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SUMMARY

For many diseases, it seems that the age at onset is genetically influenced. Therefore, the age-at-onset data
are often collected in order to map the disease gene(s). The ages are often (right) censored or truncated,
and therefore, many standard techniques for linkage analysis cannot be used. In this paper, we present a
correlated frailty model for censored survival data of siblings. The model is used for testing heritability
for the age at onset and linkage between the loci and the gene(s) that influence(s) the survival time. The
model is applied to interval-censored migraine twin data. Heritability (obtained from the frailties rather
than actual onset times) was estimated as 0.42; this value was highly significant. The highest lod score, a
score of 1.9, was found at the end of chromosome 19.

Keywords: Additive gamma frailty model; Heritability; IBD sharing; Interval censoring; Likelihood ratio test; Linkage
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1. INTRODUCTION

Studies on several diseases show strong correlation of ages at onset between family members, for exam-
ple, breast cancer (Claus and others, 1991) and Alzheimer disease (Meyer and others, 1998). The results
of these studies suggest that not only the occurrence but also the age at onset of the disease is genetically
influenced. Therefore, information on age at onset is often collected to map the disease gene(s) and the
gene(s) that influence(s) the age at onset of the disease. The exact ages are often censored. This makes
techniques that are often used for mapping genes for complex quantitative traits (Haseman–Elston (1972)
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regression and variance decomposition models [e.g. Sham, 1998]) inapplicable for censored survival data.
Statistical methods for gene search which combine techniques of survival analysis and methods of quan-
titative genetics are needed.

In survival analysis, the emphasis is on modeling the hazard function of independent individuals.
The analysis of dependent survival data is more difficult because the dependence structure has to be
modeled too. Frailty models for survival data typically include a single shared frailty to model simple
patterns of dependence between survival data of related individuals (Vaupel and others, 1979). In these
models, groups of individuals share the same frailty. In statistical genetics, a group usually consists of
family members; individuals who share a part of their segregating genes. The shared frailty model is
inappropriate to model this kind of data because different family relationships should correspond to diff-
erent frailty correlations. Shared frailty models have been extended to correlated frailty models to deal
with more complex dependence structures between individuals (Yashin and others, 1995; Andersen and
others, 1992) and have been used to model age-of-onset data within families to test linkage between the
loci and the gene(s) that influence(s) the survival time (see, e.g. Petersen, 1998; Korsgaard and Andersen,
1998; Yashin and Iachine, 1999; Li, 1999; Zhong and Li, 2002, 2004; Li and Zhong, 2002; Iachine,
2001) .

In this paper, our aim is to test the genetic contribution to the age at which people experience their
first migraine attack and to find locations on the chromosomes that show linkage with the genes that
influence this age at onset of migraine. The data we use are from a longitudinal study of Dutch twins
and their family members. The ages at migraine onset are interval censored. Furthermore, identical-by-
descent (IBD) information for 63–284 markers on the autosomes is available for 258 dizygotic twins.
First, we want to test heritability of migraine onset, and second, for each of the markers we want to test
whether they are linked to age at onset of migraine. In order to test for linkage, we model the migraine
data of the siblings with an additive gamma frailty model. The frailty term of each sibling is decomposed
as a linear combination of independent gamma-distributed random variables which represent the genetic
contribution to the age at onset of migraine due to part of the genome at a marker, genetic contribution
due to loci unlinked to the specific marker, and contributions due to shared familial effects and unshared
environmental effects. Before testing linkage for all markers, we test for heritability, that is, a genetic
contribution to the variability of age at onset of migraine. Usually, heritability is defined as the proportion
of variance of the quantitative trait associated with genetic effects. Because age at onset and in particular
its variance is difficult to handle, we define the trait in this context as the frailty and hence define heri-
tability as the proportion of variance of the frailty associated with genetic effects. Basing heritability on
a latent trait in this way is not unusual and is closely linked to our method to test for linkage at specific
markers.

Mainly for mathematical convenience, we assume that the frailty variable follows a gamma distribu-
tion. In that case, an explicit expression of the bivariate survival function in terms of the marginal survival
function exists. Estimation of the parameters and testing heritability and linkage are considered in the
cases that the marginal survival function is completely unknown and that it belongs to a family of para-
metric distributions. Gamma frailty models for testing linkage have been proposed before (see, e.g. Li,
1999; Li and Zhong, 2002; Zhong and Li, 2002, 2004; Yashin and others, 1999). The model we propose
can be used for testing both linkage and heritability.

The remainder of the paper is organized as follows. In Section 2, we introduce the additive gamma
frailty model for survival data of siblings. Next, we explain how to test heritability and linkage. In Section
3, we apply the frailty model to interval-censored migraine data of Dutch twins. We describe the data,
explain how to estimate model parameters, and show the results of our analysis. In Section 4, we give some
concluding remarks. Appendices A, B, and C (in the supplementary material available at Biostatistics
online [http://www.biostatistics.oxfordjournals.org]) contain the derivations of expressions of the bivariate
and the trivariate survival functions of age at onset and the results of a simulation study.
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2. AN ADDITIVE GAMMA FRAILTY MODEL FOR HERITABILITY AND LINKAGE

2.1 The model for linkage analysis

In this section, we describe a frailty model for sib pairs to test linkage between one locus and the gene
that influences the age at onset time. We also explain how to extend the model to more siblings and to test
linkage for 2 or more loci simultaneously.

We assume that the observations of different sib pairs are independent. For ease of notation, we de-
scribe the model for one sib pair. Let (T1, T2) be the survival times of the sib pair and (Z1, Z2) a pair of
latent variables (“frailties”) such that T1 and T2 are conditionally independent given (Z1, Z2) with hazard
functions t → Z1λ(t) and t → Z2λ(t), respectively, for a given “baseline hazard function” λ. Define
N IBD as the number of alleles IBD at the specific locus. The IBD number does not contain any informa-
tion on the marginal distributions of the ages at onset T1 and T2 of the sibs: so for all t � 0 and k = 0, 1, 2,
P(T1 > t |N IBD = k) = P(T1 > t) and similarly for T2. However, if the specific locus and the gene that
influences the age at onset are in proximity on the chromosome, the association of the survival times of
the sib pair should increase with the number of their alleles IBD at the specific locus; a sibling pair with
2 alleles IBD should have more similar survival times than a pair with zero alleles IBD at the locus. We
model correlation between the frailties Z1 and Z2 dependent on N IBD.

We model the frailties Z1 and Z2 as a linear combination of independent gamma-distributed random
variables. The first 2 variables depend on N IBD and represent the additive genetic contribution to the
frailty by the alleles at the specific locus, the third term represents the common environment and sharing
alleles unlinked to the specific locus, and the fourth term represents specific environment and non-sharing
alleles. This decomposition is explained in more detail in the following.

We assume that the father and the mother of the sib pair are unrelated and that there is no assortative
mating. Then, there are 4 unique alleles at the specific locus that are distinct by descent. We label the
paternal chromosomes containing the specific locus by (1, 2) and the maternal chromosomes by (3, 4).
The inheritance vectors for the 2 children are defined as

Vi = (Vi,1, Vi,2), i = 1, 2,

where Vi,1 equals 1 or 2, Vi,2 equals 3 or 4, and i runs over the siblings of the sib pair (Li, 1999). The
inheritance vectors indicate which alleles at the specific locus are transmitted from the father and the
mother to their 2 children. So if (vi,1, vi,2) = (1, 4), sib i inherited the information at the specific locus
from chromosomes 1 and 4. The variables U1, U2, U3, and U4 represent the genetic frailties due to the
alleles at the specific locus at the chromosomes of the father, (U1, U2), and the mother, (U3, U4). Since
it is assumed that the father and the mother are unrelated and there is no assortative mating, U1, U2, U3,
and U4 are independent.

We define the additive genetic frailties due to alleles at the specific locus for the father and mother as

ZF = U1 + U2,

ZM = U3 + U4.

For the 2 children, we define these additive genetic frailties as(
Z1,g

Z2,g

)
=

(
UV1,1 + UV1,2

UV2,1 + UV2,2

)
.

Taking into account the possible contributions to the disease not due to the specific locus, we add
a term U C which represents the frailty for the common environment and sharing alleles at loci that are
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unlinked to the specific locus and UE,i (i = 1, 2) for the specific environment and non-sharing alleles
for the 2 sibs. We assume that U1, . . . , U4, U C, UE,1, and UE,2 are independent and all have a gamma
distribution with inverse scale parameter η and shape parameter ν for U1, U2, U3, and U4, νc for U C, and
νe for UE,1 and UE,2. Then, the pair of frailties equals(

Z1

Z2

)
=

(
UV1,1 + UV1,2 + U C + UE,1

UV2,1 + UV2,2 + U C + UE,2

)
.

The pair (Z1, Z2) has a bivariate Gamma distribution, where Z1 and Z2 are both distributed as �(2ν +
νc + νe, η) with mean (2ν + νc + νe)/η. We set η = 2ν + νc + νe so that the expectation of Z1 and Z2
equals 1. Then, the variance of Zi and the correlation between Z1 and Z2 equal

Var Zi = 2ν + νc + νe

η2
= 1

η
, for i = 1, 2,

ρ = Cor (Z1, Z2) = ν

η
+ νc

η
.

The variables U1, . . . , U4, U C, UE,1, and UE,2 are assumed to be independent of N IBD, but the inheritance
vectors V1 and V2 are dependent on N IBD

(
N IBD = 1{V1,1=V2,1} + 1{V1,2=V2,2}

)
. Conditional on N IBD = k,

the frailty pair, (Z1, Z2)|(N IBD = k), still has a bivariate Gamma distribution with the marginal distribu-
tions as described before, but with correlation

ρk = Cor (Z1, Z2|N IBD = k) = η(kVar U1 + Var U C) = kν

η
+ νc

η

(for a derivation of this expression, see Appendix A of the supplementary material available at Biostatistics
online [http://www.biostatistics.oxfordjournals.org]). The first term of the correlation, kν/η, is positive if
an increasing number of alleles IBD at the locus results in an increasing association between the survival
times within the sib pairs. The parameter ν equals zero if there is no relation between the number of alleles
IBD at the locus and the association between the survival times within the sib pairs. The second term of
the correlation, νc/η, explains the association between the sibs due to common environment and sharing
alleles that are unlinked to the locus of interest. In order to detect genes that affect the survival time, we
try to find regions on the chromosome where genotypic similarity is highly correlated with similarity of
survival times. Genotypic similarity is defined in terms of the IBD number. So for every locus, we test
whether an increasing IBD number coincides with a more similar survival time. This means that for every
locus, we test whether ν is positive.

Conditional on N IBD, the inheritance vectors are not uniquely determined. For instance, if N IBD =
0, there are 4 combinations of the inheritance vectors possible (v1 = (1, 3) and v2 = (2, 4), v1 =
(1, 4) and v2 = (2, 3), v1 = (2, 4) and v2 = (1, 3), or v1 = (2, 3) and v2 = (1, 4)). However, all the
different possibilities give the same marginal distributions of the frailties and the same correlation between
Z1 and Z2.

The frailties are assumed to be gamma distributed. In that specific case, it is possible to write the
bivariate survival function of (T1, T2) conditional on N IBD in terms of the marginal survival function:

Sk(t1, t2) = P(T1 > t1, T2 > t2|N IBD = k)

=
(

1

S(t1)−σ 2 + S(t2)−σ 2 − 1

)ρk/σ
2

S(t1)
1−ρk S(t2)

1−ρk , (2.1)

with S the marginal survival function for the survival times T1 and T2 and σ 2 = 1/η the variance of
Z1 and Z2 (for a derivation of this expression, see Appendix A of the supplementary material available at
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Biostatistics online [http://www.biostatistics.oxfordjournals.org]). Note that Sk(0, t) = Sk(t, 0) = S(t) is
independent of the number of alleles IBD. If males and females have different marginal survival functions,
S is replaced by gender-specific survival functions.

With this model, we try to transform the variance decomposition model for quantitative traits to a
model for possibly censored (or truncated) survival data. In the variance decomposition model, the trait
value is decomposed into a linear combination of independent normally distributed random variables. In
the case of censored or truncated survival times, age at onset of the disease/event may not be observed.
As an alternative, we decompose the frailties as described above. So the frailties are viewed as latent
phenotypes.

In the decomposition of the frailty, the terms for specific environment and non-sharing alleles, UE,1
and UE,2, seem to be superfluous because UE,1 and UE,2 are always independent. However, if the terms
are excluded from the model, the correlation between the frailties of sibs with N IBD = 2 is always equal
to 1 and the model cannot be used to test heritability (see Section 2.2).

More sibs. The model can easily be generalized to more than 2 sibs. In Appendix B of the supplementary
material available at Biostatistics online (http://www.biostatistics.oxfordjournals.org), we explain how to
derive an expression for the survival function for 3 siblings in terms of the marginal survival function.
Here, we give only some special cases.

Let N IBD = (NIBD,12, NIBD,13, NIBD,23), the alleles IBD between the first and the second individual,
the first and the third, and between the second and the third individual. If NIBD,12 = 2, NIBD,13 = 0, and
NIBD,23 = 0,

S2,0,0(t1, t2, t3) = P(T1 > t1, T2 > t2, T3 > t3|NIBD = (2, 0, 0))

=
(

1

S(t1)−σ 2 + S(t2)−σ 2 − 1

)2ν

×
(

1

S(t1)−σ 2 + S(t2)−σ 2 + S(t3)−σ 2 − 2

)νc

S(t1)
νeσ

2
S(t2)

νeσ
2
S(t3)

(2ν+νe)σ
2
. (2.2)

If NIBD,12 = 1, NIBD,13 = 2, and NIBD,23 = 1,

S1,2,1(t1, t2, t3) = P(T1 > t1, T2 > t2, T3 > t3|NIBD = (1, 2, 1))

=
(

1

S(t1)−σ 2 + S(t2)−σ 2 + S(t3)−σ 2 − 2

)ν (
1

S(t1)−σ 2 + S(t3)−σ 2 − 1

)ν

×
(

1

S(t1)−σ 2 + S(t2)−σ 2 + S(t3)−σ 2 − 2

)νc

S(t1)
νeσ

2
S(t2)

(ν+νe)σ
2
S(t3)

νeσ
2
. (2.3)

Multiple loci model. The frailty model can be extended so that linkage can be tested for 2 or more
unlinked loci simultaneously. Define the variables U1, U2, Ũ1, and Ũ2 as the genetic frailties due to the
2 alleles on the first locus, (U1, U2), and the second locus, (Ũ1, Ũ2), of the father. The variables for the
mother, U3, U4, Ũ3, and Ũ4, are defined analogously. Since it is assumed that the father and the mother are
unrelated, that there is no assortative mating and that the 2 loci are unlinked, all variables are independent.

When we model 2 unlinked loci, the frailties for the sib pair are decomposed as

(
Z1

Z2

)
=

(
UV1,1 + UV1,2 + ŨṼ1,1

+ ŨṼ1,2
+ U C + UE,1

UV2,1 + UV2,2 + ŨṼ2,1
+ ŨṼ2,2

+ U C + UE,2,

)
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with (Vi,1, Vi,2) and (Ṽi,1, Ṽi,2) the inheritance vectors for the i th sibling at locus 1 and 2, respectively. The
variables U C, UE,1, and UE,2 are defined as before. We assume that U1, . . . , U4 and Ũ1, . . . , Ũ4 all have
a �(ν, η)-distribution. Then, Z1 and Z2 have, marginally, a Gamma distribution �(4ν + νc + νe, η) with
E Z1 = E Z2 = (4ν+νc+νe)/η and Var Z1 = Var Z2 = (4ν+νc+νe)/η

2, with 4ν/η2 = 2ν/η2+2ν/η2,
the sum of the variances due to the 2 loci. We set η = 4ν + νc + νe so that Z1 and Z2 have expectation 1
again.

An expression of the bivariate survival function of (T1, T2) conditional on the number of alleles IBD
at the 2 loci, (NIBD,1 = k, NIBD,2 = l), can be derived in the same way. The conditional bivariate
survival function, denoted by Sk,l , has the same form as Sk in (2.1) with ρk replaced by the correlation
ρk,l = Cor (Z1, Z2|NIBD,1 = k, NIBD,2 = l) = (kν + lν + νc)/η. When we condition the frailty on
the number of alleles IBD at a single locus, we recover the frailty for the single locus model. However,
the frailty found from the multilocus model has a mixture of Gamma distributions rather than a bivariate
Gamma distribution as we assumed for the single locus model.

2.2 Heritability

To investigate the genetic contribution to a quantitative trait, we reformulate the model. The model holds
for siblings (also for monozygotic twins). For a sib pair, we decompose the frailty as Zi = Ai +C +Ei , for
i = 1, 2, where Ai represents the additive genetics, C the common environment, and Ei the non-shared,
specific environmental effects for the i th sib in the pair (see also Yashin and others, 1999). Note that this
decomposition is very similar to the decomposition for linkage analysis. We assume that (A1, A2), C , and
E1 and E2 are independent and gamma distributed with inverse scale parameter η and shape parameters
2ν for A1 and A2, νc for C , and parameter νe for E1 and E2. Furthermore, we take A1 and A2 such that
the correlation Cor (A1, A2) = 1 for a monozygotic twin and Cor (A1, A2) = 1/2 for dizygotic twins
and siblings who are not twins (monozygotic twins share all alleles IBD and dizygotic twins and sibs who
are no twins on average half of the alleles). Again, we set η = 2ν + νc + νe so that E Z1 = E Z2 = 1.

The lowercase letters h2, c2, and e2 are defined as the proportions of variance of individual frailty
associated with additive genetic effects, shared environmental factors, and non-shared environmental fac-
tors, hence h2 = 2ν/η, c2 = νc/η, and e2 = νe/η. Then, h2 + c2 + e2 = 1. For these decompositions,
the correlations between monozygotic twins and dizygotic twins and between sibs who are not twins are

ρMZ = 2ν

η
+ νc

η
= h2 + c2,

ρDZ = 1

2

2ν

η
+ νc

η
= 1

2
h2 + c2. (2.4)

We define heritability as h2, estimate it by maximum likelihood, and test the hypothesis H0: h2 = 0 using
a likelihood ratio test.

2.3 Testing

To test whether there is a genetic effect on survival time, we test the hypothesis H0: h2 = 0 versus
H1: h2 > 0 or equivalently H0: ν = 0 versus H0: ν �= 0. If the null hypothesis is rejected, one or
more genes influence the survival times. To find the locations of these genes on the chromosomes, we
test for all loci in the data set whether they are linked to one of these genes; we test H0: ν = 0 against
H1: ν > 0.

The likelihood depends on the unknown marginal survival function S. If we assume that S belongs
to a family of parametric survival functions, the limit distribution of the likelihood ratio statistic is a
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50–50 mixture of a point mass at zero and a chi-square distribution with one degree of freedom (see,
e.g. van der Vaart, 1998, Chapter 16). The family of parametric distributions can, for instance, be cho-
sen by considering the non-parametric maximum likelihood estimator (NPMLE) based on only survival
data.

As an alternative, we use a common estimator for the nuisance parameter S for both the numerator
and the denominator of the likelihood ratio statistic and maximize the likelihoods with respect to the
remaining parameters. One way to estimate S is by maximizing the likelihood for the survival data of in-
dependent individuals. Generally, inserting an estimator for S into the likelihood ratio statistic will destroy
the asymptotic mixture distribution of the statistic. If we estimate S separately, the data of individuals who
have not been genotyped can also be used, and thus a considerably larger sample might be available to
estimate S than is used to construct the test statistic. Then, the asymptotic distribution of the likelihood
ratio statistic should not change much. This expectation was borne out in a simulation study (the data
were simulated from the estimated model found in Section 3). In Appendix C of the supplementary mate-
rial available at Biostatistics online (http://www.biostatistics.oxfordjournals.org), this simulation study is
described. We also verified it by heuristic theoretical arguments (available on request), which show that
estimating a nuisance parameter, based on additional independent observations, will always increase the
variability of the likelihood ratio statistic. In our situation, it will asymptotically behave under the null
hypothesis as a 50–50 mixture of a point mass at 0 and the distribution of (1 + µλ) times a chi-square
variable with one degree of freedom. Here, λ is the limiting value of the quotient n/m of numbers n and m
of observations used to construct the test statistic and to estimate S, respectively, and µ measures the rela-
tive informativeness of the 2 types of observations to estimate the nuisance parameter. In our application
(see Section 3), the factor (1+µλ) is close to 1, since m is considerably larger than n, so that the asymptotic
distribution is changed only little. Estimating S separately from the other parameters has the advantage
that it reduces the computing time when testing linkage because S does not have to be estimated for all
loci in the data set.

3. APPLICATION TO INTERVAL-CENSORED SURVIVAL DATA

Interval censoring occurs, for example, when individuals are followed up only at fixed intervals, for
example, by annual surveys. Let (B1, C1) and (B2, C2) be observation times for the 2 individuals of a
sib pair with B j � C j almost surely for j = 1, 2. We observe

(B j , C j ), � j := 1{Tj�B j }, � j := 1{B j <Tj�C j }, MD j ,

for j = 1, 2 ( j indicates the sib in the pair), where 1{·} denotes the indicator function and MD stands
for “marker data,” which are used to determine IBD numbers. Furthermore, the indicator function 1{T�B}
equals 1 if T � B and 0 otherwise.

We assume that the observations of different sib pairs are independent. In the description of the data,
we again restrict ourselves to one sib pair. We assume that the survival times (T1, T2) of a sib pair are in-
dependent of the observation times (B1, C1, B2, C2) and that the vector (B1, C1, B2, C2) has an unknown
density f(B1,C1,B2,C2).

In order to derive an expression for the likelihood, we assume that the data at a marker and the
survival data are conditionally independent given the numbers of alleles IBD at the particular marker.
Then,

P(T1 � t1, T2 � t2|MD) =
2∑

k=0

P(T1 � t1, T2 � t2|N IBD = k)P(N IBD = k|MD).
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The likelihood for one related pair and one specific marker is proportional to

lik((B1, C1, B2, C2,�1,�2, �1, �2, MD); ν, νc, νe, σ, S)

=
2∑

k=0

{(1 − Sk(0, B2) − Sk(B1, 0) + Sk(B1, B2))
�1�2

+ (Sk(0, B2) − Sk(0, C2) − Sk(B1, B2) + Sk(B1, C2))
�1�2

+ (Sk(0, C2) − Sk(B1, C2))
�1(1−�2)(1−�2)

+ (Sk(B1, 0) − Sk(B1, B2) − Sk(C1, 0) + Sk(C1, B2))
�1�2

+ (Sk(B1, B2) − Sk(B1, C2) − Sk(C1, B2) + Sk(C1, C2))
�1�2

+ (Sk(B1, C2) − Sk(C1, C2))
�1(1−�2)(1−�2)

+ (Sk(C1, 0) − Sk(C1, B2))
(1−�1)(1−�1)�2

+ (Sk(C1, B2) − Sk(C1, C2))
(1−�1)(1−�1)�2

+ Sk(C1, C2)
(1−�1)(1−�1)(1−�2)(1−�2)Prob(N IBD = k|MD)}. (3.5)

An expression in terms of the marginal survival function S is found after inserting the expression given in
(2.1). Because the observations of different sib pairs are assumed to be independent, the likelihood for all
pairs is simply the product of the term in the previous display for the n sib pairs.

In Section 2, we discussed the possibility of estimating the marginal survival function S beforehand.
For interval-censored survival data of m independent individuals, the likelihood is given by

m∏
i=1

(1 − S(Bi ))
�i (S(Bi ) − S(Ci ))

�i S(Ci )
1−�i −�i , (3.6)

with S the unknown marginal survival function and Bi , Ci , �i , and �i as defined before. If S is assumed
to be completely unknown, we can estimate the survival function by the NPMLE (see, e.g. Groeneboom
and Wellner, 1992). Otherwise, if S is a parametric distribution, the unknown parameter(s) of the survival
function can be estimated by their maximum likelihood estimators.

3.1 Application to interval-censored migraine data

Migraine is a highly prevalent disorder characterized by recurrent attacks of headaches, which are typi-
cally unilateral and have a pulsating quality. The headache is accompanied by a variety of symptoms such
as nausea or vomiting and an increased sensitivity to light and sound (photophobia and phonophobia). Due
to a lack of biological markers, migraine diagnosis relies mainly on symptomatology; a certain number
and combination of symptoms should be present in order to meet the commonly used diagnostic crite-
ria for migraine (Headache Classification Subcommittee of the International Headache Society, 2004).
Individuals who have several of the migraine symptoms, but not the right combinations or not enough
symptoms, are assigned as no-migraine patient. This makes it difficult to measure phenotypic similarity.

The data. The analyses were performed on longitudinal migraine data collected in a large sample of
Dutch twins and their families. The participants were volunteer members of the Netherlands Twin Reg-
istry, kept by the Department of Biological Psychology at the Vrije Universiteit in Amsterdam (Boomsma
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and others, 2002, 2006). The data were collected between 1991 and 2002, as part of an ongoing study
of health, lifestyle, and personality. Surveys were mailed to the participants at 6 different time points. In
each of these surveys, questions on headache and migraine were included. In surveys 2, 3, and 4 (1993,
1995, and 1997, respectively), participants were asked if they had ever been diagnosed with migraine by
a physician. In surveys 1, 5, and 6 (1991, 2000, and 2002, respectively), the participants answered a se-
ries of more detailed questions concerning headache symptoms. Based on these questions, subjects were
classified as affected or unaffected. Since a complete migraine diagnosis confirmed by a neurologist was
not available, the phenotype will be referred to as “migrainous headache.”

We have marker data at all 22 chromosome pairs (not the sex-chromosome). The number of markers
per chromosome varies between 63 (chromosome 22) and 284 (chromosome 1). The conditional proba-
bilities P(N IBD = k|MD) for k = 0, 1, 2 were computed with the software package Merlin (Abecasis
and others, 2002). We have IBD data of 258 dizygotic twin pairs. Heritability was estimated and tested
based on 3975 monozygotic and dizygotic twin pairs (also data from not-genotyped individuals were used).

The analysis. The marginal survival function for the age at the first migrainous headache attack may
differ between males and females. We therefore model gender-specific survival functions: SM for males
and SF for females. The formulas in Section 2 remain valid, but S has to be replaced by SM or SF,
depending on the gender of the individual. As mentioned before, we consider 2 models. For both models,
we estimated heritability and tested whether this was significantly larger than 0. Next, we computed lod
scores for all loci in the data set, that is, log to base 10 of the likelihood ratio.

In the first model, we assume that SM and SF follow shifted exponential distributions with unknown
shift and intensity parameter. This choice was based on the form of the NPMLE of SM and SF. The
unknown model parameters (including the shifts and intensities) were estimated by maximizing likelihood
based on twin data.

In the second model, the survival functions SF and SM are completely unknown; in which case, we
have a semiparametric frailty model. We estimated SM and SF by maximizing the likelihood in (3.6) based
on interval-censored migraine data of all monozygotic and dizygotic twins and their siblings. We inserted
these estimates in the likelihood function and assumed them known for further analysis. The asymptotic
distribution of the likelihood ratio statistic is close to a 50–50 mixture of a point mass at 0 and a chi-square
distribution with one degree of freedom, as argued in Section 2.

For both models, we used a grid search to maximize the likelihood. The expectation-maximization
algorithm is difficult to use because the individual likelihoods are summed over the number of alleles IBD
at the specific location at a chromosome.

Results for the parametric model. In the parametric model, we assume that the survival functions SM and
SF are equal to shifted exponential distributions. The shift and intensity parameters for males and females
are unknown. When estimating heritability or lod scores, the likelihood is maximized with respect to
these parameters simultaneously with the other parameters in the model. Since we estimated the shift and
intensity parameters for every locus separately, we found more than 1000 estimates (the number of loci).
Fortunately, for most loci, the estimates were exactly the same. For the males, we found the estimates 12.4
and 0.0093 for the shift and intensity parameters, and for the females, these estimates were equal to 10.0
and 0.0220. The corresponding survival functions are shown in Figure 1.

For estimating heritability, data of monozygotic and dizygotic twins were used. In total, we used data
of 3975 twin pairs. Heritability (based on the frailties) was estimated as 0.42 with a 95% confidence
interval [0.374; 0.461], slightly wider than in the semiparametric case. We computed lod scores and found
the most prominent peak at the end of chromosome 19, with a height of 1.86. A diagram of the lod scores
found for chromosome 19 is given in Figure 2. The lod score of 1.86 corresponds to a p-value of 0.0017.
Since many tests are performed, a multiple testing correction has to be made. In practice, the value 3
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Fig. 1. The NPMLE of the survival functions SM and SF (step functions) and the estimated survival functions in
the parametric model (smooth curves). Males, solid curves; females, dashed curves. The NPMLEs are based on
interval-censored survival data of monozygotic and dizygotic twins and the sibs in our data set. The estimated survival
functions in the parametric model re based on data of 258 dizygotic twins of whom estimated IBD numbers are
available.

is often taken as a threshold for significant lod scores, in which case none of the lod scores would be
significant.

Results for the semiparametric model. Based on interval-censored migrainous headache data (pheno-
types only) of all monozygotic and dizygotic twins and all sibs, we estimated the NPMLE of age at first
migrainous headache attack for males and females separately (based on 4791 males and 6796 females).
The NPMLEs are shown in Figure 1. Note that the estimates in the parametric and the semiparametric
model are quite close (although the data used are different). It is estimated that 72% of the Dutch females
will eventually have migrainous headaches at least once. For the Dutch males, this percentage is 38%.
We estimated heritability (based on the frailties), h2, as 0.37 with 95% confidence interval [0.323; 0.415].
For all loci in the data set, we computed the lod scores, and the most prominent peak was again found at
the end of chromosome 19 with a height of 1.36 (see Figure 2) and a p-value of 0.0062. None of the lod
scores were greater than 3.

The curves of the lod scores computed in the parametric and in the semiparametric model are very
similar for most chromosomes.

4. DISCUSSION AND SUMMARY

In this paper, we presented an additive gamma frailty model for analyzing interval-censored migraine
data for siblings. The aim was to test whether the age at which people experience their first migraine
attack is heritable and, if so, to find locations at the chromosomes that are linked to the migraine genes.
Heritability was estimated and tested based on almost 4000 twin pairs. It was estimated as 0.42 in the
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Fig. 2. Lod scores for testing linkage for the markers at chromosome 19 for the parametric model (solid curve) and
the semiparametric model (dashed curve).

parametric model and 0.37 in the semiparametric model, in both cases with associated p-values less than
0.001. We defined heritability as the proportion of variance of the frailty associated with genetic effects
since age-at-onset data is not available. Estimates of heritability based on actual onset times may differ
from our estimates. Linkage analysis was only based on the genotyped dizygotic twin pairs; 258 pairs in
total. The highest lod score we found was 1.86 at the end of chromosome 19, less than the threshold of 3.
More twins will be genotyped in the near future to increase the sensitivity of the analysis.

With frailty models, dependent data are modeled such that the dependence structure between the
relatives (in our case, siblings) does not effect the marginal survival function of the age at onset. Although
the model was presented in the context of sibship data, it can be easily extended to medium-sized families.
The genetic component of the frailty will remain the same, but chromosomes of more than 4 different
individuals play a role (see, e.g. Korsgaard and Andersen, 1998). The term for the common environment
should be adapted to the kinship between the 2 individuals; “the common environment” between sibs
may be different from the common environment between, for instance, father and son. The last term, the
specific environment and non-sharing alleles, is specific for all individuals and can be left unchanged.
However, for larger sibships, even for a sibship with 3 siblings, the expression of the survival function
and therefore also of the likelihood is complicated. The application of this model is therefore limited to
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small pedigrees or even to siblings. Variance component models can accommodate any type of pedigree,
but the assumption of normal survival times that is often made is dubious. Recently, Diao and Lin (2006)
generalized the variance component models. They presented a model in which the distribution function
of the survival times is assumed to be unknown and is also applicable in practice for extended pedigrees.
The unknown parameters in the model are estimated by the maximum likelihood estimators, and linkage
is tested with the likelihood ratio test. Although the model can handle any kind of censoring in theory,
the expression of the likelihood might be too complicated for current status and interval-censored data as
used in this paper. Diao and Lin (2006) implemented their method in a computer program for right- and
left-censored data.

Our aim is to find locations linked to genes that affect the age at the first migraine attack. The analyses
were performed on data from a Dutch twin cohort. In practice for linkage analysis, families are often
ascertained through their phenotypes; for instance by having children with the disease of interest. In
that case, the likelihood should be adapted in order to get estimators and a test statistic that are free of
ascertainment bias. In the literature, 3 different methods are proposed. The first method is to consider the
retrospective likelihood; that is, the probability of the observed marker data conditional on the phenotypes
(see, e.g. Li and Zhong, 2002). The likelihood ratio statistic based on the retrospective likelihood is valid
for any ascertainment scheme. The second method is to use the conditional likelihood function conditional
on the ascertainment event; for instance the event “at least 2 siblings are affected before a certain age t .” In
this case, we have to assume that the n sibships collected are a random sample of all sibships that satisfy
the ascertainment condition (see Sun and Li, 2004). The third method is to use an ascertainment-adjusted
maximum likelihood approach as described in Sun and Li (2004). This is only possible if the sampling
scheme of families is clearly defined and followed. In case only families with at least 2 sibs being affected
are of interest, information of families with at least 2 siblings (affected or not) are collected. Marker data
of only the families with at least 2 affected siblings is gathered. The ascertainment-adjusted maximum
likelihood is defined as the probability of the phenotypes of the siblings of all families (so also with zero
or one affected sibling) and the observed marker data of the families with at least 2 affected siblings.

For mathematical convenience, we assumed that the frailty is gamma distributed. Only if the frailty
has a gamma distribution is it possible to give an explicit expression of the bivariate survival function in
terms of the marginals. The frailty is decomposed as a sum of 4 independent gamma-distributed frailty
components with a common scale parameter so that the frailty itself is again gamma distributed.

We have considered gender-specific survival functions in the analysis of interval-censored migraine
data. In general, this approach works well for a discrete covariate without many categories. However, it is
not applicable in case of continuous covariates or discrete covariates with many categories. Then, the like-
lihood function cannot be written in terms of the marginal survival function but should be written in terms
of the hazard function. Linkage can still be tested with the likelihood ratio statistic, but now the likelihood
function has to be maximized with respect to the hazard function or an estimator for the hazard function
must be inserted into the likelihood ratio statistic (see, e.g. Zhong and Li, 2002; Li and Zhong, 2002).

The score test provides an alternative to the likelihood ratio test which is less model dependent and
therefore more robust against misspecification of the model. Moreover, the score test has the advantage
that the score statistic has to be computed under the null hypothesis only. However, defining the score
statistic requires some work; especially in the case of interval censoring (like the migrainous headache
case) and if the IBD numbers are not known exactly. The latter case requires a summation within the log-
arithm in the log-likelihood (see (3.5)). Zhong and Li (2004) propose a joint proportional hazards model
for linkage and association due to linkage disequilibrium. The hazard function of developing disease is
defined as a product of a baseline hazard, a frailty term, and a term for the genetic association. The frailty
term was defined in a similar way as the frailty term in our model, except that they left out the term for
specific environment. For this model, not only (censored) survival data and IBD numbers but also data on
genotypes at the marker locus must be available.
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