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1 � Introduction
In recent years, epigenome-wide association studies (EWASs) have identified thousands of loci where 
DNA methylation is associated with complex human traits, diseases, and environmental exposures. 
The majority of these studies have focused on DNA methylation,1 which is one of the best-understood 
epigenetic mechanisms. The role of DNA methylation in development and environmental responses is 
well established; however, many more epigenetic mechanisms exist that are at present largely under-
explored in EWASs.2, 3

The results from EWA studies are valuable for understanding the underlying pathways of traits, 
and for the development of biomarkers of diseases and environmental exposures. Yet, the interpreta-
tion of epigenetic associations is not easy. Because DNA methylation is dynamic, DNA methylation 
signatures associated with a disease might be causal to the disease or may have arisen secondary to 
disease development. Another option is that the association is caused by a third factor that influences 
DNA methylation and the disease independently (for example, lifestyle, prenatal exposures, or genetic 
variants). Although the epigenome is often discussed in the context of environmental explanations for 
diseases, the epigenome is also shaped by genetic influences. In fact, the epigenome is an important 
mediator of genetic variation in regulatory regions of the genome on complex traits and disease.4 For 
instance, disease-associated SNPs are often associated with expression levels of transcription factors, 
which in turn drive variation in DNA methylation level of distal binding sites.5

EWA studies are contributing to the creation of catalogs of disease-, trait-, and exposure-associated 
epigenetic variation.6 At the same time, large-scale methylation Quantitative Trait Loci (mQTL) analy-
ses are performed. In mQTL studies the goal is to map associations between genetic variants (typically, 
Single Nucleotide Polymorphisms, SNPs) and DNA methylation levels across the genome.7 First, the 
results of such mQTL projects have led to catalogs that are valuable for providing insights into the 
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downstream effects of genetic variants identified in genome-wide association studies (GWAS), because 
SNPs identified as genome-wide significant can be then be characterized in their roles as mQTLs. 
Second, catalogs deliver “instruments” for so-called Mendelian Randomization (MR) analysis. MR has 
become a feasible and popular approach to examine causal relationships between DNA methylation 
and a trait of interest.8,9 The basic MR idea was proposed by Katan10,11: if low cholesterol has a causal 
effect on the risk to develop cancer, a genotype that reduces cholesterol level should increase the risk 
of cancer.10 The rationale for using genotypes is to rule out effects of confounding factors: genotypes 
are randomly assigned at conception.

In this chapter, we discuss how twin-family studies combined with measured genetic information 
(e.g., SNPs) and epigenetic information (e.g., DNA methylation) can make a unique complementary 
contribution to these ongoing efforts in the field of human epigenetics. We discuss two distinct applica-
tions. We first describe the classical twin design and its extensions with measured genetic information 
that can provide information on the causes of epigenetic variation, including estimating the total heri-
tability of epigenetic marks, estimating the contribution of measured SNPs to the total heritability, and 
examining age- and sex-specific genetic and environmental influences on epigenetic variation. Such 
studies contribute to catalogs of between-individual variation in DNA methylation.12 Second, we de-
scribe an integration of MR with the Classical Twin Design.13 This model can contribute to elucidating 
the nature of the relationship between, for example, DNA methylation level at a CpG site and a complex 
trait or exposure, allowing to test the role of genetic pleiotropy and the role of causation and its direction.

2 � Combining twin-family designs with measured genetic variants  
to study the causes of epigenetic variation

In the first part of this chapter, we discuss models that focus on the question: what are the causes of 
variation in epigenetic marks between individuals, and more specifically what part of variation is due to 
genetics and what part is due nongenetic causes? We will illustrate the application of these models by 
discussing a study conducted by ourselves and colleagues12 in the Netherlands Twin Register.14 In this 
study, we analyzed data from a large cohort of twins and family members for whom DNA methylation 
was measured across the genome with the Illumina 450k array in whole blood. The data were used to 
estimate the overall contribution of genetic and environmental effects to variation in DNA methyla-
tion level at individual sites, the variance explained by genome-wide SNPs, and to examine interaction 
of genetic and environmental influences with age and sex. The results of this study are described in a 
catalog that is available at http://bbmri.researchlumc.nl/atlas/.

2.1 � SNP heritability
Classical twin and family designs allow to estimate the proportion of variation in a trait that is explained 
by all genetic variants in a population (i.e., the heritability; h2), because the genetic relations among 
biological relatives are known: parents and offspring share 50% of their genes identical by descent 
(IBD), siblings and DZ twins 50% on average, and MZ twins share all their genetic material. When re-
semblance for observed traits reflects the differential genetic resemblance, this supports genetic influ-
ences on these traits, which can be estimated for example by genetic structural equation modeling.15,16

Methods that incorporate measured genotypes allow to estimate the proportion of variation in a 
trait that is explained by a given set of genetic variants, usually a large set of SNPs that are commonly 

http://bbmri.researchlumc.nl/atlas/
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genotyped or imputed and which have a minor allele frequency above a certain threshold. Any two in-
dividuals will differ in the extent to which they share a copy of a genetic variant and measured genetic 
relationships among “unrelated” individuals form the basis to estimate the “SNP heritability” of traits 
(hSNPs

2), that is, the variance in a trait that is explained by the additive effects of all measured or imputed 
genome-wide SNPs together.17 This estimate of hSNPs

2 is not expected to equal h2 of the same trait be-
cause hSNPs

2 only includes the effects variants that are tagged by genotyped or imputed SNPs. On the 
other hand, h2 captures the effects of all variants, common and rare. The difference between hSNPs

2 and 
h2 can provide insight into the contribution of common variants to a trait of interest.

The method consists of two main steps. In the first step, a so-called genetic relationship matrix 
(GRM) is constructed based on genome-wide SNP data. The GRM summarizes the genetic similar-
ity between all individuals in the dataset. The GRM of (presumed) unrelated people contains the very 
small genetic relationships between all pairs of individuals. Each value in the matrix represents (a stan-
dardized measure of) the proportion of alleles that is shared identity-by-state (IBS) between a pair of 
individuals. The approach is based on the idea that all people are distantly related to each other because 
we all share common ancestors in the distant past. In the second step, the phenotypic resemblance of 
individuals is modeled as a function of their genetic relatedness in order to estimate the contribution of 
the set of input SNPs that was used to construct the GRM to the variation in the phenotype of interest. 
When genetically more similar individuals are also phenotypically more similar, the SNP heritability 
will be greater than zero. The principle is similar to classical twin/family designs, in which the herita-
bility (h2) is estimated by modeling (observed) phenotypic similarity as a function of the known genetic 
similarity of twins (or other relatives).

One frequently used software program for performing this type of analysis is Genome-wide 
Complex Trait Analysis (GCTA).18 GCTA can calculate GRMs based on genome-wide SNP data from 
a group of individuals, and can estimate in a subsequent step the heritability with a method called 
genome-based restricted maximum likelihood (GREML).18,19

The approach was first introduced to the human genetics community (it has been in used in animal 
breeding for longer) in a paper by Jian Yang and colleagues in 2010, where it was applied to estimate 
the proportion of variation in human height that is explained by all genome-wide common SNPs20 and 
later by multiple other papers that refined the method. The results illustrated that 45% of the variance 
in height is explained by SNPs. Two important observations followed from this: (1) the SNP heritabil-
ity of height was much larger than the variance explained by (genome-wide significant) SNPs that had 
been identified in 2010 by GWAS (~ 5%). This finding revealed that height is influenced by many more 
common SNPs than the ones that had already been identified, but that the effects of those SNPs are too 
small to individually reach significance in GWAS and (2) the SNP heritability of height was smaller 
than the total heritability of height (which is about 80%), which suggested that height is also influenced 
by genetic variants that are not or imperfectly tagged by the SNPs tested in GWAS (common SNPs).

2.2 � Estimating total heritability based on measured genetic relationships
The estimation of h2 with twin-family data does not require measured genetic information (i.e., geno-
typed DNA); however, if such information is available, one can calculate the empirical amount of genetic 
material that family members share. Although the proportion of sharing is fixed for parent–offspring 
pairs (because a parent passes exactly half of his/her chromosomes to a child), and for MZ twins (who 
always inherit 100% of the same genetic material from their parents, because they are derived from a 
single zygote), the proportion of genetic material that is shared by DZ twins and siblings varies. Because 
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of the random process of segregation, some sib-pairs will have inherited more than 50% of their DNA 
from the same parent, and other pairs less than 50%, with the population average 50%.

Measured data on genome-wide genetic variants have been used to address the assumption of the 
classical twin model that the proportion of genetic material that DZ twins have inherited from the same 
parent (IBD sharing) is on average 0.5 (50%). Using genome-wide microsatellite marker data, Peter 
Visscher and colleagues demonstrated that DZ twins and siblings indeed on average share about 50% 
IBD.21,22 They also showed that most (95%) DZ twins and siblings share between 42% and 58% of 
their genome IBD.

In addition to verifying assumptions of the classical twin design, measured IBD information can 
also be integrated with the classical twin design. Rather than specifying the theoretical value for the 
correlation between additive genetic values (e.g., 0.5 for all DZ twins), one can plug in the actual (mea-
sured) genetic relationships of all twins in the model instead. Similar to classical twin analyses, these 
analyses can be used to estimate h2, which will capture the contribution of all genetic variants (common 
and rare). Using measured IBD sharing of sib-pairs instead of the fixed value of 0.5, the heritability of 
height was estimated at 0.86, which is highly consistent with results from classical twin studies.22 The 
approach can also be used to estimate the heritability due to all variants (common and rare) within a 
particular genomic region. For example, using SNP data, we calculated IBD sharing of DZ twins and 
sib-pairs for variants in the IL6R gene on chromosome 1, which indicated that additive effects of all 
variants segregating in this region explain 69% of the variation in soluble interleukin-6 receptor level.23 
This estimate was very close to the total heritability of this trait and suggests that the genetic variance 
of soluble interleukin-6 receptor level is almost entirely explained by genetic variation at this locus.

With genome-wide SNP data that are typically used for GWAS and are nowadays widely available 
in many twin cohorts, genetic relationships can be calculated with programs such as GCTA between 
any pair of individuals, both unrelated people and relatives.

2.3 � Estimating total and SNP heritability simultaneously
In cohorts that include both closely and distantly related individuals, the total heritability (h2) and SNP 
heritability (h2

SNPs) can be estimated simultaneously. The approach, introduced by Noah Zaitlen and 
colleauges,24 makes use of two GRMs: one GRM that contains the relationships between all individuals 
in a sample and a second GRM for the same individuals in which all genetic relationships smaller than 
0.05 (distant genetic relationships) are set to zero. This makes the estimates of genetic relatedness in the 
second GRM equivalent to the proportion in the genome shared identity-by-descent (IBD). In essence, 
the covariance between individuals for a trait of interest, for instance DNA methylation level at a CpG 
site, is modeled as a function of the (very small) genetic covariance between unrelated individuals and 
the (larger) genetic covariance between relatives (Box 1). The first allows to estimate the variance ex-
plained by SNPs, and the second allows to estimate the variance explained by all other genetic variants. 
The sum of these two gives the total genetic variance.

2.4 � Application to DNA methylation data from blood
We will illustrate an application to DNA methylation by discussing a study from the Netherlands 
Twin Register conducted by ourselves and colleagues.12 In 2603 adult individuals (mean age 37.2, 
s.d.=13.3, 66% females), genome-wide DNA methylation was measured with the Illumina 450k array 
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and genome-wide SNP data were generated with the Affymetrix6 array (or extracted from whole-
genome sequence data for a small subset of subjects). The study included predominantly twins (769 
MZ and 424 DZ twin pairs), and a small group of their parents, siblings, and spouses.

DNA was extracted from whole blood, and DNA methylation level was measured following bi-
sulfite treatment of the DNA at more than 450,000 sites (mostly CpG sites) across the genome.25 In 
DNA that is derived from a mixture of cells (such as whole blood), the methylation level represents a 
continuous variable with values that may range between 0 and 1. For example, a methylation level of 1 
means that all DNA strands had a methyl group attached at this position and a value of 0.5 means that 
50% of all DNA strands had a methyl group attached at this position. The latter may occur when the 
location is methylated on one chromosome, as happens at many positions on one of the two copies of 
each X-chromosome in women, or when the position is methylated in one cell type, or even a subset of 
cells from the same cell type, from which the DNA was extracted. The methylation data were adjusted 
for several commonly used covariates, including technical batch information, age, sex, and white blood 
cell counts. The analyses focused on autosomal methylation sites and genotyped, common (minor al-
lele frequency (MAF)>0.01), autosomal SNPs measured by the Affymetrix6 genotyping array.

2.4.1 � Classical twin model
We first computed classical twin correlations and fitted models, which estimated the variance explained 
by additive genetic effects (A), nonadditive genetic effects (D), common environment (C), and unique 
environmental effects (E) at individual methylation sites (Fig. 1A and B). The pattern of the MZ and 
DZ twin correlations suggested that the resemblance of twins for DNA methylation level is mainly due 
to additive genetic influences; the average correlation in MZ twins was 0.20; approximately twice as 
large as the average correlation in DZ twins (r = 0.09). Full models that allowed for resemblance due to 
sharing of the environment showed that so-called common environmental effects (C) shared by twins ex-
plained relatively little variation across the adult peripheral blood methylome (on average 3%, s.d.=5%), 
with significant C effects at 185 methylation sites. Models that included genetic dominance (D: nonad-
ditive genetics) showed that these effects explained on average 8% of variance in DNA methylation 
(s.d.=12%), with significant effects at 241 methylation sites. Additive genetic influences had a larger 

Box 1  Equations
For each individual CpG (CpGi), the expected covariance was modeled as a function of two GRMs, the additive genetic 
variance (σ2

IBD
), and the variance explained by genome-wide SNPs (σ2

SNPs
) as follows:

where cov(CpGi)n ∗ n is the expected covariance of DNA methylation at CpGi between individuals, adjusted for covariates, 
GRM

IBS
n ∗ n is the GRM describing the relationships between all individuals, GRMn ∗ n

IBS > 0.05
 is the GRM in which all genetic 

relationships < 0.05 IBS (distant genetic relationships) are set to zero making the estimates of genetic relatedness 
equivalent to the proportion in the genome shared identity-by-descent (IBD), σ2

SNPs
 is the variance explained by all 

SNPs, the term (σ 2
IBD  − σ2

SNPs) denotes the difference between the total genetic variance and the variance explained by 
SNPs, In ∗ n is an identity matrix, which always have ones on the main diagonal and zeros elsewhere, and σ e

2
 reflects the 

variance attributable to residual effects (“unique environment,” which may include environmental influences unique to each 
individual, stochastic influences and measurement error). The symbol ⊗ is used to denote multiplication of matrices. The 
total heritability (h2) was calculated as: h2 = σ2

IBD /(σ
2
IBD  + σ2

e). The proportion of variance explained by genome-wide SNPs 
was calculated as: h

2
SNPs = σ2

SNPs /(σ2
IBD  + σ2

e) and the proportion of the heritability explained by SNPs was calculated as:  
h

2
SNPs/h

2
IBD. n ∗ n denotes the dimension of each matrix (where n = the number of individuals).

cov .CpGi GRM GRM
n n n n

IBS
n n
IBS( ) = ⊗ + ⊗ −(∗ ∗ ∗

>σ σ σSNPs IBD SNPs
2 0 05 2 2 )) + ⊗∗In n σ e

2 ,
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FIG. 1

Genetic and environmental influences on genome-wide DNA methylation levels.
Estimates from classical twin modeling in 769 and 424 DZ twin pairs. (A) Histograms of genome-wide ACE 
model estimates: variance explained by additive genetic effects (a2, red), common environmental effects  
(c2, purple) and unique environmental effects (e2, green). (B) Histograms of genome-wide ADE model 
estimates: variance explained by additive genetic effects (a2, red), nonadditive genetic effects (d2, purple) and 
unique environmental effects (e2, green). Y-axes are truncated. (C) Scatterplots of DNA methylation levels in 
MZ and DZ twin pairs at four exemplary CpG sites. For illustrative purposes, methylation beta values (which 
represent methylation proportion) obtained after normalization are plotted in this figure, whereas all analyses 
were performed on normalized methylation M values, corrected for a number of covariates (such as age, sex, 
technical batch information, and white blood cell counts). Four examples of CpG sites were selected from the 
most variable CpG sites with high heritability (h2 = 0.56; upper left), high SNP heritability (h2

SNPs = 0.81; upper 
right), low heritability (h2 = 0.18; lower left) and low SNP heritability (h2 SNPs= 0.00, lower right).

Reproduced with permission from van Dongen, J. et al. Genetic and environmental influences interact with age and sex in shaping 

the human methylome. Nat. Commun. 2016;7:11115.
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impact on the methylome, accounting for 20% of the variance (s.d.=21%) on average across all methyla-
tion sites. Unique environmental influences, which can include measurement error, explained most of 
the variation in genome-wide methylation levels, with a genome-wide average of 80% (s.d.=21%). The 
heritability of individual methylation sites across the genome showed large variation (Fig. 1A and B).

Fig. 1C shows an example of the DNA methylation levels in monozygotic and dizygotic twin pairs 
at four exemplary CpGs. Each panel shows the DNA methylation level at one CpG in twin pairs (each 
dot represents one twin pair), with dizygotic twins in the left panel and monozygotic twins in the right 
panel. The x-axis shows the methylation level in twin 1 and the y-axis shows the methylation level in 
his/her cotwin. A larger difference between the correlation in MZ twins and in DZ twins (stronger cor-
relation in MZ twins) indicates a higher heritability (h2) of DNA methylation level at this particular 
location. The figure shows that for sites with a higher heritability, the values of MZ cotwins tend to be 
more similar to each other. The figure also illustrates that the resemblance of MZ and DZ twins does 
not tell how much of the variance is explained by genome-wide common SNPs. For instance, if a large 
proportion of the variance in DNA methylation is due to rare genetic variants that are not tagged by 
SNPs, MZ twins will resemble each other more than DZ twins, but the SNP heritability will be low 
because the SNP heritability does not include all effects of rare variants.

2.4.2 � Heritability based on measured genetic relationships
Next, we estimated heritability based on measured genetic relationships. We constructed a genetic 
relationship matrix (GRM) based on all common genotyped autosomal SNPs that are measured by the 
Affymetrix 6 genotype array with GCTA.18 We applied the method of Zaitlen et al.24 to simultaneously 
estimate h2 and h2

SNPs in R as described in Nivard et al.26 and van Dongen et al.12 Nowadays, it is also 
possible to apply “the Zaitlen model” in GCTA. The genome-wide average heritability (h2) was 0.19, 
similar to the estimate based on the classical twin method (mean heritability 0.20), and the estimates 
of h2 obtained by the two methods were strongly correlated (r = 0.99). The strong correlation between 
these estimates was expected, because they both are estimates of total heritability.

Across all sites, on average 7% (s.d.=12%) of the variance of DNA methylation was explained by 
common genetic variants in the genome (h2

SNPs; Fig. 2A). Although it was already known from mQTL 
studies that SNPs affect DNA methylation, it was unknown how much of the variance of DNA meth-
ylation levels in total is explained by common SNPs. On average across the genome, the proportion of 

the total heritability that can be explained by SNPs 
h

h
SNPs
2

2









 was 0.37, again, with large variation across  

individual methylation sites (s.d.=0.40). At many sites, a relatively large proportion of total estimated  
heritable variation in DNA methylation was explained by common genetic variants: at almost a fifth 
(18%) of all methylation sites, almost the entire total heritability can be explained by common SNPs. 
There are also many sites where DNA methylation shows heritable variation, but common genetic 
variants explain little of this genetic variance. For example, SNPs explained less than 1% of the total 
heritability at 39% of genome-wide DNA methylation sites.

While the overall distribution of DNA methylation level across the genome is bimodal, methylation 
sites with a large heritability are characterized by an intermediate methylation level (Fig. 2B).

2.5 � Interaction with sex and age
EWA studies have detected many loci where methylation differences between males and females exist, 
which are not limited to the X-chromosomes. Similarly, EWA studies of age have detected widespread 
changes in DNA methylation level with age. The relationship between DNA methylation and age is so 
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FIG. 2

Contribution of SNPs to the variation in DNA methylation level and age-related changes.
(A) Histogram of total additive heritability (h2) of DNA methylation in blood (green) and variance explained 
by genome-wide SNPs (h2

SNPs, purple) for genome-wide CpGs. The y-axis is truncated. (B) Density plot 
showing the distribution of the average methylation level in blood at methylation sites with a high vs low 
heritability. It shows that methylation sites that are to a large extent explained by genetic variants tend to have 
an intermediate methylation level. (C) Total variance of DNA methylation, additive genetic variance, unique 
environmental variance, and heritability plotted against age, based on estimates obtained in interaction 
models on data from 2603 individuals. (D) Histogram of heritability at age 25 (green) and at age 50 (purple) 
for 39,455 CpGs with significant interaction between age and genetic variance or between age and unique 
environmental variance. Dark blue denotes the overlap of green and purple bars.

Adapted with permission from van Dongen, J. et al. Genetic and environmental influences interact with age and sex in shaping the 

human methylome. Nat. Commun. 2016;7:11115.
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strong at certain loci, that this information has been used to build DNA methylation-based predictors 
of chronological and biological age, with so-called epigenetic clock algorithms.27 In 2005 Fraga and 
colleagues reported for the first time that the epigenetic profiles of older MZ twins are less similar than 
those of young MZ twins based on a comparison of global and locus-specific DNA methylation and 
histone acetylation.28

While the majority of EWA studies of age have focused on changes in the mean methylation level 
with age, some have tested changes in the variance of DNA methylation with age. For example, with 
genome-wide methylation data from blood, Roderick Slieker and colleagues detected many loci where 
the variance of DNA methylation level correlates positively with age.29 This means that the differences 
between individuals in a population become larger as a function of age; older individuals show more 
variation in DNA methylation level at these loci. The cause of age-related changes in variance can 
be genetic (for instance, as people age, changes in the expression of genes may cause an increase in 
genetic variance), environmental (as people become older, effects of the environment on DNA methyla-
tion might accumulate, leading to greater variation in older people), or stochastic (possibly, stochastic 
effects are amplified at a higher age due to a loss of proper maintenance of the epigenome as people 
age).30 With twin-family data, the causes of age-related changes in variance (genetic and environmental 
or stochastic) can be examined. This can be done by adding a moderator variable to the classical twin 
model31 to model the interaction between age and the genetic and environmental effects. Similarly, 
moderation by sex can be modeled to examine which methylation sites show sex differences in the ge-
netic or environmental variance. Such interaction models give age-specific and sex-specific estimates 
of heritability, respectively.

In the DNA methylation dataset from the NTR, we applied models that included age- or sex-
interaction terms. In our study, the interaction term was added to the model based on measured genetic 
relationships between relatives, according to the methods described by Nivard et al.,26 but we note that 
these interaction terms can also be added to classical twin models.31

2.5.1 � Sex interaction results
If we look at all genome-wide methylation sites, the average heritability of DNA methylation is almost the 
same in males (mean h2 = 0.199) and females (mean h2 = 0.198); however, 2667 methylation sites (0.7% 
of all measured sites) showed a significant interaction effect of sex and genetic or environmental effects 
on DNA methylation level. At 59% of these sites, the heritability was lower in women. Importantly, if 
sex differences in heritability are observed, this can be due to a difference in the environmental variance 
or due to a difference in the genetic variance between the sexes. Both can also occur simultaneously. 
We found that at 76% of all sites with significant sex interaction, the unique environmental variance 
(rather than the additive genetic variance) differed between the sexes. At sites with a lower heritability 
in females, it was usually the case that the variance of DNA methylation due to environmental influ-
ences was larger in females. These sites are important candidates for sex-specific variation in epigenetic 
regulation, and occurred for example at loci connected to metabolism. Several CpGs whose methylation 
levels correlate with serum levels of the metabolites tryptophan, mannose, and 5-oxoproline displayed a 
significant sex difference in the environmental variance of DNA methylation level.

2.5.2 � Age interaction results
Age interaction effects were highly common: 39,455 sites (10.4% of all measured sites) showed a 
significant interaction effect of age and genetic or environmental effects on DNA methylation level. At 
82% of these sites, the unique environmental variance changed with age. These sites typically showed 
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an increase in the unique environmental variance and total variance with age, and a decreasing herita-
bility (Fig. 2C and D): At 90% of sites with significant age interaction, the heritability was lower at age 
50 than at age 25, although the difference in heritability between younger and older people was usually 
modest. For example, a decrease in heritability with age was found at a CpG site located in the TNIP1 
gene (cg22178392). The methylation level of this CpG correlates with serum LDL cholesterol. The 
heritability of DNA methylation level at this CpG site in blood decreases from 54% at age 25 to 39% at 
age 50 due to an increase in the unique environmental variance with increasing age.

The results from this large cross-sectional study are consistent with the observations from small 
longitudinal studies of MZ twin pairs that the epigenetic profiles of MZ twins diverge with age.28,32

2.5.3 � Integration with findings from EWASs of diseases, traits, and exposures
Since the publication of this twin-family study in 2016, a large number of EWASs of diseases, traits, and 
exposures have been conducted. The findings of these studies now allow us to better interpret the impli-
cations of methylation sites with age- and sex-specific variance and the possible causes of differences 
in environmental variance. The EWAS atlas (http://bigd.big.ac.cn/ewas/index6) includes all published 
associations between DNA methylation (Illumina array) identified in EWASs of traits, diseases, and 
exposures. We used the EWAS atlas to examine the overlap of methylation sites detected in 333 EWASs 
of diseases and traits on January 14, 2019 and our list of 2034 methylation sites with a sex difference in 
environmental variance and 32,234 methylation sites with age-dependent environmental variance.

Sites with a sex difference in environmental variance showed significant enrichment (an overlap 
that is greater than expected by chance) for 15 traits. The top enriched traits are allergy- and immune 
system-related. This could mean that males and females experience differences in the frequency of ex-
posure to environmental influences that shape epigenetic regulation related to allergy and the immune 
system, or it could be the case that males and females are equally exposed to such influences but that 
their epigenomes do not respond to this exposure in the same way. Methylation sites with sex-specific 
environmental variance identified by our twin-family study could be interesting candidates for the de-
velopment of sex-specific biomarkers for immune system-related conditions.

Sites with age-dependent environmental variance showed significant enrichment for 58 traits. The 
top enriched traits are related to aging, rare genetic disorders, cancer, and smoking. The enrichment for 
smoking-associated sites illustrates that accumulating effects of exposure to cigarette smoke might be 
responsible for increases in DNA methylation variance with age. The overlap with cancer-associated 
sites suggests that methylation changes induced by environmental influences throughout the lifespan or 
amplification of stochastic epigenetic variation with age might be linked to the increased risk of cancer 
as people age.

2.6 � Conclusions
The findings of this twin-family study can be summarized as follows:

•	 The estimates of heritability of DNA methylation level obtained in the classical twin model 
are highly similar to estimates of heritability obtained in models based on measured genetic 
relationships of twins.

•	 The heritability of DNA methylation, which had previously only been estimated based on 
classical twin models, can be explained partly by SNPs. This confirms that SNPs contribute to 
the heritability of DNA methylation.

http://bigd.big.ac.cn/ewas/index
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•	 Averaged over all genome-wide methylation sites, common SNPs explain 37% of the total 
heritability of DNA methylation. The remaining heritability might be explained by other genetic 
variants that were not tagged by the genotyping array.

•	 The proportion of the heritability of DNA methylation level that can be explained by common 
SNPs varies widely across genome-wide methylation sites.

•	 The SNP heritability gives an estimate of the variation in DNA methylation at a CpG site that can 
ultimately be explained by mQTL SNPs once all mQTLs for this site have been identified.

•	 On the genome-wide level, environmental or stochastic influences are a more important 
determinant of sex-specific and age-specific methylation variation between individuals than 
genetic influences.

•	 Twin-family studies of epigenetic marks can provide valuable information on locations in the 
genome where epigenetic variation between people may reflect disease-relevant environmental 
exposures or genetic variation, and whether this variation is sex- or age-specific.

2.7 � Further applications
We have discussed an application to whole blood data from adult twins with DNA methylation mea-
sured by the Illumina 450k array. Future studies on other tissues, data from other age groups including 
children, and higher resolution DNA methylation data (such as the Illumina EPIC array and meth-
ylation sequencing data) or data on other epigenetic marks will allow to examine the contribution of 
genome-wide SNPs to DNA methylation variation in other tissues, to examine the causes of variation 
in children, and to examine the causes of variation in DNA methylation and other epigenetic marks that 
are not captured by the 450k array.

In addition to creating a GRM based on all genome-wide SNPs, it is also possible to estimate the 
variance that is explained by particular subsets of genome-wide SNPs by creating multiple GRMs; for 
instance, separate GRMs based on SNPs on each chromosome,23,33 SNPs in cis vs SNPs in trans,34 or 
genome-wide significant SNPs identified in GWAS (or mQTL analysis, in the case of DNA methyla-
tion data) vs all other SNPs that remain to be detected.35

It is also possible to estimate the variance explained by all SNPs based on whole-genome sequenc-
ing data.36 This can provide insight into the contribution of rare variants to the heritability of DNA 
methylation levels. Application to height and BMI showed that the entire heritability of height and BMI 
can be captured by all variants detected with whole-genome sequencing data.37 For DNA methylation, 
it remains to be established whether differences between the total heritability and SNP heritability are 
explained by rare variants.

3 � Combining twin-family designs with measured genetic variants to 
study cause and effect

Often findings from EWAS are interpreted as reflecting causal effects of methylation on a trait of 
interest (e.g., methylation causes a disease) or of an exposure of interest on methylation (e.g., DNA 
methylation is a consequence of smoking behavior). However, methylation differences observed in, for 
instance, an EWAS of smoking, may also reflect effects of other exposures that correlate with smoking 
(e.g., cannabis or alcohol use), or they may reflect the genetic predisposition to smoking. For instance, 
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one of the most strongly associated genetic variants for nicotine dependence is located in the DNA 
methyltransferase gene DNMT3B.38 This strongly implies a role for DNA methylation in nicotine ad-
diction but might also cause genome-wide differences in DNA methylation between people with and 
people without a genetic predisposition for nicotine dependence, regardless of their smoking behavior. 
Alternatively, it is important to note that while methylation levels at some loci revert to those observed 
in nonsmokers in the first year after smoking cessation,39 others remain differentially methylated up to 
~ 35 years after quitting smoking.40 Intriguingly, and in line with these observations, the risk of relapse 
to smoking is greatest in the first year (above 50%), and decreases as a function of time to a low of 10% 
after 30 years of abstinence.41

Understanding the nature of these associations might provide insights crucial for efficient predic-
tion, prevention, and treatment of common complex diseases, and requires one to distinguish between 
these alternative hypotheses. Toward this aim, one is invariably confronted with questions about the 
causal mechanisms that generated the observed association.

3.1 � Mendelian Randomization
In studying causality one typically relies on randomized controlled trials, but these may not be feasible, 
or fail to adhere to ethical standards. For example, ethical constraints preclude assigning individuals to 
a “heavy smoking experimental condition” (the exposure variable) in order to test the causal effects of 
heavy smoking on DNA methylation (the outcome variable). To resolve such questions one must rely 
on observational studies. Mendelian Randomization (MR) represents an alternative to the randomized 
controlled trials.

MR uses genetic variants as “instrumental variables” to detect the causal effect of the exposure on 
disease/outcome in nonexperimental settings. An “instrument” is a variable that (a) associates directly 
with the exposure of interest, (b) is independent of confounders (other factors affecting the outcome), 
and (c) does not directly affect the outcome (Fig. 3). MR is a popular method for establishing causal-
ity in observational studies, as demonstrated by the large number of substantive applications over the 
last years. In the field of epigenetics, MR has been applied to DNA methylation data to examine, for 
instance, the causal relationship between DNA methylation and lipid levels,8 and between DNA meth-
ylation and BMI.42

MR exploits the fact that genetic variants are randomly assigned at meiosis, are largely distributed in 
the population independent of environmental confounding, and are not modified by disease outcomes. 
Correspondingly, MR might be seen as “Nature’s randomized controlled trial.” For example, analogous 
to a randomized controlled trial testing the efficacy of statin dose levels in reducing LDL-Cholesterol 
and the risk of cardiovascular disease, in “Nature’s randomized controlled trial” (MR) “dose levels” 
in the form of loss of function variants in the PCSK9 gene are allocated randomly at conception. Like 
statins, these mutations decrease LDL-cholesterol level and the risk of cardiovascular disease.44–47

In regard to the assumption that causality flows unidirectionally (Fig. 3) one might obviously argue 
that bidirectional relationships between complex traits are also plausible, and there are MR approaches 
to test such bidirectional hypotheses. Ideally, an accurate description of bidirectional relationships 
involves estimating simultaneously reciprocal causal paths. In the literature, “bidirectional MR” typi-
cally involves two unidirectional tests employed sequentially: Model 1 representing hypothesis 1: X 
causes Y (parameter g1 estimated), and Model 2 representing hypothesis 2: Y causes X (parameter g2 
estimated). In Fig. 3, bidirectionality involves reciprocal causal paths between exposure and outcome 
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(i.e., parameters g1 and g2). These causal paths are mutually confounded in MR, allowing only one to 
be estimated (the bidirectional model is not identified in cross-sectional data; in other words, cross-
sectional data does not provide sufficient information to yield unique estimates of these parameters). To 
circumvent this identification problem, it is routinely assumed that either g1 or g2 equal zero.

The interest in MR has increased recently particularly due to the DNA genotyping costs that have 
rapidly tumbled down over the last decade, making available large samples of genotyped individuals in-
cluding twins who participate in twin registers worldwide. In addition, large Genome-Wide Association 
Studies (GWASs) have identified an increasing number of genetic variants robustly associated with ex-
posures, yielding strong instrumental variables to be employed in MR studies. Furthermore, confound-
ing in observational association is a prominent problem in the social sciences, which can be addressed 
using MR. Notwithstanding MR’s potential, the problem remains that the standard procedure involves 
strong assumptions (see Fig. 3) which are not testable currently; these assumptions are unlikely to hold 
for complex traits. Following we describe how one of these strong assumptions—the “no pleiotropy” 
assumption—can be tested and relaxed by combining twin-family designs with measured variants to 
study cause and effect.

3.2 � Mendelian Randomization meets the classical twin design
Behavioral genetics models for twin resemblance have been with us for decades, but little attention has 
been given to the tremendous potential of integrating MR with the classical twin design. Twins share 

FIG. 3

Diagrammatic representation of the Mendelian randomization design. Variable X—the exposure variable—is 
associated with variable Y—the outcome variable. In the context of epigenetic studies, X may represent, for 
example, smoking behavior, and Y may represent DNA methylation at a particular CpG site. The association 
between X and Y might arise due to: (i) confounders C (risk factors affecting both X and Y), (ii) a direct 
causal effect of X on Y (parameter g1 ≠ 0), (iii) a causal effect of Y on X (parameter g2 ≠ 0). One may probe 
these hypotheses using an instrumental variable. An instrumental variable associates robustly with the 
exposure and is independent of the outcome and possible confounders (conditional on exposure). Mendelian 
Randomization employs genetic variants as instrumental variables to test causal hypotheses. The MR 
design yields information about causality under the assumptions that the genetic variant employed as an 
instrumental variable is: (i) associated with the exposure, i.e., b1 ≠ 0, (ii) independent of confounders, i.e., 
m = 0, (iii) its effect on the outcome is fully mediated by the exposure variable, i.e., there is no direct effect of 
the instrumental variable on the outcome or there is no pleiotropy, parameter b2 = 0, and (iv) causation flows 
unidirectionally from exposure to outcome, parameter g2 = 0 (henceforth the MR approach based on these 
standard assumptions is called the standard MR).

3  Combining twin-family designs with measured genetic variants
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both genetic and environmental factors, therefore they provide the information needed to estimate the 
causal effect and the contribution of genetic and environmental factors to the exposure–outcome rela-
tionship. We embedded MR with twin information to develop the means to test causal hypotheses when 
the genetic variants used as instrumental variables have pleiotropic effects13 (i.e., when assumption (iii) 
in Fig. 3 is violated), meaning that the genetic variant(s) used as instrument does not only affect the 
exposure, but also has a direct effect on the outcome (Box 2).

FIG. 4

A closer look at the “no pleiotropy” assumption.
(A) X directly influences Y (parameter g1). In addition, the additive genetic variables AX and AY are correlated 
(parameter ra). (B) The set of loci M underlies the variance of AX, but does not contribute directly to the 
variance of AY, i.e., in set theory notation, M = AX\AY (yet note that if X causally influences Y separate powered 
GWASs of the two traits will associate variants from set M with both X and Y43). Likewise, N = AY\AX, i.e., the 
set of loci N contributing to the variance of AY but not to the variance of AX. Z represents the intersection of 
AX and AY, that is, the set of loci Z underlies both AX and AY, i.e., Z = AY ⋂ AX. Note that the set Z may contain 
pleiotropic loci, where the pleiotropy is due to direct effects or due to linkage disequilibrium; (C) The MR 
model with a polygenic instrument (polygenic score; PGS) and “no pleiotropy.” PGS is associated with X 
(parameter b1), but is assumed to have no direct influence on the outcome Y. This model holds only if the 
instrument PGS is constructed on the basis of a subset of variants from set M. In the presence of PGS, A*X is 
a residual (in the regression of X on PGS). (D) MR with pleiotropic genetic instrument. In this model, the PGS 
is constructed on the basis of a sample of genetic variants taken from set Z. The parameter b2 accommodates 
the fact that the set of variants used to construct PGS underlies the variance of both AX and AY. The “no 
pleiotropy” assumption implies b2 = 0.

Adapted with permission from Minică, C.C., Dolan, C.V., Boomsma, D.I., et al. Extending causality tests with genetic 

instruments: an integration of mendelian randomization with the classical twin design. Behav. Genet. 2018. doi:10.1007/

s10519-018-9904-4.
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Only when the “no pleiotropy” assumption holds does standard MR yield a correct estimate of the 
causal effect. In other words, when the instrument has pleiotropic effects (i.e., one of the IV assump-
tions is violated, see Fig. 3), standard MR biases the causal effect estimate, or even detects causal ef-
fects when there are none. In an effort to avoid such spurious results, we developed the MR-Direction 
of causation model (MR-DoC, Fig. 5) by incorporating data collected from relatives, such as twins.

Twins provide additional within-family data that can be used to examine whether the genetic variant 
employed as IV has a direct (pleiotropic) effect on the outcome variable (parameter b2, Fig. 5). By ex-
plicitly modeling this pleiotropy path, MR-DoC correctly detects causation even when standard MR’s 
“no pleiotropy” assumption is violated (see table 2 in Ref. 13 for results of a simulation study). That 
is, twins provide the critical advantage of allowing one to estimate the causal parameter (parameter 
g1 in Fig. 5) and pleiotropic effects (parameters b1 and b2 in Fig. 5), conferring crucial power advan-
tages (as we previously showed is also the case when twins are included in the context of GWAS73,74). 
Specifically, power analyses showed that MR-DoC has greater statistical power than a standard MR 
analysis, especially if the unshared environmental effects on the exposure X and the outcome Y are 
uncorrelated (i.e., parameter re in Fig. 5 is zero). The power of MR-DoC increases with: (1) decreasing 
residual X–Y correlation (re), and (2) with decreasing additive genetic variance of the exposure vari-
able (see fig. 6 in Ref. 13).

3.3 � Overall prospects and potential limitations of the MR methods
Currently there is great interest in developing MR methods that are robust to assumption violation. 
While the first two standard MR assumptions in Fig. 3 (i.e., robust association with the exposure and 
independence of confounders) are likely to hold (as genetic variants are randomly assigned at meiosis, 
are largely distributed in the population independent of environmental confounding, and the associa-
tion of many genetic variants with exposures/risk factors has been demonstrated and replicated in large 

Box 2  The “no pleiotropy” assumption
The evidence so far suggests that the effects of individual genetic variants on complex human traits are small.47 This 
raises concerns about the causal effect obtained in finite samples using the genetic variants as instrumental variables, as 
this might be biased—the so-called weak instrument issue. Specifically, when the association between the instrumental 
variable (IV) and the exposure variable is weak (i.e., the IV explains a small percentage of variance in the exposure), 
the IV causal effect estimate will be biased toward the observed association. Therefore using single genetic variants as 
instruments might render MR liable to weak instrument bias.48 Adding the weak effects of multiple genetic variants into 
a polygenic score (PGS) is a way to increase the power of the genetic instrument.49–52 However, the “no pleiotropy” 
assumption is likely violated, particularly when the instrument is a polygenic score (see Fig. 4 for a closer look at the 
“no pleiotropy” assumption—reproduced with permission from Behavior Genetics, Extending causality tests with genetic 
instruments: An integration of Mendelian Randomization with the Classical Twin Design).

The absence of pleiotropy assumption is one of the standard MR assumptions unlikely to be satisfied due to the 
pervasive pleiotropy across the human genome.43,53,54 Indeed, there are multiple examples of pleiotropic genetic variants 
in the GWAS literature (i.e., genetic variants that associate with multiple complex traits/risk factors). For example,  
FTO gene variants were associated with Body Mass Index,55–59 obesity,56,60,61 age at menarche,62,63 breast cancer,64,65 
HDL-cholesterol,66 Type-2-Diabetes.67–72

A genetic variant associated directly with both the exposure and the outcome variables of interest (i.e., pleiotropic) is 
an invalid instrumental variable. Standard MR assumes pleiotropy to be absent (see Fig. 3). Violation of this assumption 
may bias the causal effect estimate or even result in spurious causal effects.

3  Combining twin-family designs with measured genetic variants



254 CHAPTER 13  Combining twin-family designs with measured genetic variants

GWASs), a particular attention has been given to the “absence of pleiotropy” assumption discussed 
above (see e.g., Refs.13,75–77). This assumption is unlikely to hold on the account of the ubiquity of plei-
otropy across the human genome. More recently, the focus has shifted also to other important assump-
tions specific to studies that employ genetic variants as instrumental variables, like e.g., dynastic effects 
(these effects occur because the parents transmit to their children not only genotypes, i.e., affecting the 
offspring phenotype directly, but the parental genotypes also have an indirect effect on the children’s 
phenotype via the environments they provide) and nonrandom mating (occurs when husband–wife 
pairs are selecting each other based on phenotypic similarity, and this results in parental genotypes be-
coming correlated78–82). It is important to note that MR models that utilize family data (like MR-DoC) 
generally yield robust results when such assumptions are violated.

A potential concern related to the method described before surrounds the fact that the MR-DoC 
model requires access to individual-level data (anonymized genetic and phenotypic data collected in 
individuals, data more difficult to share than summary statistics, due to ethical constrains). Yet, cur-
rent approaches based on summary statistics cannot resolve the “no pleiotropy” and the “non-random 
mating” assumptions simultaneously.78 These assumptions can be tested, and possibly relaxed in the 
MR-direction of Causation approach we described here,13 or in the approach proposed by Hartwig and 
colleagues78 that also exploits data collected in families (trios). Indeed, family-based studies are due 
for a renaissance, as individual-level data collected from relatives combined with MR provide addi-
tional within-family data that partially resolve these strong assumptions and hence, strengthen causal 
inferences.80

Another possible concern may relate to the adoption of these twin-based MR methods, given 
the requirement for twin-family datasets. However, there are large-scale twin data registries (e.g., 
Netherlands, Scandinavia, UK, Australia, USA; see also83) and new twin registries are being added. 

FIG. 5

The Mendelian randomization-direction of causation model (MR-DoC; to avoid clutter we show the model in 
twin 1 only, but see fig. 4 in Ref. 13 for details).
Twin data allow one to estimate the causal effect of the exposure variable X on the outcome variable Y 
(parameter g1), the pleiotropic effects of the genetic variant employed as an instrumental variable (parameters 
b1 and b2), and the contribution of genetic (A), shared (C), and unique (E) environmental factors to the X–Y 
relationship.
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These large twin registries are often at the forefront of method development and empirical genome-
wide and epigenome-wide association studies. Their data are typically representative of the general 
population, which guarantees generality of the results using twin and family data. That is, if one estab-
lishes a causal mechanism using twin data (e.g., salt intake leads to hypertension) others do not need 
to repeat this. Moreover, these MR models that use twin data (MR-DoC based) can be adapted and 
applied to sibling data, and importantly, to unrelated individuals. One of our future aims is to facilitate 
the use of our MR methods also in cohorts of unrelated individuals, by incorporating them in models 
for Genetic Relationship Matrices (GRMs).

3.4 � Conclusion
We have shown how combining within-family designs with measured genetic variants might provide 
a means to test and relax one of the standard MR assumptions, and might strengthen causal inference 
in random (nonexperimental) samples. This combined approach can test and, if necessary, relax MR’s 
strong “no pleiotropy” assumption, which the standard MR approaches cannot test empirically. The 
MR-DoC twin model is appealing as it allows one to use, as instrumental variables, both single genetic 
variants and powerful polygenic scores, and estimates correctly the causal effect in the presence of 
pleiotropy (i.e., the violation of the standard MR’s “no pleiotropy” assumption). This and other robust 
MR methods that utilize within-family information to test cause and effect will greatly increase the 
value of the wealth of existing data collected at twin registries and the rich epidemiological samples of 
unrelated individuals, as they correctly detect causation and estimate effect sizes even when assump-
tions like “absence of pleiotropy” or “random mating” may be untenable. It should be noted that infer-
ring cause–effect from nonexperimental samples is very challenging and has been subjected to multiple 
methodological developments. It is important to emphasize that robust causal inference will require 
evidence obtained with multiple approaches, i.e., methodological triangulation,81 coupled with “sound 
theoretical thinking, constant vigilance, and a thorough understanding of the potential limitations of 
the methods being used.”82

4 � Overall conclusion
In this chapter, we have described two types of designs that integrate twin data with measured ge-
netic information. In the first part we showed how integrating genetic relationship matrices (GRMs) 
based on measured SNPs with twin data allows for more in-depth questions concerning the causes of 
genome-wide DNA methylation levels. In the second part we described an integration of MR with 
twin data (the MR-DoC model) to examine causal relationships in observational settings. When writ-
ing this chapter, MR-DoC has not yet been applied to epigenetic data, but we believe epigenetic data 
could become a valuable application of the model. MR-DoC could be applied to dissect the nature of 
the associations between DNA methylation and smoking behaviors, and between DNA methylation 
and disease outcomes. Many worldwide twin registers have collected both epigenomic data (such as 
genome-wide DNA methylation arrays) and genomic information (genome-wide SNP arrays) for the 
same participants. We believe that the integration of such data with twin/family designs will make a 
valuable contribution to ongoing EWAS and mQTL mapping efforts.
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