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Through genome-wide association meta-analyses of up to 133,010 individuals of European ancestry without diabetes, including 
individuals newly genotyped using the Metabochip, we have increased the number of confirmed loci influencing glycemic traits 
to 53, of which 33 also increase type 2 diabetes risk (q < 0.05). Loci influencing fasting insulin concentration showed association 
with lipid levels and fat distribution, suggesting impact on insulin resistance. Gene-based analyses identified further biologically 
plausible loci, suggesting that additional loci beyond those reaching genome-wide significance are likely to represent real 
associations. This conclusion is supported by an excess of directionally consistent and nominally significant signals between 
discovery and follow-up studies. Functional analysis of these newly discovered loci will further improve our understanding of 
glycemic control.

glycemic traits. This approach identified 41 glycemic associations not 
previously described1,2: 20 for fasting glucose concentration, 17 for 
fasting insulin concentration and 4 for 2hGlu. This raises the number 
of associated loci to 36 for fasting glucose concentration, 19 for fast­
ing insulin concentration and 9 for 2hGlu, explaining 4.8%, 1.2% 
and 1.7% of the variance in these traits, respectively. Of these 53 non­
overlapping loci, 33 were also associated with T2D (P < 0.05), which, 
although supporting the previous assertion of an imperfect correla­
tion between these traits, also implicates new loci in the etiology of 
T2D and increases the overlap between glycemic and T2D loci.

RESULTS
Approaches to identify loci associated with glycemic traits
To follow up loci showing evidence of association (Pdiscovery < 0.02) 
in discovery GWAS, we investigated the 66,000 Metabochip follow-
up SNPs for association with fasting glucose concentration, fasting 
insulin concentration and 2hGlu. We combined in meta-analysis 
data from up to 133,010 (fasting glucose), 108,557 (fasting insulin) 
and 42,854 (2hGlu) non-diabetic individuals of European ancestry, 
including individuals from the previous meta-analyses1,2, individuals 
from new GWAS and individuals newly genotyped on the Metabochip 
array (Supplementary Fig. 2). All study characteristics are shown in 
Supplementary Table 1. Genome-wide association data for Filipino 
women were available (Supplementary Table 1), for which we report 
the effect directions and allele frequencies (Supplementary Table 2a,b).  
Association signals at genome-wide significance (P < 5 × 10−8) 
located more than 500 kb from and not in linkage disequilibrium (LD; 
HapMap Utah residents of Northern and Western European ancestry 
(CEU) r2 < 0.05) with any variant already known to be associated with 
the trait were considered novel. Associated loci are referred to by the 
name of the nearest gene, unless a more biologically plausible gene 
was nearby or a nearby gene was previously associated with another 

Large-scale association analyses identify new loci 
influencing glycemic traits and provide insight into the 
underlying biological pathways

The Meta-Analyses of Glucose and Insulin-related traits Consortium 
(MAGIC) previously undertook meta-analyses of genome-wide asso­
ciation studies (GWAS) of glycemic traits in non-diabetic individuals, 
leading to the discovery of multiple associated loci: 16 for fasting glu­
cose concentration, 2 for fasting insulin concentration and 5 for post-
challenge glucose concentration (2-hour glucose, 2hGlu)1–3. These 
and subsequent studies highlighted important biological pathways 
implicated in glucose and insulin regulation4,5. They also showed that 
some but not all loci associated with glycemic traits in non-diabetic 
individuals also affect the risk of type 2 diabetes (T2D)1,6. Despite the 
success of these efforts, the identification of new loci was limited by  
de novo genotyping capacity and cost, such that only a limited number 
of promising loci from discovery analyses were taken forward to follow- 
up analyses (often those reaching a threshold of approximately P < 1 × 10−5  
in the discovery phase). Therefore, it is likely that many additional 
associations with common, low-penetrance variants remain to be 
found among SNPs not previously selected for follow-up7,8.

The Illumina CardioMetabochip (Metabochip) is a custom iSE­
LECT array of 196,725 SNPs developed to support cost-effective 
large-scale follow-up studies of putative association signals for a 
range of cardiovascular and metabolic traits (~66,000 SNPs) and to 
fine map established loci (~120,000 SNPs) (Supplementary Fig. 1)9.  
The ~66,000 SNPs for follow-up analysis were selected to enable geno­
typing of the most significant association signals for each of 23 meta­
bolic traits for which data were contributed by a range of consortia. 
MAGIC contributed ~5,000 top-ranking SNPs for fasting glucose 
concentration and ~1,000 SNPs each for fasting insulin concentration 
and 2hGlu that had shown nominal association in discovery analyses 
(Pdiscovery < 0.02)1,2.

In the present study, we combined newly available samples 
with genotype data for these 66,000 follow-up SNPs with previous  
discovery meta-analyses to discover new association signals with  

A full list of authors and affiliations appears at the end of the paper.

Received 23 January; accepted 20 July; published online 12 August 2012; doi:10.1038/ng.2385

A rt i c l e s
np

g
©

 2
01

2 
N

at
ur

e 
A

m
er

ic
a,

 In
c.

 A
ll 

rig
ht

s 
re

se
rv

ed
.

http://www.nature.com/doifinder/10.1038/ng.2385
http://www.nature.com/naturegenetics/
http://www.nature.com/naturegenetics/


992	 VOLUME 44 | NUMBER 9 | SEPTEMBER 2012  Nature Genetics

A rt i c l e s

glycemic trait. In such cases, we maintain consistency with the pre­
vious naming or name the most biologically plausible gene (nearest 
genes are named in Supplementary Table 2a–d). As body mass index 
(BMI) is a major risk factor for T2D and is correlated with glycemic 
traits, we also performed analyses adjusted for BMI.

Although not the main focus of this effort, given the increased 
variant density available on the Metabochip for established glycemic 
loci, we investigated whether these data would enable fine mapping of 
underlying functional variants1–3. In these analyses, we included data 
from up to 53,622 individuals for fasting glucose, 42,384 for fasting 
insulin and 27,602 for 2hGlu from studies with Metabochip geno­
types only. However, given the lack of samples from different ancestry 
groups and the absence of full conditional analyses, these analyses for 
the most part did not improve the resolution of association signals.

Beyond single-SNP investigations for each glycemic trait, we also tested 
the hypothesis that gene-based analyses using VEGAS10 would identify 
genes that harbor multiple association signals, which individually did not 
reach genome-wide significance. Among the ~66,000 SNPs, we used VEGAS 
to pool the results for all SNPs within 50 kb of either side of gene boundaries 
to identify genes with more evidence of association than expected by chance 
(given gene size and LD structure) by simulation that was significant after 
Bonferroni correction for multiple testing (P < 5 × 10−6).

Fasting glucose concentration
In analyses of up to 133,010 individuals, we identified 20 loci with 
genome-wide significant associations with fasting glucose (P < 5 × 10−8) 
(Table 1 and Supplementary Figs. 3 and 4) and confirmed previously 
established loci1 (Supplementary Table 2e). Of these 20 loci, 9 (in 
or near IBKAP, DNLZ, WARS, KL, TOP1, P2RX2, AMT, RREB1 and 
GLS2) had not previously been associated with other metabolic traits 
(Box 1). Among these, KL (encoding klotho) is of particular interest. 
In addition to being associated with fasting glucose (but not fasting 
insulin) concentration, the glucose-raising allele is also associated with 
an increased risk of T2D (odds ratio (OR) = 1.08 (1.04–1.11); P = 1.1 ×  
10−5) (Fig. 1). KL was first identified as a gene related to suppression 
of aging: its reduced expression was associated with reduced lifespan, 
as well as hypoglycemia11. Despite further animal studies supporting 
a role for KL in glucose metabolism12 and insulin sensitivity13, human 
studies have generally been small and inconclusive14,15.

We also identified new associations with fasting glucose concen­
tration in regions previously associated with other metabolic traits 
or disease outcomes, including T2D6,16 (ARAP1, CDKN2B, GRB10, 
CDKAL1, IGF2BP2 and ZBED3, which was identified in BMI-adjusted 
models) and 2hGlu2 (GIPR), as well as confirming the recently iden­
tified signals for fasting glucose17–19 at FOXA2, PPP1R3B, PCSK1 
and PDX1. FOXA2 is a forkhead transcription factor that regulates 
PDX1 expression, and PDX1 encodes a transcription factor critical 
for pancreatic development20. PDX1 mutations have been linked to 
maturity-onset diabetes of the young 4 (MODY4)21, pancreatic agen­
esis22 and permanent neonatal diabetes23, although we observed no 
significant association with T2D in DIAbetes Genetics Replication 
and Meta-analysis (DIAGRAM) Metabochip analyses24 (Fig. 1).

Given the overlap between genetic loci for fasting glucose and other 
metabolic traits, we performed a systematic search of all glycemic loci 
and their associations with other metabolic traits using data available 
through other consortia25–27. In DIAGRAM Metabochip analyses24,  
22 (>60%) of the now 36 loci associated with fasting glucose at genome-
wide significance showed association (P < 0.05; false discovery  
rate (FDR) q < 0.05) with T2D (Fig. 1). In all cases, the glucose-raising 
allele was associated with increased risk of T2D, yet fasting glucose 
effect sizes and T2D ORs were weakly correlated (Fig. 2a).

Gene-based analyses confirmed many of the loci identified in  
single-SNP analyses (Supplementary Table 3a) and identified another 
9 genomic regions (containing 14 genes) with significant association 
signals (P < 5 × 10−6), including some with biological candidacy, such 
as the HKDC1 gene that encodes a putative hexokinase28.

Fasting insulin concentration
In 108,557 individuals, we identified 17 additional loci with genome-
wide significant associations to fasting insulin concentration and 
confirmed known associations1. These newly identified loci include 
variants in or near HIP1, TET2, YSK4, PEPD and FAM13A (Table 1,  
Box 1 and Supplementary Figs. 3 and 4), as well as SNPs near loci 
previously associated with other metabolic traits, including T2D6 
(TCF7L2 and PPARG), BMI29 (FTO), waist-hip ratio (WHR)26 
(LYPLAL1, RSPO3 and GRB14), triglycerides27 (ANKRD55-MAP3K1) 
and adiponectin30 (ARL15). We also confirmed the recent asso­
ciations with fasting insulin at GRB14, PPP1R3B, LYPLAL1, IRS1, 
UHRF1BP1 and PDGFC19. The ANKRD55-MAP3K1 association is of 
interest, as the MAP3K1 protein regulates expression of IRS1 (ref. 31)  
as well as activation of nuclear factor (NF)-κB32,33 and the c-Jun  
N-terminal kinase (JNK) pathway34, both of which are centrally impli­
cated in insulin resistance35,36. Furthermore, data from DIAGRAM 
Metabochip analyses show that the insulin-raising allele at this SNP 
is strongly associated with increased risk of T2D24.

In contrast to fasting glucose (Supplementary Fig. 5a), in fasting 
insulin analyses adjusted for BMI, we observed a systematic decrease 
in the standard errors of the SNP effect estimates (Supplementary 
Fig. 5b), perhaps because BMI explains more of the variance in 
fasting insulin levels (R2 = 32.6%) than in fasting glucose levels  
(R2 = 8.6%) or 2hGlu (R2 = 11.0%) (data from the Fenland study). 
Therefore, BMI adjustment removes more variance in fasting insulin,  
thereby rendering genetic associations more readily detectable. This 
idea is supported by the identification of another five loci in BMI-
adjusted models by this approach (Table 1 and Supplementary Figs. 3  
and 4). As expected, BMI adjustment abolished fasting insulin  
associations at FTO (P = 0.71; Supplementary Table 2b), suggesting 
that the association with fasting insulin is mediated entirely through 
association with BMI.

In total, 13 of the 19 loci associated with fasting insulin concentration 
also showed associations with T2D (P < 0.05; FDR q < 0.05) (Fig. 1),  
with the insulin-raising allele associated with higher risk of T2D, except 
at TCF7L2 (Fig. 2b,c), where the allele associated with lower fasting 
insulin was associated with higher fasting glucose levels (Table 1).  
Notably, the loci associated with fasting insulin showed a pattern of 
association with lipid traits consistent with insulin resistance, which is 
not observed for either fasting glucose or 2hGlu loci (Fig. 1). Thirteen 
(~68%) of the 19 loci were associated with high-density lipoprotein 
(HDL)-cholesterol (q < 0.05): all insulin-raising alleles were associ­
ated with lower HDL levels, and nine of these were also associated 
with higher triglycerides (q < 0.05) (Fig. 1). Further, the insulin- 
raising alleles of four SNPs were associated with higher WHR 
(adjusted for BMI) (q < 0.05) (Fig. 1), another trait linked to insulin 
resistance, and five SNPs were also associated with BMI, although 
with inconsistent direction (q < 0.05) (Fig. 1).

In gene-based analyses, we focused on BMI-adjusted results to 
account for the variance in fasting insulin explained by BMI. Beyond 
those loci containing genome-wide significant SNPs, we identified 
7 distinct regions (containing 22 genes) after Bonferroni correction  
(P < 5 × 10−6). Among these genes, we identified many for which pre­
vious biological evidence suggests their role in pathways involved in 
insulin secretion or action (Supplementary Table 3b). Although the 
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association for the lead SNP in PPARD did not reach genome-wide 
significance (P = 3.9 × 10−6), the PPARD gene—a regulator of adipose, 
hepatic and skeletal muscle metabolism37—reached the gene-based sig­
nificance threshold (P < 1 × 10−6). PPARD agonists have also been shown 
to induce insulin-sensitizing effects in a mouse model38. In addition,  

we identified PTEN to be associated (Supplementary Table 3b),  
a gene previously suggested to affect glucose metabolism through 
regulation of insulin signaling39, and in which a muscle-specific dele­
tion protected mice from insulin resistance and diabetes resulting 
from high-fat feeding40.

Table 1  SNPs associated with fasting glucose, fasting insulin and 2-hour glucose at genome-wide significance in Europeans
Primary trait I2 FI (BMI-adjusted) 2hGlu

Primary  
trait SNP Chr. Position Gene

Alleles 
(effect/ 
other)

Freq.  
effect  
allele Effect SE

Global  
analysis  
P value

Global 
analysis  

n estimate
P  

value Effect SE

Global 
analysis  
P value

Global  
analysis  

n Effect SE

Global  
analysis  
P value

Global 
analysis  

n

FG rs10811661 9 22124094 CDKN2B T/C 0.82 0.0238 0.003 5.6 × 10−18 128,488 0.00 1.00 –0.0065 0.003 0.019 98,880 0.0567 0.014 8.8 × 10−5 42,801

rs4869272 5 95565204 PCSK1* T/C 0.69 0.0177 0.002 1.0 × 10−15 131,872 0.00 1.00 0.0016 0.002 0.469 103,493 –0.0322 0.012 0.006 42,848

rs11619319 13 27385599 PDX1 G/A 0.23 0.0195 0.002 1.3 × 10−15 132,996 0.00 1.00 0.0001 0.002 0.977 103,492 0.0185 0.013 0.156 42,848

rs983309 8 9215142 PPP1R3B* T/G 0.12 0.0256 0.003 6.3 × 10−15 127,470 0.14 0.32 0.0223 0.003 1.2 × 10−12 99,024 –0.0548 0.016 0.001 42,846

rs6943153 7 50759073 GRB10 T/C 0.34 0.0154 0.002 1.6 × 10−12 131,795 0.00 1.00 0.0091 0.002 2.3 × 10−5 103,447 0.0110 0.011 0.333 42,794

rs11603334 11 72110633 ARAP1 G/A 0.83 0.0192 0.003 1.1 × 10−11 128,139 0.00 1.00 –0.0046 0.003 0.086 99,026 0.0294 0.014 0.037 42,839

rs6113722 20 22505099 FOXA2 G/A 0.96 0.0353 0.005 2.5 × 10−11 123,665 0.04 0.78 –0.0095 0.005 0.064 103,471 0.0493 0.030 0.101 41,416

rs16913693 9 110720180 IKBKAP T/G 0.97 0.0434 0.007 3.5 × 10−11 125,115 0.00 1.00 –0.0018 0.007 0.785 96,357 0.0639 0.034 0.062 40,522

rs3829109 9 138376587 DNLZ G/A 0.71 0.0172 0.003 1.1 × 10−10 115,310 0.25 0.07 –0.0002 0.003 0.948 94,964 0.0343 0.014 0.013 36,803

rs3783347 14 99909014 WARS G/T 0.79 0.0168 0.003 1.3 × 10−10 132,544 0.02 0.89 0.0017 0.003 0.515 103,339 0.0274 0.014 0.044 42,850

rs2302593 19 50888474 GIPR C/G 0.50 0.0144 0.002 9.3 × 10−10 116,141 0.27 0.05 0.0025 0.002 0.265 96,976 –0.0322 0.012 0.006 40,781

rs9368222 6 20794975 CDKAL1 A/C 0.28 0.0143 0.002 1.0 × 10−9 128,453 0.09 0.50 –0.0047 0.002 0.037 98,894 0.0279 0.012 0.023 42,825

rs10747083 12 131551691 P2RX2 A/G 0.66 0.0133 0.002 7.6 × 10−9 127,111 0.00 1.00 –0.0006 0.002 0.785 99,895 0.0269 0.012 0.026 42,790

rs6072275 20 39177319 TOP1 A/G 0.16 0.0159 0.003 1.7 × 10−8 128,616 0.00 1.00 0.0038 0.003 0.169 99,018 –0.0110 0.014 0.435 42,853

rs7651090 3 186996086 IGF2BP2 G/A 0.31 0.0128 0.002 1.75 × 10−8 128,548 0.02 0.86 0.0003 0.002 0.900 98,924 0.0583 0.012 1.05 × 10−6 42,814

rs576674 13 32452302 KL G/A 0.15 0.0167 0.003 2.3 × 10−8 131,856 0.00 1.00 –0.0001 0.003 0.983 103,472 0.0308 0.016 0.060 42,849

rs11715915 3 49430334 AMT C/T 0.68 0.0120 0.002 4.9 × 10−8 131,523 0.30 0.02 0.0059 0.002 0.006 103,398 0.0273 0.012 0.018 42,851

FG  

(BMI- 

adjusted)

rs17762454 6 7158199 RREB1 T/C 0.26 0.0140 0.002 9.6 × 10−9 123,247 0.00 1.00 –0.0002 0.002 0.919 103,470 0.0007 0.013 0.953 42,848

rs7708285 5 76461623 ZBED3 G/A 0.27 0.0150 0.003 1.2 × 10−8 117,931 0.00 1.00 0.0027 0.002 0.265 98,341 0.0349 0.013 0.008 42,803

rs2657879 12 55151605 GLS2 G/A 0.18 0.0157 0.003 3.9 × 10−8 121,596 0.39 0.03 –0.0024 0.003 0.366 102,175 0.0200 0.014 0.164 42,670

Primary trait FG 2hGlu

FI rs1421085 16 52358455 FTO C/T 0.42 0.0200 0.003 1.9 × 10−15 104,062 0.00 1.00 0.0074 0.002 0.001 128,597 0.0122 0.011 0.278 42,849

rs983309 8 9215142 PPP1R3B* T/G 0.12 0.0287 0.004 3.8 × 10−14 103,030 0.04 0.77 0.0256 0.003 6.3 × 10−15 127,470 –0.0548 0.016 0.001 42,846

rs9884482 4 106301085 TET2 C/T 0.39 0.0165 0.002 1.4 × 10−11 108,420 0.00 1.00 0.0001 0.002 0.946 132,869 0.0004 0.011 0.973 42,745

rs7903146 10 114748339 TCF7L2 C/T 0.72 0.0181 0.003 6.1 × 10−11 103,037 0.31 0.02 –0.0220 0.002 2.7 × 10−20 127,477 –0.0885 0.013 5.6 × 10−12 42,851

rs10195252 2 165221337 GRB14* T/C 0.59 0.0159 0.003 4.9 × 10−10 99,126 0.00 1.00 0.0053 0.002 0.014 127,005 0.0361 0.011 0.001 42,846

rs1167800 7 75014132 HIP1 A/G 0.54 0.0156 0.003 2.6 × 10−9 91,416 0.00 1.00 0.0016 0.002 0.470 118,536 –0.0133 0.012 0.272 38,884

rs2820436 1 217707303 LYPLAL1 C/A 0.67 0.0153 0.003 4.4 × 10−9 104,044 0.01 0.97 0.0077 0.002 0.001 128,580 –0.0041 0.012 0.723 42,843

rs2745353 6 127494628 RSPO3 T/C 0.51 0.0143 0.002 5.5 × 10−9 104,075 0.06 0.67 –0.0009 0.002 0.677 128,615 –0.0005 0.011 0.962 42,853

rs731839 19 38590905 PEPD G/A 0.34 0.0145 0.003 1.7 × 10−8 104,636 0.13 0.38 0.0046 0.002 0.038 132,528 0.0142 0.012 0.220 42,846

rs4865796 5 53308421 ARL15 A/G 0.67 0.0146 0.003 2.1 × 10−8 100,001 0.03 0.81 0.0043 0.002 0.052 127,784 0.0337 0.012 0.004 42,852

rs2972143 2 226824609 IRS1 G/A 0.62 0.0142 0.003 3.2 × 10−8 99,566 0.00 1.00 0.0035 0.002 0.107 127,473 0.0195 0.011 0.082 42,853

rs1530559 2 135472099 YSK4 A/G 0.52 0.0145 0.003 3.4 × 10−8 107,281 0.19 0.18 0.0037 0.002 0.100 129,880 0.0200 0.011 0.077 42,849

FI  
(BMI- 
adjusted)

rs2943645 2 226807424 IRS1 T/C 0.63 0.0193 0.002 2.3 × 10−19 99,023 0.00 1.00 0.0034 0.002 0.112 127475 0.0210 0.011 0.061 42,846

rs10195252 2 165221337 GRB14* T/C 0.60 0.0174 0.002 1.3 × 10−16 98,997 0.00 1.00 0.0053 0.002 0.014 127005 0.0361 0.011 0.001 42,846

rs2126259 8 9222556 PPP1R3B T/C 0.11 0.0238 0.003 3.3 × 10−13 99,021 0.14 0.51 0.0213 0.003 5.4 × 10−10 127480 –0.0877 0.017 1.8 × 10−7 42,849

rs4865796 5 53308421 ARL15 A/G 0.67 0.0154 0.002 2.2 × 10−12 98,314 0.48 0.01 0.0043 0.002 0.052 127784 0.0337 0.012 0.004 42,852

rs17036328 3 12365484 PPARG T/C 0.86 0.0212 0.003 3.6 × 10−12 98,984 0.21 0.31 0.0051 0.003 0.103 128567 0.0335 0.016 0.031 42,843

rs731839 19 38590905 PEPD G/A 0.34 0.0148 0.002 5.1 × 10−12 103,252 0.13 0.55 0.0046 0.002 0.038 132528 0.0142 0.012 0.220 42,847

rs974801 4 106290513 TET2 G/A 0.38 0.0139 0.002 3.3 × 10−11 103,489 0.09 0.67 0.0012 0.002 0.582 131866 0.0052 0.011 0.643 42,849

rs459193 5 55842508 ANKRD55-
MAP3K1

G/A 0.73 0.0147 0.002 1.12 × 10−10 103,378 0.27 0.17 0.0111 0.002 1.6 × 10−6 132989 0.0276 0.012 0.023 42,849

rs6822892 4 157954125 PDGFC A/G 0.68 0.0138 0.002 2.6 × 10−10 103,432 0.00 1.00 0.0010 0.002 0.636 132951 0.0256 0.012 0.031 42,836

rs4846565 1 217788727 LYPLAL1 G/A 0.67 0.0132 0.002 1.8 × 10−9 99,014 0.00 1.00 0.0066 0.002 0.003 127468 0.0132 0.012 0.254 42,853

rs3822072 4 89960292 FAM13A A/G 0.48 0.0116 0.002 1.8 × 10−8 99,977 0.00 1.00 0.0025 0.002 0.236 129432 0.0161 0.011 0.143 42,850

rs6912327 6 34872900 UHRF1BP1 T/C 0.80 0.0165 0.003 2.3 × 10−8 80,010 0.04 0.91 0.0074 0.003 0.011 103826 0.0139 0.0139 0.391 34,761

Primary trait FG FI (BMI-adjusted)

2hGlu rs6975024 7 44198411 GCK C/T 0.15 0.1026 0.016 5.2 × 10−11 42,842 0.00 1.00 0.0605 0.003 2.9 × 10−99 103,517 0.0063 0.003 0.030 98,458

rs11782386 8 9239197 PPP1R3B* C/T 0.87 0.0985 0.017 2.2 × 10−9 42,852 0.00 1.00 –0.0167 0.003 5.5 × 10−7 100,595 –0.0164 0.003 6.9 × 10−7 95,565

rs1019503 5 96280573 ERAP2 A/G 0.48 0.0628 0.011 8.9 × 10−9 42,851 19.6 0.42 –0.0061 0.002 0.003 108,113 0.0004 0.002 0.851 103,448

2hGlu  
(BMI- 
adjusted)

rs7651090 3 186996086 IGF2BP2 G/A 0.30 0.064 0.012 4.5 × 10−8 42,792 63.4 0.01 0.0128 0.002 1.8 × 10−8 104,019 0.0003 0.002 0.900 98,924

Genome-wide loci for fasting glucose (FG), fasting insulin (FI), FI (adjusted for BMI) and 2hGlu are shown along with results for the other traits aligned to the trait-raising allele for the primary trait. Non-MAGIC SNPs (identified in other consortia and selected 
for the Metabochip to follow up on other non-MAGIC traits) are indicated in bold. Freq., allele frequency of the primary trait-raising allele. Per-allele effect (standard error, SE) for FI represents differences in natural log–transformed levels of FI. N represents 
sample size. Heterogeneity was assessed using the I2 index56. The gene shown is the nearest gene to the lead SNP, except for those marked with an asterisk, for which the nearest gene is also listed in Supplementary Table 2a–d.
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Box 1  Genes nearest to loci associated with glycemic traits 

Fasting glucose
IKBKAP (inhibitor of κ light polypeptide gene enhancer in β cells, kinase complex–associated protein) encodes a scaffold protein that binds IKKs and NF-κB– 

inducing kinase (NIK), assembling them into different active complexes. Splice-site mutations in this gene lead to familial dysautonomia57. Also mapping to this 

region are C9orf4, C9orf5, C9orf6 and MIR32 (microRNA 32, unknown function), as well as ACTL7A (actin-like 7A) and ACTL7B (actin-like 7B).

WARS (tryptophanyl-tRNA synthetase) catalyzes the aminoacylation of tRNA(Trp) with tryptophan. The intronic SNP rs3783347 is associated with WARS expres-

sion in liver: the glucose-raising allele associated with lower mRNA expression (age- and sex-adjusted P = 4.19 × 10−5) and is in perfect LD (r2 = 1, D = 1) with 

a 3′ UTR SNP in SLC25A47 (rs3736952) and in modest LD (r2 = 0.3, D = 1) with a nonsynonymous p.Arg135Leu alteration (qualified as tolerated by SIFT and 

probably damaging by Polyphen). Nearby, YY1 (YY1 transcription factor) codes for a zinc-finger transcription factor involved in regulating a broad set of  

promoters. It has been suggested that YY1-regulated transcription is linked to glucose metabolism via O-GlcNAcylation58.

KL (klotho) encodes a type I membrane protein related to β-glucosidases. rs576674 lies ~36 kb upstream of KL. Variation in KL has been associated with 

insulin regulation, insulin resistance phenotypes and cardiovascular disease in some studies14,15,59,60, but KL variants were not associated with diabetes risk61. 

The various SNPs in these studies are all in weak LD with rs576674 (r2 < 0.125). Variation in KL is also associated with bone metabolism and may have a role 

in associations of energy metabolism with bone metabolism62,63.

TOP1 (topoisomerase (DNA) I). rs6072275 is intronic in TOP1 and lies in a large region of high LD in Europeans, which includes the plausible biological candidate 

LPIN3 (lipin 3). In mice, a related homolog, Lpin1, is associated with fatty liver dystrophy64, a phenotype similar to human lipodystrophy (loss of body fat, fatty 

liver, hypertriglyceridemia and insulin resistance). Lpin1 mRNA is expressed at high levels in adipose tissue and is induced during differentiation of preadipocytes, 

suggesting that lipin is required for normal adipose tissue development, whereas LPIN2 has been suggested to be associated with T2D and glucose metabolism65. 

rs6072275 lies in the middle of a large copy-number variation (CNV) that extends from within the 3′ end of TOP1 to the 5′ end of PLCG1 (phospholipase C, γ1).

P2RX2 (purinergic receptor P2X, ligand-gated ion channel, 2). rs10747083 lies in a small CNV approximately 150 kb upstream of five protein-coding genes, 

including P2RX2, encoding one of a family of purinoceptors for ATP; GALNT9 (UDP-N-acetyl-α-d-galactosamine:polypeptide N-acetylgalactosaminyltransferase 

9 (GalNAc-T9) encoding a member of the UDP-N-acetyl-α-d-galactosamine polypeptide N-acetylgalactosaminyltransferase (GalNAc-T) family of enzymes and 

expressed specifically in the brain; FBRSL1 (fibrosin-like 1); PXMP2 (peroxisomal membrane protein 2, 22 kDa); and PGAM5 (phosphoglycerate mutase family 

member 5), and downstream within 184 kb of POLE (polymerase (DNA-directed), ε) and LOC100130238 (hypothetical LOC100130238), a miscRNA.

DNLZ contains rs3829109, which is in low LD with a well-established locus for inflammatory bowel disease. Two recent publications reported that the CARD9 

SNP rs10781499 (r2 = 0.29) is associated with ulcerative colitis66, and CARD9-SNAPC4 SNP rs4077515 (r2 = 0.27) is associated with Crohn’s  

disease and ulcerative colitis67,68. Several genes are located in the region, but few with high plausibility for a role in glycemia.

AMT encodes the mitochondrial aminomethyltransferase, which is a critical component of the glycine cleavage system. Depending on the AMT transcript, 

rs11715915 is located in the 3′ UTR or within coding regions, where it causes a synonymous substitution. This SNP is also located downstream of TCTA (T-cell 

leukemia translocation altered), which has no known metabolic function, and upstream of RHOA (ras homolog family member A). RHOA is a signaling molecule 

involved in actin cytoskeleton stability and reorganization69 that binds and activates Rho kinase (ROCK), a regulator of insulin transcription70 and action71 that 

is differentially regulated in T2D72 and is hypothesized to have a role in glucose homeostasis71.

GLS2 encodes liver-expressed glutaminase 2, which is required for hydrolysis of glutamine. rs2657879 causes a benign (according to Polyphen) amino-acid 

change (p.Leu581Pro) in the GLS2 protein. The GLS2 protein is highly expressed (Human Protein Atlas) by both liver and pancreas, and it has been shown in 

liver tumors that alterations in the balance of the activity of GLS2:GLS1 (the kidney-specific homolog) is important for regulating glutamate metabolism73.  

The other gene in this region, SPRYD4 (SPRY domain containing 4), has no known function in metabolism.

RREB1 (ras responsive element–binding protein 1) encodes a zinc-finger transcription factor, with rs17762454 lying in an intron in the gene. The protein  

product of RREB1 binds to RAS-responsive elements (RREs) of gene promoters, including the CALCA (encoding calcitonin) gene promoter. The role of RREB1 

in energy metabolism is not known. An uncorrelated SNP at this locus (rs675209) was associated with serum urate levels (P = 1.0 × 10−9) in a GWAS of serum 

urate, gout and cardiovascular disease risk factors74. Another gene at this locus, SSR1 (signal sequence receptor, α), encodes a glycosylated endoplasmic reticu-

lum (ER) membrane receptor associated with protein translocation across the ER membrane. Reactome pathway analysis places this gene in a module with key 

roles in the synthesis and function of insulin, insulin-like growth factors and ghrelin, making this gene a plausible biological candidate at this locus (REACTOME: 

REACT_15380). A third gene at this locus, CAGE1, encodes cancer antigen 1. CAGE1 has no known role in metabolism.

Fasting insulin
TET2 encodes the tet oncogene family member 2, isoform b, which catalyzes the conversion of methylcytosine to 5-hydroxymethylcytosine. The enzyme is involved  

in myelopoiesis, and defects in this gene have been associated with several myeloproliferative disorders (NCBI RefSeq). Perhaps more relevant to glycemic 

regulation is PPA2, which encodes the inorganic pyrophosphatase 2 isoform 1 precursor. Its protein product is localized to mitochondria; it has high homology to 

members of the inorganic pyrophosphatase family, including the signature sequence that is essential for its catalytic activity (NCBI RefSeq). Pyrophosphatases 

catalyze the hydrolysis of pyrophosphate to inorganic phosphate.

HIP1 encodes the huntingtin-interacting protein 1, a membrane-associated protein that colocalizes with huntingtin. It is ubiquitously expressed, with the  

highest level found in brain. Loss of normal huntingtin-HIP1 interaction in Huntington’s disease may contribute to a defect in membrane-cytoskeletal integrity 

in the brain. Of interest to insulin action, HIP1 is involved in clathrin-mediated endocytosis and trafficking. Mice transgenic for the mutated form of huntingtin 

develop diabetes75,76; however, although mice with double knockout of Hip1 and Hip1r have severe vertebral defects, suffer from dwarfism and die in early 

adulthood, they do not show any fasting glucose abnormalities77. The lead SNP (rs1167800) is only 104 bp away from a missense SNP (rs1167801), encoding 

a glutamic acid–to-histadine amino-acid change; however, LD between the SNPs is low (r2 = 0.196).

FAM13A (family with sequence similarity 13, member A) encodes a protein with unknown function. Previous GWAS for lung function measures78 and chronic 

obstructive pulmonary disease79 described variants in FAM13A that affect these traits. SPP1, encoding osteopontin, a secreted matrix glycoprotein and  

proinflammatory cytokine involved in cell-mediated immunity, is within 1 Mb. Mice exposed to a high-fat diet show increased circulating osteopontin, and 

(continued)
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overexpression of Spp1 in the macrophages recruited into adipose tissue improved insulin sensitivity80, and SPP1 was highly expressed in obese twins relative 

to their nonobese siblings81. Recent work linked osteopontin to β-cell function through the gastric inhibitory pathway (GIP) pathway82. In carriers of the GIPR 

variant associated with impaired glucose and GIP-stimulated insulin secretion, osteopontin levels were lower compared to noncarriers. In addition, both GIP and 

osteopontin prevented cytokine-induced apoptosis and osteopontin-stimulated cell proliferation of functional β-cell mass.

PEPD (peptidase D) encodes a member of the peptidase family. The protein forms a homodimer that hydrolyzes dipeptides or tripeptides with a C-terminal 

proline or hydroxyproline residue. The enzyme serves an important role in the recycling of proline and may be rate limiting for collagen production. CEBPA 

(CCAAT/enhancer binding protein (C/EBP) α) is ~100 kb downstream of the lead SNP and encodes a transcription factor expressed in adipose tissue that  

regulates a number of genes involved in lipid and glucose metabolism. A SNP in low LD with our lead SNP was previously associated with triglyceride levels83.  

Cells from Cebpa −/− mice show a complete absence of insulin-stimulated glucose transport, secondary to reduced gene expression and tyrosine phosphorylation 

of the insulin receptor and IRS1 (ref. 84). CEBPA also modulates expression of leptin by binding to the promoter of the gene85, and our lead SNP showed  

modest association with BMI in previous GIANT meta-analyses (P = 0.005).

YSK4 (Sps1/Ste20-related kinase homolog) contains rs1530559 in an intron. This gene has no known function in human energy metabolism. Three other genes at this 

locus also have no known role in energy metabolism, including RAB3GAP1 (RAB3 GTPase–activating protein subunit 1 (catalytic), encoding the catalytic subunit of a 

Rab GTPase–activating protein and mutated in Warburg micro syndrome; CCNT2 (cyclin T2), belonging to the highly conserved cyclin family, whose members are char-

acterized by marked periodicity in protein abundance through the cell cycle; and ACMSD (aminocarboxymuconate semialdehyde decarboxylase), involved in the de novo 

synthesis pathway of nicotinamide adenine dinucleotide (NAD) from tryptophan. ACMSD has been implicated in the pathogenesis of several neurodegenerative disorders.

2-hour glucose
ERAP2 (endoplasmic reticulum aminopeptidase 2) encodes an aminopeptidase that hydrolyzes N-terminal amino acids of protein or peptide substrates. The lead 

SNP is strongly associated with ERAP2 expression in liver (P = 1.1 × 10−55) and in lymphoblastoid cell lines in individuals from the CEU (P = 8 × 10−21) and 

Yoruba from Ibadan, Nigeria (YRI) samples (P = 2 × 10−15). Also near to this lead SNP is LNPEP (leucyl/cystinyl aminopeptidase), which is widely expressed and 

well characterized in muscle and fat cells. In response to insulin, LNPEP translocates to the cell surface and colocalizes with GLUT4 (ref. 86). Although the role 

it has in insulin action is unknown, this translocation is impaired in individuals with T2D86. PCSK1 is also within 500 kb of the lead SNP, although it is on the 

other side of a recombination hotspot (Supplementary Fig. 4d).

Box 1 C ontinued

2-h glucose
In 42,854 individuals, we identified 4 additional loci that were associ­
ated with 2hGlu (Table 1 and Supplementary Figs. 3 and 4), includ­
ing a signal near ERAP2 and 3 signals near loci previously associated 
with fasting glucose1 (GCK), HDL-cholesterol27 (PPP1R3B) and T2D6 
(IGF2BP2), as well as confirming the 5 previous associations2. To 
determine whether these associations reflected differences in the 
response to a glucose challenge or were partly driven by effects on fast­
ing glucose, we also performed analyses adjusted for fasting glucose. 
No additional loci were found to associate with genome-wide signifi­
cance after adjustment for fasting glucose concentration, although 
the association of GCK with 2hGlu was severely attenuated (β = 0.04 
(s.e.m. = 0.016) mM per allele; P = 0.005 versus β = 0.1 (0.016) mM 
per allele; P = 5.3 × 10−11 in the model unadjusted for fasting glucose), 
suggesting that the association with 2hGlu is driven, at least in part, by 
a primary association with fasting glucose (Supplementary Table 2d).  
The association of SNPs near GCK with both fasting glucose and 
2hGlu suggests a generalized increase in the glucose setpoint, con­
sistent with inactivating mutations in GCK that cause MODY41.  
As for fasting glucose, when 2hGlu models were adjusted for BMI, no 
systematic differences were observed, although, again, the rs7651090 
SNP in IGF2BP2 reached genome-wide significance (Table 1).

Eight of the nine SNPs associated with 2hGlu at genome-wide levels  
of significance were also associated with T2D (q < 0.05) (Fig. 1), 
although the 2hGlu-raising alleles at PPP1R3B, GCKR and VPS13C-
C2CD4A-C2CD4B were associated with lower risk of T2D (Fig. 2d), 
consistent with their association with lower fasting glucose levels 
(Table 1 and Supplementary Table 2e).

In addition to SNPs with associations that reached genome-wide 
significance in single-SNP analyses, we identified three regions (con­
taining six genes) showing association with 2hGlu in gene-based 
analyses. These included the HKDC1 gene, as well as an association 
signal at CRHR1 (P = 2 × 10−6) (Supplementary Table 3c), mostly 
driven by the lead SNP in this gene (rs17762954), which approached 

genome-wide significance (P = 7.4 × 10−7). CRHR1, together with 
GIPR, belongs to the family of class B G protein–coupled recep­
tors (GPCRs) and is highly expressed in pancreatic β-cells, where 
stimulation of the receptor potentiates insulin secretion in response  
to glucose42.

Fine mapping of established loci
Analyses at higher SNP density around previously established loci did 
not generally yield stronger associations or more plausible functional 
variants (Supplementary Table 4). For fasting glucose concentration, 
markedly more significant SNPs or larger effect sizes than the previous 
lead SNP were observed for 4 of the 16 loci: PROX1, GCK, ADRA2A 
and VPS13C-C2CD4A-C2CD4B (Supplementary Table 4). Regional 
plots for these loci are shown in Supplementary Figure 6. Although 
the association for the new lead SNP near ADRA2A was not mark­
edly more significant than the previous lead SNP, the effect size was 
almost double that of the previous lead SNP (Supplementary Table 4).  
However, this and other new lead SNPs lacked more plausible func­
tionality. The new lead SNP at VPS13C-C2CD4A-C2CD4B, previously 
associated with proinsulin43, is far more significant and of larger effect 
size than the previous lead SNP (β = 0.0273 (s.e.m. = 0.0035) mM 
per allele; P = 4.8 × 10−15 versus β = 0.0057 (0.0036) mM per allele;  
P = 0.111; r2 = 0.27). For fasting insulin concentration, another SNP 
downstream of IGF1 was found to be more significant and had a larger 
effect size, although with no known functionality (Supplementary 
Fig. 6 and Supplementary Table 4). For 2hGlu, another SNP at 
VPS13C-C2CD4A-C2CD4B was again more significant than the previ­
ous lead SNP (Supplementary Fig. 6 and Supplementary Table 4) and 
was previously associated with diabetes in Chinese individuals44.

Pathway analysis
Next, we explored whether glycemic loci were enriched for connec­
tivity between genes representing particular pathways or processes.  
To do this, we used GRAIL software45 and investigated both an  
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excess of connectivity between the established loci (that reached 
genome-wide significance) and then between established loci and 
those loci that did not reach genome-wide significance but showed 
a lower level of significance for association (P < 0.0005) (Online 
Methods). We aimed to establish whether there were any biologically 
relevant genes among this longer list of suggestively associated loci. 
This less stringent threshold yielded 218, 155 and 100 regions for fast­
ing glucose, fasting insulin and 2hGlu, respectively. To further assess 
whether the established loci represented common biological path­
ways, we used MAGENTA to undertake gene set–enrichment analyses  
(Online Methods).

We found that genes near the 36 loci associated with fasting glucose 
concentration had a high degree of connectivity (see Online Methods 
for definition of how genes were selected). Eight genes showed highly 
significant similarity to genes in other associated loci at PGRAIL < 0.01 
and were connected by keywords such as ‘glucose’, ‘insulin’, ‘pancreatic’ 
and ‘diabetes’ (Supplementary Fig. 7 and Supplementary Table 5a), 
at levels greater than those expected by chance (Ppermutation = 0.003). 
We observed less connectivity among the loci that were associated with 
fasting insulin and 2hGlu at genome-wide significance, with no genes 
reaching PGRAIL < 0.01 for fasting insulin (Supplementary Table 5b)  
and only one out of nine genes reaching this threshold for 2hGlu 
(Ppermutation = 0.07) (Supplementary Table 5c).

Among the list of 218 suggestively associated loci for fasting glucose 
(P < 0.0005), we observed that 13 genes were connected to the genome-
wide significant loci at PGRAIL < 0.01, more than expected by chance 
(Ppermutation = 0.003) (Supplementary Table 6a). These included genes 
such as GLP1R (PGRAIL = 3.3 × 10−7; a glucagon receptor that mediates 

the GLP-1 incretin effect and stimulates insulin 
release), IRS2 (PGRAIL = 6.9 × 10−5; central to 
development and maintenance of β-cell mass 
and function46,47) and INS (PGRAIL = 2.5 × 
10−6; the insulin gene encoding proinsulin). 
The presence of these genes and other biologi­
cally plausible genes support our conjecture 
that many of the SNPs approaching genome-
wide significance are likely to represent true 
associations. Of the 155 suggestively associ­
ated loci for fasting insulin (adjusted for BMI), 
we observed that 7 were connected to the 
genome-wide significant loci at PGRAIL < 0.01, 
more than expected by chance (Ppermutation = 
0.002), and these genes included INSR (PGRAIL 
= 1.5 × 10−4; encoding insulin receptor precur­
sor), CD36 (PGRAIL = 0.001; previously impli­
cated in insulin resistance48), GCG (PGRAIL= 
0.008; glucagon gene) and HNF1A (PGRAIL = 
0.005; mutations in the gene are associated 
with MODY3 (ref. 49)) (Supplementary 
Table 6b). Of the 100 suggestively associated 
loci for 2hGlu (P < 0.0005), we found that 3 
reached PGRAIL < 0.01 (Ppermutation = 0.014), 
and the gene highlighted as most biologically 
connected to the genome-wide significant 
loci was again HNF1A (PGRAIL = 3.4 × 10−4) 
(Supplementary Table 6c).

Using MAGENTA, we identified four path­
ways enriched for fasting glucose associations: 
GOTERM pathways lens development in cam­
era-type eye (P = 0.004), PANTHER processes 
gut mesoderm development (P = 0.009), other 

steroid metabolism (P = 0.02) and KEGG MODY pathway (P = 0.03), 
although these were no longer significant (P > 0.05) after removing lead 
genes, all of which were known fasting glucose loci (PROX1 for eye and gut 
and G6PC2 and GCK for steroid and MODY pathways, respectively).

Directional consistency between discovery and follow-up
Given the wealth of biologically plausible genes in loci with 
associations that almost reached genome-wide significance 
(Supplementary Table 6a–c) and the deviation of the observed 
distribution from the expected in quantile-quantile plots, even 
after removing all established loci (Supplementary Fig. 8a–d), we 
hypothesized that additional loci not reaching genome-wide signi­
ficance were likely to represent true associations with small effects. 
To establish the presence of further true associations that did not 
reach genome-wide significance, we compared SNP associations in 
discovery studies (those included in the original meta-analyses for 
42,078 (fasting glucose), 34,230 (fasting insulin) and 15,252 (2hGlu) 
individuals)1,2 with those in the follow-up studies (consisting of 
85,710 (fasting glucose), 69,240 (fasting insulin) and 27,602 (2hGlu) 
individuals). We identified all SNPs that had a nominally significant 
association (P < 0.05) in the follow-up studies alone and, for these 
SNPs, performed a binomial test to determine whether more SNPs 
than expected by chance (50%) had a consistent direction of effect 
with that observed in the discovery analyses. We were also able to 
make comparisons among SNPs that were nominated for follow-up 
analysis by different consortia (Supplementary Fig. 9a–d).

For each trait, evaluation of the 66,000 Metabochip follow-up SNPs 
revealed a significant excess of SNPs showing directionally consistent  

MAGIC trait SNP Gene T2D Triglycerides HDL-C BMI WHRadjBMI Color Significance Direction of Effect

2hGlu rs11672660 GIPR P < 5 × 10–8

2hGlu rs12255372 TCF7L2 P < 0.0001
2hGlu rs11717195 ADCY5 P < 0.01
2hGlu rs6975024 GCK P < 0.05
2hGlu rs11782386 PPP1R3B P > 0.05
2hGlu rs1019503 ERAP2 P < 0.05
2hGlu rs1260326 GCKR P < 0.01
2hGlu rs1436958 VPS13C-C2CD4A-CSCD4B P < 0.0001
2hGlu rs7651090 IGF2BP2 P < 5 × 10–8

FG rs10830963 MTNR1B
FG rs2191349 DGKB-TMEM195
FG rs2908289 GCK
FG rs560887 G6PC2
FG rs780094 GCKR
FG rs11558471 SLC30A8
FG rs4502156 VPS13C-C2CD4A/B
FG rs11607883 CRY2
FG rs174576 FADS1
FG rs11039182 MADD
FG rs7903146 TCF7L2
FG rs10811661 CDKN2B
FG rs11195502 ADRA2A
FG rs1280 SLC2A2
FG rs11708067 ADCY5
FG rs4869272 PCSK1
FG rs11619319 PDX1
FG rs983309 PPP1R3B
FG rs6943153 GRB10
FG rs11603334 ARAP1
FG rs10814916 GLIS3
FG rs6113722 FOXA2
FG rs16913693 IKBKAP
FG rs3829109 DNLZ
FG rs3783347 WARS
FG rs2302593 GIPR
FG rs9368222 CDKAL1
FG rs340874 PROX1
FG rs10747083 P2RX2
FG rs6072275 TOP1
FG rs7651090 IGF2BP2
FG rs576674 KL
FG rs11715915 AMT
FG rs17762454 RREB1
FG rs7708285 ZBED3
FG rs2657879 GLS2
FI rs2943645 IRS1
FI rs10195252 GRB14
FI rs1421085 FTO
FI rs2126259 PPP1R3B
FI rs780094 GCKR
FI rs4865796 ARL15
FI rs17036328 PPARG
FI rs731839 PEPD
FI rs974801 TET2
FI rs7903146 TCF7L2
FI rs459193 ANKRD55-MAP3K1
FI rs6822892 PDGFC
FI rs860598 IGF1
FI rs4846565 LYPLAL1
FI rs1167800 HIP1
FI rs2745353 RSPO3
FI rs3822072 FAM13A
FI rs6912327 UHRF1BP1
FI rs1530559 YSK4

Association did not reach
q < 0.05 in FDR analyses

Association with
higher levels of trait

Association with
lower levels of trait

Other traits

Figure 1  Associations 
between glycemic loci 
and T2D, HDL-cholesterol 
(HDL-C) and triglyceride 
concentrations, BMI and 
WHR. Loci associated with 
these traits (P < 0.05)  
are highlighted. Those 
with positively correlated 
effect directions are shown 
in yellow, and those with 
negative correlations are 
shown in blue. Those  
which did not reach  
q < 0.05 in FDR analyses 
are indicated by a 
diagonal line through the 
corresponding rectangle. 
FG, fasting glucose;  
FI, fasting insulin.
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associations (P < 0.05) compared to that expected by chance (fast­
ing glucose, Pbinomial = 5.01 × 10−12; fasting insulin, Pbinomial = 
7.58 × 10−13; fasting insulin (adjusted for BMI), Pbinomial = 9.76 × 
10−9; 2hGlu, Pbinomial = 2.37 × 10−6; Supplementary Fig. 9a–d and 
Supplementary Table 7). FDR analyses suggested that a number of 
these nominal associations in the follow-up studies are true posi­
tives for fasting glucose and fasting insulin in particular (fasting glu­
cose, 23%; fasting insulin, 24%; Supplementary Table 7). Notably, 
when we evaluated consistency of association with fasting insulin 
(between discovery and follow-up stages) among SNPs submitted to 
the Metabochip by other consortia, SNPs submitted by the Genetic 
Investigation of ANthropometric Traits (GIANT) Consortium 
(anthropometric traits) (Pbinomial = 1.52 × 10−8) and the Global 
Lipids Genetics Consortium (GLGC) (lipid traits) (Pbinomial = 1.15 ×  
10−6) and for BMI and triglycerides in particular also showed a 
marked excess of directional consistency (Supplementary Fig. 9b 
and Supplementary Table 7). When we performed the same test 
for fasting insulin concentration adjusted for BMI, the observed 
enrichment among SNPs submitted by GIANT and GLGC was 
attenuated (Supplementary Fig. 9c and Supplementary Table 7), 
although SNPs nominated to follow up on triglyceride associations 
remained the most significant (P = 3.18 × 10−7; Supplementary 
Fig. 9c and Supplementary Table 7). Of the 3,353 SNPs submitted 
for follow-up study of triglyceride associations, 158 SNPs showed 
nominal significance (P < 0.05) in follow-up studies and consistent 

direction of association with fasting insulin 
(adjusted for BMI) in both discovery and 
follow-up stages (Supplementary Table 7).  
In 139 (88%) of these SNPs, the insulin- 
raising alleles were associated with higher 
levels of triglycerides, consistent with the 
positive correlations between fasting insulin  
and triglyceride associations observed among 
the genome-wide significant loci for fasting 
insulin concentration (Fig. 1).

DISCUSSION
In the current meta-analysis of ~66,000 
Metabochip follow-up SNPs in up to 133,010 
individuals, we identified a large number 
of loci that associated with glycemic traits, 
explaining 4.8%, 1.2% and 1.7% of the vari­
ance in fasting glucose, fasting insulin and 
2hGlu, respectively. Of the 53 glycemic loci, 
33 are also associated with increased T2D risk  
(q < 0.05), extending the overlap between 
glycemic and T2D loci. Given the current 
DIAGRAM effective sample size of 106,953  
individuals, we can exclude an effect on T2D 
of 1.04 with 80% power to detect alleles more 
frequent than 5%, effectively confirming that 
the overlap is incomplete and that many loci 
associated with glycemic traits have no dis­
cernible effect on T2D (Figs. 1 and 2).

Previously, we had detected only two loci 
associated with fasting insulin concentration 
and had hypothesized that this might be due 
to a different genetic architecture for this trait 
compared to fasting glucose, with potentially 
smaller effect sizes, lower frequency alleles or 
greater environmental influence on fasting 

insulin1. In the current meta-analysis including up to 108,557 indi­
viduals (compared to 62,264 individuals previously), we expanded the 
number of loci associated with this trait to 19. Of note was the effect 
of BMI adjustment on our ability to detect additional loci (five nono­
verlapping with unadjusted results)19. We also noted that some of the 
loci influencing fasting insulin that were uncovered after BMI adjust­
ment are likely to have been negatively confounded in previous efforts: 
at some loci, the insulin-raising allele was nominally associated with 
lower BMI (potentially via insulin resistance, attenuating the anabolic 
effects of insulin). Given the positive correlation between BMI and fast­
ing insulin, it is likely that this association previously masked their effect 
on fasting insulin. Fasting insulin loci showed directionally consistent 
association with lipid levels (HDL and triglycerides); that is, the insu­
lin-raising allele was associated with lower HDL and higher triglyceride 
levels, a hallmark combination in insulin-resistant individuals. We also 
observed some overlap between fasting insulin loci and those associated 
with abdominal obesity (Fig. 1). Jointly, these data suggest links of these 
fasting insulin loci to insulin resistance–related phenotypes. Indeed, 
some of the fasting insulin loci identified, such as IRS1 and PPARG, are 
classically known to exert effects on insulin action or sensitivity50,51.

There are now 36 established fasting glucose loci, many of which 
contain compelling biological candidate genes with plausible causal­
ity, including those encoding transcription factors with known roles 
in pancreas development (for example, PDX1, FOXA2, PROX1 and 
GLIS3) and genes involved in β-cell function and insulin secretion 
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Figure 2  Per-allele β coefficients for glucose and insulin concentrations versus ORs for T2D.  
(a) Fasting glucose concentration versus T2D. (b) Fasting insulin (FI) concentration versus T2D.  
(c) Fasting insulin concentration adjusted for BMI versus T2D. (d) 2-hour glucose versus T2D.
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pathways (SLC2A2, GCK and PCSK1). For 2hGlu, only nine associated 
loci have been established to date, which likely reflects the smaller 
sample size available and the consequent reduction in power.

Comparing the consistency of the direction of associations for gly­
cemic traits between discovery and follow-up studies suggests that we 
are observing more directionally consistent associations than expected 
by chance among Metabochip follow-up SNPs (Supplementary  
Fig. 9a–d). This finding, combined with the excess of biologically 
plausible genes among the loci on the edge of being significant 
(Supplementary Table 6a–c), suggests that, beyond the genome-
wide significant loci, there is a more extensive list of loci still likely to 
contain true associations. Indeed, some of these loci are implicated by 
gene-based analyses, which identify genes with compelling biologi­
cal credentials. For fasting insulin, these analyses revealed additional 
loci with previously suggested links to insulin resistance (PPARD and 
PTEN). These results lend further support to the proposal that a long 
tail of common variants of small effect size is likely to account for a 
substantial proportion of the variance of complex traits7,8.

Of note is the number of glycemic loci associated with other meta­
bolic traits (q < 0.05; 34 of 53) and also at genome-wide levels of 
significance (P < 5 × 10−8; 14 of 53) (Fig. 1), potentially implicating 
pleiotropic effects. Further support for this notion comes from the 
analysis of loci nominated for the Metabochip by other consortia 
and their associations with glycemic traits (Supplementary Fig. 
9a–d). Indeed, some of the loci associated with glycemic traits at 
genome-wide significance levels were not originally nominated for 
the Metabochip for follow-up study by MAGIC (Table 1). Metabochip 
data available across all contributing consortia will facilitate systematic 
exploration of these correlated phenotypes with more sophisticated 
statistical methods for joint analysis52–54, yielding greater insight into 
the underlying pathways and genetic networks they represent. As data 
from human genetic networks accrue, we will be better placed to test 
whether there is support for the notion of ‘hub’ genes—that is, genes 
highly connected with others in the network, proposed by experi­
ments in Caenorhabditis elegans to act as buffers for genetic variation, 
that could act as modifier genes for many different disorders55.

In summary, we present a large number of genome-wide significant 
loci influencing glycemic traits, many with a compelling biological 
basis for their association, as well as a number of loci not previously 
implicated in glycemic regulation, for which fine mapping and func­
tional follow-up study will expand and improve understanding. Use 
of the Metabochip for deep follow up has identified additional loci 
involved in glycemic regulation that, due to insufficient sample size 
and power, did not reach genome-wide significance. Consideration 
of such loci in future studies will better exploit data from GWAS and 
complimentary approaches and further improve our biological under­
standing of glycemic control and the etiology of diabetes.

URLs. Cardiovascular Health Study (CHS), http://www.chs-nhlbi.org/
pi.htm; Health2000, http://www.terveys2000.fi/; SNP&SEQ Technology 
Platform, www.genotyping.se/; Genetic Cluster Computer, http://
www.geneticcluster.org/; UCSC Lift Genomes tool, http://genome.
ucsc.edu/cgi-bin/hgLiftOver; GLGC data, http://www.sph.umich.
edu/csg/abecasis/public/lipids2010/; GIANT Consortium, http://
www.broadinstitute.org/collaboration/giant/index.php/Main_Page;  
MAGENTA, http://www.broadinstitute.org/mpg/magenta/; Human 
Protein Atlas, http://www.proteinatlas.org/.

Methods
Methods and any associated references are available in the online 
version of the paper.

Note: Supplementary information is available in the online version of the paper.
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ONLINE METHODS
Study design. The Illumina CardioMetabochip (Metabochip) is a custom 
Illumina iSELECT array of 196,725 SNPs. It has been designed to support 
efficient large-scale follow-up analysis of putative associations for glycemic 
(including fasting glucose, fasting insulin and post-challenge glucose (2hGlu) 
concentrations and other metabolic and cardiovascular traits (Supplementary 
Fig. 1)9 and to enable the fine mapping of established loci. Overall, there 
were 65,435 SNPs genotyped on the Metabochip for follow up of previous 
associations, including a total of 23 cardio-metabolic traits. Traits contribut­
ing SNPs to the Metabochip were prioritized into primary (including fasting 
glucose) and secondary (including fasting insulin and 2hGlu), contributing 
~5,000 and ~1,000 SNPs, respectively, from the most significantly associ­
ated variants for each phenotype in the discovery meta-analyses from each 
contributing consortium. This included 5,055 SNPs for follow up of fasting 
glucose, 1,046 for fasting insulin and 1,038 for 2hGlu associations. In the 
present analysis, we focused our analysis on this set of follow-up SNPs avail­
able on the Metabochip to establish variants among these SNP associated with 
glycemic traits. Although we also included newly available studies genotyped 
on genome-wide platforms, we limited our primary analyses to only these 
~66,000 SNPs.

Studies. In the present effort, collaborating studies within the Meta-Analysis 
of Glucose and Insulin related traits Consortium (MAGIC) provided results 
for the 66,000 follow-up SNPs genotyped on Metabochip on a maximum total 
of 133,010 (fasting glucose), 108,557 (fasting insulin) and 42,854 (2hGlu) indi­
viduals. In addition to those newly genotyped on the Metabochip platform, 
in our overall meta-analysis, we were able to include further studies that had 
genotyped or imputed the same SNPs on other platforms. The largest propor­
tion of our entire sample was directly genotyped on the Metabochip and com­
prised 53,622 (fasting glucose), 42,384 (fasting insulin) and 27,602 (2hGlu) 
individuals from 26, 21 and 12 studies, respectively. We were also able to 
recruit 11,690 (fasting glucose) and 8,813 (fasting insulin) individuals from 
up to 4 additional GWAS (Prevend, Ascot (fasting glucose only), Prosper and 
TRAILS) (Supplementary Table 1) not included in the original meta-analysis1.  
From another MAGIC study of sex-specific associations with glycemic  
traits (I.P. on behalf of the MAGIC authors, personal communication), we were 
able to recruit another 15 and 13 independent studies comprising up to 25,618 
and 23,130 individuals for fasting glucose and fasting insulin, respectively. The 
above studies were combined in a single fixed-effects meta-analysis with those 
studies included in the original GWAS1,2, including 20 (fasting glucose), 19 
(fasting insulin) and 9 (2hGlu) studies and 42,080 (fasting glucose), 34,230 
(fasting insulin) and 15,252 (2hGlu) individuals, as described previously1,2. 
The study and individual counts from the original GWAS excluded the fam­
ily-based SardiNIA study, where, initially, a large number of the individuals 
had imputed genotype data only. The entire sample was directly genotyped on 
Metabochip, and the resulting data were included in place of the original GWAS 
data. Some studies had genotyping data available from both Metabochip and 
genome-wide arrays but from entirely independent samples within the study 
(Supplementary Table 1). Full study characteristics of all Metabochip stud­
ies are shown in Supplementary Table 1, and data from discovery genome-
wide studies, and those from the sex-specific analyses are reported elsewhere  
(refs. 1,2 and I.P. on behalf of the MAGIC authors, personal communication). 
All participants of the main analysis were of European descent and were mostly 
adults, although data from a total of 7,872 and 7,164 adolescents were also 
included in the fasting glucose and fasting insulin meta-analyses, respectively 
(NFBC86, Leipzig-childhood_IFB, TRAILS and ALSPAC studies). All stud­
ies were approved by local research ethic committees, and all participants 
gave informed consent. Results from the CLHNS study of Filipino women  
(n = 1,682 and 1,635 for fasting glucose and fasting insulin, respectively) geno­
typed on Metabochip were also available and were included in supplementary 
analyses to compare effect directions with studies of individuals of European 
descent alone.

Phenotypes. Analyses were undertaken for fasting glucose and fasting insulin 
measured in mM and pM, respectively. 2hGlu was measured in mM. As in 
the previous MAGIC discovery analysis1,2, individuals were excluded from 
the analysis if they had a physician diagnosis of diabetes, were on diabetes 

treatment (oral or insulin) or had a fasting plasma glucose concentration equal 
to or greater than 7 mM. Individual studies applied further sample exclu­
sions, including for pregnancy, non-fasting individuals and type 1 diabetes, 
as detailed in Supplementary Table 1. Individuals from case-control studies 
(Supplementary Table 1) were excluded if they had undergone hospitalization 
or blood transfusion in the 2–3 months before phenotyping took place. 2hGlu 
measures were carried out 2 h after a glucose challenge during an oral glucose 
tolerance test (OGTT). Measures of fasting glucose and 2hGlu made in whole 
blood were corrected to plasma level using the correction factor of 1.13 (ref. 87).  
Fasting insulin was measured in serum. Detailed descriptions of study-specific 
glycemic measurements are given in Supplementary Table 1.

Trait transformations and adjustment. Analyses were performed for untrans­
formed levels of fasting glucose, natural logarithm–transformed fasting insulin 
and untransformed 2hGlu using a linear regression model. All analyses were 
adjusted (if applicable) for age, study site and geographic covariates to evaluate 
the association using an additive genetic model at each genetic SNP variant.

BMI-adjusted analysis. In the Fenland study (Supplementary Table 1), we 
investigated the correlation between BMI and natural logarithm–transformed 
fasting insulin, fasting glucose and 2hGlu to establish the variation in each 
trait explained by BMI. Meta-analyses for each trait were also adjusted for 
BMI. Metabochip studies and new GWAS performed study-level analyses 
adjusted for BMI. Most studies in the original GWAS (except deCode, GEMs, 
KORAF4 and TwinsUK) as well as from the studies analyzed in a sex-specific 
manner were included in BMI-adjusted meta-analysis. The original discovery 
2hGlu meta-analysis adjusted for BMI2 was also included in these analyses. We 
also performed an analysis for 2hGlu adjusted for fasting glucose to investi­
gate whether additional variants would be identified with an effect on 2hGlu 
independent of fasting glucose and also to establish whether identified 2hGlu 
associations were driven by fasting glucose.

Genotyping and quality control. The Metabochip or other commercial 
genome-wide arrays were used by individual studies for genotyping. Details 
are presented in Supplementary Table 1 or are reported elsewhere1,2. The 
quality control criteria for both Metabochip and genome-wide arrays for fil­
tering of poorly genotyped individuals or low-quality SNPs before imputa­
tion included the occurrence of (i) a call rate of <0.95; (ii) sex discrepancies;  
(iii) ancestry outliers; (iv) heterozygosity (Supplementary Table 1); (v) SNP minor 
allele frequency of <0.01; (vi) SNP Hardy-Weinberg equilibrium P < 1 × 10−4;  
(vii) SNP effect estimate standard error (SE) ≥10; and (viii) SNP minor allele 
count (MAC) of <10 (calculated as the total number of observed alleles at each 
SNP multiplied by the MAF).

Studies with genome-wide arrays undertook imputation using the 
HapMap CEU reference panel using MACH88,89 and IMPUTE90,91 software 
(Supplementary Table 1). Parameters used in imputation and filters applied to 
imputed genotypes are described in Supplementary Table 1 or were reported 
previously1,2. From a total of ~2.5 million directly genotyped or imputed 
autosomal SNPs across the genome, study-specific results for the ~66,000 
Metabochip follow-up SNPs were considered for the present meta-analyses. 
SNPs at which there were meta-analysis results in more than 10,000 individuals 
were included in the analysis.

Statistical analysis. Analyses of previous discovery studies are reported 
elsewhere1,2, and those studies genotyped on the Metabochip are described 
in Supplementary Table 1. SNP effect estimates and their standard errors 
(for an additive genetic model) were combined by inverse variance–weighted 
fixed-effects meta-analysis using METAL92 and GWAMA93. Two parallel 
meta-analyses for each trait by different analysts were compared for consist­
ency. Individual cohort results were corrected for residual inflation of the test 
statistics using genomic control (λ) estimates. The genomic control values 
were estimated for each study, using either test statistics from all SNPs for the 
GWAS, whereas, for those studies genotyped on the Metabochip, genomic 
control λ estimates were derived from test statistics for 5,041 SNPs selected 
for follow-up analysis of QT-interval associations, as we perceived these to 
have the lowest likelihood of common architecture of associations with glyc­
emic traits. Individual study–level λ genomic control estimates are shown in 
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Supplementary Table 1. Overall quantile-quantile plots for the QT follow-up 
SNPs are shown in Supplementary Figure 10.

Trait-associated signal selection strategy. Meta-analysis results for each trait 
were considered to have reached genome-wide significance if they had P ≤ 5 × 10−8  
and were not in LD (r2 < 0.05) or within 500 kb of an established signal. The 
most significantly associated SNP (lowest P value) in each region (of 500 kb) 
was selected as the lead SNP. Associated loci are referred to by the name of the 
nearest gene, unless a more biologically plausible gene was nearby or a nearby 
gene was previously associated with another glycemic trait. In such cases, we 
maintained consistency with the previous naming but list the nearest genes in 
Supplementary Table 2a–d. To establish the variance in each trait explained by 
these SNPs, in the Framingham Heart Study, we included all SNPs in a model 
adjusted for age, sex, BMI and cohort.

Fine mapping of known glycemic trait loci. To undertake preliminary fine-
mapping analyses, we investigated the patterns of association at 17 known 
fasting glucose and fasting insulin loci1 and at 5 known 2hGlu loci2 using 
meta-analysis results from 13,644, 1,309 and 1,249 SNPs genotyped on the 
Metabochip in 53,622, 42,384 and 27,602 individuals for fasting glucose, fast­
ing insulin and 2hGlu, respectively. Only studies genotyped directly on the 
Metabochip were used for fine-mapping purposes to have equal sample size 
and availability of all SNPs. Regional plots for each locus were created using the 
previous lead SNP1 or a suitable proxy (r2 > 0.8) as the index SNP if that marker 
was not present on Metabochip. The plots were generated on LocusZoom 
web-based plotting software94 using LD information from the 1000 Genomes 
Project (hg19; November 2010 European (EUR) data). Before generating the 
plots, all SNP names and positions from the Metabochip-only meta-analysis 
files were aligned to Build 37 using the Lift Genome annotation tool on the 
UCSC website to be compatible with the 1000 Genomes SNP naming format 
(chr: position) and allow more thorough assessment of the pairwise LD pat­
terns around the established SNPs.

Associations of glycemic trait variants with related traits. For those SNPs 
that we identified that associated with genome-wide significance, we also inves­
tigated their association with other metabolic and disease traits. We exchanged 
reciprocal data for such SNPs with the latest DIAGRAM Metabochip analyses24 
and examined associations of these SNPs in publicly available data from pre­
vious studies of lipid traits from the GLGC27 (triglycerides, HDL-cholesterol 
and low-density lipoprotein (LDL)-cholesterol) as well as BMI and WHR from 
the GIANT Consortium25,26. From these data, we were able to establish the 
presence of any association and the direction of effect for these other traits 
aligned to our trait-raising alleles. We highlighted associations with other traits 
at P < 0.05 and also performed FDR analyses. We performed FDR analyses for 
each trait separately (removing duplicate loci that were associated with more 
than one glycemic trait) and identified those with q < 0.05.

Expression quantitative trait locus (eQTL) analyses. Liver gene expres­
sion data from the Advanced Study of Aortic Pathology (ASAP) has been 
described previously95. In brief, liver biopsies were collected from individuals 
at the Karolinska University Hospital who were undergoing aortic valve sur­
gery, alone or combined with surgery for aortic aneurysm, starting from 13 
February 2007. All subjects gave their informed consent, and the study was 
approved by the ethics committee of Karolinska Institutet. After hybridization 
of extracted RNA to Affymetrix ST 1.0 Exon arrays, data were robust multi-
array average (RMA) normalized and log transformed. DNA was extracted 
from whole blood, and genotyping was carried out using the Illumina 610w-
Quad bead array platform. Imputation was carried out on SNPs with a call 
rate exceeding 95%, using the MACH algorithm. Imputation quality scores of 
RSQ < 0.3 were excluded from analysis. An additive genetic model was used 
to test for association between SNPs and gene expression.

VEGAS. To identify genes with multiple associated SNPs, we performed 
gene-based analysis using VEGAS, described in detail previously10. Briefly, 
on all available samples and among the ~66,000 follow-up SNPs, VEGAS 
pooled the information for all SNPs within each gene (±50 kb) to identify 
genes with higher evidence of association than expected by chance, while 

adjusting for gene size and the LD structure of the SNPs, by simulation (the 
maximum number of simulations used was 1,000,000). We identified genomic 
regions (separated by >1 Mb) showing evidence of association and described 
the genes contained within those regions. Although we often identified mul­
tiple genes within an associated region, it is probable that some of these are 
significant via LD. Bonferroni correction was used to adjust for multiple 
testing on the basis of the number of independent tests (number of genes 
tested) (~9,300), and P values of <5.0 × 10−6 were considered significant. 
Although the number of genes represented was constrained by those SNPs 
submitted for inclusion on the Metabochip, our analyses asked the question: 
of the genes represented on the Metabochip, all with a slightly raised previ­
ous likelihood of association, which show the most evidence for association 
with glycemic traits?

GRAIL. We used GRAIL45 to evaluate whether loci across the genome associ­
ated with glycemic traits were enriched for connectivity between genes rep­
resenting particular pathways or molecular processes. As described in detail 
previously45, to define the genes near each SNP, GRAIL finds the furthest 
neighboring SNPs in the 3′ and 5′ direction that are in LD (HapMap CEU  
r2 > 0.5) and proceeds outward in each direction to the nearest recombination 
hotspot96. All genes that overlap that interval are considered implicated by the 
SNP. If there are no genes in that region, the interval is extended by 250 kb  
in either direction. The method performs a text-based analysis, looking at 
abstracts in PubMed before December 2006 (to avoid confounding from 
GWAS results arising after that date). We performed two analyses for each trait. 
First, we took all genome-wide signals for each trait as a seed and queried loci 
to investigate biological connectivity among those loci (fasting glucose = 35,  
fasting insulin = 16, 2hGlu = 9). For fasting insulin, we did not include FTO, 
as the association with fasting insulin was entirely mediated by BMI. Second, 
we investigated connectivity between established signals (as seed regions) 
and those that did not reach genome-wide significance but were suggestively 
associated with each trait (P < 0.0005) (as query regions), as described pre­
viously97. For fasting insulin, we used BMI-adjusted results to define the query 
regions. Query regions were defined by taking all SNPs more significant than 
P < 0.0005, removing those associated at genome-wide levels of significance 
and pruning SNPs of r2 > 0.05 in each region using PLINK98. As GRAIL tests 
connectivity of regions, we also removed any duplicates where a region was 
represented by more than one SNP. For those SNPs not found by the software, 
we submitted the region as a 500-kb window centered at the location of the 
SNP. This approach identified 218, 155 and 100 query regions (represent­
ing 715, 639 and 298 genes) for fasting glucose, fasting insulin (adjusted for 
BMI) and 2hGlu, respectively. The number of loci reaching PGRAIL < 0.01 was 
determined from these analyses, and, to establish the level of enrichment, we 
randomly sampled 1,000 random sets of matched numbers of SNPs and cal­
culated the proportion with as many or more reaching PGRAIL < 0.01 to derive 
a permutation-based P value (Ppermutation).

Pathway analyses. Pathway analysis was carried out for fasting glucose, fasting 
insulin and 2hGlu (uniform or adjusted for fasting glucose or adjusted for BMI) 
using data from previous discovery GWAS only1 to avoid bias toward pathways 
represented on the Metabochip (Build 36; n > 10,000 and MAF ≥ 1% cutoff 
used). The software used for this analysis was MAGENTA 2.4 (July 2011; see 
URLs). SNPs from the meta-analysis file were assigned to a gene if they mapped 
within 110 kb upstream and 40 kb downstream of transcript boundaries. The 
smallest P value for the set of SNPs assigned to the gene was adjusted for con­
founders, such as gene length, marker density and LD, in a linear regression, 
creating a gene association score. If a top SNP was assigned to multiple genes, 
only the gene with the lowest score was kept to avoid positional clustering. The 
human leukocyte antigen (HLA) region was removed due to high LD and gene 
density. Pathway terms from multiple databases (GO, PANTHER, Ingenuity 
and KEGG) were attached to each gene. The genes were ranked on their asso­
ciation score, and a GSEA test was performed that tests all pathway terms using 
5% and 75% cutoffs. Initially, 10,000 gene set permutations were performed 
for GSEA P-value estimation. This number was then increased with GSEA  
P < 1 × 10−4, and up to 1,000,000 permutations were performed. Results were 
sorted on the basis of FDR (5% cutoff), and FDR < 0.05 was considered to 
indicate significance.
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Analyses of directional consistency of associations between discovery and 
follow-up studies. We investigated whether the Metabochip follow-up SNPs 
were likely to contain further true associations in addition to those SNPs that 
reached genome-wide significance. To do so, we performed meta-analysis 
of those studies involved in the original discovery analyses1,2, comprising 
42,078 individuals for fasting glucose, 34,230 for fasting insulin and 15,252 
for 2hGlu, and we then separately performed meta-analysis of all studies 
newly available to follow up, comprising 85,710 individuals for fasting glu­
cose, 69,240 for fasting insulin and 27,602 for 2hGlu. For each trait (fasting 
glucose, fasting insulin, FI-BMIadj and 2hGlu), we identified all SNPs that had 
a nominally significant association (P < 0.05) in the follow-up studies alone 
and, for these SNPs, performed a two-sided binomial test of whether more 
SNPs than expected by chance (50%) had a consistent direction of effect with 
that observed in the discovery analyses. Before performing these analyses, 
SNPs were filtered by LD (r2 < 0.01) to identify independent variants, and 
all SNPs (and those in LD, r2 ≥ 0.01) associated with glycemic traits (fasting 
glucose, fasting insulin, 2hGlu, HbA1c and proinsulin) at genome-wide levels 
of significance (including those SNPs identified in the present study) were 
excluded. These analyses were initially performed for all 66,000 SNPs, but 
we were then able to compare across SNPs submitted to the Metabochip by 
different consortia and for SNPs submitted to follow up on particular traits 
among these consortia. The results of each of these tests were plotted overall 
within SNPs from each consortium and within SNPs submitted for follow up 
of each trait (Supplementary Fig. 9). The numbers of SNPs meeting these 
criteria are shown in Supplementary Table 7. We supplemented these results 
with FDR analyses and noted the q value at P = 0.05 in the follow-up studies 

to identify the likelihood of true positives among these nominally significant 
SNPs (Supplementary Table 7).
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