MZ and DZ scores are
available consisting of three indicators of a phenotype at three measurement occasions.
At each time point, individual differences are determined by an additive genetic and an
unshared environmental factor. The longitudinal part of the model is represented by
autoregressions of the latent variables on earlier latent variables. Let P denote the 6
dimensional vector of phenotypic congeneric deviation scores of twin pair i at occasion t.
The phenotypic vector is related to the common genetic and unshared environmental
factors through a linear measurement model:

Pu'= At N + &4 (7)
where P's = [Pu1 Puz Pus Pai Pz Pasli
N = [Gu Es Ge Exli

€4 = [€u1 &2 Eu3 €1 €2 Ensli

where i is the twin pair index (i; i=1,...N). The subscripts of the phenotypic variables
(Pyj).the common latent factors (Gy, Es) and specific error terms (gy) indicate
measurement occasion (t; t=1,2,3) and phenotypic variable (j=1,2,3). The matrix of
factor loadings at each occasion equals:

Ag Aa O O
0 0 Ay A

where Ay and A are (3 x 1) matrices of genetic and environmental factor loadings. The
longitudinal models for G and E are specified as first-order autoregressions:
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GH—I = Bgt+],r Gl + ggt+1 (8)
Ewi = Bet+],t E: + Cet+l ()

where B, and B. represent the regressions of latent factors G and E on the previous
genetic and environmental factors and { represents a random input term or innovation.

/Q\“E/Q\ % \P
\é/ \’: g \é{’

p P P

/Q\ ) p\ }?\
\é/ \,(5/ § \é{

Figure 1. Genetic simplex model: 3 observations (squares) on 3 time-points in MZ and DZ twins
pairs. The parameter p represents the additive genetic correlation (p=1 in MZ and 0.5 in DZ twin

pairs). Latent variables G(enotype) and E(nvironment) are represented by circles, the b's represent the
influence of a latent variable at an earlier time-point on a latent variable at a later time-point.

o

5
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The implied covariance structure of the genetic factors is (exactly the same
expectations obtain for the environmental factors):

var(G,) = var((y)
cov(Gei, Gy = Bgt+],r var(Gy)

var(Gyy) = Bzgtﬂ.! var(Gy) + Var(Cgm)

By fitting this model to MZ and DZ covariance matrices, estimates of the parameters
in the model can be obtained with standard software packages such as LISREL (J oreskog
and Sérbom, 1988) or Mx (Neale, 1991). To estimate the parameters in the model a
number of loss functions can be minimized. Throughout we minimize the likelihood ratio
function to obtain maximum likelihood estimates (Neale and Cardon, 1992). Different
ways of parameterizing this problem in LISREL are discussed in Boomsma, Martin and
Molenaar (1989).

Boomsma, Molenaar and Dolan (1991) have looked at the feasibility of estimating the
time-dependent genetic and environmental factor scores in the genetic simplex model.
Using a generalization of the regression method described above (Priestley and Subba
Rao, 1975; Brown, 1983), factor scores for the i-th twin pair are calculated as: 1), = W P,
where:

W=Em1A'z!
for MZ W =[(I-B)! ¥, -B)']A’ 27, (10)
for DZ W = [(I-B)! ¥4, (I-B)'1 A’ =7, (11)

where 1; contains the latent genetic and environmental trajectories of the i-th MZ twin
pair. For MZ twins, the genetic trajectories will of course be identical, whereas for DZ
twins they will be correlated 0.5 on average at each time-point.

Applying these equations to simulated time-series data with different numbers of
indicators for the phenotype at each time point and different genetic and environmental
autoregressive parameters, a correlation between the true factor scores and the calculated
factor scores of above 0.9 for MZ and DZ twins was obtained when three congeneric
indicators for the phenotype were available (Boomsma, Molenaar and Dolan, 1991).
When only one indicator was measured for the phenotype at each time point, the
correlation between the true and the estimated factor scores was between 0.7 and 0.8 for
DZ twins and around 0.8 for MZ twins. However, decomposition of univariate, and to a
lesser extent bivariate, time-series yielded estimates of independent G, and E, scores that
were intercorrelated. These intercorrelations depended somewhat on the difference in
size between the genetic and environmental autoregressions, but to obtain independent
estimates of individual genetic and non-genetic time-series, at least three measured
indicators are needed at each time-point.
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INTERACTIONS AND FOURTH-ORDER MOMENTS IN
THE GENETIC SIMPLEX MODEL

The model for the latent genetic and unshared environmental trajectories is an
autoregression as in equations 8 and 9 (1), = by M1 + &) Suppose that both 1., and {;
are the outcome of a multiplicative interaction factor of two standard normal variables
where the variables contributing to the innovation T).; are uncorrelated with those
contributing to {;. To test whether 7, is the outcome of a sum of two such interaction
terms, we have to derive the fourth-order moment of M. We first consider the fourth-
order statistics at an arbitrary time point t, where t>1. Expressing the contributions of 1,
and &, to the total variance of 1, as proportions we write:

Ne=amne + bC,

where a = [ (B%(1+B?) and b = |/ (1-2), as var(n) = B’ var(m.) + var(Gy) and
var(M..;) = var({,) = 1. The fourth-order moment of 1), then equals:

E[Mmd =9 - 12a%+12a* (12)

So we find that E[“nf] can vary between 9 (a = 1, that is when there is no innovation,
or a = 0, that is when b = 0, i.e. no transmission) and 6 (a = 0.7). This implies a
dependence of the expected fourth-order moment of the interaction of factor scores
E[N.'] on the value of the innovation {, and the transmission parameter PB..;. This
dependency between E[1,*] and a is pictured in Figure 2.

75 F

Figure 2. Fourth-order moment of factor scores E[n,*] as a function of a, where a = J_ (B2/(1+Bz)),

is the proportion of variance which is transmitted from t-1 to t and where 7 is an interaction factor.



62 Peter C.M. Molenaar, et al.

Even more importantly, we may expect the fourth-order moment to decrease as the
number of interaction components contributing to 1), increases. A situation then arises
where the Central Limit theorem obtains: the distribution of T, will tend towards
normality. According to the Central Limit theorem the distribution of the sum of N
independent random variables converges to the normal distribution if N approaches
infinity. In fact there are several variants of the Central Limit theorem that apply under
still weaker conditions (e.g. sums of autocorrelated random variables). We will only need
the standard version of the Central Limit theorem, however, applying to sums of
independently identically distributed (i.i.d.) random variables. The i.i.d. variables
concerned are the {; innovations in equations 8 and 9. These equations can be rewritten
in such a way that the latent factor 7., is expressed as an infinite weighted sum of Ciets
C. ... Application of the Central Limit theorem to this so-called moving-average of
infinite order shows that the distribution of m always will converge to the normal
distribution, irrespective of the distribution of {. In the case presently considered the
distribution of {, where ( is a pure interaction innovation process, is rather complex. Yet
the distribution of the latent genetic and environmental factors still will converge to a
normal distribution as time proceeds.

At present there are two interaction components contributing to 1, viz. 1., and C.. But
if the measurement at t=1 is recorded late in the developmental process, 1.; will consist
of an accumulation of interaction terms built up during development prior to t=1 so that
the Central Limit theorem applies and 7, tends to normality. Surprisingly, this implies
that the presence of fourth-order moments that equal the expected value under normality
does not mean that the developmental process is not the outcome of an accumulation of
interaction components.

Given the presence of an additive genetic and unshared environmental series, we may
consider the fourth-order moment [G% E%]. As above the model for the latent variables is
given by equations 8 and 9 for the genetic and environmental autoregressions. We
assume that E; is attributable to an interaction between G, and E..; (both standard normal
variables) and that ., is the outcome of an interaction between two standard normal
variables at time t. As usual, G, and Cy are defined as random zero-mean unit-variance
variables.

For E, we may write (as above): Ei=aE. +b .
and similarly for Gi: Gi=c G +d {y
Their crossproduct E[G% E*] then equals: E[G?, EZ.]= 3 -2a%- 2c2 + 4a%? (13)

where a and b are as defined above (and thus depend on the value of the innovations and
the transmission parameters) and ¢ and d depend on the genetic autoregression
parameters and innovations. The dependency of [G% E%] on a and c is illustrated in
Figure 3. The crossproduct [G* E] can vary between 3 (a=0 and ¢=0 or a=1 and c=1)
and 1 (a=0 and c=1 or a=1 and c=0). We now have a fourth-order moment that is
dependent on the autoregressive coefficients by,.and b. In this case the Central Limit
theorem also applies.
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Figure 3. The crossproduct [GE?] as a function of a and ¢, where a = J_ B/(1+B2) and ¢ =

J_ (Bg/(1+B¢%)), are the proportions of respectively G x E variance and genetic variance that are
transmitted from t-1 to t.

ILLUSTRATION USING SIMULATED DATA

To illustrate the application of fourth-order moments in the detection of genotype-
environment interaction as outlined above, we provide some results obtained by
analyzing simulated data. Data sets were simulated with IMSL subroutine FTGEN
(IMSL, 1979) for 500 monozygotic and 500 dizygotic twin pairs at three occasions. The
latent factors influencing the phenotype at each occasion were a common additive
genetic and a common unshared environmental factor. The environmental and additive
genetic factors were orthogonal. The longitudinal model for the genetic and
environmental factors was a first-order autoregression. The phenotype consisted of three
congeneric phenotypic tests (see Figure 1).

The factor loadings of the phenotypic variables on the latent variables were constant
over time and equaled 0.9, 0.7, and 0.5 for the additive genetic factor and 0.5, 0.7, and
0.9 for the unshared environmental factor. Unique variance (error variance) was 1 for
each phenotypic variable at each measurement occasion. Series of five data sets were
simulated according to a G,E model without genotype-environment interaction and
according to an interaction model where the E factor was made up of G x E interaction.
Each of the five data sets were generated with the following values of the autoregressive
coefficients, Bg.and B.: 1, 1.5, 2, 2.5, and 3. The initial latent variances var(G,;) and
var(E,) and all innovation variances [var(Cg), var({gs), var(Cez) and var(Ces)] were all set
to equal 1.

The G x E interaction was introduced at the first time point by multiplying the
environmental deviation scores with the additive genetic deviation scores (E*; = E; x
G;). This interaction factor was transmitted to subsequent time points by the
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autoregressive process. At time point t = 2 and t = 3, the innovation terms also consisted
of G x E interaction (C¥e = ep X (g and {*e3 = a3 x §g3). The expected values fourth-
order moments of G;, G, and G; are 3. At t = 1, the expected fourth-order moments [E:*]
and [E,°G,’] are given in Table 2 as 9 and 3, respectively. At t = 2, the expected values
for [E,"] and [E;*G,%] depend on the autoregressive coefficients (Bg-and B.) and are given
in equatlons 12 and 13. For example, for B, =
for [E,*] is 7.9 and the expected value for [E,’G,’] equals 2.64. For B, = B. = 2, these
expected values are 7.1 and 2.36, and for B, =
expected values of the fourth-order moments, [E;*] and [E32C-¢32] can be derived in the

Be = 3, the expected fourth-order moment

Be = 1, they are respectively 6 and 2. The

same manner as those for [E,*] and [Engzz] (these are not derived in the present paper,
but will be considered in a future publication).

Table 3A. Fourth-order moments of genetic and environmental factor scores from simulated
longitudinal data on 500 MZ and 500 DZ twin pairs, without G x E interaction. Estimated moments
are given separately for twin 1 and twin 2, and are pooled over zygosities. Expected values for G.* and
E.* equal 3, and expected values for the crossproduct [E;’G?] equal 1. Results are presented from five
simulations with different values for the autoregressive coefficients Bg and B, (3,2.5,2,1.5, and 1).

Twin 1

I x*333)=2348.0 (p=. 27), Bg=3014(3)
t E[Ga‘] E[EY  E[EGH E[G]
1 2.80 3.08 1.08 2.94
2 2.79 3.06 1.08 2.87
3 2.78 3.05 1.08 2.87

Il %%(333)=349.8 (p=.25) P, =2.469 (2.5)
t EGYT EEY EEGH E[G]
1 2.75 2.98 1.06 2.83
2 2.76 3.00 1.06 2.88
3 2.77 3.00 1.06 2.89

m (333) = 381.9 (p=. 03) Bg = 2.007 (2)
t EGYT EEY EEGY EIG]
1 2.99 2.98 1.03 2.89
2 3.00 2.97 1.03 2.95
3 3.04 2.97 1.03 2.97

v x (333) 368.8 (p=.09) Bg=1.491 (1.5)
t  EGYT EEY EEGH EIG]
1 3.05 2.88 1.08 2.96
2 295 2.83 111 2.97
3 2.93 2.81 1.13 2.97

V  x%(333)=362.0(p=.13) B, =.997 (1)
t EGY EEY EE®GH E[G/]
1 3.18 3.27 1.27 3.25
2 3.16 3.27 1.19 3.23
3 294 2.98 1.04 3.06

Twin 2

Be = 3.014 (3)
EIE]  E[E2GY
2.97 0.94
2.94 0.95
2.93 0.94

Be = 2.506 (2.5)
E[E] E[E*G]]
2.94 0.93
2.93 0.93
2.91 0.93

Be = 2.019 (2)
E[E E[EZG
3.08 1.12
3.04 1.06
3.05 1.07
Be = 1.492 (1.5)
E[EY E[E’G)
2.78 1.02
277 1.02
2.78 0.97

Be = 0.976 (1)
E[EY  E[EGY
2.81 1.30
2.83 1.15
2.86 1.23
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Table 3B. Fourth-order moments of genetic and environmental factor scores from simulated
longitudinal data on 500 MZ and 500 DZ twin pairs for a simulation model including
genotype-environment interaction, where E* = G x E. Estimated moments are given separately for
twin 1 and twin 2, and are pooled over zygosities. Results are shown for well-fitting models.

Twin 1 Twin 2

I x%(333)=364.9 (p=.11) P, =2.962 (3) Be = 3.016 (3)
t  E[GY E[E] E[E’GY E[GY  E[EY E[E G
1 318 7.04 2.60 3.17 8.26 2.92
2 - 847 6.95 2.58 3.12 8.05 268
3 319 6.94 2.57 3.18 8.01 266

Il x*(333)=336.3 (p=.44) B, = 2.499 (2.5) Be = 2.482 (2.5)
t EIG] E[ES EIE’GH) E[G] E[E E[E‘GH
1 269 5.72 2.17 2.87 6.10 2.10
2 285 5.65 2.1 2.81 6.06 2.06
3 267 5.60 2.0 2.82 6.11 2.08

I x*(333) =349.0 (p=.26) By =1.993(2) P.=1.997 (2)
t  EGY E[E E[E’GY) E[GY E[EY E[EZGY
1 3.55 6.83 2.39 3.66 5.72 2.47
2 329 6.59 2.16 3.42 5.24 2.18
3 338 6.51 2.16 3.49 5.18 2.14

IV x%(333) =353.0 (p=.21) B, = 1.479 (1.5) Be = 1.525 (1.5)
t  EGYT EEY EEGY EG] EEY EEG)
1 335 6.55 2.64 3.42 6.75 2.32
2 289 5.69 1.80 2.88 5.38 1.96
3 288 5.43 1.73 2.83 5.08 1.92

V. x%(333)=348.3 (p=27) Pg=.986(1) Be = 1.006 (1)
t EGY EEY EEWG] E[GY E[EY  EEGH
1 379 5.70 3.07 3.98 5.90 2.97
2 323 5.29 2.37 344 5.40 2.40
3 290 429 1.80 2.97 4.56 1.87

Table 3A contains the results obtained by analyzing the simulated data without G x E
interaction. For each of the five data sets we first give the %” and associated probability
and the parameter estimates for Bg.and B, obtained from fitting the true model. Next, the
the fourth-order moments of the estimated factor scores for G, and E, are shown for each
data set (whose expected values are 3 in data without interaction) and the values
obtained for the crossproduct [E’G;’] (which equals 1 in data without interaction). It can
be seen that for all values of b the fourth-order moments of factor scores are close to
their expected values and would lead to the correct conclusion of no G x E interaction.

Tables 3B and 3C contain the fourth-order moments obtained by analyzing simulated
data containing a latent factor that behaves in the analysis of second-order moments (the
covariance analysis) as an unshared environmental factor E, but is made up of G x E
interaction terms according to the simulation model outlined above. If we compare the
estimated moments for [E;'] and for [E;’G,’] with their expected values in the absence of
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G x E interaction (respectively 3 and 1), it is clear that the values reported in Tables 3B
and 3C indicate that E should be regarded as an interaction factor, instead of pure
environmental one. Although these values for the fourth-order moments are in some
instances not as high as their expectations, it clear that they are substantially higher than
the values in Table 3A for the case of no G x E interaction. Comparing Tables 3B and 3C
it may be seen that there is 'trade-off' between y° goodness-of-fit and the value of the
fourth-order moments: these are closer to their expected values under interaction when x>
is higher (Table 3C). This probably is related the amount of kurtosis in the raw data,
where a higher kurtosis makes it easier to detect G x E interaction, but also leads to a
higher %. In contrast, the observed fourth-order moments [G*] are close to their
expected value of 3 in all simulations, indicating that G is a pure genetic factor.

Table 3C. Fourth-order moments of genetic and environmental factor scores from simulated longitudinal
data on 500 MZ and 500 DZ twin pairs for a simulation model including genotype-environment interaction,
where E* = G x E. Estimated moments are given separately for twin 1 and twin 2, and are pooled over
zygosities. Results are shown for the case where the true model does not show a good fit
(as indicated by a significant %) to the data.

Twin 1 Twin 2

I x%333)=415.1 (p=.001) B, =3.024 (3) Be=2.981 (3)
t EGY EEY EEG] E[GY1 E[EY  EEGH
1 2.79 9.03 2.63 2.79 8.50 2.61
2 275 8.61 2.46 2.72 8.29 2.50
3 275 8.52 2.43 2.71 8.26 2.48

Il x*(333)=418.9 (p=.001) B, =2.473(2.5) Be = 2.515 (2.5)
t EGY EEY  EEG] EG1 E[ET  EE'G]
1 2.95 747 2.61 2.98 7.35 262
2 2.93 6.87 242 2.95 7.43 2.61
3 2.94 6.80 2.39 2.95 7.41 2.56

Il %*(333) = 422.8 (p=.001) By = 1.976 (2) Be = 1.992 (2)
t EIGY EEY EEG] EIGY EIEY  E[EGH
1 3.00 5.26 1.97 3.34 8.98 3.16
2 3.05 4.84 1.89 3.26 8.17 2.85
3 3.1 4.71 1.79 3.22 7.86 2.69

IV %%(333) = 408.8 (p=.003) B, = 1.463 (1.5) Bo = 1.498 (1.5)
t EGY EEY EEG] E[GY E[EY  EEG]
1 3.75 5.87 2.74 3.60 5.24 2.27
2 3.46 517 2.16 3.16 4.78 1.91
3 3.45 5.06 2.05 3.21 4.59 142

V  7%(333)=391.5 (p=.015) B, =1.001(1) Bo=.958 (1)
t EGY E[E] EEGH E[GY] EEY  EEG]
1 3.86 5.37 3.66 3.98 577 2.99
2 3.87 5.45 2.78 3.44 5.51 2.03
3 2.46 484 2.07 2.97 4.33 165
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DiSCUSSION

It was shown that the change between two consecutive time points t-1 and t in the fourth-
order moments of the factor scores associated with an interaction factor series depends
upon the proportion of variance which is transmitted from t-1 to t. In the genetic simplex,
which involves first-order autoregressions describing the latent genetic and
environmental factor series, the total amount of transmitted variance between two
consecutive time points is a simple function of the autoregressive beta-coefficients:
B2var(n., ). Hence the proportion of transmitted variance of an interaction factor series at
time t depends upon the relative magnitude of the autoregressive P-coefficient in
comparison with the standard-deviation of the innovation term at t. For this rather simple
scheme, explicit expressions for the change in fourth-order moments were derived. In
particular it was found that this change is absent only if the variance of the innovation
term is zero. In that special case the fourth-order moments keep their initial values (9 and
3, respectively) at all time points. Notice that if the innovation variance of a latent
autoregression in our simplex model becomes zero, then this part of the simplex model
reduces to a common factor model as described by Eaves, Long and Heath (1986).

Only the change in the fourth-order moments of an interaction factor between two
consecutive time points t-1 and t were derived. The change between t-1 and t+1
(spanning two lags) then follows immediately by a recursive application of our
derivation. In fact, the change between an arbitrary number of lags can thus be derived.
Moreover, the same principles can be used to determine the changes concerned for
interaction factor series obeying more complex time-series models such as higher-order
autoregressions and moving-averages.

The simulations of G x E interaction in longitudinal models that were presented in
this paper are not exhaustive, but serve to illustrate the possibility of detecting such
interactions without measures of the environment or the genotype. We showed that
estimates of fourth-order moments of factor scores are close to their expected values of 3
and 1 in data without interaction. In simulated longitudinal data with interaction the
value of these fourth-order moments are larger indeed indicate the presence of
interaction.

Our approach to the detection of interaction factors hinges upon the estimation of
fourth-order moments. Unfortunately, the sampling variability of these estimates is very
high and therefore one will need a large sample of phenotypical values in order to secure
the reliability of the detection tests. In our simulation studies (where it is certain that the
generated phenotypical values constitute a homogeneous sample) it was found that
estimates of fourth-order moments strongly depend upon the extreme phenotypical
values in a sample and that removal of these extreme observations (interpreted as
outliers) could lead to severe bias. In future explorations of the approach we intend to
consider alternative L-statistics characterizing the kurtosis of latent factor series
(Hosking, 1990). It appears that, compared with the conventional fourth-order moments,
L-kurtosis is less subject to bias in estimation, approximates its asymptotic distribution
more closely in finite samples, and is more robust to the presence of genuine outliers in
the phenotypical data.
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Perhaps the most surprising conclusion of the present study, at least to us, is that the
interactive nature of a developmental process becomes invisible after a sufficient amount
of time, even under the most favorable circumstances. Started as a pure interaction factor
(with fourth-order moments of 9 and 3, respectively), the repetitive addition of pure
interaction innovations in time combined with non-zero transmission over time leads to a
developmental process whose interactive nature becomes impossible to detect (fourth-
order moments of 3 and 1, respectively). It could be that such processes account for the
absence of a shared environmental component in many twin and family studies since a G
x C interaction factor will look like a genetic factor. Also, this might be part of the
explanation for the high contributions of unshared environmental factors to many
characteristics (Plomin and Daniels, 1987) since all interactions with E look like E. We
believe that this phenomenon can be best understood by an appeal to the Central Limit
theorem: because of the repeated addition of independently and identically distributed
interaction innovations the random process approaches normality as time proceeds.
Notice that the applicability of the Central Limit theorem does not depend upon the
details of our interaction detection procedure, but pertains to any developmental process
involving nonzero transmission in combination with innovations. That is, the presence of
interactive causes underlying such processes will become invisible as development
proceeds, even if the causal interaction is enduring, stable, and effective during the entire
life span. As far as we know this is the first time that this result, which may have far-
reaching implications transcending the field of behavior genetics proper, has been
noticed in the published literature.
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