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Abstract—We conducted an epigenome-wide association study meta-analysis on blood pressure (BP) in 4820 individuals 
of European and African ancestry aged 14 to 69. Genome-wide DNA methylation data from peripheral leukocytes were 
obtained using the Infinium Human Methylation 450k BeadChip. The epigenome-wide association study meta-analysis 
identified 39 BP-related CpG sites with P<1×10−5. In silico replication in the CHARGE consortium of 17 010 individuals 
validated 16 of these CpG sites. Out of the 16 CpG sites, 13 showed novel association with BP. Conversely, out of the 
126 CpG sites identified as being associated (P<1×10−7) with BP in the CHARGE consortium, 21 were replicated in the 
current study. Methylation levels of all the 34 CpG sites that were cross-validated by the current study and the CHARGE 
consortium were heritable and 6 showed association with gene expression. Furthermore, 9 CpG sites also showed 
association with BP with P<0.05 and consistent direction of the effect in the meta-analysis of the Finnish Twin Cohort 
(199 twin pairs and 4 singletons; 61% monozygous) and the Netherlands Twin Register (266 twin pairs and 62 singletons; 
84% monozygous). Bivariate quantitative genetic modeling of the twin data showed that a majority of the phenotypic 
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correlations between methylation levels of these CpG sites and BP could be explained by shared unique environmental 
rather than genetic factors, with 100% of the correlations of systolic BP with cg19693031 (TXNIP) and cg00716257 
(JDP2) determined by environmental effects acting on both systolic BP and methylation levels.   (Hypertension. 
2020;76:195-205. DOI: 10.1161/HYPERTENSIONAHA.120.14973.) • Data Supplement
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Essential hypertension (EH) is a major health problem with 
global proportions. A report in the Lancet1 estimated that 

in 2015 there were 1.13 billion people living with high blood 
pressure (BP) worldwide. While many pathways involved in the 
development of EH and corresponding treatment options have 
been discovered, the elevated BP of 16 million patients with hy-
pertension remains uncontrolled,2 indicating the need for further 
understanding of its pathogenesis. Epigenetics has recently been 
suggested as a massive regulatory machine that cannot be ignored 
in searching for the molecular understanding of EH.3,4 In fact, it 
may explain the late onset, progressive and quantitative nature of 
this disease better than variations in DNA sequence. Epigenetic 
alterations of the genes of the renin-angiotensin-aldosterone 
system, a hormone system that is integral to the physiological 
regulation of BP, have been extensively tested in hypertensive an-
imal models, providing one line of substantial evidence on the in-
volvement of epigenetic regulation in the development of EH.5 A 
recent, genome-wide, peripheral blood DNA methylation study in 
human by the CHARGE consortium,6 including a discovery and 
a replication panel, identified 13 CpG sites in or next to 8 genes 
that were differentially methylated in relation to BP. A methyla-
tion risk score based on these 13 CpG sites explained 1.4% and 
2.0% of the interindividual variation in systolic BP (SBP) and 
diastolic BP (DBP), respectively. Expanding the methylation risk 
score to include 126 CpG sites that were Bonferroni significant 
(P<1×10−7) in the overall meta-analysis did not explain addi-
tional phenotypic variance, indicating the need for further repli-
cation. Moreover, unlike sequence variation, epigenetic variation 
is influenced both by inherited and environmental factors.7,8 This 
is illustrated by the fact that 30% to 100% of the DNA methyla-
tion levels of the 13 BP-associated CpG sites described above is 
explained by heritable factors as estimated by the family data of 
the Framingham Heart Study.6 However, the extent to which the 
link between BP and DNA methylation signatures is driven by 
inherited versus environmental factors has not been investigated.

In the present meta-EWAS in leukocytes of 4820 individu-
als of European (EA) and African ancestry (AA) aged 14 to 69, 
we first identified new DNA methylation signals associated with 
BP and validated these signals in the CHARGE consortium6; 
next we attempted to replicate the 126 previously identified 
signals by the CHARGE consortium6 in our own meta-EWAS 
data; third, we conducted twin modeling to estimate the herit-
ability of DNA methylation correlated with BP, and finally we 
assessed the genetic and environmental sources of the correla-
tion between DNA methylation and BP (Figure S1).

Methods

Data Availability
This study involves multiple cohorts. The genome wide DNA meth-
ylation data that support the findings of this study are available from 

the study PI of each cohort upon reasonable request and with permis-
sion of the Institutional Review Board of the universities where the 
participating cohort locates.

Study Populations
The discovery panel included 4820 individuals of EA and AA ances-
tries from 12 adult cohorts (average age ranges from 26.2 to 63.5 
years old) and 2 youth cohorts (average age 16.2 and 17.7 years old; 
Table 1). Details of each cohort are provided in the Data Supplement. 
All studies obtained written informed consent from participants 
and were approved by local institutional review boards and ethics 
committees.

Blood Pressure Measurements
For all the cohorts, BP was measured after a period of rest and an 
average of 3 sequential readings was used as the phenotype for each 
analysis. For 3 cohorts (GSH, EpiGO, and LACHY), BP was meas-
ured in a supine position, while for the other 11 cohorts, BP was 
measured in a sitting position. With the exception of the NTR cohort 
for which BP was measured within ±2 years from the methylation 
measurement, all the cohorts had BP measured concurrently with the 
collection of peripheral leukocytes for DNA methylation profiling. If 
antihypertensive medication was used, 15 and 10 mmHg were added 
to the measured SBP and DBP levels, respectively.23

DNA Methylation Profiling
For all cohorts, genome-wide DNA methylation data were obtained 
from peripheral blood using the Illumina Infinium Human Methylation 
450K Beadchip (Illumina, Inc). A detailed description on preprocess-
ing and quality control steps for each cohort24–32 is provided in the 
Data Supplement. For all cohorts, white blood cell subpopulations 
were estimated using the approach described by Houseman et al.33

Cohort Level Association Analysis
For cohorts only including unrelated subjects, a linear regression 
model was used to estimate the associations between DNA methyla-
tion (ie, β values) and BP with methylation levels used as dependent 
variables adjusting for age, sex, ancestry (in samples including EAs 
and AAs), BMI, and white blood cell subpopulations. For cohorts 
including related subjects, a linear mixed effect model was used to 
account for sample relatedness.

Meta-Analyses and Cross Validation
Meta-analysis across the 14 cohorts was conducted using METAL34 
by converting the direction of effect and P-value observed in each 
cohort into a signed Z-score. CpG sites with P≤1×10−5 for either SBP 
or DBP were selected for replication in the CHARGE consortium 
(n=17 010). Replication was defined as consistent direction of the 
β-coefficient and FDR (False Discovery Rate) <0.05. Conversely, we 
also checked whether we could replicate the 126 CpG sites for BP 
identified in the overall meta-analysis of the CHARGE consortium 
in our own meta-EWAS results. Replication was again defined as a 
consistent direction of the β-coefficient and FDR<0.05.

Percent Variance Explained
Percent variance explained by the cross-validated BP associated 
CpG sites was calculated in the Lifelines DEEP cohort.35,36 To avoid 
overestimation of percent variance explained, this cohort was not 
included in the Meta-analysis. Percent variance explained by the 
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cross-validated BP associated CpG sites is reported as the change in 
the adjusted R2 from the model including these CpG sites compared 
with the model only including covariates (ie, age, sex, and BMI).

Pathway Analysis
Pathway enrichment analysis was conducted on the meta-analysis 
results of the genome-wide DNA methylation data using gene set en-
richment analysis.37 Gene set enrichment analysis was performed on 
an unfiltered, ranked list of genes (ranked by the P values without 
consideration of directions), and a running-sum statistic was used to 
determine the enrichment of a priori defined gene sets (pathways) 
based on the gene ranks. All gene ontology biological process cat-
egories (c5.bp.v5.1) were assessed for enrichment at FDR<0.05. The 
CpG site showing the most significant P value within a gene was used 
to represent the DNA methylation level of the gene.

Associations of DNA Methylation and Gene 
Expression
Association tests of the cross-validated BP-associated CpGs (Figure S1) 
with transcripts that were located within 500 kb distance of the cor-
responding CpGs were performed in the 391 individual twins of the 
Finnish Twin Cohort for whom both DNA methylation and gene ex-
pression data were available. Gene expression data were obtained using 
the Illumina Human HT-12 V4 expression Beadchip (Illumina, Inc, San 

Diego, CA).38 Linear mixed effects regression models were used with 
gene expression as the dependent variable, DNA methylation as the in-
dependent variable, age, sex, and BMI as fixed effects, and family as a 
random effect. An FDR < 0.05 was defined as significant association 
between DNA methylation and gene expression. BP-associated gene 
expressions were defined as genes with their expression levels showing 
significant association with either SBP or DBP at P< 0.05.

Genetic and Environmental Determinants of DNA 
Methylation Associated With BP
For all the cross-validated BP-associated CpG sites (Figure S1), we 
estimated the relative contributions of genetic and environmental 
factors to the variance of DNA methylation levels in the Finnish 
Twin Cohort and the Netherlands Twin Register using the R pack-
age OpenMx.39,40 Before analysis, age, sex, and BMI were regressed 
out, and the DNA methylation residuals were used in the model fit-
ting. Details of this univariate structural equation model for twin data 
(Figure S2) were described in a previous study.38 In short, the model 
allows separation of the observed phenotypic variance into its genetic 
and environmental variance components including additive genetic 
variance (A), common environmental variance shared by a twin pair 
(C), and unique environmental variance specific to individuals (E). 
The monozygotic twins of each pair (MZ twins) have identical ge-
nome sequences, while dizygotic twins (DZ twins) share 50% of their 

Table 1.  General Characteristics of the Study Cohorts

Cohorts N Race*

Age, y; mean 
(SD) Female, % BMI, kg/m2 SBP, mm Hg DBP, mm Hg HTN,† % AHT,‡ %

Adult cohort

 ��� BHS9 968 EA, AA§ 43.2 (4.5) 56.5 30.8 (7.5) 127.3 (23.6) 81.2 (14.6) 36.9 26.9

 ��� GSH10 480 EA, AA‖ 27.3 (3.5) 52.4 29.9 (8.2) 114.9 (13.3) 66.6 (8.81) 9.39 4.80

 ��� DILGOM11 512 EA 51.9 (13.7) 53.7 26.9 (4.8) 143.3 (16.9) 83.4 (10.0) 49.1 37.5

 ��� ETS12 218 EA 55.7 (3.4) 0 29.4 (4.7) 135.66 (18.4) 84.8 (11.8) 56.3 34.4

 ��� EGCUT (Asthma)13 173 EA 26.2 (6.9) 64.2 22.8 (3.0) 116.7 (12.0) 73.2 (9.4) …¶ …¶

 ��� EGCUT (Young_Old)13 100 EA 52.7 (23.7) 52.0 26.7 (5.1) 129.1 (19.1) 79.6 (10.4) …¶ …¶

 ��� FTC14 402 EA 62.3 (3.7) 59.3 26.9 (4.9) 150.2 (18.6) 87.8 (11.0) 58.4 43.5

 ��� HBCS15 159 EA 63.5 (2.8) 0 27.5 (3.8) 148.1 (19.0) 91.0 (10.3) 75.0 44.7

 ��� JHS16 96 AA 38.4 (4.3) 50 33.9 (7.1) 127.8 (23.7) 81.5 (14.5) 50.0 34.3

 ��� Lifelines17 150 EA 50.3 (10.5) 58.7 28.0 (5.1) 124.4 (12.0) 74.1 (8.60) 10.0 0.00

 ��� NTR18,19 596# EA 29.4 (10.5)** 66.1 23.6 (3.6)** 126.0 (14.7) 76.3 (10.5) 17.8 1.34

 ��� PREVEND20 307 EA 46.7 (10.0) 39.7 27 (4.6) 131.1 (20.8) 76.2 (11.2) 48.5 19.5

 ��� YFS21 188 EA 44.0 (3.3) 38.8 26.3 (4.4) 119.1 (13.2) 73.2 (9.5) 9.57 5.30

Youth cohort

 ��� EpiGO22 188 AA 17.7 (1.7) 48.4 29.3 (11.5) 114.8 (15.1) 63.8 (7.7) 9.57 0.00

 ��� LACHY22 283 AA 16.2 (1.3) 50.0 24.1 (5.6) 112.9 (10.1) 61.4 (6.0) 3.53 0.00

BHS indicates the Bogalusa Heart Study; DILGOM, the Dietary, Lifestyle, and Genetic determinants of Obesity and Metabolic syndrome Study; EGCUT, the Estonian 
Genome Center of the University of Tartu; EpiGO, the Epigenetic basis of Obesity induced cardiovascular disease and type 2 diabetes study; ETS, the Emory Twin Study; 
FTC, the Finnish Twin Cohort; GSH, the Georgia Stress and Heart study; HBCS, the Helsinki Birth Cohort Study; JHS, the Jackson Heart Study; LACHY, the Lifestyle, 
Adiposity, and Cardiovascular Health in Youth study; Lifelines, the Lifelines Cohort Study; NTR, the Netherlands Twin Register; PREVEND, Prevention of Renal and 
Vascular End stage Disease study; and YFS, the Young Finns Study.

*EA, European Ancestry; AA, African American.
†HTN: hypertension; HTN definition for adults: SBP≥140 mmHg or DBP≥90 mmHg or on antihypertensive medication; HTN definition for youth: SBP≥95th or DBP≥95th 

percentile for age, sex, and height.
‡AHT, antihypertensive treatment.
§For BHS, there are 70.3% EA and 29.7% AA.
‖For GSH, there are 52.5% EA and 47.5% AA.
¶Only medication adjusted BP data were available.
#This dataset included 499 MZ and 95 DZ twins as well as 2 spouses of twins. The 2 spouses of twins were excluded in the analyses only involving twins.
**Age and BMI at blood sampling time.
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segregating alleles. Shared environmental factors are exposures and 
experiences that affect co-twins similarly on average irrespective of 
zygosity, while unique environmental factors are the effects not shared 
by cotwins and include measurement error. Significance tests of indi-
vidual variance components (A or C) were conducted by comparing 
full models with submodels constraining paths from latent variables to 
trait values (a, c) to 0 using a χ2 test; as E contains measurement error, 
the significance of E is not tested. Statistical significance was defined 
as P<0.05. The analysis was conducted in each twin cohort separately, 
then a meta-analysis across the 2 twin cohorts (FTC and NTR) was 
performed to estimate the mean heritability (h2) using the Meta pack-
age in R.41 Following the approach described by Asefa et al,42 each h2 
was transformed using a logit function,43 and a random-effects model 
was used for the meta-analysis. The pooled h2 (weighted by sample 
size) and 95% CIs were back-transformed. Heterogeneity between 
studies was quantified with Cochran Q test and the I2-statistic.44

Sources Underlying the Associations Between DNA 
Methylation and BP
For all the cross-validated BP-associated CpG sites (Figure S1), we 
checked whether they were also significantly associated with BP in 
the meta-analysis of the Finnish Twin Cohort and the Netherlands 
Twin Register, that is, a consistent direction of the β-coefficients and 
P<0.05. For those CpG sites significantly associated with BP in the 
meta-analysis of these 2 twin cohorts, we conducted bivariate struc-
tural equation modeling to test the extent to which the link between 
BP and DNA methylation was driven by genetic or environmental 
factors. Details of this model (Figure S3) have been described previ-
ously.38 Briefly, the variation of DNA methylation and the variation 
of BP were decomposed into A, C, and E variance components. The 
bivariate model allows determination of the sources of the observed 
covariance between DNA methylation and BP by using a sequence of 
sub-models that test which genetic, shared environmental or unique 
environmental paths from DNA methylation to BP can be set to 0. 
For example, in Figure S3, if a

21
 (genetic path from DNA methylation 

to BP) cannot be set to 0, it means there is overlap between the ge-
netic factors influencing DNA methylation and BP. The model further 
allows calculation of genetic and environmental correlations between 
the traits. Similar to the univariate analysis, the bivariate analysis 
was conducted in each twin cohort separately, then a meta-analysis 
was conducted to determine the genetic and environmental contribu-
tions to the correlation between DNA methylation and BP. Briefly, 
for each cohort, genetic (r

g
) and environmental (r

e
) correlations were 

calculated based on the variance/covariance matrix estimated from 
the bivariate twin modeling (Figure S3). The genetic contribution to 
the observed phenotypic correlation (r

ph
) is a function of the herita-

bility estimates of the 2 phenotypes and the r
g
 between them, that is, 

h r hM g BP
2 2× × . Similarly, the environmental contribution to r

ph
 is 

equal to e r eM e BP
2 2× × . Then a random-effects model was used 

to estimate the meta-genetic and environmental contributions respec-
tively with the 95% CIs.

Results
The general characteristics of the study participants are listed 
in Table  1. A total of 4820 individuals were included from 
14 cohorts with a wide range of mean SBP and DBP values. 
The prevalence of antihypertensive medication use also varied 
among the cohorts.

Our meta-analysis identified 39 CpG sites associated with 
SBP or DBP at P<1×10−5 (Manhattan and QQ plot, Figures 
S4 and S5 in the Data Supplement; Table S1) with 2 CpG sites 
showing P<1×10−7. Out of these 39 CpG sites, the heteroge-
neity test across the cohorts reached significance (P<0.05) for 5 
sites (cg06500161, cg00508575, cg19693031, cg12555233, and 
cg02711608, Table S1). Further sensitivity tests by ancestry (EA 
versus AA) or age (adult cohorts versus youth cohorts) did not 

support the heterogeneity being due to ancestry or age. Sixteen 
out of the 39 CpG sites including 3 showing heterogeneity 
(cg06500161, cg00508575, and cg19693031) could be repli-
cated (FDR<0.05) in the CHARGE consortium (Table  2). Of 
the 16 replicated CpG sites, only 3 (cg02711608, cg19693031, 
cg08857797) have previously been reported to be associated 
with BP (highlighted in gray in Table 2) and the other 13 were 
novel signals. Conversely, of the 126 CpG sites found to be as-
sociated with BP by the CHARGE consortium in the overall 
sample, 91 sites showed the same direction of effect in our meta-
analysis with 21 sites having FDR <0.05 (Table 3). These 21 
CpG sites included the 3 CpG sites previously reported to be 
associated with BP (highlighted in gray in Table 3). In total, 34 
CpG sites were cross-validated to be associated with BP by the 
current meta-analysis and the CHARGE consortium. To assess 
the impact of antihypertensive medication use, we stratified the 
meta-analysis of these 34 CpG sites by medication use and pro-
vide the results in Table S2. In the individuals reporting no use of 
antihypertensive medications, the directions of the effects of all 
the CpG sites remained the same as for the overall sample with 
27 out of the 34 retaining their significant associations (P<0.05) 
with BP, rendering it highly unlikely that the differentially meth-
ylated CpG sites we identified reflect drug treatment effects.

Inclusion of 33 out of the 34 CpG sites (cg02711608 was 
filtered out in the quality control step of the Lifelines DEEP 
cohort) explained an additional 3.31% and 3.99% of the inter-
individual variation in SBP and DBP, respectively, beyond the 
traditional BP covariates of age, sex, and BMI in an additional 
sample from the Lifelines cohort (the Lifelines DEEP cohort, 
n=601) not included in the current meta-analysis. Details of this 
cohort are provided in the Data Supplement. Using the Lifelines 
DEEP cohort, we further explored whether these 33 CpG sites 
were individually or collectively associated with EH. A total 
of 102 out of the 601 (16.97 %) participants were classified as 
having EH (ie, SBP≥140 mm Hg, or DBP≥90 mm Hg, or taking 
antihypertensive medication). Out of the 33 CpG sites, 4 CpG 
sites (cg12593793, cg11376147, cg21766592, and cg06500161) 
were individually associated with EH with P<0.05 in the ex-
pected direction (Table S3). Collectively, adding these 33 CpG 
sites in the model with age, sex, and BMI as covariates increased 
Nagelkerke pseudo R2 from 34.3% to 47.7%.

Of the 34 CpG sites, the methylation levels of 6 sites 
were significantly associated with the expression of 5 genes 
in cis analysis (FDR <0.05; Table 4). The methylation-gene 
expression associations did not differ by medication use. For 
all the CpG sites, increased methylation was associated with 
decreased gene expression (Figure S6). Furthermore, expres-
sion of 2 genes (ie, ABCG1 and LMNA) showed significant 
association with BP. For both genes, the direction of the asso-
ciation between CpG methylation and gene expression was as 
expected based on the association of CpG methylation and BP. 
For example, the methylation level of cg06500161 was nega-
tively associated with ABCG1 gene expression and positively 
associated with SBP. This was consistent with the negative as-
sociation between ABCG1 gene expression and SBP.

The pathway analyses yielded significant (FDR <0.05) 
enrichment of 4 biological process pathways for SBP-related 
DNA methylation changes, and 6 for DBP-related methyla-
tion changes in peripheral leukocytes (Table S4). The primary 
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pathway identified by the CHARGE consortium,6 the transport 
of neutral amino acids, also showed borderline significance in 
the current enrichment analyses for both SBP (FDR=0.060) 
and DBP (FDR=0.074).

The cohort-level results of the univariate structural equation 
model analysis on the DNA methylation levels of the 34 cross-
validated CpG sites are listed in Table S5. For all the CpG sites, 
the best fitting models were AE models, with heritability esti-
mates ranging from 31% to 83% in the Finnish Twin Cohort and 
19% to 81% in the Netherlands Twin Register. The remaining 
part of the variation for DNA methylation of these CpG sites was 
attributable to environmental influences that are unique to the 
individual. Table 5 lists the heritability of the 34 CpG sites from 
the meta-analysis. The heritabilities ranged from 31% to 78%.

Of the 34 implicated CpG sites, the methylation level of 9 
CpG sites showed significant association with BP in the meta-
analysis of the Finnish Twin Cohort and the Netherlands Twin 
Register (Table 6). For these 9 sites, we estimated the relative 
contributions of genetic and environmental factors to the asso-
ciation between DNA methylation and BP. Given that the AE 
model has generally been the best fitting model in previous 
twin studies of BP,45 which was again confirmed in the cur-
rent study, the bivariate modeling was conducted using the AE 
model both for DNA methylation and BP. The cohort-level 
results are listed in Table S6, and the meta-analysis results 
are listed in Table  6. For the association of cg19693031 in 
the TXNIP gene and cg00716257 in the JDP2 gene with SBP, 
the meta-analysis showed that the correlation due to the en-
vironmental contribution cannot be set to 0 while the genetic 

contribution can be set to 0, suggesting that the phenotypic 
correlation is determined by unique environmental factors in 
common to the 2 traits. Similar trends were observed for the 
association of cg11468085 with SBP and cg19693031 with 
DBP. For the associations of the other CpG sites with BP, both 
genetic and environmental contributions can be set to 0, indi-
cating a larger sample size is needed to increase the power to 
distinguish the relative contributions of genetic and environ-
mental factors to the observed phenotypic correlations.

Discussion
In this epigenome-wide association study, we identified 13 
novel CpG sites associated with BP and replicated 21 CpG 
sites previously identified in the overall meta-analysis of the 
CHARGE consortium.6 We also showed that DNA methylation 
levels from 6 of the 34 cross-validated CpG sites were associ-
ated with gene expression. Although all of the 34 CpGs were 
heritable (31%–78%), further bivariate twin modeling analyses 
in the Finnish Twin Cohort and the Netherlands Twin Register 
suggested that, among the 9 CpG sites that were associated with 
BP, the correlations of cg19693031(TXNIP) and cg00716257 
(JDP2) with SBP were primarily attributable to environmental 
factors that affect both traits, rather than genetic factors.

The 13 novel CpG sites that were associated with BP were 
annotated to 10 genes. Among these, only ABCG1 and ATP2B1 
have previously been implicated in hypertension. For example, 
newly diagnosed patients with hypertension have been shown to 
have lower ABCG1 expression in peripheral blood monocytes in 
comparison with normotensive controls.46 This is consistent with 

Table 2.  CpG Sites Showing Association With BP in Our Analysis With P <1×10−5 and Replicated by CHARGE Consortium With FDR<0.05

Probe ID Chr. Position Gene

SBP  DBP  

META CHARGE META CHARGE

Direction* P Value Direction* P Value Direction* P Value Direction* P Value

cg19693031 1 145441552 TXNIP − 2.18×10−7 − 3.10×10−29 − 4.65×10−5 − 1.80×10−14

cg01343041 2 24397787 C2orf84 + 4.21×10−7 + 2.30×10−2 + 1.01×10−4 + 5.74×10−01

cg19695041 8 38615330 TACC1 − 6.26×10−6 − 4.45×10−5 − 3.36×10−2 − 3.26×10−3

cg13696706 9 124396830 DAB2IP + 9.83×10−8 + 3.95×10−3 + 1.16×10−3 + 7.90×10−1

cg11468085 11 67435577 ALDH3B2 + 4.16×10−6 + 1.75×10−4 + 1.38×10−4 + 2.27×10−2

cg00508575 12 90050967 ATP2B1 + 6.47×10−6 + 1.44×10−3 + 9.20×10−4 + 1.63×10−1

cg05248321 14 20898128 KLHL33 + 7.01×10−7 + 1.68×10−5 + 1.88×10−3 + 1.86×10−3

cg02003183 14 103415882 CDC42BPB + 3.66×10−7 + 5.56×10−7 + 1.54×10−3 + 3.09×10−2

cg12555233 15 91455366 MAN2A2 + 2.74×10−6 + 6.25×10−3 + 3.50×10−3 + 2.97×10−2

cg07558761 16 87866696 SLC7A5 + 8.83×10−7 + 1.46×10−5 + 1.71×10−3 + 3.37×10−4

cg07021906 16 87866833 SLC7A5 + 1.38×10−6 + 1.65×10−6 + 3.37×10−3 + 5.73×10−3

cg04583842 16 88103117 BANP + 5.54×10−9 + 4.16×10−3 + 2.99×10−6 + 8.28×10−1

cg08857797 17 40927699 VPS25 + 9.64×10−6 + 3.60×10−10 + 4.98×10−5 + 2.30×10−6

cg02711608 19 47287964 SLC1A5 − 7.48×10−6 − 2.00×10−21 − 1.41×10−3 − 4.30×10−10

cg06500161 21 43656587 ABCG1 + 5.69×10−6 + 1.01×10−4 + 5.06×10−5 + 1.01×10−3

cg01820192 21 44869762 C21orf125 + 6.44×10−6 + 1.66×10−2 + 3.96×10−2 + 4.75×10−2

CpG sites previously reported by the CHARGE consortium are highlighted in gray. CpG sites that overlapped between Table 3 and Table 2 are highlighted in gray. BP indicates 
blood pressure; CHARGE, results of the CHARGE consortium; DBP, diastolic blood pressure; META, meta-analysis results of our analysis; SBP, systolic blood pressure.

*+ indicates that DNA methylation levels increase with BP increase. − indicates that DNA methylation levels decrease with BP increase.
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our results in which we also observed that peripheral leukocyte 
ABCG1 expression was negatively correlated with both SBP and 
DBP levels. Several genetic variants in ATP2B1 have been associ-
ated with BP and hypertension in multiple GWA studies,47–49 and 
animal studies50 have demonstrated that mice lacking ATP2B1 in 
vascular smooth muscle cells had higher BP than wild-type mice. 
In the current study, we observed higher methylation level of 
cg00508575 in ATP2B1 associated with higher SBP level; how-
ever, the methylation status of this CpG site was not associated 
with ATP2B1 expression levels in peripheral blood leukocytes. 
Further studies in other tissues such as vascular smooth muscle 

cells would be needed to clarify the functional role of this CpG 
site. The potential involvement of the other 8 genes in the path-
ogenesis of hypertension has not been directly addressed in the 
literature although some evidence is available on their involve-
ment in cardiovascular diseases. For example, TACC1 has been 
linked to inappropriate smooth muscle and endothelial cell pro-
liferation in pulmonary arterial hypertension.51 Several genome-
wide association studies52,53 have reported variants in DAB21P, 
which encodes an inhibitor of cell growth and survival, which 
were associated with abdominal aortic aneurysm and atheroscle-
rotic vascular diseases. ALDH3B2, encoding one member of the 

Table 3.  Signals Reported by CHARGE Consortium and Replicated by the Current Study (FDR<0.05).

Probe ID Chr. Position Gene

SBP  DBP  

CHARGE META CHARGE META

Direction* P Value Direction* P Value Direction* P Value Direction* P Value

cg18933331 1 110186418 Intergenic − 4.80×10−9 − 7.64×10−3 − 2.40×10−8 − 1.17×10−2

cg16246545 1 120255941 PHGDH − 1.20×10−22 − 4.11×10−4 − 1.10×10−9 − 4.34×10−4

cg14476101 1 120255992 PHGDH − 2.70×10−34 − 4.27×10−5 − 2.10×10−21 − 2.31×10−4

cg19693031 1 145441552 TXNIP − 3.10×10−29 − 2.18×10−7 − 1.80×10−14 − 4.65×10−5

cg19266329 1 145456128 Intergenic − 1.90×10−12 − 3.61×10−3 − 5.70×10−5 − 2.22×10−1

cg24955196 1 154982621 ZBTB7B + 5.00×10−8 + 8.28×10−4 + 6.00×10−6 + 5.09×10−2

cg12593793 1 156074135 Intergenic − 2.60×10−12 − 3.22×10−3 − 3.00×10−7 − 7.49×10−2

cg18119407 2 201980504 CFLAR − 2.00×10−9 − 7.10×10−3 − 4.40×10−5 − 4.51×10−3

cg06690548 4 139162808 SLC7A11 − 1.60×10−32 − 1.52×10−5 − 7.90×10−26 − 2.47×10−5

cg18120259 6 43894639 LOC100132354 − 2.20×10−21 − 5.58×10−3 − 8.90×10−14 − 4.55×10−2

cg21429551 7 30635762 GARS − 3.40×10−16 − 6.84×10−4 − 8.70×10−6 − 1.34×10−2

cg19390658 7 30636176 GARS − 4.70×10−9 − 2.58×10−4 − 4.40×10−6 − 3.30×10−4

cg00008629 9 115093661 ROD1 − 6.50×10−8 − 4.38×10−3 − 8.00×10−2 − 6.45×10−2

cg11376147 11 57261198 SLC43A1 − 4.20×10−21 − 6.66×10−3 − 3.40×10−12 − 1.34×10−2

cg00574958 11 68607622 CPT1A − 1.20×10−13 − 1.04×10−2 − 3.00×10−10 − 6.83×10−4

cg00716257 14 75897417 JDP2 − 6.00×10−8 − 4.39×10−3 − 4.40×10−7 − 4.28×10−1

cg26916780 15 64889554 ZNF609 − 4.50×10−6 − 8.87×10−3 − 3.70×10−9 − 5.77×10−2

cg08857797 17 40927699 VPS25 + 3.60×10−10 + 9.64×10−6 + 2.30×10−6 + 4.98×10−5

cg22304262 19 47287778 SLC1A5 − 1.40×10−17 − 1.97×10−5 − 9.60×10−11 − 1.05×10−2

cg02711608 19 47287964 SLC1A5 − 2.00×10−21 − 7.48×10−6 − 4.30×10−10 − 1.41×10−3

cg21766592 19 47288066 SLC1A5 − 2.60×10−8 − 5.65×10−4 − 1.10×10−1 − 1.88×10−2

CpG sites that overlapped between Table 3 and Table 2 are highlighted in gray.
*+ indicates that DNA methylation levels increase with BP increase; CHARGE: results of the CHARGE consortium; DBP, diastolic blood pressure;  META, meta-analysis 

results of our analysis; SBP, systolic blood pressure.

Table 4.  Cross-Validated CpG Sites That Show Association With Gene Expression (±500 kb) at FDR<0.05 in the Finnish Twin Cohort

DNAm 
ProbeID

DNAm 
Annotation GX ProbID

GX 
Annotation

DNAm-GX GX-SBP GX-DBP DNAm-SBP DNAm-DBP

Dir. P Value FDR Dir. P Value Dir. P Value Dir. P Value Dir. P Value

cg14476101 PHGDH 240086 PHGDH − 2.33×10−11 1.19×10−8 + 1.08×10−1 + 5.62×10−1 − 1.33×10−2 − 2.88×10−2

cg16246545 PHGDH 240086 PHGDH − 2.94×10−10 7.47×10−8 + 1.08×10−1 + 5.62×10−1 − 5.23×10−2 − 9.29×10−2

cg06500161 ABCG1 6060377 ABCG1 − 1.37×10−4 1.39×10−2 − 2.75×10−3 − 4.49×10−4 + 4.74×10−2 + 2.51×10−1

cg12593793 Intergenic 6020424 LMNA − 3.60×10−4 2.28×10−2 + 2.57×10−4 + 1.78×10−5 − 2.10×10−1 − 2.53×10−1

cg26916780 ZNF609 5960682 RBPMS2 − 8.61×10−4 4.56×10−2 + 1.88×10−1 + 1.43×10−1 − 6.84×10−1 − 6.64×10−1

cg02711608 SLC1A5 7610433 SLC1A5 − 8.98×10−4 4.56×10−2 + 4.62×10−1 + 2.88×10−1 − 4.34×10−2 − 1.07×10−1
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ALDH family of proteins that play a role in cell proliferation, 
differentiation, and responsiveness to environmental stress, has 
been suggested as a candidate gene for bisoprolol (a β blocker) 
responsiveness.54 CpG sites in MAN2A2 have been associated 
with fasting insulin.55 Further experimental validation of the role 
of these genes in BP regulation is warranted.

Similar to the CHARGE consortium,6 which involved cohorts 
from different ancestries (European, African American, and 
Hispanic) and a broad age range (18–80 years), the current study 
also included individuals from European and African American 
ancestry with an age range of 14 to 69 years. The fact that the 

signals could be cross-validated between these 2 studies, and that 
both studies showed the effect of the majority of BP-related CpG 
sites to be homogeneous across the cohorts, ancestral groups, and 
different age groups, indicates that these BP-related CpG sites 
may be ethnicity- and age-independent. However, a clearer pic-
ture of the role of DNA methylation in the pathogenesis of EH 
in various age and population groups will require even larger 
EWASs spanning multiple age ranges and ancestry groups.

Interestingly, the majority of the 34 cross-validated CpG 
sites have been linked with other metabolic phenotypes in-
cluding obesity, lipids, CRP, insulin resistance, and type 2 

Table 5.  Heritability of the 34 Cross-Validated CpG Sites From the Meta-Analysis

Probeid chr. Position Gene h2 95% CI

cg18933331 1 110186418 Intergenic 0.72 0.62–0.81

cg16246545 1 120255941 PHGDH 0.77 0.69–0.84

cg14476101 1 120255992 PHGDH 0.74 0.63–0.82

cg19693031 1 145441552 TXNIP 0.56 0.53–0.60

cg19266329 1 145456128 Intergenic 0.39 0.31–0.49

cg24955196 1 154982621 ZBTB7B 0.41 0.22–0.63

cg12593793 1 156074135 Intergenic 0.65 0.37–0.86

cg01343041 2 24397787 C2orf84 0.65 0.62–0.68

cg18119407 2 201980504 CFLAR 0.36 0.33–0.39

cg06690548 4 139162808 SLC7A11 0.36 0.27–0.46

cg18120259 6 43894639 LOC100132354 0.63 0.56–0.69

cg21429551 7 30635762 GARS 0.68 0.65–0.71

cg19390658 7 30636176 GARS 0.35 0.32–0.38

cg19695041 8 38615330 TACC1 0.51 0.43–0.59

cg00008629 9 115093661 ROD1 0.78 0.65–0.87

cg13696706 9 124396830 DAB2IP 0.58 0.55–0.61

cg11376147 11 57261198 SLC43A1 0.41 0.25–0.59

cg11468085 11 67435577 ALDH3B2 0.54 0.51–0.57

cg00574958 11 68607622 CPT1A 0.44 0.30–0.58

cg00508575 12 90050967 ATP2B1 0.48 0.38–0.59

cg05248321 14 20898128 KLHL33 0.65 0.54–0.75

cg00716257 14 75897417 JDP2 0.31 0.11–0.62

cg02003183 14 103415882 CDC42BPB 0.62 0.59–0.65

cg26916780 15 64889554 ZNF609 0.40 0.34–0.46

cg12555233 15 91455366 MAN2A2 0.56 0.44–0.67

cg07558761 16 87866696 SLC7A5 0.53 0.38–0.68

cg07021906 16 87866833 SLC7A5 0.61 0.58–0.64

cg04583842 16 88103117 BANP 0.63 0.58–0.67

cg08857797 17 40927699 VPS25 0.48 0.21–0.75

cg22304262 19 47287778 SLC1A5 0.70 0.47–0.87

cg02711608 19 47287964 SLC1A5 0.69 0.61–0.75

cg21766592 19 47288066 SLC1A5 0.58 0.52–0.63

cg06500161 21 43656587 ABCG1 0.61 0.50–0.71

cg01820192 21 44869762 C21orf125 0.37 0.32–0.42
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diabetes mellitus by previous epigenome-wide association 
studies (Table S7), indicating that DNA methylation may 
be one of the common factors related to the concurrence of 
multiple metabolic abnormalities. Indeed, epigenome-wide 
association studies have identified several CpG sites whose 
DNA methylation levels are associated with metabolic syn-
drome (MetS) including cg00574958 in the CPT1A gene56 
and cg06500161 in the ABCG1 gene.57 ABCG1 cg06500161 
has also been reported to be associated with fasting insulin,58 
blood lipids,59 adiposity traits,22,60 and type 2 diabetes mel-
litus.17,61 In the current study, we observed for the first time 
that a higher methylation level of cg06500161 was also associ-
ated with higher BP levels. Taken together, these studies show 
that ABCG1 cg06500161 is associated with each MetS com-
ponent, though the causal direction of these associations has 
not been determined. Furthermore, although the other com-
ponents of MetS can be viewed as consequences of obesity, 
the associations of these CpG sites with these MetS compo-
nents are independent of obesity. Future studies are warranted 
with multivariate analyses targeting multiple metabolic traits 
to disentangle the mechanisms involved in the association of 
DNA methylation with MetS and its components.

Unlike genetic sequence variants, epigenetic variation is 
influenced by both genetic and environmental factors.7,8 We 
first quantified the genetic and environmental sources of the 
variation in the 34 cross-validated BP associated CpG sites 
and confirmed that the variance of all these 34 CpG sites was 
indeed determined by both genetics (31%–78%) and environ-
ment (22%–69%). Since BP is also a heritable trait, an inter-
esting question is to what extent the link between BP and DNA 
methylation is driven by genetic or environmental factors in 
common to the 2 traits. We tried to answer this question using 
the Finnish Twin Cohort and the Netherlands Twin Register by 
conducting a bivariate twin modeling analysis on BP and the 
9 CpG sites, which showed association with BP in the meta-
analysis of these 2 cohorts. Surprisingly, we observed that 
100% of the correlations of BP with cg19693031( TXNIP) and 

cg00716257 (JDP2) could be attributed to environmental fac-
tors in common to the 2 traits rather than genetic factors, de-
spite evidence for high heritability of both methylation at those 
CpG sites and SBP. The apparent lack of shared genetic com-
ponent indicates that the link between the methylation level of 
these 2 CpG sites and BP may be driven primarily by environ-
mental conditions; the relatively modest sample size should be 
recognized, however, and further confirmation is needed.

Our study has several limitations. First, it is cross-sectional, 
thus making it impossible to discern the temporal order between 
BP and DNA methylation. Second, the bivariate twin modeling 
analysis was only conducted in the Finnish Twin Cohort and the 
Netherlands Twin Register which included about 1000 twins. 
An even larger sample size is required to tease out reliably the 
relative contribution of genetic or environmental factors to the 
associations of BP with DNA methylation. Third, we did not 
conduct in vitro and in vivo functional studies to confirm the 
impact of these CpG sites on gene expression and subsequently 
on blood pressure, which is warranted for future research.

Perspectives
In summary, we identified 13 novel CpG sites associated with 
BP and replicated several previously identified signals. These 
newly identified signals may aid in annotating the future gene 
findings by providing a potential molecular mechanism for BP 
regulation. Our study further provides new insights into the ge-
netic and environmental sources of BP related DNA methylation 
signatures as well as their associations with BP. The identifica-
tion of shared unique environmental factors rather than genetic 
factors between BP and DNA methylation of TXNIP and JDP2 
indicates that the environment plays a significant role in creating 
an association between DNA methylation signatures and BP.
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What Is New?
•	 Identified 13 novel CpG sites of which their methylation levels are asso-

ciated with blood pressure
•	Genetic factors contribute to the methylation variations of the blood pres-

sure associated CpG sites
•	 The phenotypic correlations between CpG sites and SBP are primarily attribut-

able to environmental factors that affect both traits, rather than genetic factors.

What Is Relevant?
•	The identification of shared unique environmental factors rather than 

genetic factors between blood pressure and DNA methylation indicates 
that the environment plays a significant role in creating an association 
between DNA methylation signatures and blood pressure.

Summary

In this study of 4820 individuals of European and African ancestry 
aged 14 to 69, genome-wide DNA methylation data from peripheral 

leukocytes were obtained using the Infinium Human Methylation 
450k BeadChip and blood pressures were measured during clinical 
visits. Linear regression or mixed models were used to identify dif-
ferentially methylated CpG sites associated with BP. Univariate and 
bivariate structural equation modeling was used to further investi-
gate to what extent the genetic and environmental factors influence 
DNA methylation and blood pressure in the Finnish Twin Cohort and 
the Netherlands Twin Register. Our study identifies 13 more CpG 
sites with their methylation levels associated with BP and replicated 
21 previously identified signals. Univariate twin modeling showed 
that genetic factors contributed to the methylation variations of all 
the 34 CpG sites with heritability estimates ranging from 31% to 
78%. Bivariate twin modeling showed that 100% of the correlations 
of systolic BP with cg19693031 (TXNIP) and cg00716257 (JDP2) 
were determined by environmental effects acting on both systolic 
BP and methylation levels, rather than genetic factors.

Novelty and Significance




