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Abstract

Aim Glucocorticoids are efficacious anti-inflammatory agents, but, in susceptible individuals, these drugs may induce

glucose intolerance and diabetes by affecting b-cell function and insulin sensitivity. We assessed whether polymorphisms in

the glucocorticoid receptor gene NR3C1 associate with measures of b-cell function and insulin sensitivity derived from

hyperglycaemic clamps in subjects with normal or impaired glucose tolerance.

Methods A cross-sectional cohort study was conducted in four academic medical centres in the Netherlands and

Germany. Four hundred and forty-nine volunteers (188 men; 261 women) were recruited with normal glucose tolerance

(n = 261) and impaired glucose tolerance (n = 188). From 2-h hyperglycaemic clamps, first- and second-phase glucose-

stimulated insulin secretion, as well as insulin sensitivity index and disposition index, were calculated. All participants

were genotyped for the functional NR3C1 polymorphisms N363S (rs6195), BclI (rs41423247), ER22 ⁄ 23EK

(rs6189 ⁄ 6190), 9b A ⁄ G (rs6198) and ThtIIII (rs10052957). Associations between these polymorphisms and b-cell function

parameters were assessed.

Results In women, but not in men, the N363S polymorphism was associated with reduced disposition index (P = 1.06

10)4). Also only in women, the ER22 ⁄ 23EK polymorphism was associated with reduced first-phase glucose-stimulated

insulin secretion (P = 0.011) and disposition index (P = 0.003). The other single-nucleotide polymorphisms were not

associated with b-cell function. Finally, none of the polymorphisms was related to insulin sensitivity.

Conclusion The N363S and ER22 ⁄ 23EK polymorphisms of the NR3C1 gene are negatively associated with parameters of

b-cell function in women, but not in men.

Diabet. Med. 29, e211–e216 (2012)
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Introduction

Excess glucocorticoid levels induce glucose intolerance [1,2] and

are associated with incident diabetes [3]. In addition to gluco-

corticoid-induced insulin resistance [4], glucocorticoid-induced

b-cell dysfunction is a hallmark of glucocorticoid-induced
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adverse metabolic effects [2,5–7]. Glucocorticoids exert many

effects by binding to its the cytosolic glucocorticoid receptor,

following which the ligand-activated glucocorticoid receptor

translocates to the nucleus where it regulates target gene tran-

scriptional activity. Considerable variability exists in the sensi-

tivity to glucocorticoids across individuals, a phenomenon that

was linked to functional polymorphisms in the glucocorticoid

receptor gene (NR3C1) [8–10]. As such, the NR3C1 variants

ER22 ⁄ 23EK [two single-nucleotide polymorphisms (SNPs) that

are in complete linkage disequilibrium] [11] and 9b A ⁄ G [12]

may induce relative glucocorticoid resistance, whereas the

NR3C1 gene variants BclI C ⁄ G [13] and N363S [14] are asso-

ciated with enhanced glucocorticoid sensitivity. The effects of the

TthIIII polymorphism are currently less clear [15]. Importantly,

several of these SNPs have been linked to metabolic variables. In

some studies, glucocorticoid resistance was associated with

insulin sensitivity, increased lean body mass and reduced waist

circumference [11,16,17]. In contrast, glucocorticoid sensitivity

may be associated with a less favourable metabolic profile

[18,19]. Importantly, gender-specific effects have frequently

been observed [8–10,17,19]; for example, the ER22 ⁄ 23EK

variant was associated with beneficial body composition, muscle

strength and metabolic profile in men, but not in women [16].

It is currently unknown whether these NR3C1 gene polymor-

phismsaffectb-cell function. Interestingly,micewithspecificover

expression of the glucocorticoid receptor in the b-cell become

diabetic because of b-cell failure [20]. We hypothesized that

alterations inglucocorticoidsensitivityattributable toSNPs inthe

NR3C1 gene could relate to b-cell function. This hypothesis was

addressedforthefirsttimeinthepresentstudy,where449subjects

were genotyped for NR3C1 polymorphisms and b-cell function

was measured by the gold-standard hyperglycaemic clamp.

Research design and methods

Cohorts

Four hundred and forty-nine Caucasian subjects were recruited

from three independent studies from the Netherlands and one

from Germany [21–25]. Characteristics and inclusion criteria

of the separate cohorts are provided in the Supporting Infor-

mation (Tables S1 and S2).

Hyperglycaemic clamp procedure

All participants underwent a hyperglycaemic clamp at

10 mmol ⁄ l glucose for at least 2 h as described previously

[21,22,24,25]. First-phase glucose-stimulated insulin secretion

was computed as the sum of the insulin levels during the first

10 min of the clamp. Second-phase glucose-stimulated insulin

secretion was determined as the mean insulin level during the

last 40 min of the second hour of the clamp (80–120 min). The

insulin sensitivity index was defined as the glucose infusion rate

(M, lmol min)1 kg)1) divided by the plasma insulin concen-

tration (I, pmol ⁄ l) during the last 40 min of the clamp (M ⁄ I,

lmol min)1 kg)1 pmol)1 l)1), which was shown to correlate

well with insulin sensitivity measured by the hyperinsulinae-

mic–euglycaemic clamp [26]. Insulin secretion adjusted for

insulin sensitivity was expressed as the disposition index,

calculated by multiplying first-phase glucose-stimulated insulin

secretion and insulin sensitivity index [27].

Genotyping

Based on the available literature, five SNPs were genotyped:

TthIIII (rs10052957), ER22 ⁄ 23EK (rs6189 ⁄ 6190), N363S

(rs6195), BclI site (rs41423247) and 9b A ⁄ G (rs6198), using

the Sequenom platform (Sequenom, San Diego, CA, USA). The

genotyping success rate was above 98% for all SNPs and

samples measured in duplicate (�5%) were in complete con-

cordance. The SNPs did not deviate from Hardy–Weinberg

equilibrium (Haploview program; MIT, Harvard Broad Insti-

tute, Cambridge, MA, USA). Individual haplotypes were con-

structed using SNPHAP (http://www-gene.cimr.cam.ac.uk/

clayton/software/snphap.txt).

Statistics

The effect of the SNPs on b-cell function was examined with

linear regression assuming an additive model. To take into

account the family relatedness, empirical standard errors were

used (using the generalized estimating equations). For the

monozygotic twins we computed the mean of the b-cell

measures and included only these mean measures in the analysis.

The data from the non-identical twins were both used. The

analyses of both first- and second-phase glucose-stimulated

insulin secretion were adjusted for age, BMI, study centre, glu-

cose tolerance status (normal ⁄ impaired glucose tolerance) and

insulin sensitivity index. For the analysis of the insulin sensitivity

and disposition indices, the insulin sensitivity index was

removed from the covariates. All outcomes were log transformed

prior to analysis. Because NR3C1 polymorphisms have previ-

ously been shown to display gender-specific effects, male and

female participants were analysed separately [8–10]. All data are

given as estimated mean (95% CI). After Bonferroni correction

for multiple testing, results were regarded to be significant at a

level of P < 0.012 (four tests). For all statistical analyses, SPSS

version 18.0 for Mac OS X (SPSS, Chicago, IL, USA) was used.

Results

Subject characteristics

In total, 449 participants were recruited from four study centres

(see also Supporting Information, Tables S1 and S2).

Genotypes and haplotypes

The observed genotype and haplotype frequencies are shown in

Fig. 1 and were similar to those previously reported [8–20].
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Associations with b-cell function

The N363S variant was associated with reduced disposition

index (P = 1.06 10)4) and showed a trend towards reduced

first-phase insulin secretion in women (Table 1). Also, in

women only, the ER22 ⁄ 23EK polymorphism was associated

with reduced first-phase glucose-stimulated insulin secretion

(P = 0.011) and disposition index (P = 0.003). No other asso-

ciations were observed between NR3C1 SNPs and measures of

b-cell function, neither in men, nor in women. Similar results

were obtained for the associations between NR3C1 haplotypes

and b-cell function parameters (see Supporting Information,

Table S2). The results of the analyses were not different when

subjects with normal glucose tolerance and those with impaired

glucose tolerance were analysed separately (data not shown).

Associations with insulin sensitivity

None of the NR3C1 SNPs or haplotypes was significantly

associated with insulin sensitivity (Table 1 and Supporting

Information, Table S2, respectively).

Discussion

In four cohorts of subjects with normal glucose tolerance and

those with impaired glucose tolerance, we found that the

NR3C1 SNPs N363S and ER22 ⁄ 23EK were associated with

reduced b-cell function parameters in women. Both first-phase

glucose-stimulated insulin secretion and disposition index,

which denotes the adaptation of b-cells to prevailing insulin

sensitivity, were influenced. As expected, the corresponding

NR3C1 haplotypes containing these polymorphisms provided

identical results. The N363S SNP enhances glucocorticoid

sensitivity by increasing gene transcription [14]. Indeed, in

various studies, a link was established between the N363S SNP

and characteristics of a Cushingoid phenotype, including

increased BMI and waist circumference, dyslipidaemia and

augmented fasting insulin levels, indicating reduced insulin

sensitivity [10,19] The ER22 ⁄ 23EK SNP, however, demon-

strated reduced glucocorticoid receptor activation in vitro, and

relative glucocorticoid resistance in vivo [11,16]. As such, in

men, the ER22 ⁄ 23EK was associated with a beneficial meta-

bolic phenotype, including increased muscle mass and strength,

lower LDL cholesterol and insulin levels [11,16]. In contrast,

female carriers of the ER22 ⁄ 23EK SNP were at increased risk

to develop cardiovascular disease [28]. In another cohort,

carriers of the ER22 ⁄ 23EK had higher HbA1c levels as

compared with non-carriers [29], thus raising doubt on the

hypothesis that this SNP may induce a more favourable

metabolic profile, especially in women.

More recently, impaired glucose-stimulated insulin secretion

was shown to be another hallmark of glucocorticoid-induced

adverse metabolic effects both in vitro and in vivo in humans,

where several measures of b-cell function were impaired [2,5–

7]. Furthermore, mice over expressing the glucocorticoid

receptor specifically in b-cells developed diabetes through b-cell

failure [20]. Our present data support the concept that gluco-

corticoids impair b-cell function.

Interestingly, the associations between SNPs in the NR3C1

gene and b-cell function parameters were only observed in

women, not in men. As outlined above, gender-specific effects

of NR3C1 gene variants have been observed in various studies

for various anthropometric and metabolic variables [8–

10,16,17,19]. Additionally, gender-related hormonal factors

are known to affect b-cell function [30]. As such, pre-meno-

pausal women and women receiving oestrogen replacement

therapy have reduced prevalence of diabetes, which has been

attributed to the b-cell protective effects of oestrogens [30].

Furthermore, the male sex hormone testosterone may also

affect b-cell function [31]. The effects of NR3C1 polymor-

phisms on b-cell function may therefore interact differently

with sex hormones.

An important limitation of the present study is the relatively

small number of participants that were included, although this

cohort is the largest to undergo a hyperglycaemic clamp in the

context of genetic analysis currently available in the literature.

We cannot rule out the possibility to have missed subtle effects

of other NR3C1 polymorphisms on b-cell function variables.
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Another limitation is the fact that the SNPs did not tag the

whole NR3C1 gene, therefore we cannot exclude that the

associations found were caused by another untested SNP,

although, given the extensive literature on the function of the

SNPs, this seems unlikely. We fully subscribe to the need for

replication of these data, although such replication is non-

trivial because the hyperglycaemic clamp methodology is

demanding for both researchers and participants.

In conclusion, this is the first report to show that the N363S

and ER22 ⁄ 23EK NR3C1 gene variants are associated with

reduced first-phase glucose-stimulated insulin secretion and

disposition index in women, but not in men. This may point to

a differential effect of genetically determined variation in glu-

cocorticoid receptor activity in women as compared with men

in the adaptation of (first-phase) insulin secretion to insulin

sensitivity.
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