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Background Metabolomics, defined as the comprehensive identification and quantification of low-molecular-weight
metabolites to be found in a biological sample, has been put forward as a potential tool for classifying individuals according to
their risk of coronary heart disease (CHD). Here, we investigated whether a single-point blood measurement of the metabolome
is associated with and predictive for the risk of CHD.

Methods and results We obtained proton nuclear magnetic resonance spectra in 79 cases who developed CHD
during follow-up (median 8.1 years) and in 565 randomly selected individuals. In these spectra, 100 signals representing 36
metabolites were identified. Applying least absolute shrinkage and selection operator regression, we defined a weighted
metabolite score consisting of 13 proton nuclear magnetic resonance signals that optimally predicted CHD. This metabolite
score, including signals representing a lipid fraction, glucose, valine, ornithine, glutamate, creatinine, glycoproteins, citrate,
and 1.5-anhydrosorbitol, was associated with the incidence of CHD independent of traditional risk factors (TRFs) (hazard ratio
1.50, 95% CI 1.12-2.01). Predictive performance of this metabolite score on its own was moderate (C-index 0.75, 95% CI
0.70-0.80), but after adding age and sex, the C-index was only modestly lower than that of TRFs (C-index 0.81, 95% CI 0.77-
0.85 and C-index 0.82, 95% CI 0.78-0.87, respectively). The metabolite score was also associated with prevalent CHD
independent of TRFs (odds ratio 1.59, 95% CI 1.19-2.13).

Conclusion A metabolite score derived from a single-point metabolome measurement is associated with CHD, and
metabolomics may be a promising tool for refining and improving the prediction of CHD. (Am Heart J 2014;168:45-52.e7.)
Over the last 50 years, risk factors that are robustly and
independently associated with coronary heart disease
(CHD), including lipid levels, blood pressure, lifestyle
factors, family history, sex, and age, were identified.1,2
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Based on these traditional risk factors (TRFs), scores have
been developed to predict CHD risk for an individual.1,2

The discriminatory capabilities for these scores, as
assessed by the C-index, ranges from 0.71 to 0.84.1
,

,
,
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Metabolomics refers to the identification and quan-
tification of low-molecular-weight metabolites in a
biological sample.3 Recent technological developments
made it possible to generate metabolomic profiles of
blood samples consisting of 10s to 100s metabolites in
a single measurement.4 These profiles are considered
to be promising tools to efficiently capture the
predictive information of TRFs and may potentially
contribute to further improvement of primary CHD
risk prediction.3

Several studies have attempted to use a metabolomic
approach to diagnose prevalent CHD5,6 or to predict
incidentCHDevents in individuals free fromcardiovascular
disease7–9 or diagnosed with CHD10–13 or diabetes.14

According to some studies ametabolomic approachmight
improve CHD risk prediction.8–13 For example, in 1 study,
proton nuclear magnetic resonance (1H-NMR) spectros-
copy improves the prediction of subclinical atherosclero-
sis in comparison with conventional lipid testing.8 Other
studies found that a baseline metabolomic profile based
on mass spectroscopy was associated with incident
cardiovascular events in patients diagnosed with CHD11

or in patients with suspected CHD.10,12,13 However, none
of these studies investigated if a metabolite profile based
on low-molecular-weight molecules identified by 1H-NMR
spectroscopy could predict incident CHD, defined as an
acute myocardial infarction (MI), unstable angina pectoris
(UAP), or dead because of CHD, in individuals free from
cardiovascular disease. Therefore, we studied the associ-
ation of an 1H-NMR basedmetabolite profile with incident
CHD in a prospective case-cohort study. Subsequently, a
second study was performed in an independent popula-
tion to test if the selectedmetaboliteswere also relevant to
classify prevalent CHD.
Materials and methods
Study populations
Primary study. We conducted a prospective case-

cohort study within the Monitoring Project on Chronic
Disease Risk Factors 1993 to 1997,15 1 of the 2
monitoring studies that were included in the Cardiovas-
cular Registry Maastricht study.16 In total, 6,459 men
and women, between 20 and 59 years old at the
moment of inclusion, had given informed consent to
retrieve information from the municipal registries and
from the general practitioner and specialist. The study
complied with the Declaration of Helsinki and was
approved by the Medical Ethics Committee of TNO
(Dutch Organization for Applied Scientific Research).
We excluded participants who were younger than 30
years at baseline (n = 1,301); who had had an acute MI,
UAP, a coronary artery bypass graft, or a percutaneous
transluminal coronary angioplasty before baseline (n =
69); or were lost to follow-up (n = 15), resulting in an
eligible cohort of 5,074 participants.
Subcohort selection. From the eligible cohort, a
subcohort of 738 participants was randomly drawn. This
took place before cardiologic follow-up. EDTA plasma
was unavailable for 92 participants, and 1H-NMR analysis
failed in 19 participants. For 62 participants, information
on TRFs (ie, total cholesterol [TC], high-density lipopro-
tein cholesterol [HDL-C], systolic blood pressure [SBP],
current smoking, body mass index [BMI], current
diabetes status, and a parental history of MI) was
incomplete, resulting in a subcohort of 565 participants.
Cardiologic follow-up. The cardiologic follow-up

has been described in detail earlier16 and ended on
December 31, 2003, with a median follow-up of 8.1
years (range 0.2-10.9 years). During follow-up, 125
participants developed CHD (acute MI n = 55, UAP n
= 51, dead due to CHD n = 19 [International
Classification of Diseases, Ninth Revision, 410-414
and International Statistical Classification of Diseases,
10th Revision, I20-I25]). For 31 patients, EDTA plasma
for 1H-NMR analysis was unavailable, and in 1 patient,
1H-NMR analysis failed. For 14 patients, information on
TRFs was incomplete, resulting in 79 patients.
Determination of TRFs. At baseline, participants

filled in a questionnaire on medical history (including self-
reported diabetes), parental history of MI (defined as no
parents with MI, 1 parent with MI, or both parents with
MI), and lifestyle factors (including smoking). During a
medical examination, information on SBP and BMI was
collected, and nonfasting EDTA blood samples were
taken.17,18 The blood was centrifuged for 10 minutes at
1000 rpm at 4°C, and EDTA plasma aliquots were stored
at −80°C in tubes of 0.5 mL for future analysis or at −20°C
for cholesterol determinations. High-density lipoprotein
cholesterol and TC levels were determined in the plasma
samples stored at −20°C using a Cholesterol oxidase/4-
aminophenazone (CHOD-PAP) method.19

Secondary study. The Erasmus Rucphen Family study
is a population-based study in a genetically isolated
community in the Southwest of the Netherlands and
includes 3,465 individuals, who are living descendants of
22 couples that had at least 6 children baptized in the
community church between 1850 and 1900. Details are
described elsewhere.20 The study was approved by the
Medical Ethical Committee of the Erasmus Medical
Center in Rotterdam, and all participants gave written
informed consent.
Determination of TRFs
All participants filled in questionnaires about lifestyle,

personal, and family medical history. During personal
interviews performed by study physicians, information
on lifestyle factors, medication use, and personal and
family medical history was collected. Physical examina-
tions were performed, including measurements of SBP
and BMI.21 In addition, fasted blood samples were taken.
An electrocardiogram was performed and scored by
an experienced cardiologist. Plasma concentrations of
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HDL-C and TC were determined according to standard
procedures.22Diabetes was defined as the use of blood
glucose-lowering medication and/or fasting glucose
levels of ≥7 mmol/L.

Diagnosis of CHD in the secondary study.
Participants were classified as CHD cases if they
indicated during the interview or in the questionnaire
that they had experienced an MI or underwent a
coronary revascularization procedure, they reported
angina symptoms in the interview, and/or showed
signs of MI on electrocardiogram.
From 2,919 participants, fasting serum samples were

available. Good-quality 1H-NMR spectra from 2,415
participants were obtained. For 2,327 of these partici-
pants, data on CHD diagnosis were available, and 170
were classified as having CHD.

1H-NMR metabolite profiling
The stored EDTA plasma and serum samples were

thawed at 4°C and were mixed by inverting the tubes 10
times. Next, samples (300 μL) were mixed with 300 μL
sodium 3-[trimethylsilyl] d4-propionate buffer (see online
Appendix Supplementary material) and transferred into 5-
mm nuclear magnetic resonance tubes and kept at 6°C
while queued for acquisition. Two-dimensional J-resolved
and Carr-Purcell-Meiboom-Gill spectra were acquired on a
600-MHz Bruker Avance II spectrometer (Bruker BioSpin,
Karlsruhe, Germany), operating at a sample temperature of
310 K. For details on acquisition, processing, quality
control, scaling, and calibration of the 1H-NMR spectra,
see online Appendix Supplementary methods.
Using the procedure described in the online Appendix

Supplementary material, 100 signals were detected and
quantified in the 1H-NMR spectra of every individual in
the primary study. For 76 signals, metabolites were
assigned (see online Appendix Supplementary methods
and online Appendix Supplementary Table I for all 1H-
NMR signals and their assigned metabolites). These
signals represented 36 different compounds (ie, after
subtracting the signals representing free EDTA). Signals
representing calcium-EDTA and magnesium-EDTA com-
plexes may give an indication of the levels of calcium and
magnesium ions, respectively. Using the same procedure,
68 of 100 signals detected in the primary study were
detected in the secondary study. For 54 of these 68
signals, metabolites could be assigned, representing 28
different compounds.

Statistical analysis
In the primary study, Cox regression, adjusted for

delayed entry, and according to the method of Prentice
to adjust for the case-cohort design was performed to
see whether baseline characteristics were associated
with incident CHD.23 Age in years was used as the time-
scale variable.
Before analysis, the 1H-NMR signals were transformed
to Z-scores. We selected a subset of the most informative
signals for CHD prediction, using least absolute shrinkage
and selection operator (LASSO) regression,24 and per-
formed 10-fold cross-validation to determine the tuning
parameter.24,25 This set was further reduced to signals
that could be detected in both studies. The linear
predictor of the Cox model was used as a weighted
metabolite score (sum of regression coefficients multi-
plied by the corresponding covariate values).
Cox regression, according to the method of Prentice to

adjust for the case-cohort design, was used to calculate
whether this metabolite score was associated with
incident CHD before and after adjusting for TRFs.23

To investigate whether the metabolite score improved
risk discrimination, Harrell's concordance index (C-
index),26 the net reclassification index (NRI), and the
integrative discrimination index (IDI)were calculated.27 For
the NRI, the following risk categories were applied: 0% to
b5%, 5% to b10%, 10% to b20%,≥20%. Next, using analysis
of variance,we investigated towhat extent TRFs can explain
the variance in the metabolite score in the subcohort. Stata/
SE version 11.2was used to calculate theC-index. R-package
PredictABEL version 1.2-1 was used to calculate the IDI. For
all other analyses, R version 2.14.1 was used.
In the secondary study, raw 1H-NMR signal data were

adjusted for kinship by linear regression in GenABEL.28

The residuals for all signals were transformed into Z-
scores. Logistic regression was performed to assess the
association of TRFs with prevalent CHD. To assess
whether the metabolite signals selected by LASSO
regression in the primary study were also relevant for
the identification of prevalent CHD cases, we put these
signals into one logistic regression model to determine
their individual regression coefficients. Next, we used
logistic regression analysis to test the association of this
metabolite score, thus with weights based on the
secondary study, with prevalent CHD. Finally, we tested
to what extent TRFs can explain the variance in the
metabolite score using analysis of variance. For these
analyses, PASW statistics version 18 (SPSS-IBM, Chicago,
IL) was used.
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The Erasmus Rucphen Family study was funded by the
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of the Netherlands Genomics Initiatives and by the
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ogy consortium.



Table I. Traditional risk factors and their association with incident CHD in the primary study

Cases (n = 79) Subcohort (n = 565)⁎ HR (95% CI)† HR (95% CI)‡

Age (y) 51.9 ± 6.1 44.8 ± 8.3 – –
TC (mmol/L) 5.9 ± 1.0 5.3 ± 1.0 1.30 (1.03-1.64) 1.21 (0.93-1.58)
HDL-C (mmol/L) 1.1 ± 0.3 1.3 ± 0.4 0.12 (0.05-0.30) 0.34 (0.12-0.94)
SBP (mm Hg) 134.5 ± 16.8 121.5 ± 15.1 1.04 (1.02-1.05) 1.03 (1.01-1.05)
BMI (kg/m2) 27.6 ± 4.6 25.4 ± 3.8 1.10 (1.03-1.17) 1.03 (0.95-1.11)
Men 79.6% (63) 44.6% (252) 4.95 (2.72-9.02) 3.30 (1.65-6.57)
Current smoking 51.9% (41) 38.8% (219) 2.16 (1.29-3.62) 1.84 (1.02-3.32)
Diabetes 3.8% (3) 0.5% (3) 3.99 (0.70-22.84) 3.34 (0.41-27.43)
Parental history of MI 50.6% (40) 40.2% (227) 1.32 (0.88-1.98) 1.24 (0.78-1.98)

Data are expressed as mean ± SD or % (n).
⁎ Including 10 cases.
†Univariate HR was calculated per unit increase for age, TC, HDL-C, SBP, BMI, and for the categorical traits. Age in years was used as the time-scale variable.
‡All variables were added into 1 multivariable Cox proportional hazards model, except for age, which was used as the time-scale variable.
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The funding sources had no involvement in the design
and conduct of the study or with the collection,
management, analysis, or interpretation of the data and
reporting or the decision to submit the manuscript for
publication.
Results
Primary study
The TRFs were associated with incident CHD. When all

TRFs were entered into a Cox proportional hazards
model with age in years as the time-scale variable, HDL-C,
SBP, sex, and current smoking remained independently
associated with incident CHD (Table I). See online
Appendix Supplementary Table II for the baseline
characteristics before excluding individuals with missing
data. For the association of the individual 1H-NMR signals
with incident CHD, see online Appendix Supplementary
Table I.
We determined 16 1H-NMR signals as the best

prediction subset using LASSO regression, of which 13
were available in the secondary study (Figure 1). These
16 1H-NMR signals represent creatinine, serine, glucose,
1,5-anhydrosorbitol, trimethylamine N-oxide (TMAO),
ornithine, citrate, glutamate, glycoproteins, an unsaturat-
ed lipid structure, valine, and 5 nonannotated signals
located at 3.924, 3.145, 2.412, 1.391, and 0.988 ppm.
From the 13 signals present in both the primary
and secondary study, a weighted metabolite score
was constructed using the corresponding coefficients
(Figure 1). This metabolite score was normally distributed
in cases and subcohort members (online Appendix
Supplementary Figure) and associated with incident
CHD (hazard ratio [HR] per SD 1.91, 95% CI 1.50-2.44).
After adjusting for TRFs, this metabolite score remained
associated with incident CHD (HR/SD 1.50, 95% CI 1.12-
2.01). For the results of the metabolite score based on the
16 signals, see online Appendix Supplementary Table III.
The metabolite score had a C-index of 0.75 (95% CI
0.70-0.80). Adding age and sex to the metabolite score,
resulted in a C-index of 0.81 (95% CI 0.77-0.85), which is
similar to a C-index when only TRFs are included (C-
index 0.82, 95% CI 0.78-0.87, P = .327). When the
metabolite score was added to a model containing all
TRFs, the C-index increased from 0.82 to 0.84, which was
nonsignificant (P = .107). Both the improvement in the
NRI (NRItotal = 0.038, P = .209) and the IDI (0.012, P =
.091) were nonsignificant (online Appendix Supplemen-
tary Tables IV and V). Inspecting C-indices for individual
TRFs and evaluating improvement of adding the metab-
olite score indicated that the metabolite score improved
the C-indices of all individual TRFs (online Appendix
Supplementary Table VI).
We tested to what extent TRFs explain the variance in

the metabolite score in the subcohort of the primary
study. High-density lipoprotein cholesterol, sex, BMI, TC,
SBP, age, and diabetes explained respective 16.4%, 11.7%,
10.0%, 7.9%, 5.6%, 4.1%, and 2.3% of the variance in the
metabolite score. Current smoking and parental history of
MI all explained b1% of the variance in the metabolite
score (Figure 2). When all TRFs were combined, 32.6% of
the variance in the metabolite score was explained.
Secondary study
To test if the 13 metabolite signals selected in the

primary study were relevant for the identification of
prevalent CHD cases, we investigated 170 CHD cases and
2,157 controls for which equivalent metabolomics
profiles were obtained. In this nonprospective cohort,
combining all TRFs in 1 logistic regression model resulted
in only age, sex, and parental history of MI to be
independently associated with prevalent CHD (Table II).
See online Appendix Supplementary Table VII for the
baseline characteristics before excluding individuals with
missing data.



Figure 1

The subset of signals selected using 10-fold cross-validated LASSO regression and their coefficients in the primary study (left panel) and the
secondary study (right panel).

Vaarhorst et al 49
American Heart Journal
Volume 168, Number 1
The metabolite score, based on the 13 best predicting
signals in the case-cohort study, but with weights based
on the secondary study (Figure 2), was associated with
prevalent CHD before (odd ratio [OR] 2.72, P b .001) and
after adjusting for TRFs (OR 1.59, P = .002). After
excluding statin users (n = 299), similar results were
obtained (online Appendix Supplementary Table VIII).
The proportion of variance in the metabolite score

explained by age, SBP, and diabetes was higher for the
secondary study than for primary study, whereas the
variables TC, HDL-C, and BMI explained a lower
proportion of the variance (Figure 2). The proportion
of variance explained by sex, current smoking, and
parental history of MI was comparable for both studies.
With all TRFs combined, 27.3% of the variance of the
metabolite score could be explained, which is compara-
ble with that of the primary study.
Discussion
A metabolite score, based on 1H-NMR spectroscopy,

is significantly associated with incident CHD indepen-
dent of TRFs. When combined with age and sex, this
score was as predictive for incident CHD as all TRFs
combined. A score based on the same 1H-NMR signals
was also associated with prevalent CHD, independent
of TRFs.
The observation that the metabolite score could not
improve CHD risk prediction beyond TRFs in individ-
uals free from CHD is in line with a previous study
published by El Harchaoui et al.7 However, Würtz et al8

found that metabolites measured by 1H-NMR spectros-
copy improved risk stratification for subclinical athero-
sclerosis in comparison with conventional lipids. In this
study, both 1H-NMR determined lipoproteins and low-
molecular-weight metabolites were included.8 We only
included information on low-molecular-weight metabo-
lites, whereas in the study by El Harchaoui et al, only
information on lipoproteins was included. Perhaps the
combination of both lipoproteins and low-molecular-
weight metabolites results in the optimal prediction
of CHD.
The metabolite score represents the metabolites valine,

ornithine, glucose, 1.5-anhydrosorbitol, creatinine, an
unsaturated lipid structure, glutamate, glycoproteins,
citrate, and TMAO, of which TMAO was not available in
the secondary study. Most of these metabolites have been
associated with CHD or CHD risk factors before.11,13,29–31

Valine has been associated with metabolic risk factors,30

insulin resistance,32 incident type 2 diabetes,31 and
future cardiovascular events.11 Ornithine is produced
by splitting of urea from arginine, resulting in a lower
bioavailability of arginine. Arginine is necessary to
produce nitric oxide, which is essential for a normal



Figure 2

The proportion of variance in the metabolite score explained by TRFs in the primary study (upper panel) and the secondary study (lower panel).
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endothelial function.29 This pathway has been linked to
CHD10 and CHD mortality.29 The presence of glucose
and 1,5-anhydrosorbitol, a short-term marker for glyce-
mic control,33 could indicate that our metabolite score
marks individuals at higher risk for developing diabetes or
insulin resistance and thereby CHD. Low creatinine levels
are a marker for high HDL-C and low low-density
lipoprotein cholesterol levels.34 Thus, the presence of
creatinine and an unsaturated lipid structure could
indicate that our metabolite risk score is a marker for
an unfavorable lipid profile. This is confirmed by the
proportion of variance explained by HDL-C and TC levels,
7.9% and 16.4%. In the secondary study, these explained
variances are only 0.9% and 4.6%, but this discrepancy
might be caused by statin treatment, resulting in lower
cholesterol levels for the cases compared with controls. A
secondary explanation for the incorporation of creatinine
in the metabolite score is that elevated creatinine levels
may indicate kidney dysfunction, which is associated
with cardiovascular disease.35 Increased TMAO levels
have been associated with cardiovascular risk before.13,36

Thus, it seems that the LASSO procedure selected
relevant metabolites that have been associated with
CHD and CHD risk factors before.
Several issues have to be resolved before it can be

concluded if a metabolomic approach is useful for CHD
risk prediction. First, the known, quantifiable serum
metabolome consists of 4,229 metabolites,37 of which
only 36 (0.9%) were included in this study. Other studies
that use 1H-NMR spectroscopy also incorporated lipo-
proteins.11,12 Therefore, we hope that we can achieve
better in follow-up studies when incorporating H-NMR–
determined lipoproteins in addition to low-molecular-
weight metabolites in our analysis. Moreover, other
metabolomic platforms should be also be included.37

Second, the 16 signals provided by our study should be
measured in large prospective cohorts for replication and
to determine universally applicable weights. The current

image of 


Table II. Traditional risk factors and their association with prevalent CHD in the secondary study

Cases (n = 170) Controls (n = 2157) OR (95% CI)⁎ OR (95% CI)†

Age (y) 60.9 ± 11.7 47.7 ± 14.0 1.08 (1.07-1.10) 1.08 (1.05-1.10)
TC (mmol/L) 5.0 ± 1.1 5.6 ± 1.1 0.57 (0.49-0.67) 0.47 (0.37-0.59)
HDL-C (mmol/L) 1.2 ± 0.3 1.3 ± 0.4 0.30 (0.18-0.49) 1.25 (0.60-2.61)
SBP (mm Hg) 148.2 ± 22.9 139.1 ± 19.7 1.02 (1.02-1.03) 1.00 (0.99-1.01)
BMI (kg/m2) 28.1 ± 4.4 26.8 ± 4.6 1.06 (1.03-1.09) 1.01 (0.96-1.07)
Men 61.2% (104) 42.5% (917) 2.40 (1.79-3.22) 1,93 (1.18-3.14)
Current smoking 36.5% (62) 39.1% (844) 0.90 (0.66-1.24) 1.18 (0.75-1.88)
Diabetes 12.9% (22) 4.3% (93) 3.44 (2.15-5.49) 1.25 (0.56-2.79)
Parental history of MI 31.2% (53) 19.9% (430) 2.03 (1.53-2.71) 1.60 (1.16-2.21)

Data are expressed as mean ± SD or % (n).
⁎Univariate OR was calculated per unit increase for age, total cholesterol, HDL-C, SBP, BMI, and for the categorical traits.
†All the variables were added into 1 multivariable logistic regression model.
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study is too small for that purpose. Third, we had
nonfasting samples in the primary study and fasted
samples in the secondary study. However, we still
found that the 1H-NMR signals selected in the primary
nonfasted study were also associated with prevalent CHD
in the fasted secondary study. This indicates that we have
selected 1H-NMR signals that are robust whether fasted or
nonfasted samples are used. Fourth, constructing robust
prediction models constitutes a statistical challenge,
especially in a high-dimensional setting. In our case,
model selection by LASSO regression resulted in predic-
tor selection that eliminated high correlations among
predictors. This can lead to reduced transferability of
prediction models as correlation structures of predictors
can vary between studies. A wide variety of penalized
regression models are available (eg, elastic net, ridge
regression), and further research is needed to select the
appropriate methods for the application at hand.

Conclusion
A metabolite score derived from a single point

metabolome measurement is associated with the risk of
CHD independent of TRFs but does not improve risk
prediction beyond TRFs. On the other hand, LASSO
regression resulted in the selection of relevant metabo-
lites, suggesting that more comprehensive metabolomic
methods may be promising tools to further improve upon
CHD disease understanding and risk stratification.
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Supplementary materials and methods
Acquisition and processing of 1H-NMR spectra
All proton nuclear magnetic resonance (1H-NMR) exper-

iments were acquired on a 600-MHz Bruker Avance II
spectrometer (Bruker BioSpin, Karlsruhe, Germany)
equipped with a 5-mm triple resonance inverse (TCI)
cryogenic probe head with Z-gradient system and automat-
ic tuning and matching. All experiments were recorded at
310K. Temperature calibrationwas done before each batch
ofmeasurements using themethod of Findeisen et al.38 The
duration of the π/2 pulses were automatically calibrated for
each individual sample using a homonuclear-gated nutation
experiment on the locked and shimmed samples after
automatic tuning and matching of the probe head.39

The stored EDTA plasma and serum samples were
thawed at 4°C and were mixed by inverting the tubes 10
times. Next, samples (300 μL) were mixed with 300 μL 75
mM disodium phosphate buffer in H2O/D2O (80/20) with a
pH of 7.4 containing 6.15 mM NaN3 and 4.64 mM sodium
3-[trimethylsilyl] d4-propionate using a Gilson 215 liquid
handler in combination with a Bruker SampleTrack system.
Samples were transferred into 5-mm SampleJet NMR tubes
in 96 tube racks using a modified Gilson 215 tube filling
station and kept at 6°C on a SampleJet sample changer
while queued for acquisition.

For water suppression, presaturation of the water
resonance with an effective field of γB1 = 25 Hz was
applied during the relaxation delay.40 J-resolved spectra
(JRES)41 were recorded with a relaxation delay of 2
seconds and a total of 1 scan for each increment in the
indirect dimension. A data matrix of 40 × 12,288 data
points was collected covering a sweep width of 78 ×
10,000 Hz. A sine-shaped window function was applied,
and the data were zero-filled to 256 × 16,384 complex data
points before Fourier transformation. The resulting data
matrix was tilted along the rows by shifting each row (k) by
0.4992 * (128 − k) points and symmetrized about the central
horizontal lines to compensate for the skewof themultiplets
in the F1 dimension. For T2-filtered 38H NMR spectra, a
standard 1D Carr-Purcell-Meiboom-Gill (CPMG) pulse se-
quence,42,43was usedwith a relaxationdelay of 4 seconds. A
pulse train of 128 refocusing pulses with individual spin
echo delays of 0.6 ms were applied resulting in a total T2
filtering delay of 78ms. A total of 73,728data points covering
a spectral width of 12,019 Hzwere collected using 16 scans.
The Free Induction Decay (FID) was zero-filled to 131,072
complex data points, and an exponential window function
was applied with a line broadening factor of 1.0 Hz before
Fourier transformation. The spectra were automatically
phased and baseline corrected.
Quality control, scaling, and calibration of the
1H-NMR spectra
Further data processing was performed in Matlab

(R2009a; The Mathworks, Inc, Natick, MA). The spectra
and associated data were converted into Matlab files
using in-house code. First, the spectra were combined
into 1 file while removing superfluous information. For
CPMG, this included dropping the imaginary part of the
spectrum, whereas for the JRES spectra, the sum
projection along the indirect dimension was taken.
Quality control on the set of 1H NMR spectra was carried
out by examining a set of spectroscopic parameters such
as shim values and intensity of the water signal and
subsequently visually inspecting the spectra. The spectra
that failed the quality control were not included for
further analysis. The spectra were then scaled with
respect to the sensitivity of the receiver coil, as
determined from the pulse length that was automatically
calibrated for each sample.44 After subtracting a constant
value as a simple baseline correction, the spectra were
calibrated with respect to the anomeric resonance of α-D-
glucose (δ = 5.23 ppm).45 Because there are small
deviations of the peak position in the different 1H-NMR
spectra, alignment was performed using the correlation
optimized warping algorithm by Tomasi et al.46 This was
performed actively for the CPMG spectra, after which the
same warping was applied to the JRES projection. Peaks
in the JRES projection were picked by finding the signals
that were above the surrounding spectral area by more
than the estimated noise level. Peaks in different spectra
were grouped according to similarity in peak position and
intensity. The intensity and the position give good initial
guesses for the deconvolution of the peaks by fitting
groups of mixed Gaussian-Lorentzian line shapes to
isolated spectral areas using a Simplex optimization
algorithm. As the fitting algorithm incidentally fails to
converge properly, values further from the median than 3
times the interquartile range are discarded. Using partial
least squares regression, the remaining peak intensities
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were used to build a linear model that predicts all
intensities directly from the nonwarped spectrum,
yielding also values for the cases where the peak picking
failed or the deconvolution values were discarded, and
eliminating the problem of faulty warping.
Supplementary Table I. An overview of all peaks identified in the 2
incident CHD in the primary prospective case-cohort study

Cases

Chemical shift Assignment Mean (SD) Min: Ma

0.873 ppm⁎ Lipids (CH3)† 0.45 (1.48) −0.93: 6.6
0.929 ppm⁎ Isoleucine 0.27 (0.99) −1.60: 2.8
0.947 ppm⁎ Leucine 0.30 (1.05) −1.67: 3.8
0.952 ppm⁎ Unknown 0.01 (1.24) −3.14: 3.0
0.957 ppm⁎ Leucine 0.24 (1.00) −1.78: 2.7
0.965 ppm Unknown 0.07 (1.13) −3.56: 2.4
0.973 ppm⁎ Unknown 0.03 (1.00) −2.35: 2.9
0.981 ppm⁎ Valine 0.33 (0.98) −1.65: 3.2
0.988 ppm⁎ Unknown 0.24 (0.87) −1.88: 2.6
1.000 ppm⁎ Isoleucine 0.27 (0.96) −1.79: 2.4
1.032 ppm⁎ Valine 0.29 (1.02) −1.88: 3.2
1.054 ppm Unknown 0.26 (1.38) −1.94: 5.0
1.063 ppm⁎ Ketoisovalerate 0.12 (1.27) −1.89: 7.2
1.163 ppm⁎ Unknown 0.14 (1.77) −0.18: 15.
1.174 ppm⁎ Ethanol 0.14 (1.63) −0.13: 14.
1.191 ppm⁎ 3-Hydroxybutyrate 0.08 (0.96) −0.57: 6.7
1.212 ppm⁎ Unknown 0.15 (1.44) −1.33: 10.
1.264 ppm⁎ Lipids (CH2)† 0.42 (1.39) −0.91: 5.7
1.319 ppm⁎ Lactate 0.20 (1.06) −1.51: 4.4
1.391 ppm⁎ Unknown −0.14 (1.02) −1.99: 2.6
1.407 ppm⁎ Unknown 0.01 (1.00) −1.78: 2.1
1.425 ppm⁎ Unknown 0.17 (1.06) −1.93: 2.7
1.471 ppm⁎ Alanine 0.22 (0.93) −1.72: 2.5
1.706 ppm⁎ Unknown 0.24 (1.20) −1.77: 4.6
1.908 ppm⁎ Acetate 0.13 (0.88) −0.77: 3.8
2.001 ppm⁎ Lipids (CH⁎2CH=CH)† 0.49 (1.72) −1.01: 8.6
2.035 ppm⁎ Glycoproteins 0.52 (1.18) −1.51: 3.8
2.066 ppm⁎ glycoproteins 0.32 (1.12) −1.59: 4.3
2.099 ppm⁎ Glutamine/glutamate −0.01 (0.88) −1.85: 2.7
2.125 ppm⁎ Glutamine/glutamate 0.00 (1.05) −2.41: 3.6
2.221 ppm⁎ Lipids (CH2CO)† 0.40 (1.55) −0.76: 7.2
2.260 ppm⁎ Valine 0.11 (1.15) −2.10: 2.7
2.301 ppm⁎ 3-Hydroxybutyrate 0.01 (0.63) −0.55: 2.7
2.349 ppm⁎ Glutamate 0.50 (1.21) −0.91: 4.2
2.364 ppm⁎ Pyruvate −0.19 (0.99) −1.47: 3.1
2.393 ppm⁎ 3-Hydroxybutyrate 0.16 (0.86) −0.94: 3.8
2.412 ppm Unknown 0.32 (0.99) −2.37: 2.6
2.430 ppm⁎ Glutamine −0.22 (1.04) −1.69: 2.1
2.530 ppm⁎ Citrate −0.10 (0.81) −1.52: 2.1
2.645 ppm⁎ Citrate −0.19 (0.76) −1.81: 1.8
2.690 ppm Mg-EDTA 0.11 (1.03) −1.47: 2.7
2.737 ppm Sarcosine 0.44 (1.57) −1.45: 9.2
2.801 ppm Aspartate −0.04 (1.00) −1.70: 4.0
2.858 ppm Asparagine 0.13 (0.98) −1.50: 5.2
2.914 ppm⁎ Dimethylglycine 0.17 (1.04) −2.07: 2.5
3.024 ppm⁎ Lysine −0.08 (0.83) −2.04: 1.8
3.034 ppm⁎ Creatine + creatinine 0.17 (1.18) −1.72: 6.8
3.050 ppm⁎ Ornithine 0.24 (1.11) −2.03: 2.5
3.090 ppm Ca-EDTA 0.07 (1.13) −2.09: 4.1
For 76 signals, metabolites were assigned using
information from previously reported plasma/serum
metabolites,43,45,47,48 the Human Metabolome Database49

and the Pearson correlation coefficients between the
signal intensities.
-dimensional J-resolved 1H-NMR spectrum and their association with

Subcohort Association with CHD

x Mean (SD) Min: Max HR (95% CI) P

7 −0.05 (0.94) −0.97: 6.67 1.40 (1.13-1.74) .002
9 −0.04 (1.00) −2.02: 5.08 1.14 (0.90-1.45) .282
3 −0.04 (1.00) −1.72: 4.98 1.23 (0.98-1.55) .074
0 0.00 (0.97) −4.29: 3.21 0.99 (0.77-1.26) .921
9 −0.04 (0.99) −2.10: 4.07 1.17 (0.92-1.50) .207
5 −0.02 (1.00) −3.56: 4.76 0.97 (0.75-1.24) .780
3 −0.01 (1.00) −3.13: 3.77 0.93 (0.71-1.20) .568
6 −0.05 (0.99) −2.37: 4.43 1.23 (0.97-1.57) .090
9 −0.03 (1.01) −7.36: 4.19 1.22 (0.96-1.55) .102
8 −0.03 (1.00) −2.07: 4.31 1.17 (0.92-1.49) .214
6 −0.04 (0.99) −2.35: 4.36 1.18 (0.92-1.51) .193
2 −0.04 (0.93) −1.66: 3.99 1.21 (0.95-1.55) .131
4 −0.01 (0.96) −1.90: 4.89 1.09 (0.84-1.41) .509
48 −0.02 (0.83) −0.21: 14.04 1.11 (0.94-1.31) .235
20 −0.02 (0.87) −0.13: 14.52 1.10 (0.93-1.29) .280
7 −0.02 (1.00) −0.58: 9.75 1.10 (0.90-1.34) .362
34 −0.02 (0.92) −2.03: 5.48 1.17 (0.91-1.52) .228
9 −0.05 (0.95) −0.94: 6.23 1.36 (1.10-1.69) .005
3 −0.02 (0.99) −1.90: 4.41 1.22 (0.95-1.56) .120
9 0.02 (1.00) −2.60: 4.35 0.78 (0.60-1.00) .053
9 0.00 (1.00) −2.53: 3.24 1.02 (0.79-1.32) .904
8 −0.02 (1.00) −1.98: 3.51 1.18 (0.92-1.52) .198
4 −0.03 (1.00) −2.35: 3.45 1.13 (0.88-1.45) .344
2 −0.03 (0.98) −2.67: 4.62 1.21 (0.92-1.58) .172
4 −0.02 (1.01) −0.81: 16.58 1.04 (0.87-1.24) .656
7 −0.05 (0.91) −1.19: 8.67 1.37 (1.13-1.67) .001
5 −0.06 (0.96) −2.05: 4.88 1.32 (1.03-1.69) .028
3 −0.04 (0.99) −2.51: 4.33 1.20 (0.93-1.55) .159
7 −0.01 (1.01) −2.43: 3.58 0.97 (0.76-1.22) .773
6 0.00 (1.01) −2.48: 3.66 1.03 (0.81-1.32) .791
4 −0.05 (0.93) −0.84: 7.24 1.35 (1.10-1.66) .004
1 −0.02 (0.98) −2.11: 4.41 1.01 (0.78-1.30) .954
1 0.00 (1.03) −0.64: 11.41 1.04 (0.82-1.30) .766
4 −0.06 (0.96) −1.68: 4.24 1.38 (1.09-1.75) .007
3 0.02 (1.00) −1.66: 3.91 0.96 (0.73-1.26) .768
2 −0.02 (1.01) −0.96: 10.08 1.13 (0.92-1.39) .242
7 −0.04 (0.99) −2.64: 3.11 1.22 (0.96-1.55) .110
0 0.02 (0.99) −1.79: 3.30 0.81 (0.63-1.05) .107
3 0.01 (1.02) −2.56: 4.43 0.77 (0.59-0.99) .045
4 0.02 (1.02) −2.53: 4.56 0.73 (0.56-0.95) .017
9 −0.01 (0.99) −1.80: 3.88 1.05 (0.82-1.33) .710
3 −0.05 (0.96) −1.45: 9.23 1.32 (1.08-1.61) .007
1 0.01 (1.00) −2.36: 4.75 0.84 (0.65-1.09) .191
3 −0.02 (1.00) −2.95: 10.18 1.18 (0.94-1.47) .148
3 −0.02 (0.99) −2.42: 3.57 1.02 (0.79-1.32) .875
5 0.01 (1.02) −2.24: 3.89 0.81 (0.63-1.06) .119
2 −0.03 (0.97) −2.05: 4.07 0.96 (0.75-1.23) .754
5 −0.03 (0.99) −2.49: 3.42 1.07 (0.82-1.4) .614
9 0.00 (1.01) −2.25: 4.19 0.95 (0.75-1.22) .700



Supplementary Table I (continued)

Cases Subcohort Association with CHD

Chemical shift Assignment Mean (SD) Min: Max Mean (SD) Min: Max HR (95% CI) P

3.117 ppm Ca-EDTA 0.08 (1.12) −3.84: 4.04 −0.02 (0.99) −3.84: 4.55 1.01 (0.79-1.28) .957
3.145 ppm⁎ Unknown 0.02 (1.15) −2.57: 5.57 −0.01 (0.98) −2.57: 6.04 0.88 (0.66-1.16) .348
3.200 ppm EDTA 0.11 (0.84) −2.88: 2.04 −0.01 (1.03) −3.39: 9.57 1.16 (0.91-1.48) .228
3.240 ppm⁎ Glucose 0.32 (1.49) −1.38: 9.56 −0.05 (0.90) −2.24: 7.29 1.2 (0.98-1.47) .078
3.252 ppm TMAO 0.32 (0.93) −2.60: 3.46 −0.04 (1.00) −3.26: 6.43 1.17 (0.93-1.47) .174
3.267 ppm⁎ 1,5-Anhydrosorbitol −0.15 (1.07) −5.08: 1.98 0.01 (0.99) −4.19: 3.42 1.01 (0.8-1.28) .927
3.312 ppm Unknown 0.20 (0.88) −1.80: 3.71 −0.02 (1.01) −2.00: 11.23 1.09 (0.82-1.44) .555
3.333 ppm⁎ Proline 0.17 (0.91) −1.44: 2.67 −0.03 (1.01) −1.80: 4.80 1.02 (0.8-1.29) .902
3.342 ppm⁎ 1,5-Anhydrosorbitol −0.16 (0.92) −1.96: 2.10 0.01 (1.01) −1.85: 3.53 0.86 (0.66-1.13) .287
3.348 ppm Unknown −0.02 (0.90) −1.75: 3.21 0.01 (1.01) −2.67: 3.57 1 (0.79-1.27) .978
3.354 ppm⁎ Unknown 0.11 (1.53) −1.15: 10.50 −0.02 (0.90) −1.15: 9.50 1.21 (0.95-1.53) .124
3.362 ppm Unknown 0.17 (1.31) −2.79: 4.62 −0.02 (0.95) −2.79: 3.72 1.21 (0.93-1.56) .154
3.401 ppm⁎ Glucose 0.38 (1.48) −1.69: 9.93 −0.05 (0.90) −1.95: 7.82 1.23 (1.01-1.49) .036
3.458 ppm Glucose 0.30 (1.47) −1.53: 9.22 −0.04 (0.91) −1.71: 6.45 1.26 (1.01-1.57) .040
3.487 ppm⁎ Glucose 0.37 (1.43) −1.64: 9.52 −0.05 (0.91) −2.03: 7.82 1.22 (1.01-1.47) .042
3.531 ppm⁎ Glucose 0.39 (1.48) −1.64: 9.76 −0.05 (0.90) −1.83: 7.82 1.23 (1.02-1.49) .033
3.551 ppm⁎ Unknown −0.18 (0.90) −1.53: 3.77 0.02 (1.01) −4.31: 4.53 0.81 (0.62-1.05) .111
3.599 ppm EDTA 0.12 (0.84) −2.86: 2.52 −0.01 (1.02) −3.41: 9.90 1.18 (0.93-1.5) .175
3.633 ppm Unknown 0.00 (0.51) −2.47: 0.65 0.00 (1.05) −22.4: 2.58 0.97 (0.81-1.16) .755
3.649 ppm⁎ Ethanol 0.13 (1.59) −0.41: 13.79 −0.02 (0.88) −0.41: 14.69 1.09 (0.92-1.29) .303
3.712 ppm⁎ Glucose 0.33 (1.46) −1.71: 9.30 −0.05 (0.91) −1.76: 7.51 1.19 (0.98-1.45) .078
3.721 ppm⁎ Glucose 0.36 (1.45) −1.68: 9.67 −0.05 (0.91) −2.31: 7.73 1.23 (1.01-1.49) .040
3.735 ppm 3-Phosphoglycerate 0.22 (1.12) −1.53: 3.37 −0.04 (0.98) −1.53: 2.95 1.19 (0.94-1.52) .156
3.747 ppm⁎ Unknown 0.12 (1.02) −2.19: 2.28 −0.01 (1.00) −3.09: 2.77 1.09 (0.85-1.39) .509
3.759 ppm⁎ Glucose 0.32 (1.46) −1.47: 9.83 −0.04 (0.91) −2.29: 7.89 1.21 (0.99-1.47) .061
3.765 ppm 3-Phosphoglycerate 0.25 (1.01) −2.35: 2.15 −0.04 (0.99) −3.13: 4.02 1.24 (0.97-1.58) .087
3.772 ppm 3-Phosphoglycerate 0.23 (1.07) −1.33: 2.90 −0.03 (0.98) −1.35: 3.08 1.21 (0.95-1.53) .119
3.779 ppm⁎ Alanine −0.01 (0.97) −2.80: 2.26 0.01 (1.01) −3.58: 3.92 1 (0.78-1.27) .977
3.818 ppm⁎ Unknown 0.04 (1.05) −1.82: 4.81 0.00 (0.99) −2.09: 6.76 1 (0.79-1.28) .983
3.824 ppm⁎ Glucose 0.39 (1.40) −2.49: 7.92 −0.05 (0.92) −1.89: 6.32 1.29 (1.04-1.59) .019
3.838 ppm⁎ Glucose 0.37 (1.5) −1.69: 9.94 −0.05 (0.89) −2.07: 7.37 1.25 (1.02-1.52) .031
3.876 ppm⁎ 1,5-Anhydrosorbitol 0.00 (1.23) −5.59: 2.69 0.00 (0.96) −5.37: 5.01 1.02 (0.8-1.29) .888
3.888 ppm Unknown 0.03 (1.10) −2.28: 4.80 −0.01 (0.99) −2.50: 3.68 0.96 (0.75-1.23) .745
3.893 ppm⁎ Glucose 0.36 (1.47) −1.57: 9.91 −0.05 (0.90) −1.96: 7.83 1.22 (1.01-1.49) .042
3.924 ppm⁎ Unknown 0.00 (0.93) −2.30: 2.62 0.00 (1.01) −2.64: 3.36 0.78 (0.6-1.01) .062
3.959 ppm⁎ Unknown −0.04 (0.77) −1.65: 1.42 0.01 (1.02) −2.11: 9.13 0.93 (0.71-1.21) .570
3.974 ppm⁎ 1,5-Anhydrosorbitol −0.10 (1.02) −2.12: 2.85 0.01 (1.00) −2.85: 2.98 1.02 (0.78-1.32) .897
3.981 ppm Multiple metabolites −0.16 (0.90) −1.87: 2.73 0.02 (1.01) −2.46: 5.23 0.86 (0.66-1.12) .259
4.044 ppm⁎ Creatinine 0.38 (1.47) −1.85: 10.37 −0.05 (0.90) −2.51: 4.16 1.35 (1.04-1.76) .027
4.103 ppm⁎ Lactate 0.20 (1.07) −1.41: 4.57 −0.02 (0.99) −1.82: 4.60 1.23 (0.96-1.57) .100
4.121 ppm⁎ Proline 0.13 (0.93) −2.01: 2.20 −0.02 (1.01) −2.20: 4.39 0.97 (0.76-1.25) .831
4.167 ppm Phosphorylcholine −0.02 (0.87) −1.60: 2.65 0.00 (1.02) −2.68: 6.10 0.82 (0.61-1.1) .179
4.223 ppm 3-Phosphoglycerate −0.01 (0.96) −1.02: 4.42 0.00 (1.00) −1.20: 4.84 0.98 (0.76-1.27) .894
4.239 ppm⁎ Unknown −0.12 (0.88) −1.62: 2.64 0.02 (1.02) −2.00: 4.14 0.92 (0.72-1.18) .519
4.503 ppm⁎ Glucose 0.26 (1.14) −1.52: 5.96 −0.03 (0.97) −2.54: 4.61 1.23 (0.98-1.55) .074
5.180 ppm⁎ Unknown 0.29 (1.42) −2.20: 7.36 −0.03 (0.94) −2.20: 5.14 1.27 (1.01-1.6) .046
5.230 ppm⁎ Glucose 0.38 (1.47) −1.79: 9.75 −0.05 (0.90) −1.98: 7.97 1.23 (1.02-1.48) .035
5.299 ppm⁎ Lipids (CH=CH)† 0.41 (1.65) −0.61: 7.82 −0.04 (0.91) −0.76: 7.82 1.37 (1.12-1.67) .002
6.890 ppm⁎ Tyrosine 0.03 (0.90) −1.74: 2.89 −0.01 (1.02) −2.38: 5.14 0.85 (0.66-1.1) .212
7.186 ppm⁎ Tyrosine 0.05 (1.01) −1.50: 2.95 −0.01 (1.00) −2.15: 4.98 0.91 (0.7-1.17) .444
8.451 ppm⁎ Formate 0.02 (1.03) −1.49: 4.45 0.00 (1.00) −1.30: 9.41 0.9 (0.65-1.23) .495

Mean is expressed as area under the curve.
⁎Detected and quantified in the confirmation study.
† The term in parenthesis indicates the structural feature of the lipid measured by 1H-NMR spectroscopy.
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Supplementary Table II. Baseline characteristics of the traditional CHD risk factors in the primary study before removing participants with
missing data

Cases (n = 125) Subcohort (n = 738)⁎

No. missing Mean ± SD/n (%) No. missing Mean ± SD/n (%)

Age (y) 0 50.49 ± 7.11 0 44.57 ± 8.23
TC (mmol/L) 2 5.91 ± 0.99 13 5.33 ± 0.98
HDL-C (mmol/L) 2 1.11 ± 0.28 13 1.33 ± 0.36
SBP (mm Hg) 0 133.18 ± 17.83 1 121.23 ± 14.61
BMI (kg/m2) 0 27.69 ± 4.45 0 25.48 ± 3.87
Men 0 95 (76.0%) 0 323 (43.8%)
Current smoking 2 69 (56.1%) 5 283 (38.6%)
Diabetes 0 6 (4.8%) 0 5 (0.7%)
Parental history of MI 14 58 (52.3%) 68 264 (39.4%)

⁎ Including 10 cases.
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Supplementary Table III. The association between the metabolite sco
the 13 1H-NMR signals and incident CHD in the primary study

Univaria

HR (95% CI)

Metabolite score based on 16 1H-NMR signals 1.93 (1.50-2.48)
Metabolite score based on 13 1H-NMR signals‡ 1.91 (1.50-2.44)

⁎Univariate HRs were calculated per unit increase for the metabolite scores. Age in years wa
† The TRFs include total cholesterol, HDL-C, SBP, BMI, gender, current smoking, self-reported d
‡ This metabolite score is based on the 13 1H-NMR signals that were also available in the se

Supplementary Table IV. Reclassification of participants when the me
risk factors (ie, age, sex, current smoking, TC, HDL-C, BMI, parental history

Model with TR

Model with TRF⁎ b5% 5-b10%

Incident cases
b5% 39 3
5-b10% 5 13
10-b20% 0 2
≥20% 0 0
Total 44 18

Non-cases
b5% 515 7
5-b10% 4 15
10-b20% 0 3
≥20% 0 0
Total 519 25

For reclassification, the following risk categories were used: 0% to b5%, 5% to b10%, 10% to
⁎ The TRFs include age in years, TC, HDL-C, SBP, BMI, gender, current smoking, self-reporte
re based on 16 1H-NMR signals and the metabolite score based on

te analysis⁎ Adjusted for TRF†

P HR (95% CI) P

b.001 1.58 (1.18-2.12) .002
b.001 1.50 (1.12-2.01) .007

s used as the time-scale variable.
iabetes, and parental history of MI. Age in years was used as the time-scale variable.
condary study.

tabolite score was used in addition to a risk score based on traditional
of MI, and self-reported diabetes)

F + metabolite score

10-b20% ≥20% Total

1 0 43
3 1 22
4 0 6
1 4 5
9 5 76

1 0 523
2 0 21
7 0 10
0 0 0

10 0 554

b20%, ≥20%.
d diabetes, and parental history of MI.



Supplementary Table V. Improvement in reclassification of incident CHD when using the metabolite score in addition to TRFs (ie, age, sex,
current smoking, TC, HDL-C, BMI, parental history of MI, and self-reported diabetes)

Reclassification

P Up P Down NRI Z-score P-value

Event 0.140 0.096 0.044 0.924 0.178
Non-event 0.018 0.013 -0.005 -1.593 0.944
Total … … 0.038 0.809 0.209

For calculating the NRI, the following risk categories were used: 0% to b5%, 5% to b10%, 10% to b20%, ≥20%. Abbreviations: P Up, proportion of participants placed into a higher risk
category; P Down, proportion of participants placed into a lower risk category.

Supplementary Table VI. (A) Comparing the predictive power of the single TRFs, all TRFs combined with and without the metabolite score in
the primary case-cohort study using Harrell's C-index

TRFs only TRF + MS

C-index (95% CI) C-index (95% CI) Diff⁎ (SE) P

Age 0.72 (0.66-0.77) 0.79 (0.74-0.84) 0.08 (0.02) b.001
TC 0.66 (0.61-0.72) 0.77 (0.72-0.81) 0.10 (0.03) b.001
HDL-C 0.67 (0.60-0.73) 0.74 (0.68-0.79) 0.07 (0.02) b.001
SBP 0.71 (0.65-0.77) 0.79 (0.74-0.84) 0.08 (0.02) b.001
BMI 0.64 (0.58-0.71) 0.74 (0.69-0.80) 0.10 (0.03) b.001
Male sex 0.66 (0.61-0.71) 0.76 (0.71-0.81) 0.10 (0.02) b.001
Current smoking 0.57 (0.51-0.62) 0.74 (0.69-0.80) 0.18 (0.03) b.001
Self-reported diabetes 0.51 (0.49-0.54) 0.76 (0.71-0.81) 0.25 (0.03) b.001
Parental history of MI 0.55 (0.49-0.60) 0.75 (0.70-0.80) 0.20 (0.03) b.001
All TRFs combined 0.82 (0.78-0.87) 0.84 (0.80-0.87) 0.01 (0.01) .107

(B) Comparing the predictive power of the metabolite score combined with and without single TRFs and all TRFs combined in
the primary case-cohort study using Harrell's C-index.

C-index (95% CI) Diff† (SE) P

MS only 0.75 (0.74-0.84) – –
Age + MS 0.79 (0.74-0.84) 0.038 (0.022) .090
Total cholesterol + MS 0.77 (0.72-0.81) 0.011 (0.008) .194
HDL cholesterol +MS 0.74 (0.68-0.79) 0.017 (0.021) .412
Systolic blood pressure +MS 0.79 (0.74-0.84) 0.035 (0.019) .064
Body mass index +MS 0.74 (0.69-0.80) 0.011 (0.010) .308
Male sex +MS 0.76 (0.71-0.81) 0.007 (0.020) .720
Current smoking +MS 0.74 (0.69-0.80) 0.011 (0.015) .476
Self-reported diabetes +MS 0.76 (0.71-0.81) 0.002 (0.003) .453
Parental history of MI +MS 0.75 (0.70-0.80) 0.008 (0.008) .970
All TRFs combined 0.84 (0.80-0.87) 0.081 (0.023) b.001

Abbreviations: MS, Metabolite score; Diff, difference.
⁎Difference in C-indices.
†Difference in C-indices between the metabolite score only and the traditional risk factor(s) and the metabolite score combined.
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Supplementary Table VII. Baseline characteristics of the traditional CHD risk factors in the secondary study before removing participants
with missing data

Cases (n = 174) Controls (n = 2170)

No. missing Mean ± SD/n (%) No. missing Mean ± SD/n (%)

Age (y) 0 60.98 (11.73) 0 47.70 (14.02)
TC (mmol/L) 1 5.00 (1.07) 12 5.60 (1.06)
HDL-C (mmol/L) 1 1.15 (0.32) 12 1.29 (0.37)
SBP (mm Hg) 1 148.31 (22.91) 30 139.18 (19.75)
BMI (kg/m2) 3 28.14 (4.43) 35 26.79 (4.61)
Men 0 108 (62.1%) 0 924 (42.6%)
Current smoking 1 62 (35.8%) 3 844 (38.9%)
Diabetes 0 25 (14.4%) 0 101 (4.7%)
Parental history of MI 69 54 (31.0%) 729 430 (19.9%)

Supplementary Table VIII. The association between the metabolite score and CHD in the total confirmation study (170 cases and 2,157
controls) and after excluding statin users (n = 299, 77 cases and 1,946 controls left for analysis)

Crude OR Adjusted OR

Metabolite score (95% CI) P (95% CI)⁎ P

Total population 2.72 (2.28-3.25) 2.0 × 10−28 1.59 (1.19-2.13) .002
Nonstatin users 2.78 (2.16-3.57) 1.2 × 10−15 2.02 (1.33-3.08) .001

Odds ratios were calculated per SD increase in metabolite score.
⁎ The metabolite score was adjusted for age, TC, HDL-C, SBP, BMI, sex, smoking, diabetes, and parental history of MI.
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Supplementary Figure

Kernel density plots showing the distribution of the metabolite score in the subcohort and in the cases of the primary case-cohort study.
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