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Abstract: During childhood, brain structure and function changes substantially. Recently, graph theory has
been introduced to model connectivity in the brain. Small-world networks, such as the brain, combine opti-
mal properties of both ordered and random networks, i.e., high clustering and short path lengths. We used
graph theoretical concepts to examine changes in functional brain networks during normal development in
young children. Resting-state eyes-closed electroencephalography (EEG) was recorded (14 channels) from
227 children twice at 5 and 7 years of age. Synchronization likelihood (SL)was calculated in three different fre-
quency bands and between each pair of electrodes to obtain SL-weighted graphs.Mean normalized clustering
index, average path length and weight dispersion were calculated to characterize network organization.
Repeated measures analysis of variance tested for time and gender effects. For all frequency bands mean SL
decreased from5 to 7 years. Clustering coefficient increased in the alpha band. Path length increased in all fre-
quency bands. Mean normalized weight dispersion decreased in beta band. Girls showed higher synchroni-
zation for all frequency bands and a higher mean clustering in alpha and beta bands. The overall decrease in
functional connectivity (SL)might reflect pruning of unused synapses and preservation of strong connections
resulting in more cost-effective networks. Accordingly, we found increases in average clustering and path
length and decreased weight dispersion indicating that normal brain maturation is characterized by a shift
from random to more organized small-world functional networks. This developmental process is influenced
by gender differences early in development.HumBrainMapp 32:413–425, 2011. VC 2010Wiley-Liss, Inc.
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INTRODUCTION

During childhood the brain is subjected to large struc-
tural and functional changes. Deviation from normal de-
velopment can have major consequences for our abilities
as an adult, and may be involved in disorders such as
ADHD, autism and schizophrenia [Bush, 2009; Lewis and
Elman, 2008; Paus et al., 2008]. Therefore, knowledge of
normal growth and developmental trajectories of brain
networks is of great importance for finding risk factors
and treatment of neuropsychiatric disorders.

During prenatal stages and early childhood the brain
develops new neurons that proliferate, migrate and ran-
domly grow abundant numbers of synapses to nearby
neurons [Cayre et al., 2009; Goldman et al., 1997]. At pre-
school age pruning of unused synapses and myelination
of long axons starts and continues far into adolescence
[Dubois et al., 2008; Huttenlocher and Dabholkar, 1997;
Lebel et al., 2008; Paus et al., 2008; Paus, 2005]. At this mi-
croscopic level the connectivity of neurons is influenced
by neuronal activity, gene expression, hormones and sig-
naling of supporting cells such as astrocytes [D’Ercole and
Ye, 2008; Lustig, 1994; Rose et al., 2004; Sahara and
O’Leary, 2009]. Macroscopically, brain anatomical matura-
tion in childhood follows different growth trajectories for
different regions. Maturation starts in sensorimotor areas
and spreads to dorsal and parietal, superior temporal and
dorsolateral prefrontal areas as reported by structural
magnetic resonance (MR) and diffusion tensor imaging
(DTI) studies measuring developmental changes in grey
and white matter volumes and white matter integrity
[Giedd et al., 2009; Marsh et al., 2008; Wilke et al., 2007]
[Schmithorst et al., 2005]. An interesting question is how
anatomical development is related to functional develop-
ment. Whitford et al. [2007] reported on a relation between
anatomical and functional developmental. The authors
examined age groups between 10 and 30 years and
showed developmental curvilinear decreases for both grey
matter volume and absolute electroencephalographic
(EEG) band power, i.e., spatially coherent synaptic activity,
in corresponding brain regions. The authors suggest that
the developmental reduction in grey matter corresponds
to elimination of synapses, which is responsible for the
decrease in power as measured with EEG. Thus, develop-
mental changes in anatomical networks are accompanied
by changes in functional networks.

Resting-state functional connectivity MRI (rs-fcMRI)
studies have examined functional networks in the brain by
correlating the spontaneous slow fluctuating blood oxy-
genation level dependent (BOLD) responses between dif-
ferent brain regions. Strong correlations are taken to
represent strong functional connections. Cross-sectional
studies examining the differences between children and
adolescents showed stronger short-range and weaker long-
range functional connectivity in children than in adoles-
cents [Fair et al., 2007; Kelly et al., 2008]. At a higher tem-
poral resolution, EEG studies found similar changes in

functional connectivity with development. Most of these
studies reported on decreased coherence between short-
distance and increased coherence between long-distance
electrodes with development [Barry et al., 2004; Marosi
et al., 1997; Srinivasan, 1999; Thatcher, 1992]. However,
other resting-state EEG studies reported less specifically
directed developmental changes. van Baal et al. measured
children at 5 years of age with a follow up at 7 years of
age and reported no change in short-distance connectivity
(coherence between electrodes) and a decrease in long-dis-
tance connections with normal development [van Baal
et al., 2001]. A study in babies showed an inverted U cur-
vilinear change in coherence with crawling experience
suggesting a relation between coherence and learning
behavior [Bell and Fox, 1996]. Furthermore, Thatcher
examined young children (0–7 years) and reported on
growth cycles, i.e., rapid increases lasting 0.5–1 years and
subsequent decreases in coherence, occurring in cycles ev-
ery 2–4 years during childhood [Thatcher, 1992]. In a
recent study, Thatcher reproduced these findings on cyclic
development in an extended group of children, ranging
from infancy to 16 years of age, and using more advanced
methods [Thatcher et al., 2009]. Changes in functional con-
nectivity seem to be strengthening and weakening over
time and with the development of skills.

Modern graph theory has recently been introduced to
model complex communicating systems, such as the brain,
as a network consisting of nodes and links (for review see
[Bullmore and Sporns, 2009; Stam and Reijneveld, 2007]).
The nodes represent some sort of processing unit and the
links represent a relation between nodes, such as an ana-
tomical connection or a functional interaction. Intuitively,
the way nodes are interconnected by the links provides in-
formation about the efficiency of a network. Networks in a
regular, lattice-like configuration are characterized by high
clustering (the probability that neighboring nodes are
interconnected with other neighbouring nodes as well)
and a long average path length (the average distance from
one node to any other node in the network expressed as
the number of links that have to be traveled). In contrast,
random networks, in which there is a fixed probability p
that a link exists between any two nodes, have low cluster-
ing and a short average path length. Randomly rewiring
of a certain fraction of links in a regular network will
result in a small-world organization with high clustering
and short path length [Watts and Strogatz, 1998]. These
so-called small-world networks show highly efficient infor-
mation spreading in the network due to the high cluster-
ing and short paths between clusters [Latora and
Marchiori, 2001]. Several imaging studies using different
techniques such as MRI, EEG, and magnetoencephalogra-
phy (MEG) measuring brain anatomical and functional
networks have reported on high clustering and short path
lengths and showed a small-world organization in both
human and animals [Achard and Bullmore, 2007; Bullmore
and Sporns, 2009; Micheloyannis et al., 2009; Smit et al.,
2008; Sporns and Kotter, 2004; Sporns and Zwi, 2004; Stam
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and Reijneveld, 2007; Stam, 2004; van den Heuvel et al.,
2008].

Recently, three empirical cross-sectional studies reported
on developmental changes in child and adolescent brain
network organization. Fair et al. performed a study in age
groups of 8, 13, and 25 years of age and used rs-fcMRI
BOLD correlations in 34 regions of interest to calculate
graph characteristics [Fair et al., 2009]. The authors found
no changes in clustering and path length with age, but did
show different configurations of sub-networks between
children and adults suggesting that sub-networks are dif-
ferently recruited in children than in adults. Using rs-
fcMRI as well, Supekar et al. compared children (7–9
years) with young adults (19–22 years) and found no dif-
ferences in clustering, path length and small-world organi-
zation between both cross-sectional age groups. However,
subcortical-cortical connectivity was stronger in children,
and adults showed stronger cortico-cortical connectivity in
this study [Supekar et al., 2009]. A resting-state EEG study
compared a group of children (8–12 years) with a group of
students (21–26 years) and showed a decrease in overall
functional connectivity and decreases in clustering and
path length in higher frequency bands with age [Michel-
oyannis et al., 2009]. The aforementioned studies had
cross-sectional designs and thus might lack in power,
therefore, potentially missing out on subtle developmental
changes in network organization. To map out develop-
ment, studies should ideally have a longitudinal design
starting at young age and with several follow-ups.

In the present longitudinal study, we investigated
whether maturing young children develop towards a more
structured brain network. To this end we use synchroniza-
tion likelihood (SL) [Stam and van Dijk, 2002] as a general
measure for functional connectivity in resting-state EEG
recordings. From this measure we build weighted graphs
to calculate the clustering index and path length and
weight dispersion to examine developmental changes in
young children measured at 5 years and at 7 years of age.

MATERIALS AND METHODS

Subjects

This study explored a dataset previously collected in a
longitudinal study of genetic and environmental influences
on neural development during childhood conducted in
209 twin pairs at 5 (M ¼ 5.2 years, SD ¼ 0.2) and 7 years
of age (M ¼ 6.8, SD ¼ 0.2) [van Baal et al., 1996, 2001].
The twins were all registered at the Netherlands Twin
Register, which contains approximately 50% of all Dutch
twins born after 1986 [Boomsma et al., 1992, 2006]. All par-
ticipants were healthy, with normal IQ [Boomsma and van
Baal, 1998], and normal or corrected to normal vision.
Parents of the children gave written informed consent for
their offspring to participate in the study. The study was
approved by the Central Ethics Committee on Research
Involving Human Subjects of the VU University Medical

Center, Amsterdam (IRB number IRB-2991 under Federal
wide Assurance 3703) and was in agreement with the Dec-
laration of Helsinki.

As we focused on developmental changes, we only
included children with both an EEG measurement at
5 years of age and a repeated measurement at 7 years of
age, resulting in complete datasets of 184 twin pairs and 5
single twins (376 children). Additionally, children were
excluded if we could not find at least four artefact free
epochs after visual inspection of the EEG recordings at
both measurement occasions (exclusion criteria are
described in the next section). At the first assessment, 13
children did not meet this strict criterion and at the second
assessment another group of 13 children had no data that
were free of artifacts. This resulted in inclusion of 227 chil-
dren (102 boys, 125 girls) from 143 families having meas-
urements on both occasions at 5 (M ¼ 5.2 years, SD ¼ 0.2)
and 7 years of age (M ¼ 6.8, SD ¼ 0.2).

EEG Recordings

Detailed procedures of data collection are described
elsewhere [van Baal et al., 1996]. In short, an electro-cap
with electrodes in the 10–20 system of Jasper [Jasper, 1958]
was used to measure brain activity during 3 min of quiet
rest with eyes closed on 14 scalp locations (prefrontal: Fp1,
Fp2; frontal: F7, F3, F4, F8; central: C3, C4; parietal: P3, P4;
occipital: O1, O2). Vertical and horizontal eye movements
were recorded bipolarly. EEG was recorded with linked
ears reference according to the method described by Pivik
et al. [1993], that is, two separate preamplifiers with high
input impedance for each of the reference electrodes were
used, and their output was linked electrically. All elec-
trode impedances were kept below 10 KX. EEG was
recorded continuously on an 18-channel Nihon Kohden
PV �441A polygraph. Time constants (t) were set to 5 sec-
onds [equivalent to 1/(2 � pi � t) ¼ 0.003 Hz single pass
6 dB filter], high frequency cut-off was 35 Hz and sample
frequency was 250 Hz. Signals were converted with a 12
bit AD converter.

For further processing the recordings were converted to
ASCII files. For each subject we (MB) selected four artifact-
free epochs of 4,096 samples (16,384 seconds) after visual
inspection with DIGEEGXP software (developed by CS).
Most typical artifacts were caused by (eye-) movements,
drowsiness, actual sleep, muscle contractions, bad chan-
nels, and clipping.

Power Spectrum

First, we computed a relative power spectrum averaged
over all channels, epochs and all subjects for both the 5-
and the 7-year-old group. For each epoch and every scalp
location the relative power spectrum ranging from 0.5 to
25 Hz was calculated by converting the raw EEG signal
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from the time domain into the frequency domain using
Fast Fourier Transformation (FFT) with a frequency resolu-
tion of 1/16,384 s ¼ 0.061 Hz. The power spectra
were averaged over all four epochs to obtain the averaged
relative power spectrum for all 14 electrode positions. Fig-
ure 1 shows the spectral analysis per electrode and aver-
aged over all electrodes for both age groups.

As we found large individual differences in the alpha
part of the spectrum and a developmental shift of the
alpha peak, we chose to set one broad alpha band ranging
from 6 to 11 Hz for further analysis. The other frequency

bands consequently ranged from 4 to 6 Hz (theta) and 11
to 25 Hz (beta).

SL Calculation

The signal in each epoch was digitally filtered in fre-
quency bands of interest; theta (4–6 Hz), alpha (6–11 Hz)
and beta (11–25 Hz). As a measure of functional connectiv-
ity between different brain regions, we calculated the syn-
chronization likelihood (SL) [Montez et al., 2006; Stam and

Figure 1.

Relative power spectra at 5 and 7 years of age recorded from 14 EEG channels at the following

scalp locations: prefrontal (Fp1; Fp2), frontal (F3; F4; F7; F8), central (C3; C4), parietal (P3; P4),

temporal (T5; T6), and occipital (O1; O2). In all power spectra, the vertical markers on the X-

scale correspond to 4 Hz steps in the spectrum starting at 0 Hz. Y-scale values are arbitrary due

to computation of relative power spectra, ranging from 0 to 0.06 in all channels.
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van Dijk, 2002]. An extended description of calculating SL
can be found in the appendix. In short, we look for linear
and nonlinear interdependencies between time series, for
example between the time series X and Y. Therefore, both
X and Y are converted to series of state space vectors (xi,
xj, : : : ) and (yi, yj, : : : ). First, recurrences of a specific vector
xi within X are sought. At the same moment i, vector yj is
defined and recurrences of yj are sought in Y. If the recur-
rences occur at the same moments it is likely that X influ-
ences Y, or the other way around. SL takes into account
the recurrences of X and Y that occur at the same moment
and varies between 0 and 1. Note that state space vectors
xi and yj do not have to resemble each other. Therefore, SL
measures both linear and nonlinear synchronicity of X and
Y, and is a measure of generalized synchronization [Rul-
kov et al., 1995].

The end result of computing SL for all pair-wise combi-
nations of channels for a specific frequency band is a
square 14� 14 matrix, i.e., 14 is the number of EEG chan-
nels used in this study. Each entry Nx,y contains the value
of the SL for the channel combination x and y. Subse-
quently, we computed the average synchronization result-
ing in a single overall SL value for each epoch over the
whole brain. Finally, this overall SL value was averaged
over 4 epochs for each child.

Graph Analysis

In this study, we analyze developmental changes in the
characteristics of the brain network as measured with
EEG. The nodes in the graph are represented by the
electrodes while the links are defined by the measure of
association between the nodes, in this study SL. SL matri-
ces were used to create weighted graphs and avoided set-
ting of an arbitrary chosen threshold for the SL values.
Figure 2 shows a schematic representation of the different
steps involved in weighted graph analysis of the EEG
data.

Full definitions for calculating the clustering index (Cw)
and path length (Lw) for analysis of weighted networks
have been described previously in a study by Stam and
coworkers [Stam et al., 2009].

In short, the clustering index for a node represents the
proportion of its neighboring nodes that are connected
amongst each other. To calculate the clustering index from
weighted networks, the weights between node i and other
nodes j should be symmetrical (wij ¼ wji) and 0 � wij � 1
as proposed by Onnela et al. [2005]. These conditions are
met since we used SL value as weights:

Ci ¼

P
k 6¼i

P
l6¼i
l6¼k

wikwilwkl

P
k 6¼i

P
l 6¼i
l 6¼k

wikwil
(1)

In the sums of this formula i ¼ k, i ¼ l and k ¼ l are not
included

The mean clustering of the total network is defined as:

Cw ¼ 1

N

XN

i¼1

Ci (2)

To calculate path length of the weighted network the
approach of Latora and Machiori [Latora and Marchiori,
2001] was applied. The length of an edge is defined as the
inverse of the weight, i.e., Lij ¼ 1/wij if wij = 0, and Lij ¼
1 if wij ¼ 0. The shortest path between the nodes i and j
is the sum of the shortest lengths between two nodes.
The averaged path length of the entire network is com-
puted as

Lw ¼ 1

ð1=NðN � 1ÞÞP
N

i�1

PN

j6¼1

ð1=LijÞ
(3)

In this formula, the harmonic mean is used to handle
disconnected edges resulting in infinite path lengths, i.e.,
1/1 ! 0 [Newman, 2003].

In this study, we further explored network development
by adding a new measure that describes the assortativity
of the network and is called weight dispersion (ri). Ram-
asco and Gonsalves defined this measure as the range
between the highest and lowest weights between every
node in the network [Ramasco and Goncalves, 2007]:

ri ¼ WmaxðiÞ �WminðiÞ
WmaxðiÞ þWminðiÞ (4)

Wmax accounts for the maximum weight and Wmin for the
minimum weight of the edges of node i. Since we used SL
values as weights between nodes the range stayed
between 0 and 1. The average ri over all the nodes of the
network was calculated (Wr)

Individual networks differ in structure, edge weights,
and size, which influence the graph parameters of interest,
i.e., clustering, path length and weight dispersion. To
obtain measures that are independent of individual differ-
ences in SL the parameters of the original measured net-
works were compared to the mean of 50 random
networks. Random networks were derived by randomly
reshuffling the original edge weights. The three parame-
ters of interest were then normalized by comparing them
to the parameters computed and averaged over 50
randomized networks: Ĉw ¼ �Cw=�Cw -random; L̂w ¼
�Lw =�Lw -randomand Ŵr ¼ �Wr= �Wr -random. If Ĉw and
L̂w show values >1, average clustering and path length
are larger in the original network than in the randomized
network. If Ŵr shows a value larger than 1 this indicates
that the nodes in the original network are more disassorta-
tive, i.e., having a larger range of weights, than a random
network, which is assumed to be disassortative. If the orig-
inal network has smaller weight ranges than a random
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network, Ŵr < 1, this indicates that nodes are more assor-
tative in the original network.

Statistical Analysis

Statistical analysis was done with SPSS version 15 for
MS-Windows. Synchronization data and graph measures

were not normally distributed for both age groups data,
hence were transformed using a natural log transform: y ¼
ln(x). A repeated measures analysis of variance (ANOVA)
with time (5- and 7-year old) as within subjects factor and
gender as between subjects factor was performed for each
frequency band for SL values averaged over all electrode
pairs and for normalized clustering coefficient, normalized
average pathlength and normalized weight dispersion.

Figure 2.

Schematic representation of graph analysis applied to EEG record-

ings of brain activity. The first step (A) consists of filtering of the

EEG signal in the frequency band of interest. Synchronization likeli-

hood (SL) was calculated as a measure of generalized synchroniza-

tion between all possible pairs of EEG channels (B), resulting in a

synchronization diagram (C) with the likelihood of synchronization

between channels indicated with black and white scale. Next, the

synchronization matrix was converted to weighted graphs (D) with

links of varying thickness that represent SL between nodes (chan-

nels). From these graphs, measures such as the clustering coeffi-

cient (Cw) and path length (Lw) were computed. For comparisons,

networks were randomized by shuffling the cells of the SL matrix,

resulting in randomized graphs (E). From random graphs graph, pa-

rameters were calculated and averaged. Finally, the ratio of the

graphs parameters of the original networks and the mean of the

graph parameters for the randomized networks was computed (F).
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RESULTS

Power Spectrum

Figure 1 shows a double alpha peak in the average
power spectrum for the children at 5 and 7 years of age.
The mean of both alpha peaks (�8 Hz) is shifted to the
left compared to the peak for adults, which alpha bands
ranges from 8 to 13 Hz. At 7 years of age the mean of the
alpha peaks was found around 8.5 Hz. For SL calculations,
we chose the alpha band around this 8 Hz peak from
ranging from 6 to 11 Hz to capture as much synchronicity
as possible. Consequently, the theta band was shortened,
from 4 to 6 Hz and the beta band lowered, ranging from
11 to 25 Hz.

Synchronization Likelihood

Synchronization likelihood was calculated for children
at 5 and 7 years of age in three different frequency bands.
The results of the repeated measures analysis of variance
of the log-transformed SL data for each frequency band
are shown in Table I.

Figure 3 visualizes the direction of the changes in
untransformed SL data over time for boys and girls.
Highly significant effects were found for time as a within
subjects factor. Decreases were found in theta [F(1,225) ¼
30.116, P < 0.001], alpha [F(1,225) ¼ 8.330, P ¼ 0.004] and
beta [F(1,225) ¼ 29.367, P < 0.001] bands. Girls showed
higher mean SL values in theta [F(1,225) ¼ 14.616, P
<0.001], alpha [F(1,225) ¼ 8.025, P ¼ 0.005] and beta
[F(1,225) ¼ 16.796, P < 0.001] bands. A significant interac-
tion effect between time and gender was found in the beta
frequency band [F(1,225) ¼ 5.116, P ¼ 0.025], with girls
showing a larger decrease over time than boys.

Network Analysis

Table II presents the repeated measures ANOVA results
for the log-transformed graph parameters in three fre-
quency bands.

Highly significant effects for time as within subject fac-
tor were found. The normalized clustering index increased
in the alpha band [F(1,225) ¼ 7.087, P ¼ 0.008], normalized
path length increased in theta [F(1,225) ¼ 28.297, P <
0.001], alpha [F(1,225) ¼ 30.989, P < 0.001] and beta bands
[F(1,225) ¼ 55.416, P < 0.001], and normalized weight dis-
persion decreased (weights get more assortative) in theta
[F(1,225) ¼ 8.188, P ¼ 0.005], alpha [F(1,225) ¼ 8.468, P ¼
0.004] and beta [F(1,225) ¼ 34.756, P < 0.001] bands, as
shown in Figures 4–6, respectively. Gender effects were
found to be significant for the normalized clustering index,
showing higher clustering in girls than in boys in the
alpha band [F(1,225) ¼ 10.966, P ¼ 0.001], beta band
[F(1,225) ¼ 9.207, P ¼ 0.003] and a trend in theta band
[F(1,225) ¼ 3.754, P ¼ 0.054] and the normalized weight
dispersion which was significantly lower for girls in the
beta band [F(1,225) ¼ 7.153, P ¼ 0.008]. A significant inter-
action effect was found for time and gender for the nor-
malized weight dispersion in the alpha band, showing a
larger decrease in girls and meaning that weights in girls
assort more with time than weights in boys [F(1,225) ¼
5.252, P ¼ 0.023].

TABLE I. Repeated measures ANOVA of Average SL

Values for each frequency band

Within-subjects Between-subjects

Time Time�gender Gender

Theta F[225] ¼ 30.116 F[225] ¼ 3.539 F[225] ¼ 14.616

P ¼ 0.000 P ¼ 0.061 P ¼ 0.000

Alpha F[225] ¼ 8.330 F[225] ¼ 1.665 F[225] ¼ 8.025

P ¼ 0.004 P ¼ 0.198 P ¼ 0.005

Beta F[225] ¼ 29.367 F[225] ¼ 5.116 F[225] ¼ 16.796

P ¼ 0.000 P ¼ 0.025 P ¼ 0.000

Mean SL values for all cortical regions together were analyzed for
separate frequency bands. F-values and their significance are
shown, both for ‘‘within-subject’’ analysis (left of vertical line),
and for ‘‘between-subject’’ analysis. Degrees of freedom are
printed between square brackets. Bold text represents a significant
effect on the variance in SL. Cursive text represents a trend.

Figure 3.

Mean SL over all epochs for boys and girls at 5 and 7 years of

age in three frequency bands. The variance in SL was significantly

lower in children at 7 years of age compared to that at 5 years

of age in theta [F(1,225) ¼ 30.116, P < 0.001], alpha [F(1,225)

¼ 8.330, P ¼ 0.004] and beta [F(1,225) ¼ 29.367, P < 0.001]

band. Boys had significant lower SL in theta [F(1,225) ¼ 14.616,

P < 0.001], alpha [F(1,225) ¼ 8.025, P ¼ 0.005] and beta

[F(1,225) ¼ 16.796, P < 0.001] band. The beta frequency band

showed a significant interaction effect between time and gender

[F(1,225) ¼ 5.116, P ¼ 0.025].
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As we performed a retrospective study in twins, we
additionally tested for family effects. We randomly
selected one twin of every included twin pair (81 girls, 63
boys) and performed similar repeated measures ANOVA

TABLE II. Repeated measures ANOVA of graph

parameters for each frequency band

Within-subjects Between-subjects

Time Time�gender Gender

Clustering index
Theta F[225] ¼ 1.643 F[225] ¼ 2.386 F[225] ¼ 3.754

P ¼ 0.201 P ¼ 0.124 P ¼ 0.054

Alpha F[225] ¼ 7.087 F[225] ¼ 2.150 F[225] ¼ 10.966

P ¼ 0.008 P ¼ 0.144 P ¼ 0.001

Beta F[225] ¼ 0.054 F[225] ¼ 2.642 F[225] ¼ 9.207

P ¼ 0.816 P ¼ 0.105 P ¼ 0.003

Pathlength
Theta F[225] ¼ 28.297 F[225] ¼ 0.001 F[225] ¼ 0.194

P ¼ 0.000 P ¼ 0.977 P ¼ 0.660
Alpha F[225] ¼ 30.989 F[225] ¼ 2.540 F[225] ¼ 2.419

P ¼ 0.000 P ¼ 0.112 P ¼ 0.121
Beta F[225] ¼ 55.416 F[225] ¼ 0.061 F[225] ¼ 0.498

P ¼ 0.000 P ¼ 0.805 P ¼ 0.481
Weight dispersion
Theta F[225] ¼ 8.188 F[225] ¼ 0.010 F[225] ¼ 0.244

P ¼ 0.005 P ¼ 0.919 P ¼ 0.622
Alpha F[225] ¼ 8.468 F[225] ¼ 5.252 F[225] ¼ 0.351

P ¼ 0.004 P ¼ 0.023 P ¼ 0.554
Beta F[225] ¼ 34.756 F[225] ¼ 0.813 F[225] ¼ 7.153

P ¼ 0.000 P ¼ 0.368 P ¼ 0.008

Normalized graph parameters were analyzed for separated fre-
quency bands. F-values and their significance are shown, both for
‘‘within-subject’’ analysis (left of vertical line), and for ‘‘between-
subject’’ analysis. Degrees of freedom are printed between square
brackets. Bold text represents a significant effect on the variance
in the graph parameters. Cursive text represents a trend.

Figure 4.

Mean normalized clustering index (Cw/Cw � s) for boys and

girls at 5 and 7 years of age in three frequency bands. The mean

clustering index was significant higher in children of 7 years of

age compared to children at 5 years of age in the alpha band (F

¼ 7.087, P ¼ 0.008). Girls showed higher clustering in the alpha

(F ¼ 10.966, P ¼ 0.001) and beta (F ¼ 9.207, P ¼ 0.003) bands.

Figure 5.

Mean normalized path length (Lw/Lw � s) over all epochs for

children at 5 and 7 years of age in three frequency bands. The

mean normalized path length was significant higher in children at

7 years of age compared to children at 5 years of age in theta (F

¼ 28.297, P < 0.001), alpha (F ¼ 30.989, P < 0.001) and beta (F

¼ 55.416, P < 0.001) bands.

Figure 6.

Mean normalized weight dispersion over all epochs for boys and

girls at 5 and 7 years of age in three frequency bands. Weight

dispersion was significantly lower at 7 years of age compared to

that at 5 years of age in the theta [F(1,225) ¼ 8.188, P ¼ 0.005],

alpha [F(1,225) ¼ 8.468, P ¼ 0.004] and beta [F(1,225) ¼
34.756, P < 0.001] band. Girls had significant lower weight dis-

persion in the beta band [F(1,225) ¼ 7.153, P ¼ 0.008].The

alpha frequency band showed a significant interaction effect

between time and gender [F(1,225) ¼ 5.252, P ¼ 0.023].
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with time as within subjects factor and gender as between
subjects factor. Significant time effects were found to be
similar as for the large sample, except for weight disper-
sion, where significance disappeared for the alpha band.
The trend found for the gender effect in clustering coeffi-
cient in the theta band became significant for this smaller
sample.

DISCUSSION

We investigated the effects of development on func-
tional brain networks using EEG in young children at 5
and 7 years of age. For all frequency bands, mean func-
tional connectivity (SL) decreased over time, with girls
showing a higher mean synchronization than boys. Nor-
malized weighted clustering index and path length
increased and the weight dispersion decreased with age.
These changes reflect a shift of the functional network
from a random topology towards a more structured orga-
nization. Gender effects were found for brain network
structure, with girls showing higher mean clustering in the
alpha and beta bands and lower weight dispersion in the
beta band.

This longitudinal study showed that maturation in a
group of young children, measured at 5 and at 7 years of
age, leads to decreased whole brain functional connectiv-
ity, i.e., a decrease in the average whole brain SL. Local
developmental changes in functional connectivity between
the 14 different areas have previously been described by
van Baal, reporting on decreases in posterior short-dis-
tance coherences and decreases in all long-distance coher-
ences, while anterior short-distance coherences did not
change over time [van Baal et al., 2001]. In line with our
findings, a study methodologically closely related to our
study, found that children (8–12 years) had higher average
synchronization likelihood than adults (21–26 years) both
in rest and during task conditions [Micheloyannis et al.,
2009]. Most resting-state EEG studies that examined devel-
opmental effects on functional connectivity in children had
cross-sectional designs and compared groups of older chil-
dren (>7 years) with adults. Most of these studies
reported that functional connectivity weakened for short-
distances while long-distance functional connectivity was
stronger in the older brain compared to the child groups
[Barry et al., 2004; Marosi et al., 1997; Srinivasan, 1999;
Thatcher, 1992]. These findings agree with the changes
found with structural and functional MRI studies, namely
decreases in short and increases in long range connectivity
with child development, suggesting different developmen-
tal trajectories for different brain regions [Fair et al., 2008;
Giedd et al., 2009; Schmithorst et al., 2005]. Interestingly,
Thatcher suggested that development in children is pro-
grammed in cycles with periods of increases and decreases
in coherences with different offsets in different regions
[Thatcher et al., 2009; Thatcher, 1992]. Thatcher suggested
that these developmental cycles involve local excessive

production of synaptic connections followed by pruning of
the unused connections and that this process is influenced
by environmental factors. Our results and previous studies
indicate that the organization of the brain and its dynam-
ics are changing continuously with development in rest
and during task [McIntosh et al., 2008; Micheloyannis
et al., 2009] in young children and it is suggested that mat-
uration processes such as pruning are involved in shaping
the brain’s connections [Dubois et al., 2008; Huttenlocher
and Dabholkar, 1997; Lebel et al., 2008; Paus et al., 2008;
Paus, 2005].

Next, we used graph theoretical tools to examine
changes in functional brain organization with development
in young children. A recent study showed that graph char-
acteristics are (highly) reproducible and proved them to be
reliable input for a repeated measurement analysis as we
also used in our study [Deuker et al., 2009]. In addition to
the decrease in whole brain functional connectivity with
development, we found small but significant increases in
clustering, path length and a decrease in weight dispersion
(more assorted weights) suggesting that the brain shifts
from random towards more ordered, small-world like con-
figurations. The increase in clustering in functional net-
works means that the neighbors of a node synchronize
stronger with each other in older children than in younger.
Note that a neighboring node in a weighted functional net-
work is defined as having strong functional connections
with its neighbors, irrespective of physical distance. Thus,
neighbors in function are not necessarily neighbors in
space. Increased clustering could indicate that the effec-
tiveness of information transfer between clusters of nodes
is increased. Path length increased with age, meaning that
the shortest route from one node to any other node
increased. The increase in both clustering and path length
indicates that the networks shift towards a more ordered
configuration. Complementary to these results, we
observed a decrease in the dispersion of the weights. A
decrease in weight dispersion means a smaller difference
between the largest and smallest weights, which indicates
that the weights of all links connected to a node assort
more with development and that the networks shifts
towards a more ordered configuration. This is in line with
the idea that with maturation the child brain might prune
inefficient connections while preserving and strengthening
those that keep the networks in efficient configurations
(i.e., highly interconnected networks with low cost).

Our findings are supported by results of studies simu-
lating development in neural models that apply a specific
learning rule. Siri et al. started from a random recurrent
network of 500 neurons with sparse connections and sepa-
rate populations of excitatory and inhibitory neurons
resulting in a variety of spontaneous neural dynamics.
Rewiring of the random network by applying a Hebbian
learning rule (that preserves the strongest connections and
removes the weakest) increased clustering coefficient and
path length thereby reforming the random organization
into a more ordered small-world organization of the
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strongest connections. [Siri et al., 2007]. Van den Berg
et al. studied the effect of a rewiring rule on a network of
randomly coupled chaotic maps in a wide range of net-
work sizes. The authors found that with increasing net-
work size, whilst keeping the percentage of connections
constant, clustering reached stable values whereas the
path length decreased resulting in networks with a small-
world structure. They suggested this finding was related
to the distribution of connections in a sparsely connected
network: larger networks showed more hubs than smaller
networks, indicating that the sparsely connected network
needs a certain minimal size to develop hubs [van den
Berg and van Leeuwen, 2004]. Kwok et al. used 300 ran-
domly connected spiking neurons with bursting and irreg-
ular firing activity and showed that applying a rewiring
rule similar to the one used by Van den Berg and Van
Leeuwen [2004] resulted in small increases in path length
and more substantial increases in clustering coefficient
[Kwok et al., 2007]. Thus, despite the differences in the
original network structure and dynamics, applying a
rewiring rule leads to increases in clustering and path
length thereby shifting towards more ordered small-world
configurations. Consecutively, Rubinov et al. showed that
coupled nodes with chaotic dynamics generate ordered
functional patterns even if the underlying network is ran-
domly connected [Rubinov et al., 2009]. They showed that
the structural connectivity subsequently rewires towards
these functional patterns. They suggest that on slow time
scales functional networks reflect the underlying structural
networks. At faster time scales with highly ordered func-
tional patterns and ongoing rewiring, the structure
remained in a small-world like configuration.

In conclusion, these simulation studies showed that
starting from initial random structural topology with dif-
ferent size, configuration or dynamics, the network adjusts
according to a use-it-or-lose-it learning rules and tends to
rewire functional networks into a small-world configura-
tion and subsequently might influence the structural con-
figuration. This is consistent with our observations of a
shift towards a more ordered small-world organization
with development.

Resting-state fcMRI studies can use independent compo-
nent analysis to define functionally connected networks
[Stevens et al., 2009]. They found stronger within but
reduced between network-connectivity which is in line
with previous findings of Fair et al. [2008]. Recently, Fair
et al. performed the first empirical rs-fcMRI study that an-
alyzed brain development in a large cross-sectional group
(7–31 years) using network analysis [Fair et al., 2009]. A
similar study was performed in two age groups (7–9 vs.
19–22 years) by Supekar et al. [2009]. Both studies reported
that clustering and path length did not differ significantly
between the different age groups considered. In contrast
with these studies, using EEG, we did observe a small but
significant increase in clustering and path length with
repeated measures in a large group of younger children.
This difference in results might be explained by the

repeated measures design of our study, resulting in
increased statistical power. Another explanation might be
that we simply measured at an earlier more dynamical
moment (5 and 7 years) on the maturation trajectories than
other developmental studies [Huttenlocher and Dabholkar,
1997; Paus et al., 2008]. A third explanation might be the
difference in temporal resolution between EEG and fMRI.
Similar to our study, Micheloyannis et al. performed an
EEG study and did find a developmental effect, namely
decreased in clustering and path length with age [Michel-
oyannis et al., 2009]. Rubinov et al. suggested from simula-
tion data that at slow time scales functional connectivity
reflects and shapes the underlying structural networks but
less at a faster temporal scale functional organization
[Rubinov et al., 2009]. Thus, developmental rs-fcMRI stud-
ies might reflect changes of the gross underlying structural
networks since it measures at slow time scales, whereas
EEG probably might be sensitive to other more subtile de-
velopmental processes influencing functional networks.

In addition to age dependent effects, we studied the
effect of gender on the functional networks since hor-
mones have been implied in the regulation of brain net-
work development [Lustig, 1994]. The results show
stronger synchronization for girls than boys in all fre-
quency bands. The literature is not conclusive about on
gender effects on functional connectivity. One EEG study
reported on boys showing stronger long distance intrahe-
mispheric coherence than girls in the alpha and beta bands
[Barry et al., 2004]. Other EEG studies examined regional
or hemispheric differences between boys and girls. Long-
distance and interhemispherical coherences were found to
be higher more often in boys than in girls [Hanlon et al.,
1999; Marosi et al., 1997; Thatcher, 1992]. A MEG study
found higher intrahemispheric connectivity (SL) in the
lower alpha band in males than in females (19–30 years)
[Gootjes et al., 2006]. To our knowledge, we are the first to
observe gender differences in network parameters such as
clustering coefficient, path length and weight dispersion in
children. Girls showed stronger clustering than boys in
alpha and beta bands and lower weight dispersion in the
beta band. This suggests that girls have more ordered net-
works than boys at this young age. These findings might
indicate that already at young age girls and boys brains
wire up differently. Girls might precede boys traveling a
similar developmental trajectory or alternatively boys and
girls might travel different trajectories. Findings from
structural MRI on development of white matter fibers
raised the same questions [Marsh et al., 2008].

In all three frequency bands, path length increased and
weight dispersion decreased with age. Clustering index
showed a significant increase in the alpha band and a
trend in the theta band. Different frequency bands are
related to different cognitive functions. Recently, both a rs-
fcMRI and a structural DTI study showed an inverse rela-
tion between path length and IQ in healthy adults, sug-
gesting that a shorter path length in the whole brain
network is crucial for efficient information processing in
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smarter brains [Li et al., 2009; van den Heuvel et al., 2009].
In young children different cognitive functions develop at
different moments. Shaw et al. showed that the cortical
thickness of children with higher IQ peaks at a later
moment in childhood than in children with lower IQ
[Shaw, 2007; Shaw et al., 2006]. Others hypothesized that
deviation from normal developmental trajectories might
result in adolescent brains vulnerable to psychiatric disor-
ders [Paus et al., 2008]. Network analysis might contribute
to understanding how deviations in development might
change or influence intelligence later in life.

One limitation of studying young children is the choice
of frequency bands. Using adult frequency bands would
have split up the alpha band at 8 Hz—where children
tend to have maximum power in the alpha band—thereby
defining a large part of alpha synchronization as theta syn-
chronization. We decided to use one alpha frequency band
ranging from 6 to 11 Hz, capturing all possible alpha oscil-
lations in children. Consequently, the theta band was
shortened, ranging from 4 to 6 Hz. In this way, we tried to
capture as much synchronicity as possible in the next steps
of our analysis.

Another potential confound is that local functional con-
nectivity measures such as SL, and the clustering coeffi-
cient, could have been influenced by volume conduction,
which is defined by an exponential and smooth decrement
in magnitude from a point source causing erroneous corre-
lations between nearby channels. However, we used a
small number of EEG channels with large interelectrode
distances (>7 cm) reducing the chance that neighboring
channels pick up highly correlating signals from a com-
mon source [Nunez et al., 1997]. In addition, the effects of
volume conduction might be expected to decrease with
age since a child’s head grows and the electrodes are
placed more distant from each other in the older children.
Therefore, the increase in the clustering coefficient is
unlikely to reflect spurious effects of volume conduction
alterations due to head size growth.

Even though we could only create a graph with 14
nodes, we were able to show significant changes in graph
parameters. We found significant developmental increases
in the clustering coefficient and decreases in path length
and weight dispersion. This suggests that maturation
robustly changes network parameters of the brain, even in
a simple presentation of 14 nodes. However, increasing
the number of nodes in the network would give the op-
portunity to calculate more sophisticated graph parameters
such as modularity, which would inform us in more detail
how clusters of nodes are interconnected.

CONCLUSIONS

We found decreased synchronization of brain areas with
development and an increase in structure in the functional
networks, i.e., a shift towards a more ordered, small-world
like configuration. The brain gains structure with matura-

tion. These findings suggest that in younger children more
noisy connections exist that interfere with useful connec-
tivity. Maintaining these useless connections will cost
energy. During maturation, the brain preserves only the
effective synapses and prunes those that are noisy, thereby
shaping the networks to its most effective configuration.

In addition, we found gender effects with girls showing
stronger synchronization, higher clustering and lower
weight dispersion, suggesting that girls lead boys or fol-
low a different trajectory in developing an efficiently struc-
tured brain.

ACKNOWLEDGMENTS

The authors thank Peterjan Ris and Saskia Oudkerk who
helped to check the EEG epochs on artefacts. They also
thank Marinka Koenis and Arjan Hillebrand for carefully
reading their article.

REFERENCES

Achard S, Bullmore E (2007): Efficiency and cost of economical
brain functional networks. PLoS Comput Biol 3:0174–0183.

Barry RJ, Clarke AR, McCarthy R, Selikowitz M, Johnstone SJ,
Rushby JA (2004): Age and gender effects in EEG coherence. I.
Developmental trends in normal children. Clin Neurophysiol
115:2252–2258.

Bell MA, Fox NA (1996): Crawling experience is related to
changes in cortical organization during infancy: Evidence from
EEG coherence. Dev Psychobiol 29:551–561.

Boomsma DI, Orlebeke JF, van Baal GC (1992): The Dutch Twin
Register: Growth data on weight and height. Behav Genet
22:247–251.

Boomsma DI, van Baal GC (1998): Genetic influences on child-
hood IQ in 5- and 7-year-old Dutch twins. Developmental
Neuropsychology 14:115–126.

Boomsma DI, de Geus EJ, Vink JM, Stubbe JH, Distel MA, Hot-
tenga JJ, Posthuma D, Van Beijsterveldt TC, Hudziak JJ, Bartels
M, Willemsen G (2006): Netherlands Twin Register: From
twins to twin families. Twin Res Hum Genet 9:849–857.

Bullmore E, Sporns O (2009): Complex brain networks: Graph the-
oretical analysis of structural and functional systems. Nat Rev
Neurosci 10:186–198.

Bush G (2010): Attention-deficit/hyperactivity disorder and atten-
tion networks. Neuropsychopharmacology 35:278–300.

Cayre M, Canoll P, Goldman JE (2009): Cell migration in the nor-
mal and pathological postnatal mammalian brain. Prog Neuro-
biol 88:41–63.

Deuker L, Bullmore ET, Smith M, Christensen S, Nathan PJ, Rock-
stroh B, Bassett DS (2009): Reproducibility of graph metrics of
human brain functional networks. Neuroimage 47:1460–1468

Dubois J, haene-Lambertz G, Perrin M, Mangin JF, Cointepas Y,
Duchesnay E, Le Bihan D, Hertz-Pannier L (2008): Asynchrony
of the early maturation of white matter bundles in healthy
infants: Quantitative landmarks revealed noninvasively by dif-
fusion tensor imaging. Hum Brain Mapp 29:14–27.

Fair DA, Dosenbach NUF, Church JA, Cohen AL, Brahmbhatt S,
Miezin FM, Barch DM, Raichle ME, Petersen SE, Schlaggar BL
(2007): Development of distinct control networks through

r EEG Network Development in Children r

r 423 r



segregation and integration. Proc Natl Acad Sci USA
104:13507–13512.

Fair DA, Cohen AL, Dosenbach NUF, Church JA, Miezin FM,
Barch DM, Raichle ME, Petersen SE, Schlaggar BL (2008): The
maturing architecture of the brain’s default network. Proc Natl
Acad Sci USA 105:4028–4032.

Fair DA, Cohen AL, Power JD, Dosenbach NUF, Church JA, Mie-
zin FM, Schlaggar BL, Petersen SE (2009): Functional brain net-
works develop from a ‘‘local to distributed’’ organization.
PLoS Comput Biol 5:e1000381.

Giedd JN, Lalonde FM, Celano MJ, White SL, Wallace GL, Lee
NR, Lenroot RK (2009): Anatomical brain magnetic resonance
imaging of typically developing children and adolescents. J
Am Acad Child Adolesc Psychiatry 48:465–470.

Goldman JE, Zerlin M, Newman S, Zhang L, Gensert J (1997):
Fate determination and migration of progenitors in the post-
natal mammalian CNS. Dev Neurosci 19:42–48.

Gootjes L, Bouma A, Van Strien JW, Scheltens P, Stam CJ (2006):
Attentionmodulates hemispheric differences in functional connec-
tivity: Evidence fromMEG recordings. Neuroimage 30:245–253

Hanlon HW, Thatcher RW, Cline MJ (1999): Gender differences in
the development of EEG coherence in normal children. Dev
Neuropsychol 16:479–506.

Huttenlocher PR, Dabholkar AS (1997): Regional differences in
synaptogenesis in human cerebral cortex. J Comp Neurol
387:167–178.

Jasper HH (1958): Report of the committee on methods of clinical
examination in electroencephalography. Electroencephalogr
Clin Neurophysiol 10:370–375.

Joseph D’Ercole A, Ye P (2008): Expanding the mind: Insulin-like
growth factor I and brain development. Endocrinology
149:5958–5962.

Kelly AM, Di MA, Uddin LQ, Shehzad Z, Gee DG, Reiss PT, Mar-
gulies DS, Castellanos FX, Milham MP (2009): Development of
anterior cingulate functional connectivity from late childhood
to early adulthood. Cereb Cortex 19:640–657.

Kwok HF, Jurica P, Raffone A, van Leeuwen C (2007): Robust
emergence of small-world structure in networks of spiking
neurons. Cogn Neurodyn 1:39–51.

Latora V, Marchiori M (2001): Efficient behavior of small-world
networks. Phys Rev Lett 87:198701.

Lebel C, Walker L, Leemans A, Phillips L, Beaulieu C (2008):
Microstructural maturation of the human brain from childhood
to adulthood. Neuroimage 40:1044–1055.

Lewis JD, Elman JL (2008): Growth-related neural reorganization
and the autism phenotype: A test of the hypothesis that altered
brain growth leads to altered connectivity. Dev Sci 11:135–155.

Li Y, Liu Y, Li J, Qin W, Li K, Yu C, Jiang T (2009): Brain anatom-
ical network and intelligence. PLoS Comput Biol 5:e1000395.

Lustig RH (1994): Sex hormone modulation of neural develop-
ment in vitro. Horm Behav 28:383–395.

Marosi E, Harmony T, Reyes A, Bernal J, Fernandez T, Guerrero
V, Rodriguez M, Silva J, Yanez G, Rodriguez H (1997): A fol-
low-up study of EEG coherences in children with different
pedagogical evaluations. Int J Psychophysiol 25:227–235.

Marsh R, Gerber AJ, Peterson BS (2008): Neuroimaging studies of
normal brain development and their relevance for understand-
ing childhood neuropsychiatric disorders. J Am Acad Child
Adolesc Psychiatry 47:1233–1251.

McIntosh AR, Kovacevic N, Itier RJ (2008): Increased brain signal
variability accompanies lower behavioral variability in devel-
opment. PLoS Comput Biol 4:e1000106.

Micheloyannis S, Vourkas M, Tsirka V, Karakonstantaki E, Kanat-
souli K, Stam CJ (2009): The influence of ageing on complex
brain networks: A graph theoretical analysis. Hum Brain
Mapp 30:200–208.

Montez T, Linkenkaer-Hansen K, van Dijk BW, Stam CJ (2006):
Synchronization likelihood with explicit time-frequency priors.
Neuroimage 33:1117–1125.

Newman MEJ (2003): The structure and function of complex net-
works. SIAM Review 45:167–256.

Nunez PL, Srinivasan R, Westdorp AF, Wijesinghe RS, Tucker
DM, Silberstein RB, Cadusch PJ (1997): EEG coherency. I: Sta-
tistics, reference electrode, volume conduction, Laplacians,
cortical imaging, and interpretation at multiple scales. Electro-
encephalogr Clin Neurophysiol 103:499–515.

Onnela JP, Saramaki J, Kertesz J, Kaski K (2005): Intensity and co-
herence of motifs in weighted complex networks. Phys Rev E
Stat Nonlin Soft Matter Phys 71:065103.

Paus T (2005): Mapping brain maturation and cognitive develop-
ment during adolescence. Trends Cogn Sci 9:60–68.

Paus T, KeshavanM, Giedd JN (2008): Why domany psychiatric dis-
orders emerge during adolescence?Nat RevNeurosci 9:947–957.

Pivik RT, Broughton RJ, Coppola R, Davidson RJ, Fox N, Nuwer
MR (1993): Guidelines for the recording and quantitative anal-
ysis of electroencephalographic activity in research contexts.
Psychophysiology 30:547–558.

Ramasco JJ, Goncalves B (2007): Transport on weighted networks:
When the correlations are independent of the degree. Phys
Rev E 76:066106.

Rose AB, Merke DP, Clasen LS, Rosenthal MA, Wallace GL, Vai-
tuzis AC, Fields JD, Giedd JN (2004): Effects of hormones and
sex chromosomes on stress-influenced regions of the develop-
ing pediatric brain. Ann N Y Acad Sci 1032:231–233.

Rubinov M, Sporns O, van Leeuwen C, Breakspear M (2009):
Symbiotic relationship between brain structure and dynamics.
BMC Neurosci 10:55.

Rulkov N, Sushchik M, Tsimring L, Abarbanel H (1995): General-
ized synchronization of chaos in directionally coupled chaotic
systems. Phys Rev E 51:980–994.

Sahara S, O’Leary DDM (2009): Fgf10 regulates transition period
of cortical stem cell differentiation to radial glia controlling
generation of neurons and basal progenitors. Neuron 63:48–62.

Schmithorst VJ, Wilke M, Dardzinski BJ, Holland SK (2005): Cog-
nitive functions correlate with white matter architecture in a
normal pediatric population: A diffusion tensor MRI study.
Hum Brain Mapp 26:139–147.

Shaw P (2007): Intelligence and the developing human brain. Bio-
essays 29:962–973.

Shaw P, Greenstein D, Lerch J, Clasen L, Lenroot R, Gogtay N, Evans
A, Rapoport J, Giedd J (2006): Intellectual ability and cortical devel-
opment in children and adolescents. Nature 440:676–679.

Siri B, Quoy M, Delord B, Cessac B, Berry H (2007): Effects of
Hebbian learning on the dynamics and structure of random
networks with inhibitory and excitatory neurons. J Physiol
Paris 101:136–148.

Smit DJA, Stam CJ, Posthuma D, Boomsma DI, de Geus EJC
(2008): Heritability of ‘‘small-world’’ networks in the brain: A
graph theoretical analysis of resting-state EEG functional con-
nectivity. Hum Brain Mapp 29:1368–1378.

Sporns O, Kotter R (2004): Motifs in brain networks. PLoS Biol
2:e369.

Sporns O, Zwi JD (2004): The small world of the cerebral cortex.
Neuroinformatics 2:145–162.

r Boersma et al. r

r 424 r



Srinivasan R (1999): Spatial structure of the human alpha rhythm:
Global correlation in adults and local correlation in children.
Clin Neurophysiol 110:1351–1362.

Stam CJ (2004): Functional connectivity patterns of human magne-
toencephalographic recordings: A ‘‘small-world’’ network?
Neurosci Lett 355:25–28.

Stam CJ, Reijneveld JC (2007): Graph theoretical analysis of com-
plex networks in the brain. Nonlinear Biomed Phys 1:3.

Stam CJ, van Dijk BW (2002): Synchronization likelihood: An
unbiased measure of generalized synchronization in multivari-
ate data sets. Physica D 163:236–251.

Stam CJ, de HW, Daffertshofer A, Jones BF, Manshanden I,
van Cappellen van Walsum AM, Montez T, Verbunt JP, de
Munck JC, van Dijk BW, Berendse HW, Scheltens P (2009):
Graph theoretical analysis of magnetoencephalographic func-
tional connectivity in Alzheimer’s disease. Brain 132:213–224.

Stevens MC, Pearlson GD, Calhoun VD (2009): Changes in the
interaction of resting-state neural networks from adolescence
to adulthood. Hum Brain Mapp 30:2356–2366.

Supekar K, Musen M, Menon V (2009): Development of large-
scale functional brain networks in children. PLoS Biol
7:e1000157.

Thatcher RW (1992): Cyclic cortical reorganization during early
childhood. Brain Cogn 20:24–50.

Thatcher RW, North DM, Biver CJ (2009): Self-organized criticality
and the development of EEG phase reset. Hum Brain Mapp
30:553–574.

van Baal GC, de Geus EJ, Boomsma DI (1996): Genetic architec-
ture of EEG power spectra in early life. Electroencephalogr
Clin Neurophysiol 98:502–514.

van Baal GC, Boomsma DI, de Geus EJ (2001): Longitudinal
genetic analysis of EEG coherence in young twins. Behav
Genet 31:637–651.

van den Berg D, van Leeuwen C (2004): Adaptive rewiring in cha-
otic networks renders small-world connectivity with consistent
clusters. Europhys Lett 65:459–464.

van den Heuvel MP, Stam CJ, Boersma M, Hulshoff Pol HE
(2008): Small-world and scale-free organization of voxel-based
resting-state functional connectivity in the human brain. Neu-
roimage 43:528–539.

van den Heuvel MP, Stam CJ, Kahn RS, Hulshoff Pol HE (2009):
Efficiency of functional brain networks and intellectual per-
formance. J Neurosci 29:7619–7624.

Watts DJ, Strogatz SH (1998): Collective dynamics of ‘‘small-
world’’ networks. Nature 393:440–442.

Whitford TJ, Rennie CJ, Grieve SM, Clark CR, Gordon E, Williams
LM (2007): Brain maturation in adolescence: Concurrent
changes in neuroanatomy and neurophysiology. Hum Brain
Mapp 28:228–237.

Wilke M, Krageloh-Mann I, Holland SK (2007): Global and local
development of gray and white matter volume in normal chil-
dren and adolescents. Exp Brain Res 178:296–307.

APPENDIX

The time series, the EEG signals recorded from channels
X and Y, are converted to a series of state space vectors
using the method of time delay embedding [Stam, 2005]:

Xi ¼ ðxi; xiþL; xiþ2L
; : : : ; xiþðm�1ÞLÞ

where L is the time lag and m is the embedding dimen-
sion. As described by Montez [Montez et al., 2006] the
time lag (L) depends on the sample frequency (fs) and the
highest frequency of interest (HF):

L ¼ fs=3�HF

The embedding dimension (m) depends on the lowest
frequency (LF) of interest and determines the length of the
embedding window:

L� ðm� lÞ ¼ fs=LF $ m ¼ 3�HF=LFþ l

Vector Xi represents the state of system X at time i in a
time interval with length L � (m � 1).

In the same channel X recurrences of the vector Xi are
sought at time j. Therefore, a threshold distance fix in
state space is chosen such that a fixed portion (pref) of the
compared vectors is close enough to consider them to be
in the same state. Five percent of the vectors Xj will be
considered as recurrences of Xi given a pref ¼ 0.05.

To prevent finding autocorrelations time point j should
be at sufficient time distance from i. A window W1 is
defined around time i and is called the Theiler correction
for autocorrelation [Theiler, 1986]. If W1 is twice the length
of the embedding vectors [W1 ¼ 2 � L � (m � 1)], then
two consecutive vectors only share one sample point.

To capture a sufficient number of vectors to take pref of them
defining the recurrences a secondwindowW2 is defined:

nrec ¼ ðW2�W1þ 1Þ � pref

where nrec is the number of recurrences.
State space vectors of the EEG signal in channel Y are

constructed and with the same value for pref a search for
recurrences is done.

The SL is now defined as the likelihood that the distance
between vectors yi and yj will be smaller than a threshold
distance fiy given that at the same time points i and j the
distance between xi and xj is smaller than a threshold dis-
tance fix:

Si ¼ 1=NRjhðfiy� Yi � Yj

�� ��Þhðfix� Xi � Xj

�� ��Þ

where y is the Heaviside step function that returns 0 for
values <0 and 1 for values �0.

N represents the number of recurrences in signal X, i.e.:

Rjhðfix� Xi � Xj

�� ��Þ

The overall SL between X and Y is the average over all
possible i.
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