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This thesis addresses questions on the development of children, with an important focus on 

Attention Problems (AP) and Attention Deficit Hyperactivity Disorder (ADHD) in preschool and 

school-age children. The research described in this thesis was conducted between September 

2009 and December 2013, a period in which genome-wide association studies (GWAS) became 

successful and were dominating the high-impact journals. As large sample sizes are a 

prerequisite for success in this type of study and collaboration very rapidly became the norm in 

genetics, a considerable part of my PhD trajectory has been dedicated to GWA studies for large 

consortia, such as the EArly Genetics and Lifecourse Epidemiology (EAGLE) and Early Growth 

Genetics (EGG) consortium. Alongside this consortium work, I spent time on the analysis of 

specific genetic and environmental risk factors for behavioral problems and AP in particular, 

using data from the Netherlands Twin Register (NTR). In the last year of my PhD trajectory, 

these two lines of research came together in the opportunity to lead a consortium GWAS meta-

analysis on continuous measures of ADHD. Although the scope of this thesis is somewhat 

broader; this introduction will focus on the etiology of AP and ADHD in childhood. 

AP and ADHD are characterized by age-inappropriate inattentive, hyperactive and impulsive 

behaviors that persist across settings, i.e. are present both at home and in the school 

environment.1 The prevalence of a clinical diagnosis of ADHD is estimated at 5.9-7.2% in 

childhood and adolescence, and is similar across countries and regions of the world.2 Data on the 

socio-economic impact of ADHD, although somewhat sparse, suggest that ADHD is an 

economic and social burden to society.3, 4 Treatment options such as stimulant medication and, to 

a lesser extent, behavioral therapy show benefits in terms of symptom reduction in ADHD, yet, 

no cure is available.5, 6 Children diagnosed with ADHD show a reduced quality of life and 

substantial impairment in both social and academic functioning7, 8 and childhood ADHD is 

associated with various adverse long-term outcomes such as lower educational attainment, lower 

occupational status, substance abuse, risk behavior and criminality.3, 9, 10 However, these data 

should not be interpreted as if the impairment in children diagnosed with ADHD is a fixed 

reality; to some extent the impairment is also context dependent. Characteristics that are a burden 

in e.g. the school system can be advantageous in particular settings; impulsivity, hyperactivity 

and a rapid shift of attention were probably adaptive in the past, when high risk environments 

were more common.11, 12  Nowadays, these traits can still be beneficial in risk-taking 
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occupations, as indicated by the fact that entrepreneurial careers are more common among adults 

that score high on ADHD symptom levels.13, 14 

A clear causal agent for ADHD and ADHD-like behaviors is lacking and the pathophysiology 

underlying the disorder is unknown. ADHD, AP and other behavioral disorders are thought to be 

complex multifactorial traits, with many genetic and environmental factors contributing to their 

development. Identifying specific genetic and environmental risk factors for AP and ADHD is 

important for clarification of the underlying etiology, refinement of the diagnostic system, and 

the development of better therapies for children suffering from ADHD. Here, a summary of the 

literature on this topic is provided, starting with a discussion on measurement issues of the trait. 

Measurement of AP and ADHD. In ADHD research, two different types of outcome measures 

can be distinguished. Some studies employ a categorical framework using diagnostic criteria 

from manuals used in clinical practice, such as ICD-10, DSM-IV, and its recent update DSM-5.1, 

15, 16 However, ADHD can also be viewed as the extreme end of a continuous distribution of 

inattentive and hyperactive behaviors that can be observed in the general population.17 Several 

measurement instruments have been developed to assess ADHD-like and other problem 

behaviors on a continuous scale. Whereas some of these scales have based their item content on 

the DSM-IV manual, like for example the Strengths and Weaknesses of ADHD Symptoms and 

Normal Behavior Scale (SWAN),18 other have used a bottom-up approach and performed 

principal components analyses on item level data to derive syndrome scales, e.g. the Child 

Behavior Checklist (CBCL) and the Strengths and Difficulties Questionnaire (SDQ).19-21 

Although these scales differ in their exact item content, all of them contain a syndrome scale that 

is to a considerable extent related to a clinical diagnosis of ADHD.22, 23 Yet, the overlap is less 

than perfect and the question remains whether ADHD is best understood as a continuous or as a 

categorical trait. Studies that assessed this question have often employed statistical methods such 

as Latent Class Analysis and Factor Mixture Modeling on item level data, but these studies 

showed somewhat mixed results.24-28 Another approach to address this question is to assess 

whether risk factors for ADHD have an effect across the full range of behavior in the population, 

as this would strongly support the use of dimensional models. This could have important 

implications; although most clinicians are aware of the possible continuous nature of ADHD, 

dimensional models are only rarely implemented systematically in clinical practice. In addition, 
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many research projects are focused on the analyses of cases versus controls, and do not include 

the full information available from symptom counts. 

Genetic risk factors. As with most other psychiatric disorders, there is an important contribution 

of genes to individual differences in AP and ADHD, explaining why these traits run in families, 

but also why siblings in the same family may differ from each other. Irrespective whether a 

clinical diagnosis of ADHD or a continuous measure of ADHD behaviors is studied, twin, 

adoption, and family studies have consistently found childhood ADHD to be highly heritable in 

childhood, with a mean heritability estimate of 76% across twenty studies in western countries.29-

35 

Given the high heritability of ADHD, many studies have tried to identify specific genetic 

variants underlying the genetic risk for ADHD. Initial molecular genetic studies have focused on 

genes that were selected based on existent neurobiological knowledge. Some of these studies 

were successful; a meta-analysis of candidate gene studies in ADHD found evidence for the 

implication of genes in dopaminergic, serotonergic and neurosystem development pathways in 

ADHD, specifically for variants in DAT1, DRD4, DRD5, 5HTT, HTR1B, and SNAP25.36 

However, the above listed variants still explain only a small amount of variance and ADHD is 

somewhat exceptional in finding replicable associations using a candidate gene approach. As a 

whole, this approach has not been very fruitful for psychiatric disorders: most initial findings 

have not been replicated and were probably either spurious or of inflated effect size. With the 

costs of large-scale genotyping dropping over time, hypothesis-free methods have become 

feasible in the last decade. The first successful genome-wide association study (GWAS) of age-

related macular degeneration was published in 2005;37 and the first psychiatric GWAS was 

published in 2007; since then, the number of published GWAS has grown rapidly.38 For a long 

time, the successes of GWAS on psychiatric phenotypes have been lacking somewhat behind, 

and no genome-wide significant findings were reported in the largest GWA meta-analysis on 

ADHD so far.39-41 The latter may be explained by the relatively small sample size (5,621 ADHD 

cases and 13,589 controls since the last update), however, almost all GWAS projects on non-

psychiatric phenotypes have found genome-wide significant results when including > 11,000 

subjects, suggesting that these null findings might be due to a larger degree of phenotypic and 

genotypic heterogeneity in ADHD and psychiatric disorders in general.41 Overall, the variants 
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detected in GWAS on both psychiatric and non-psychiatric phenotypes explain only a small 

proportion of variation. This gap between high heritability estimates and a low amount of 

variance explained by detected genetic variants has been referred to as the missing heritability 

problem.42 It has been suggested that studies in which family members (e.g. twins) were rated by 

the same observer (same parent, same teacher) estimate heritability to be larger than studies in 

which heritability is estimated from individually rated participants, as is usually the case in 

genetic studies of unrelated subjects who take part in GWA studies.43 Several other explanations 

for the missing heritability have been proposed, including an important contribution of rare 

variants, many common variants of very small effect size, and gene-gene or gene-environment 

interactions.42 GWA studies typically investigate only common variation of a single base pair, 

called single nucleotide polymorphisms (SNPs), where common is generally referring to variants 

with a frequency of 5 or 1% in the population. However, there is much more variation present in 

the genome, including small insertions and deletions, referred to as indels, and larger insertions 

and deletions named copy number variants (CNVs). Currently, empirical evidence supports at 

least a contribution of rare variants and common SNPs with small effect size to ADHD. It has 

been known for some time that children with rare chromosomal microdeletion syndromes have 

an increased risk to develop ADHD and other psychiatric disorders.44 In addition, a higher 

burden of large (> 500 kb) rare (< 1%) CNVs has been found for ADHD cases compared to 

controls.45, 46 Evidence for the contribution of common SNPs has come from methods that 

investigate the variation explained by all SNPs included on the arrays. The Genetic Complex 

Trait Analysis (GCTA) software package uses a linear mixed model approach in which the 

observed phenotypic similarities of all possible pairs of individuals are regressed on their 

observed genetic similarities.47 So et al. have introduced a different method that addresses the 

same question by comparing the observed distribution of effect sizes to the expected 

distribution.48 Studies employing these methods suggest that for many phenotypes such as 

height, weight, smoking or IQ, roughly one-third to half of the genetic variation estimated in 

twin studies can be attributed to the effects of SNP on current GWAS platforms.47, 49-51 

Psychiatric disorders are no exception here; the Psychiatric Genomics Consortium (PGC) 

reported GCTA estimates for major schizophrenia, bipolar disorder, major depressive disorder, 

autism spectrum disorders and ADHD that range between 21 and 57% of the genetic variation 

estimated from twin/family studies.39 For ADHD specifically, 37% of the genetic variation was 
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estimated to be due to the effects of SNPs included on GWAS platforms (28% of the liability to 

ADHD).39 Yet, the only other study that estimated chip heritability for ADHD with GCTA found 

an estimate of zero for continuous measures of ADHD-like behaviors.52 Although this 

discrepancy clearly calls for further investigation, one other study that used a different method 

supports the presence of a relevant aggregate genetic signal in ADHD GWA meta-analysis 

results; ADHD polygenic risk scores that summarize the genetic risk of the individual based on 

the results of the 2010 PGC meta-analysis were shown to be predictive of ADHD case status in 

an independent sample.40, 53 While more research is needed to validate these results, altogether, 

these findings suggest that common variants tagged by GWAS platforms play an important role 

in ADHD, but stay undetected in current GWAS projects due to limited sample size. Even 

though the effect sizes of individual variants will be small, if detected, they can lead to a better 

understanding of the biological basis of ADHD.  

Environmental risk factors for AP and ADHD. Many studies have focused on genetic risk factors 

for ADHD, but this should not lead to the neglect of possible environmental contributions to 

disease risk, as a considerable part of the variation can be attributed to the environment. A few 

risk factors have been consistently associated with ADHD in multiple studies of considerable 

sample size, namely prematurity, low birth weight, lead exposure and extreme early adversity, as 

noted in reviews by e.g. Thapar et al. and Nigg.54, 55 Risk factors that have been reported before 

but for which the evidence is less convincing consist of prenatal factors (maternal stress, 

smoking and alcohol use during pregnancy), environmental toxins (organophosphate pesticides, 

polychlorinated biphenyls), dietary factors (deficiencies of zinc, magnesium, polyunsaturated 

fatty acids, surpluses of sugar and artificial food colorings and low/high IgG foods) and 

psychosocial adversity (family adversity and low income and conflict/parent-child hostility), as 

summarized in a review by Thapar et al. (summary taken from Table 2 in this review).55 A major 

issue with many of these environmental factors is that, even when an association has been 

confirmed, it remains to be established whether the observed association is due to a causal effect 

of the risk factor on ADHD, or whether the association is due to a third factor that influences 

both the predictor and the outcome, e.g. the genetic make-up of the child or parent. 

Gene-environment interplay. Although many studies assess the individual contribution of genetic 

or environmental risk factors, these two sources of variance can correlate or interact with each 
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other. Gene-environment correlation refers to the situation in which the genes that influence a 

trait also influence the chances of exposure to a particular environment that influences the trait. 

Gene-environment interaction occurs when the expression of genetic factors depends on the 

environment, or the other way around: a particular environmental risk factor is only a risk factor 

for subjects with a particular genotype. Twin models can test for the interaction of latent genetic 

variation and a measured environmental risk factor, but these models have not often been applied 

to ADHD.56, 57 A larger portion of the gene-environment interaction literature has been dedicated 

to measured environments in combination with measured variants in candidate genes. Following 

two seminal papers by Caspi et al.58, 59 on violent behavior and on depression, these studies have 

often led to appealing findings, for example, one study found that breastfeeding has a positive 

effect on IQ, but only in children carrying at least one major allele of a polymorphism in the 

FADS2 gene, which is involved in fatty acid metabolism.60 As with the candidate gene 

association literature, candidate gene-environment interaction studies have been criticized for a 

lack of replication and concern of unreported multiple testing in the context of low power in 

small samples.61 With regard to ADHD specifically, some evidence exists for an interaction of 

serotonergic and dopaminergic genotypes with psychosocial factors, as summarized in a review 

on measured gene by environment interaction studies by Nigg et al.56 However, most of the 

studies included in this review are of small sample size, with varying definitions so that these 

results should be interpreted with caution. Yet the hypothetical appeal of the gene-environment 

framework is untouched and the debate on the appropriate evaluation of these interactions is 

ongoing, discussing among other things, appropriate statistical models and accurate measurement 

of environmental exposures.62, 63 Most likely, gene-environment interplay studies will advance 

further when larger GWA studies have identified replicable genetic variants for ADHD. 

Early indicators of vulnerability. ADHD is a diagnosis typically made at school-age, yet more 

and more studies have start to focus on hyperactive and inattentive behavior at preschool age.64-66 

Besides these behaviors that mimic later ADHD behaviors closely, there are also other factors 

early in life that are associated with ADHD, more likely due to a shared vulnerability than 

through a causal relation. Among these factors are excessive crying behavior and difficult 

temperament, and a delay in motor development.67, 68 These factors are important as they may 

shed light on the etiology of ADHD, and can be helpful in identifying children at risk for ADHD 

that might benefit from early intervention. 
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In summary, twin, adoption and family studies have previously established the large contribution 

of genetic factors to the etiology of Attention Problems and ADHD. Current advances in genetic 

research allow for the assessment of the effects of large number of individual genetic variants. 

These new methods can help to answer questions on the overall contribution of genetic factors to 

a trait, the presence of gene-environment interaction, the stability of genetic effects over time and 

the genetic overlap across disorders. In addition, the contribution of rare versus common variants 

can be assessed and specific genetic variants can be identified that play a role in the etiology of a 

trait. Other epidemiological studies have established the association of AP/ADHD with specific 

environmental factors, but more research is needed to confirm these associations and determine 

whether a causal relationship underlies these associations. This thesis aims to contribute to the 

clarification of the etiology of ADHD by studying specific genetic and environmental risk 

factors for AP and ADHD. 

Outline of the current thesis. The first part of this thesis focuses on early predictors and risk 

factors of AP. In chapter two, the heritability of crying behavior at age two is investigated, as 

well as its predictive value for internalizing, externalizing behavior and attention problems at age 

seven. The third chapter focuses on the association between low birth weight and AP; a causal 

model is tested by assessing whether a similar effect on AP is observed in unrelated pairs and 

monozygotic and dizygotic twin pairs discordant for birth weight. The fourth chapter focuses on 

breastfeeding, and analyzes its association with IQ, educational attainment and attention 

problems. Further, it is examined whether the effects of breastfeeding are moderated by 

polymorphism in the FADS2 gene. The second part of the thesis describes several analyses that 

have been performed to identify genetic variants for ADHD and other pediatric phenotypes, and 

to assess the contribution of common SNPs. In the fifth chapter, polygenic risk scores based on a 

GWA of clinical ADHD cases are tested for their predictive value of mother and teacher ratings 

of attention problems in an independent general-population sample of preschool and school-age 

children. Chapter six reports on the results of a GWA meta-analysis on continuous measures of 

ADHD in a consortium of population-based cohorts. In chapter seven, an overview is presented 

of several contributions to GWA consortia projects that were based on data from the Netherlands 

Twin Register. These include GWA studies on a wide range of childhood phenotypes such as 

birth weight, eczema, height and BMI in childhood, age at walking and pubertal development. In 
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chapter eight the results from this thesis are summarized and an effort is made to discuss the 

findings in the context of the available literature, and provide directions for further research. 
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Abstract 

In order to estimate the influence of genetic and environmental factors on “crying without a 

cause” and “being easily upset” in 2-year old children, a large twin study was carried out. 

Prospective data were available for ~18,000 two year old twin pairs from the Netherlands Twin 

Register. A bivariate genetic analysis was performed using structural equation modeling in the 

Mx software package. The influence of maternal personality characteristics and demographic and 

lifestyle factors was tested to identify specific risk factors that may underlie the shared 

environment of twins. Furthermore, it was tested whether crying without a cause and being easily 

upset were predictive of later internalizing, externalizing and attention problems. 

Crying without a cause yielded a heritability estimate of 60% in boys and girls. For easily upset, 

the heritability was estimated at 43% in boys and 31% in girls. The variance explained by shared 

environment varied between 35% and 63%. The correlation between crying without a cause and 

easily upset (r = 0.36) was explained both by genetic and shared environmental factors. Birth 

cohort, gestational age, socioeconomic status, parental age, parental smoking behavior and 

alcohol use during pregnancy did not explain the shared environmental component. Neuroticism 

of the mother explained a small proportion of the additive genetic, but not of the shared 

environmental effects for easily upset. Crying without a cause and being easily upset at age 2 

were predictive of internalizing, externalizing and attention problems at age 7, with effect sizes 

of 0.28-0.42. 

A large influence of shared environmental factors on crying without a cause and easily upset was 

detected. Although these effects could be specific to these items, we could not explain them by 

personality characteristics of the mother or by demographic and lifestyle factors and we 

recognize that these effects may reflect other maternal characteristics. A substantial influence of 

genetic factors was found for the two items, which are predictive of later behavioral problems. 
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Introduction 

A significant number of children cry persistently in the first 3 to 6 months of life. Prevalence 

rates vary between 0.3% and 7.7% depending on the definition, but are usually reported to be 

around 5%.1 Children displaying high levels of persistent crying and distress are a source of 

concern to their parents and a frequent reason to consult a family doctor or pediatrician.2 After 

the first months of life, levels of crying decrease and crying behavior becomes a more stable 

characteristic of the child. Children who frequently fuss or cry are thought of as having a 

difficult temperament. Difficult temperament shows significant continuity over time and is 

associated with internalizing and externalizing problem behavior and attention problems later in 

life.3-7 

A recent review of twin and adoption studies reported that the heritability of temperament varied 

between 23% and 60%.8 Studies investigating specifically the Emotionality and 

Irritability/Anger subscales with items describing crying behavior and proneness to distress 

yielded heritability estimates of 42-72%.9-11 The remaining part of the variance is mostly 

explained by unique environmental factors. Shared environment accounts for a small proportion 

of the variance in most temperament studies, and its influence is often considered negligible.8 

The studies included in the review varied regarding sample size from 50 to 800 individuals.  

Most of these studies investigated the heritability of temperament dimensions by means of a sum 

score of a set of items that are thought to measure an underlying construct like negative 

emotionality. However, studies on personality have shown that genetic and environmental effects 

can be facet or item specific; these effects are not picked up when broad dimensions are 

analyzed.12, 13 A methodological study showed that variance components estimates based on sum 

scores can differ substantially from the variance components of the underlying latent trait and 

proposed to use multivariate genetic analysis at the item or symptom level instead of sum 

scores.14 The literature on focal aspects of temperament is rather limited, but one study that 

estimated the influence of genetic and environmental factors on focal aspects and broader 

dimensions of temperament, found some genetic or shared environmental influences to be facet 

specific.10  
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The present study focuses on two items indicating two aspects of negative emotionality, namely 

crying without a cause (CWC) and being easily upset (EU). Data were available for more than 

18,000 two year old Dutch twin pairs. The aim of the study was to estimate the heritability of 

these two specific behaviors and to establish the contribution of the shared and unique 

environment to these traits. The twins and their parents participate in a longitudinal survey study 

of the Netherlands Twin Register and data on environmental factors and maternal characteristics 

were tested for their relation to CWC and EU in an attempt to assess the shared environment of 

the twins. In addition, it was investigated in a subsample of 8,994 twins whether CWC and EU at 

age two were predictive of internalizing, externalizing and attention problems at age 7. 
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Materials and methods 

Participants. The Netherlands Twin Register (NTR) is a population based register that was 

established at the VU University Amsterdam in 1986. New born twins are enrolled in 

longitudinal survey projects.15 Parents receive questionnaires by mail until the twins are 12 years 

old. 

Since 1988, two items indicating crying without a cause and being easily upset have been 

included in the survey that was sent out to all mothers of two-year-old twins. Over 18,000 

parents filled in and returned this questionnaire with a response rate of 83.4%. In later versions 

of the questionnaire respondents were asked to indicate their relationship to the twins; the 

respondent was the mother of the children in 93.8% of the cases, the father of the children in 

5.1% of the cases and had a relationship specified as 'other' in 1.1% of the cases. The number of 

twin pairs was almost equally distributed over cohorts 1986 – 2004. 

Procedures and Instruments 

Zygosity. If available, DNA or blood group testing was taken as the conclusive result for 

zygosity determination. Zygosity for the remaining same-sex twin pairs was determined by a set 

of questionnaire items filled in by the parents of the twins through ages 3-12. This instrument 

correctly determines zygosity in 93% of same-sex twin pairs.16 In 11.3% of the cases, zygosity 

was determined by a single item in the questionnaire that was sent out at age 2, that indicates 

how much the children look alike. This question gives a correct determination of zygosity in 

92% of the cases. For 16 twin pairs, zygosity determination was not available and they were 

excluded from the study.  

Measures. The survey sent out at age 2 included two items that describe facets of negative 

emotionality. The first question ‘Did the children cry without a clear cause?’ could be answered 

with ‘rarely’, ‘sometimes’ or ‘often’. The second question ‘Are the children upset for a long time 

if the usual course of events is disrupted?’ could be answered with ‘yes’, ‘a bit’ or ‘never/hardly 

ever’. Both items were rated for each child separately. 

Data on parental age, maternal tobacco and alcohol consumption during pregnancy, paternal 

smoking behavior during pregnancy and gestational age were based on the first survey sent out 



29 
 

after registration with the NTR. For the present study, data on maternal tobacco use during 

pregnancy were coded in 2 categories; ‘yes’ and ‘no’, data on paternal tobacco use during 

pregnancy were coded in 4 categories; ‘no’, ‘yes, cigars/pipe’, ‘yes, < 10 cigarettes per day’, 

‘yes, > 10 cigarettes per day’ and data on maternal alcohol use during pregnancy were coded in 3 

answer categories; ‘no’, ‘yes, < 1 glass per week’ and ‘yes, > 1 glass per week’. Data on 

demographic and life-style factors and parental personality traits were available from several 

surveys. Socioeconomic status (SES) was based on a full description of parental occupation at 

age 3 in two third of the families and coded according to the standard classification of 

occupations.17 For the remaining families, parental occupational status was based on 

Goldthorpe’s class categories (EPG) combined with information on parental educational level at 

age 3.18 Complete data on demographic and life-style factors were available for 13,065 twin 

pairs. Incomplete data were most often due to a lack of data on SES as a result of drop out from 

the study at age 3. Data on Neuroticism, Extraversion, Openness, Altruism and 

Conscientiousness were collected using 60 items of the NEO Five Factor Inventory (NEO-

FFI),19 which were included in a survey in 2009-2010 sent out to parents and twins aged 18 years 

and older registered within the NTR. Personality data were available for 1,040 mothers of twins.  

An age appropriate version of the Child and Behavior Checklist (CBCL 4-18) was included in 

the survey that is sent out at age 7. This checklist consists of 120 items that describe several 

behavioral problems. Parents are asked to rate the behavior of their child during the preceding 6 

months on a three point scale, 0=’not true’, 1=’somewhat or sometimes true’, 2=’very true or 

often true’. The attention problems subscale describes both hyperactive and inattentive 

behaviours. The internalizing scale consists of the anxious/depressed, somatic complaints, and 

withdrawn subscales. The externalizing scale consists of the aggressive and rule-breaking 

behavior subscales.20, 21 Data on CWC and EU at age 2 and internalizing, externalizing and 

attention problems at age 7 were available for 8,994 twin pairs.  

Statistical analysis. Monozygotic (MZ) twins are genetically nearly identical while dizygotic 

(DZ) twins share on average 50% of their segregating genes. A higher resemblance of MZ twins 

compared to DZ twins for a particular trait is therefore likely to be due to the influence of genetic 

factors. Environmental factors that are shared between the twins will make MZ and DZ twins 

resemble each other, whereas unique environmental experiences will cause both MZ and DZ 
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twins to differ from each other. When phenotypic data are available on MZ and DZ twin pairs, 

the total variance of the trait can be decomposed into variance due to genetic factors (A), 

common environment (C) shared by children from the same family and unique environment (E). 

When bivariate data are analyzed, it is possible to detect the causes of covariance between two 

traits; that is the proportion of covariance that is due to additive genetic factors, shared 

environment or unique environment. For instance, using the same logic as before, when the 

correlation across-traits, across-twins is higher in MZ than in DZ twins (e.g. CWC in one twin 

and EU in the co-twin), it can be concluded that genetic factors common to both traits partly 

explain the covariance between the traits. For a more comprehensive summary of the methods in 

twin research, including tests for sex x genotype interaction we refer to Martin et al. and 

Boomsma et al.22, 23 

Liability threshold model. The two categorical outcome variables were analyzed using a liability 

threshold model. This model assumes that an unobserved liability underlies the measured 

categories of CWC and EU. The liability can be influenced by an individual’s genetic makeup 

and exposure to environmental influences and is normally distributed with a mean value of 0 and 

a variance of 1. If a threshold on the liability scale is passed, children enter the next category of 

the ordinal scale. The thresholds are calculated as the number of standard deviations away from 

the mean. By definition, the area under the curve corresponds to the probability to be in a certain 

category (Figure 1). The resemblance between the first and second born of a twin pair is 

estimated by the correlation for the liability scale, called a polychoric correlation. Polychoric 

twin correlations were estimated using the software package Mx in a so called saturated model, 

in which the correlations and thresholds are estimated unconstrained over the different zygosity / 

sex groups. Then, thresholds were constrained to be equal over the different groups to test for 

effects of sex and zygosity. The fit of these models was compared with the saturated model. 

Analyses were performed on raw data using the full information maximum likelihood (FIML) 

method. The fit of the different models was compared by the log-likelihood ratio test (LRT). The 

difference in minus two times the log-likelihood (-2LL) between two models has a χ² distribution 

with the degrees of freedom (df) equaling the difference in df between the two models. As we 

used a very large dataset, a p-value < 0.01 was taken as significant.  
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Next, a bivariate genetic model (Figure 1) was evaluated. Here, the variance in liability was 

decomposed using a model with three latent variables: additive genetic factors (A), shared 

environment (C) and unique environment (E). The variance in liability explained by A, C and E 

is calculated by squaring the factor loadings, which sum to 1. MZ twins correlate 1 for A and DZ 

twins correlate on average 0.5. By definition, C correlates 1 in all twin pairs, whereas E 

correlates 0. In a bivariate model, the genetic factors that influence CWC also load on the 

liability to EU, and the same is the case for the environmental factors. The Mx software package 

evaluates the fit of different values of the parameter estimates (i.e. factor loadings and 

thresholds) and provides estimates that offer the best fit of the model given the data.
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Figure 1: Path diagram of the bivariate model with the latent factors A, C and E and their 

influence on the liability to CWC and EU in twin 1 and 2 as modeled in the liability threshold 

model. 

A=additive genetic factors, C=shared environment, E=unique environment, L=liability to the 

trait, CWC=crying without a cause, EU=easily upset
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A series of models was tested. Firstly, an ACE model was fitted to the data that allowed 

estimates to differ in boys and girls. Then, the loadings on the A, C and E factors were 

constrained to be equal between sexes. Next, the AE and CE model were tested against the ACE 

model. Finally, we aimed to identify specific risk factors that could underlie the shared 

environment. Associations were tested between CWC and EU and birth cohort, socioeconomic 

status, parental age, maternal tobacco and alcohol consumption during pregnancy, paternal 

smoking behavior during pregnancy and gestational age. The thresholds of CWC and EU were 

regressed on these variables by including them in the bivariate model as fixed effects on the 

thresholds. These predictors were then dropped one by one and tested for a difference in model 

fit. Following the same procedure, it was tested if personality characteristics measured in a 

subsample of the mothers influenced the ratings of the children’s behavior. 

To test whether CWC and EU were predictive of internalizing, externalizing and attention 

problems at age 7, the children who were crying without a cause ‘often’ were compared to the 

children who were crying without a cause ‘rarely’ and ‘sometimes’, and the children who were 

easily upset ‘yes’, were compared to the children who were easily upset ‘a bit’ or ‘never/hardly 

ever’. Data from two individuals within a twin pair are not independent, therefore effect sizes 

were calculated for first born twins only. Effect sizes were calculated in terms of Cohen’s d: the 

difference between two means divided by the pooled SD’s for those means.24 
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Results 

Crying Without a Cause was reported to occur rarely in 64.2%, sometimes in 27.2% and often in 

8.6% of the cases. Children were Easily Upset ‘yes’ in 5.9%, ‘a bit’ in 34.8% and ‘never/hardly 

ever’ in 59.3% of the cases. These frequencies are in line with general reports on the frequency 

of crying behavior.1 

In the saturated model, thresholds could be constrained to be equal over all groups without a 

significant worsening of the fit (p=0.063), except for the threshold of girls who were part of an 

opposite-sex (DOS) twin pair (p < 0.001). Thus, there were no overall sex differences in item 

responses, but girls with a male co-twin were consistently rated as less easily upset and less often 

crying without a cause than girls with a female co-twin. The mirror effect was not observed, that 

is, boys with a female co-twin do not differ from boys with a male co-twin. The phenotypic 

correlation for CWC and EU was 0.36 in boys and girls.  

The polychoric twin correlations and the cross-trait cross-twin correlations (the correlation 

between CWC in one twin and EU in the co-twin) were estimated in the saturated model (Table 

1). The within-trait and the cross-trait twin correlations were higher in MZ than in DZ twins, 

providing evidence for genetic influences on CWC and EU and on the covariation between the 

traits. However, MZ correlations were never twice as high as DZ correlations, indicating a role 

for shared environmental influences. Next, the ACE model was evaluated. The factor loadings 

were significantly different for boys and girls for EU, but not for CWC. Therefore, it was tested 

separately for males and females whether the influence of A, C and E on EU and the cross 

loadings from CWC on EU could be dropped from the model. The influence of A and C could 

not be dropped from the model without a significant worse fit, both for CWC and EU. None of 

the cross loadings could be dropped from the model (Table 2).  

Table 1: Polychoric twin correlations based on maximum likelihood estimates of a liability 

model with 3 answer categories.  

 Number of 

twin pairs 

CWC 

twin correlation 

EU 

twin correlation 

Cross-trait cross-

twin 

correlation 



35 
 

MZM 2884 0.95 0.94 0.33 

DZM 3165 0.64 0.73 0.24 

MZF 3228 0.96 0.94 0.34 

DZF 2861 0.64 0.78 0.25 

DOS 6153 0.66 0.75 0.24 

CWC=Crying without a cause, EU=Easily upset, MZM=monozygotic males, DZM=dizygotic 

males, MZF=monozygotic females, DZF=dizygotic females, DOS=dizygotic opposite-sex twin 

pairs 

Table 2: Model fitting results for the bivariate model of Crying without a cause (CWC) and 

Easily Upset (EU). The best model is specified in bold font. As the factor loadings of EU showed 

significant sex differences, it was tested separately for males (M) and females (F) whether the 

influence of A, C, E on EU and the cross loadings of CWC on EU could be dropped from the 

model. 

Model 
-2 times 

Likelihood 

Df Compari

son 

X² 

difference 

Differen

ce in df 

p-value 

1. ACE model with sex 

differences on the path loadings 

101009.297 72762     

  

2. ACE model no sex differences 101034.315 72769 Model 1 25.018 7 < 0.001 

3. ACE model no sex differences 

CWC path loadings 

101018.424 72764 Model 1 9.127 2 0.010 

4. AE-ACE model 101367.745 72765 Model 3 349.321 1 < 0.001 

5. ACE-AE model (M) 

  ACE-AE model (F) 

101472.907 

101545.533 

72766  

72766 

Model 3 

Model 3 

454.483 

527.109 

2 

2 

< 0.001 

< 0.001 

6. CE-ACE-model 102629.857 72765 Model 3 1611.433 1 < 0.001 

7. ACE-CE-model (M) 

  ACE-CE-model (F) 

102130.111 

102128.917 

72766 

72766 

Model 3 

Model 3 

1111.687 

1110.493 

2 

2 

< 0.001 

< 0.001 

8. Drop A cross loading (M) 

  Drop A cross loading (F) 

101152.551 

101135.759 

72765 

72765 

Model 3 

Model 3 

134.127 

117.335 

1 

1 

< 0.001 

< 0.001 

9. Drop C cross loading (M) 101098.258 72765 Model 3 79.834 1 < 0.001 
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   Drop C cross loading (F) 101098.317 72765 Model 3 79.893 1 < 0.001 

10. Drop E cross loading (M) 

   Drop E cross loading (F) 

101106.749 

101073.005 

72765 

72765 

Model 3 

Model 3 

88.325 

54.581 

1 

1 

< 0.001 

<  0.001 

CWC=crying without a cause, EU=easily upset, A=additive genetic factors, C=shared 

environment, E=unique environment, M=males, F=females 

Parameter estimates are provided in Table 3. The correlation between the additive genetic factors 

influencing CWC and the genetic factors influencing EU was 0.36 in boys and 0.41 in girls. The 

correlation between shared environment influencing CWC and the shared environment 

influencing EU was 0.36 in boys and 0.34 in girls.  

Table 3: Percentage of variance and covariance explained by additive genetic influences (A), 

common environment shared by twins (C) and unique environment (E) as estimated in the best 

model specified in Table 2. 

Variance component A (%) C (%) E (%) 

CWC 60.4 34.7 4.9 

EU (M) 42.5 51.7 5.8 

EU(F) 30.5 63.1 6.4 

Covariance CWC-EU explained (M) 49.8 41.6 8.6 

Covariance CWC-EU explained (F) 48.4 43.8 7.8 

CWC=crying without a cause, EU=easily upset, M=males, F=females 

 

As a large influence of C was found, several demographic and lifestyle factors were tested for 

their influence on CWC and EU in a subsample of twin families (n=13,065), the results are 

shown in Table 4. Gestational age was the only predictor that could not be dropped from the 

model without resulting in a significant worse fit. However, the differences in A, C and E 

loadings in the model including all versus no predictors were very small. Moreover, the 

predictors influenced the factor loadings of A on CWC and EU rather than the factor loadings of 

C. Finally, maternal NEO scores were examined as predictors of CWC and EU (n=1,040), the 

results are shown in Table 5. Only Neuroticism of the mother significantly predicted EU, but not 
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CWC. Including all personality scales as predictors in the model reduced the proportion of 

variance due to genetic factors with 2%. Again, the influence of shared environment was 

unchanged. 

Table 4: Results of the regression of the thresholds of CWC and EU ratings on several 

demographic and lifestyle factors. 

 CWC   EU  

Model Chi square p-value  Chi square p-value 

1. Drop birth cohort 0.049 0.826  0.231 0.631 

2. Drop SES 4.211 0.040  2.832 0.092 

3. Drop maternal age 0.372 0.542  7.138 0.008 

4. Drop paternal age 1.420 0.233  0.020 0.887 

5. Drop maternal smoking behavior 0.321 0.571  1.531 0.472 

6. Drop paternal smoking behavior 0.226 0.634  0.004 0.951 

7. Drop maternal alcohol use 0.030 0.863  1.399 0.237 

8. Drop gestational age 27.306 < 0.001  15.343 < 0.001 

9. Drop all 41.739 < 0.001  44.813 < 0.001 

CWC=Crying without a cause, EU=Easily upset 
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Table 5: Results of the regression of the thresholds of CWC an EU ratings on the NEO scores of 

the mother 

 CWC   EU  

Model Chi square p-value  Chi square p-value 

1. Drop Neuroticism 3.799 0.051  30.054 < 0.001 

2. Drop Extraversion 0.020 0.888  0.030 0.864 

3. Drop Openness 0.390 0.532  0.020 0.888 

4. Drop Agreeableness 0.020 0.887  0.573 0.449 

5. Drop Conscientiousness 0.656 0.418  1.200 0.273 

6. Drop all 5.486 0.360  37.405 < 0.001 

CWC=Crying without a cause, EU=Easily upset 

The CWC and EU items were predictive of internalizing, externalizing and attention problems at 

age 7: first born twins who were often crying without a cause and/or easily upset scored 

significantly higher on all three scales, as is depicted in Figure 2. Effect sizes were .30, .29 and 

.28 for CWC and .42, .38 and .41 for EU respectively. The polychoric correlations were .15, .15, 

and .13 for CWC and .19, .15 and .15 for EU. 
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Figure 2: Mean internalizing (Int), externalizing (Ext) and attention (Att) problems scores at age 

7 for first born twins per answer category of the items Crying without a cause and Easily upset. 
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Discussion 

In this large sample of two year old twins, the heritability of CWC and EU was estimated 

between 30% and 60%. Shared environment explained 35-63% of the variance in CWC and EU. 

The unique environment, which by definition includes measurement error, explained only a 

small proportion of variance, around 5%. The large estimate of shared environmental influence 

was not explained by the effect of birth cohort, socioeconomic status, parental age, gestational 

age, parental smoking behavior and alcohol use during pregnancy, neither by personality 

characteristics of the mother. 

Previous studies on the heritability of crying behavior after the first 3-6 months of life are mostly 

performed within the temperament framework. The Emotionality and Irritability/Anger subscales 

showed heritability estimates between 42-72% and negligible influence of shared family 

environment, both in studies using parental ratings and studies utilizing laboratory 

observations.9-11 The most obvious difference between the current and previous studies is that we 

assessed two specific behaviors with two items on a 3-point scale, whereas other studies utilized 

extensive temperament questionnaires and analyzed the according dimensions. It is therefore 

possible that we have detected effects that are unique to these specific behaviors. Multivariate 

item genetic analyses of temperament questionnaires that are more commonly used should 

clarify which genetic and shared environmental effects are shared among the items and which are 

item-specific. In general, large studies are needed to gain sufficient power to detect C.25 Our 

study has by far the largest sample size; therefore it is possible that previous studies did not 

detect an influence of C due to the smaller sample sizes. However, these studies report very low, 

sometimes even negative DZ correlations and these cannot be explained by small sample sizes.26 

Other explanations for the difference between our findings and the findings of previous studies 

on the importance of the shared environment may include different approaches: we used a 

liability threshold model, whereas other studies used a continuous variable.  

No specific risk factors were identified that explained the shared environmental contribution in 

this cohort. No association between birth cohort, socioeconomic status, parental age, maternal 

tobacco and alcohol consumption during pregnancy, paternal smoking behavior during 

pregnancy and gestational age and CWC and EU item scores was observed. The only predictor 

that reached significance in our study was gestational age. The association between preterm birth 
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and difficult temperament has been described before, however, in our study, its effect on the A, 

C and E loadings was very small.27 Most studies investigating specific environmental factors that 

are shared between family members, like parental style and family functioning, have not 

established an association with temperament measures.28 

One possible explanation for large effects of C is ‘rater bias’. This is the systematic error that 

occurs when raters consistently over- or underestimate behavioral scores. If a rater then has to 

report on more than one child, scores can become correlated due to characteristics of the rater 

and in an ACE model this will appear like ‘C’.29 To explore this form of rater bias, the influence 

of maternal personality characteristics on CWC and EU ratings was estimated. A significant 

association was found only for Neuroticism and EU. However, this effect did not explain our 

large estimate of the influence of C. The model including Neuroticism of the mother yielded 

slightly lower A loadings and not lower C loadings. It is therefore probable that the influence of 

Neuroticism of the mother on EU ratings is due to genes that are shared between the mother and 

her children. In addition, the bivariate analysis showed that the correlation of CWC and EU 

(r=0.36), was for 50% and 48% due to shared genetic factors and for 42% and 44% due to shared 

environment influencing both traits, in boys and girls respectively. If a large proportion of our 

estimate of shared environmental influence would be due to rater bias one would expect a higher 

correlation between the items, and the covariance between the items to be mostly explained by 

the shared environment that is common to both traits. Still, the large correlated influences of C 

on both items may reflect rater characteristics that we did not account for in this study.  

CWC and EU at age two were found to be predictive of internalizing, externalizing and attention 

problems at age 7. Several previous studies have investigated the association between difficult 

temperament or emotionality and later behavioral problems. Significant associations have been 

reported in many studies, but the correlations reported differ widely.3-7 This might be due to the 

differences across studies with regard to age of measurement and instruments used. A more 

comprehensive comparison might be found in the literature on crying behavior in the first year of 

life conceptualized as ‘regulatory problems’. A recent meta-analysis on the association of 

regulatory problems in the first year of life and later behavioral problems reported effect sizes of 

.50 (95% CI  0.27 to 0.73), .56 (95% CI  0.31 to 0.82), and.42 (95% CI  0.06 to 0.77) when 

comparing children with and without crying problems on ratings of internalizing, externalizing 
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and attention problems later in life.30 Altogether, the effect sizes found in the present study seem 

slightly smaller but comparable to the effect sizes found in previous studies.  

A limitation of the present study lies in the measurement instrument used, as only two items 

were assessed. However, the vast size of the cohort under investigation and its embedding in a 

longitudinal study design is a unique advantage of the present study, as it allowed us to test for 

factors possibly underlying the shared environment of twins. Furthermore, the longitudinal 

aspect of the study made it possible to establish that CWC and EU are predictive of later 

behavioral problems and thus likely capture an important aspect of infant behavior.  

Much debate has been spent on the issue of the validity of parental ratings versus observer or 

laboratory ratings of child behavior. Although these ratings tend to differ substantially, parental 

reports have the overwhelming advantage of in depth knowledge of the child’s behavior over 

different time points and situations and are therefore still considered of utter importance. 

Moreover, parent rated data can be collected in large numbers, whereas laboratory measures are 

always limited in size due to practical infeasibilities. 

A somewhat surprising result emerged from tests of prevalence and thresholds: females from DZ 

opposite-sex pairs were rated as less easily upset and less often crying without a cause than 

female same-sex twins. This effect was not seen in their brothers. One could consider the 

possibility that having a male co-twin is protective for girls, but the observed effect might also 

represent a rater effect. Rietveld et al. reported a comparable phenomenon with regard to 

hyperactivity and attention problems; opposite-sex female twins were rated less hyperactive than 

same-sex female twins.31 As these behaviors are more common in boys than in girls, this may 

cause parents to rate the female co-twin as less difficult when there is a brother as a comparison, 

a so called contrast effect. However, overall sex differences with regard to negative emotionality 

were not found in the present study nor in a large meta-analysis that assessed sex differences in 

temperament, including Negative Affectivity.32 Despite the absence of sex differences, a contrast 

effect seems the most likely explanation for our findings.  
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Abstract 

Objective. Low birth weight (LBW) is associated with attention problems (AP) and attention 

deficit hyperactivity disorder (ADHD). The etiology of this association is unclear. We 

investigate if there is a causal influence of birth weight (BW) on AP and whether the BW effect 

is mediated by catch-up growth (CUG) in low BW children. 

Method. Longitudinal data from > 29,000 twins registered with the Netherlands Twin Register 

with BW ≥1,500 grams and gestational age (GA) ≥ 32 weeks were analyzed with the co-twin 

control method. Hyperactivity and attention problems were assessed at ages 3, 7, 10, and 12 

years; weight was assessed at birth and age 2. 

Results. Children in the lowest BW category of 1,500-2,000 grams scored 0.18–0.37 standard 

deviations (SD) higher on AP than children in the reference category of 3,000–3,500 grams. This 

effect was present in term-born and preterm born children. Importantly, in BW discordant 

monozygotic (MZ), dizygotic (DZ), and unrelated (UR) pairs, the child with the lower BW 

scored higher on hyperactivity and attention problems than the child with the higher BW and 

within-pair differences were similar for MZ, DZ, and UR pairs. This pattern is consistent with a 

causal effect of BW on AP. MZ and DZ twin pairs concordant for LBW but discordant for CUG 

showed similar AP scores thus ruling out any effect of CUG on AP. 

Conclusions. These results strongly indicate that the association of birth weight and AP 

represents a causal relationship. The effects of BW are not explained by CUG in LBW children. 
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Introduction 

With a prevalence of 3%–10%, attention deficit and hyperactivity disorder (ADHD) forms a 

major burden for society and causes considerable impairment in the lives of children and adults.1, 

2 Twin studies have estimated the heritability of ADHD in children to be at least 60%.1, 3 This 

implies that up to 40% of the variance of ADHD can be explained by other factors. Specific risk 

factors that have consistently been associated with attention problems (AP) and ADHD are male 

sex, perinatal trauma, maternal smoking during pregnancy, and low birth weight (LBW) (< 2500 

grams).4 

This paper focuses on the relationship between birth weight (BW) and AP. A recent meta-

analysis reported children who were born very preterm (gestational age (GA) < 32 weeks) and/or 

with a very low birth weight (< 1500 grams, VLBW) to score respectively 0.43 and 0.59 SD 

higher on parent and teacher ratings of AP compared to controls.5 Less attention has been 

devoted to the influence of less extreme forms of prematurity and LBW on symptoms of AP. 

However, studies that included the complete BW distribution in their analysis found the effect to 

extend over all BW categories below the average.6, 7  

The question arises how the association between BW and AP originates. Does LBW increase the 

risk for AP? Or do other factors, such as GA, socioeconomic status, maternal stress, an 

unfavorable lifestyle during pregnancy or genetic factors, increase the risk for both LBW and 

AP? Twin studies provide a unique opportunity to investigate which mechanisms underlie an 

observed association. Monozygotic (MZ) twins share almost all their genes, while dizygotic 

(DZ) twins share on average 50% of their segregating genes. Both types of twins share many 

environmental factors, including SES, GA, and exposure to smoking during pregnancy. The co-

twin control design provides the possibility to test for an association while controlling for genetic 

and environmental factors.8, 9 

Two twin studies have previously investigated the association between BW and AP. A study in 

1,480 twin pairs from the Swedish Twin Registry and a study in 2,007 MZ twin pairs from the 

Twin Early Development Study showed that the association between BW and AP was not due to 

common genetic or environmental factors but rather to a causal effect of BW on AP.10, 11 For the 
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present study a much larger dataset was available consisting of 14,789 twin pairs who have been 

followed longitudinally from birth on. 

Uniquely in this sample, it was possible to address the question whether the effect of LBW on 

AP is mediated by the effects of later catch-up growth (CUG). CUG describes the gain in weight 

SD score over time in the fist years after birth. LBW children frequently receive special 

nutritional programs in order to reach CUG. Although CUG has many positive effects, recent 

studies have reported negative effects of rapid CUG on diabetes, hypertension and, more 

recently, IQ.12-14 We hypothesize that the BW effect on AP might be explained by CUG. To our 

knowledge, this is the first study to test the effect of CUG on AP.  

The aim of the current study was to investigate the association of BW and AP along the entire 

distribution of BWs, to apply the co-twin control method to examine the mechanism underlying 

the BW-AP relationship and to addresses the question whether CUG in the first two years of life 

is causally related to later AP and possibly explains the BW-AP association. 
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Method 

Subjects. Children included in this study are registered with the Netherlands Twin Register 

(NTR), established at the VU University Amsterdam in 1987. At birth, parents of multiples are 

invited to participate in longitudinal survey studies. A first survey is sent out after registration 

and later surveys are collected when the twins are 2, 3, 5, 7, 10, and 12 years old. For a more 

detailed description of the cohort and the data collection see Bartels et al.15 

The twins included in this study were born between 1986 and 2003. Data on BW and AP were 

available for 16,398 twin pairs. Twin pairs were excluded if one of the children suffered from a 

severe handicap that interfered with daily functioning (n= 415 pairs) or if there were no data on 

GA (n = 74 pairs). As the focus of the study was on the less extreme values of BW and GA, 

1,120 twin pairs with a GA less than 32 weeks or a BW smaller than 1,500 grams were excluded 

from the main analysis.16 The final sample thus consisted of 14,789 twin pairs including 13,371 

pairs with data available at age 3, 8,084 at age 7, 5,367 at age 10, and 4,578 at age 12. The 

number of twin pairs with available data decreases with increasing age due to non-response and 

the fact that not all children have reached the particular ages under study. Response rates of the 

questionnaires were 84% at age 1, 70% at age 3, 58% at age 7, 56% at age 10, and 50% at age 

12.  

Zygosity. For 14% of same-sex twins, zygosity was based on the results of DNA or blood group 

typing.17,18 For the remaining pairs, zygosity was determined by a set of questions on twin 

similarity, that was included in longitudinal surveys. Of the 14,789 twin pairs included, there 

were 2,269 monozygotic male (MZM) pairs, 2,600 dizygotic male (DZM) pairs, 2,562 

monozygotic female (MZF) pairs, 2,363 dizygotic female (DZF) pairs and 4,995 dizygotic 

opposite-sex (DOS) pairs. Based on DNA assigned ‘true’ zygosity, we looked at the percentage 

of twins correctly classified by questionnaire items as a function of their true zygosity and their 

concordant/discordant status. Across surveys, the percentage of correctly classified twin pairs 

was 97.3% for MZ concordant twins and 93.7% for DZ concordant twins. For MZ discordant 

pairs, 96.2% was correctly classified and 94.5% of DZ discordant pairs was correctly classified. 

These differences were not significant and discordance status clearly is not associated with 

misclassification. 
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Birth weight and gestational age. In the first survey that is sent out after registration, mothers are 

asked to fill out the BWs of their twins as assessed in the hospital and the duration of the twin 

pregnancy. Gestational age was rounded at half weeks. Twin pairs were classified as BW 

discordant if the BW of the smallest twin was at least 15% lower than the BW of the heaviest 

twin or if there was a BW difference of at least 400 grams.11, 19 To exclude the most extreme 

cases who may be suffering from transfusion syndrome, 300 twin pairs with a BW difference of 

more than 40% or more than 1000 grams were excluded from the analysis of BW discordant 

pairs.  

Catch-up growth. In the surveys at age 2 and 3 mothers are asked to fill out the weights of their 

twins as assessed by the Dutch National Health Services at regular intervals. For weight at age 2 

we selected the measurement between 18 and 30 months that was closest to 24 months. Twin 

pairs were classified as concordant for LBW if both twins had a BW < 2500 grams and if the 

BW of the smallest twin was less than 10% lower than the BW of the heaviest twin. Discordance 

for CUG was defined as a gain in weight SD score over the first 2 years of > 0.67 SD in one twin 

and ≤ 0.50 SD in the other twin.20 Weight data at age 2 were standardized with the sex and age 

specific Dutch growth charts for the general population from 1997 using the software package 

Growth analyser 3.21, 22 Weight at birth was standardized using the reference data of Niklasson et 

al. with correction for gestational age.23 

Attention Problems. An age appropriate Dutch version of the Achenbach System of Empirically 

Based Assessment (ASEBA) is included in the NTR surveys at age 3, 7, 10, and 12.24, 25 The 

Overactive scale at age 3 contains 5 items and the Attention Problems scale at age 7, 10, and 12 

contains 11 items describing both hyperactive and inattentive behaviors. As the number of items 

differs over the CBCL scales, T-scores were calculated to facilitate interpretation. A T-score of 

50 represents the mean and a deviation of 10 points from the mean represents a deviation of 1 

SD. A T-score above 65 indicates clinically significant problem behavior. T-scores were 

calculated separately for boys and girls. We report on maternal AP ratings; results were similar 

when analyzing ratings from fathers (see Table S1).  

BW&AP. Mean T-scores on the AP scale at age 3, 7, 10, and 12 were obtained for each BW 

category. Data from two individuals within a twin pair are not independent. Therefore, mean AP 

scores for all BW categories are given for the following 4 groups: first born males, second born 
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males, first born females, and second born females. A linear regression was performed to test 

whether BW significantly predicted AP scores. Effect sizes were calculated in terms of Cohen’s 

d: the difference between 2 means divided by the pooled SD for those means.26 

Co-twin control method. The co-twin control method addresses issues of causality.8, 9 In this 

design, the association between BW and AP is tested in three groups: MZ twin pairs, DZ twin 

pairs, and a sample of UR pairs discordant for BW. Monozygotic (MZ) twins share almost all 

their DNA while dizygotic (DZ) twins share on average 50% of their segregating genes. Both 

types of twins share many environmental factors including SES, GA, and exposure to smoking 

during pregnancy, while the UR pairs share genetic and environmental factors at a random level. 

The upper figure in Figure 1 depicts an example of the expected mean AP scores in BW 

discordant pairs from the MZ, DZ, and UR group under the three possible models that explain 

the association between BW and AP. In the case of a causal model, all within-pair differences in 

BW will result in within-pair differences in AP. Hence, the individuals with the higher BW in a 

pair will show similarly lower AP scores in the MZ, DZ, and UR pairs. If the association 

between BW and AP is due to an environmental factor that is shared between twins, only UR 

pairs will differ in their AP scores with the individuals with the higher BW showing lower AP 

scores than the individuals with the lower BW. Due to the fact that twins have an equal exposure 

to the environmental factor causing both LBW and AP, the twins with the higher BW in a pair 

will show the same mean AP scores as the co-twins with the lower BW. Finally, if the 

association is due to shared genetic factors, the difference in BW will again be present in the UR 

pairs. However, MZ twins discordant for BW will share the causal genetic factors for AP and 

hence, the MZ twins with the higher BW in a pair are expected to show the same mean AP score 

as the co-twins with the lower birth weight, whereas the DZ group will show an intermediate 

pattern.  

Figure 1. Expected and observed patterns of attention problems (AP) scores in monozygotic 

(MZ) and dizygotic (DZ) twin pairs and unrelated (UR) pairs discordant for birth weight (BW). 

Upper figure: Expected patterns under 3 theoretical models: 1) Association between BW and AP 

due to a causal effect of BW on AP 2) Association between BW and AP due to an environmental 

factor that influences both BW and AP and is shared between twins 3) Association between BW 

and AP due to genetic factors that influence both BW and AP. Lower figure: Observed mean T-
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scores at the Attention Problems (AP) scale in monozygotic (MZ) and dizygotic (DZ) twin pairs 

and unrelated (UR) pairs discordant for BW at age 3, 7, 10, and 12. 

 

 

As sex is an important determinant of both BW and AP, only same-sex pairs were included in the 

DZ BW discordant group. A group of UR pairs discordant for BW was created as follows. Pairs 

of unrelated individuals were drawn from the group of twins that were not discordant for BW 

and matched to the BW discordant MZ and DZ pairs based on sex, GA (rounded at 1 week) and 

BW category (categories of 100 grams were used). Thus, the group of UR pairs has the same 

characteristics with regard to BW discordance and GA as the MZ and DZ BW discordant groups.  

To test for mean differences within BW discordant twin pairs, a paired t-test was performed in 

MZ and DZ twin pairs and an unpaired t-test was performed in UR pairs. To test for the different 

explanatory models, a linear regression was performed in which it was tested whether MZ, DZ 

and UR group membership (coded as 0, -1 and -2) significantly predicted AP scores in the group 

of individuals with the higher birth weight in a pair and in the group of individuals with the 
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lower birth weight in a pair. As an additional test, it was tested whether group membership (MZ, 

DZ or UR) modified the effect of within-pair BW differences on AP, by including the interaction 

term in the linear regression. 

Catch-up growth. LBW and CUG are highly correlated. To disentangle the effects of LBW and 

CUG on AP, 190 same-sex twin pairs concordant for LBW yet discordant for CUG were 

selected. To test for the effect of CUG on AP, mean differences in AP scores at age 3, 7, 10, and 

12 between the twin with the higher CUG and the co-twin with the lower CUG were tested with 

a paired t-test.
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Results 

BW&AP. The mean AP scores at age 3, 7, 10, and 12 for each BW category are shown in Table 

1. As the results were roughly the same for first and second born twins, only the results for first 

born males and females are shown. Clearly, AP scores decrease with increasing BW up to BWs 

of 3,500 grams in all age groups. The association between BW and AP was tested in a linear 

regression; BW significantly predicted AP scores at all ages (p < 0.05). Taking the BW category 

of 3,000–3,500 grams as the reference category, children with a BW of 1,500–2,000 grams 

scored 0.18–0.37 SD higher on the AP scale. In line with this, the percentage of children scoring 

above the clinical cutoff decreases with increasing BW (Table 1). In a subsample of children 

who were term-born (GA ≥ 37 weeks) the same pattern was found with somewhat larger 

differences of 0.27–0.70 SD (see Table S2).  

Table 1. Mean and SD of T-scores of maternal ratings of the Attention problems (AP) scale and 

the percentage of children with a T score > 65 at age 3, 7, 10, and 12 for each birth weight (BW) 

category in first born males (M) and females (F) with gestational age ≥32 weeks. 

Sex BW n AP 3 n AP 7 n AP 10 n AP 12 

M 1,500–

1,999 

598 51.3 (10.2) 

8.7% 

348 51.8 (10.9) 

14.7% 

209 50.6 (10.3) 

9.6% 

173 51.4 (10.0) 

9.8% 

 2,000–

2,499 

1,817 50.6 (9.9) 

7.4% 

1,126 50.6 (10.1) 

9.1% 

723 50.6 (10.3) 

7.9% 

629 51.0 (11.0) 

11.4% 

 2,500–

2,999 

2,627 50.0 (9.8) 

6.6% 

1,540 49.8 (9.7) 

9.0% 

1,029 50.1 (9.9) 

6.5% 

876 49.8 (9.7) 

8.1% 

 3,000–

3,499 

1,384 49.4 (9.7) 

6.4% 

870 49.0 (9.5) 

8.3% 

562 48.4 (9.5) 

5.9% 

497 49.0 (10.0) 

7.6% 

 ≥3,500 235 48.4 (9.7) 

5.1% 

131 49.1 (9.7) 

6.9% 

87 50.2 (9.6) 

4.1% 

74 49.4 (8.2) 

4.0% 

          

F 1,500–

1,999 

740 51.5 (9.9) 

11.4% 

457 51.9 (10.5) 

9.6% 

308 51.7 (10·9) 

9.4% 

265 51.5 (9.6) 

12.1% 

 2,000–

2,499 

2,131 50.7 (10.1) 

11.4% 

1,271 51.2 (10.8) 

9.9% 

885 50.8 (10.7) 

9.0% 

731 51.0 (10.7) 

12.9% 

 2,500–

2,999 

2,637 49.6 (9.9) 

9.0% 

1,646 49.6 (9.8) 

7.7% 

1,099 49.7 (9.6) 

6.4% 

939 49.4 (9.7) 

8.4% 
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 3,000–

3,499 

990 48.9 (9.7) 

8.6% 

605 49.3 (9.8) 

7.8% 

398 49.0 (9.3) 

6.0% 

347 49.1 (9.5) 

7.8% 

 ≥3,500 133 48.6 (9.0) 

6.0% 

78 49.6 (11.3) 

12.8% 

56 47.5 (9.0) 

3.6% 

44 46.1 (8.3) 

6.8% 

 

Attention problems in birth weight discordant pairs. 1,258 MZ twin pairs were discordant for 

BW. AP data were available for 1,133 of these twin pairs at age 3, 723 at age 7, 500 at age 10, 

and 441 at age 12. There were 1,587 same-sex DZ twin pairs discordant for BW. AP data were 

available for 1,425 of these twin pairs at age 3, 846 at age 7, 528 at age 10, and 444 at age 12. 

The average BW differences were similar in the MZ, DZ and UR pairs, with mean BW 

differences of respectively 21%, 20% and 20% and mean absolute differences of 562, 581 and 

560 grams. The average AP scores in the BW discordant MZ, DZ and UR pairs are depicted in 

the lower figure of Figure 1. At all ages, the average AP score of the individuals with the lower 

BW in a pair was higher than the average score of the individuals with the higher BW in a pair, 

with differences between 0.10–0.24 SD. These differences were significant in all pairs at all ages 

of measurement (p < 0·01). A linear regression was performed to test for the different 

explanatory models. At all ages of measurement, group membership (MZ, DZ or UR) did not 

predict AP scores in both the higher birth weight individuals and the lower birth weight 

individuals in a pair. In line with this, group membership (MZ, DZ or UR) did not significantly 

interact with the effect of within-pair BW differences on AP scores at all ages (p > 0·05).  

Catch-up growth & attention problems. 52 MZ and 138 same-sex DZ twin pairs were concordant for LBW 

and discordant for CUG. The AP scores of the twins with the higher CUG in a pair did not differ from the 

AP scores of the twins with the lower CUG in a pair, at all ages of measurement (p > 0·05) (Figure 2). 
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Figure 2. Mean T-scores at the Attention Problems (AP) scale at age 3, 7, 10, and 12 in twin pairs 

concordant for low birth weight yet discordant for catch-up growth.  
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Discussion 

In this large twin study (n = 14,789 twin pairs) there was a clear negative relationship between 

BW and AP. Children with a BW of 1,500–2,000 grams scored 0.18–0.37 SD higher on the AP 

scale than children in the reference category of 3,000–3,500 grams. This effect was present in 

term-born (GA ≥37 weeks) and preterm born children (GA 32–37 weeks). Within MZ, DZ, and 

UR BW discordant pairs, individuals with the lower BW in a pair scored 0.10–0.24 SD higher on 

the AP scale than the individuals with the higher BW in a pair. The effect of BW on AP was 

similar over the MZ, DZ, and UR groups, in line with a causal effect of BW on AP. We were 

able to identify a group of twin pairs who were concordant for LBW yet discordant for CUG. In 

this group no differences in longitudinally assessed AP scores was found. 

The strength of the present study lies in the prospective data collection, the large sample size and 

the possibility to control for prematurity, genetic factors, maternal factors and catch-up growth 

within the co-twin control design. 

Many studies have focused on the effects of VLBW and extreme prematurity on AP. In line with 

previous studies, the influence of BW on AP was present over the full range of BWs in our 

cohort.6, 7 The clinical importance of this finding is considerable, as the number of children with 

moderately LBW (1,500–2,500 grams) is much larger than the number of children with VLBW.  

The effect sizes observed in our study are slightly smaller than the effect sizes described 

previously.5 These differences can be explained by the fact that children with BW < 1,500 grams 

were excluded. When all children with available BW and AP scores were included, differences 

in AP scores of 0.21–0.53 SD were found between children with a BW < 1,500 grams and 

children in the reference category of 3,000–3,500 grams. 

Previous reviews have criticized the existent studies on the influence of LBW on AP since many 

of these studies did not control for the effect of prematurity, socioeconomic status, maternal 

tobacco and alcohol consumption, and genetic factors.4 The fact that we found the effect of BW 

on AP in preterm and term-born children and, more importantly, that the effect was the same in 

MZ, DZ, and UR BW discordant pairs, makes clear that BW is a risk factor for AP independent 

from the above listed factors.  
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This raises the question how LBW might cause AP, i.e. is this a direct effect or is LBW a proxy 

for another risk factor causing AP? Animal studies and human postmortem studies suggest that 

growth restriction in utero, as reflected in LBW, contributes to later AP. These studies 

consistently showed an influence of intrauterine growth restriction (IUGR) on brain volume and 

development (reviewed by de Bie et al. and Schlotz et al.27, 28) Some of the animal studies are of 

particular importance for AP as they found an effect of IUGR on the striatum, a brain structure 

that is thought to play a key role in the pathogenesis of ADHD.29, 30 Interestingly, one MRI study 

in MZ twins discordant for ADHD found smaller caudate volumes in affected twins, pointing to 

a deficit in frontal-striatal processing.31 In another MRI study in MZ twins discordant for AP, the 

high-scoring twins showed a volume reduction of the inferior dorsolateral prefrontal cortex and 

decreased activation in the left and right temporal lobe areas during the color-word Stroop task 

compared to the low-scoring twins.32, 33 The high-scoring twins were previously found to have a 

lower average BW than the AP low-scoring twins.34 Together, these findings support the idea 

that BW differences in MZ twins reflect differential nourishment in utero, leading to impaired 

neurodevelopment. This is in line with the Developmental Origins of Health and Disease model 

(Barker’s hypothesis), an influential hypothesis that states that an adverse environment during 

critical periods of fetal life increases the risk of a wide range of diseases later in life, including 

diabetes, cardiovascular disease, cancer, and neuropsychiatric disorders.28, 35 A recent study36 in 

newborn MZ twins obtained evidence for the hypothesis that epigenetic factors accumulated in 

utero can contribute to low birth weight and predisposition to complex diseases later in life. The 

number of twins in this study were small and more studies are needed to confirm that MZ twins 

can be discordant at birth for epigenetics and gene expression.37 

It has been suggested that the number of children diagnosed with ADHD has increased over 

time, as expressed by a marked increase in medication use.38 Interestingly, a recent study in more 

than 36 million term born children in the United States showed a decrease in BW over the period 

1990–2005.39 Based on our findings, an increase in ADHD might partly be explained by the 

decrease in BW. 

Generalization from our study relies on the assumption that the liability to develop AP is 

influenced by similar factors in twins and singletons. Prematurity, LBW and IUGR occur more 

frequently in twins and, more importantly, the causes and effects of IUGR in twins might differ 
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from those in singletons. However, one of the reasons to assume that the latter could be the case 

is the fact that studies linking LBW to various outcomes in twins have sometimes lacked to find 

an association that was present at the population level. As we do find a clear association between 

BW and AP in our large cohort and in the MZ and DZ BW discordant twin pairs, this argument 

does not hold for the relationship between BW and AP. Important to notice in this regard is that 

twins do not differ from singletons with regard to behavioral problems, and specifically AP.40,41 

This suggests that an unfavourable uterine environment leading to LBW is as much a risk factor 

for AP in the twin population as it is in singletons. 

Another limitation of our study is that inattention and hyperactive behavior were assessed by 

means of a structured questionnaire instead of a clinical diagnosis of ADHD. Although the latter 

directly relates to clinical practice, a liability approach in which AP is considered a continuous 

trait instead of a dichotomy has been shown to adequately represent AP on the population level 

and provides better statistical power. More importantly, the CBCL-AP scale converges with the 

results of clinical interviews covering the DSM-IV criteria.42 

As all data were collected by questionnaire surveys in a population based cohort, non-random 

participation and drop-out over time is a concern. A study by Gielen et al. compared the 

gestational ages and birth weights in the NTR with a reference data set of all Dutch live born 

twins (NPR) and found that gestational age and birth weights of the NTR were higher then those 

of the NPR, although the differences were small: NPR: 35.9 (3.0) weeks and 2459 (615) grams; 

NTR: 36.5 (2.4) weeks and 2498 (550) grams.16 Similarly, another study from the NTR found 

slightly higher overactive behavior scores at age 3 in children that did not participate in the 

surveys at age 7, 10 or 12.43 These forms of selection bias might have led to an underestimation 

of the true effect sizes in the current study.  

A final limitation is that the number of twin pairs concordant for LBW but discordant for CUG 

was still limited although the total sample size was large,.  

To conclude, this study provides evidence for the influence of LBW on AP over the full range of 

BWs. The analysis in BW discordant twins shows that this effect is not accounted for by 

prematurity, SES, or tobacco and alcohol consumption during pregnancy. We hypothesize that 

deficient nourishment in utero leads to impaired neurodevelopment and the occurrence of AP. 
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Whereas recent studies have reported negative outcomes of rapid CUG, our analysis of the 

effects of CUG on AP indicate that catch-up growth is neither beneficial nor harmful with regard 

to AP. The decision to treat children with LBW with nutritional-enriched diets should be based 

on a careful consideration of the positive and negative effects of CUG; future research should 

aim to unravel the characteristics of healthy catch-up growth. 
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Supplementary Materials 

Table S1. Mean and SD of T-scores of paternal ratings at the Attention problems (AP) scale and 

the percentage of children with a T score > 65 at age 3, 7, 10, and 12 for each birth weight (BW) 

category in first born males (M) and females (F) with gestational age ≥ 32 weeks. 

 

Sex BW n AP 3 N AP 7 n AP 10 n AP 12 

M 1,500–
1,999 

406 51.3 (10.2) 

7.9% 

260 51.7 (10.7) 

9.2% 

148 52.4 (12·0) 

12.2% 

135 51.3 (10.0) 

8.9% 

 2,000–
2,499 

1,17
9 

50.4 (10.2) 

7.8% 

825 51.0 (10.3) 

8.8% 

513 50.1 (10.3) 

9.6% 

454 50.9 (10.8) 

9.0% 

 2,500–
2,999 

1,75
4 

49.7 (9.8) 

6.0% 

1,15
5 

49.7 (10.0) 

6.8% 

747 49.8 (9.9) 

8.2% 

641 49.6 (9.7) 

7.6% 

 3,000–
3,499 

923 49.8 (10.0) 

6.2% 

664 49.4 (9.5) 

6.0% 

425 49.3 (9.5) 

5.2% 

362 49.5 (9.6) 

8.3% 

 ≥3,500 151 48.9 (9.1) 

4.0% 

96 47.9 (8.7) 

5.2% 

68 49.6 (8.1) 

4.4% 

60 48.8 (8.2) 

10.0% 

          

F 1,500–
1,999 

474 51.0 (10.0) 

9.5% 

327 51.0 (10.2) 

9.5% 

219 52.1 (12.8) 

14.6% 

188 51.3 (10.4) 

10.1% 

 2,000–
2,499 

1,39
5 

50.6 (10.1) 

9.8% 

925 51.2 (10.9) 

11.1% 

628 50.8 (10.1) 

10.5% 

515 50.6 (10.2) 

8.9% 

 2,500–
2,999 

1,76
3 

49.9 (9.9) 

7.9% 

1,19
6 

49.5 (9.6) 

7.6% 

804 49.1 (9.4) 

7.8% 

702 49.7 (10.0) 

8.4% 

 3,000–
3,499 

652 49.0 (10.0) 

7.7% 

464 49.1 (9.8) 

5.6% 

286 49.3 (9.1) 

7.0% 

257 49.3 (9.4) 

6.6% 

 ≥3,500 86 47.8 (8.6) 

5.8% 

58 50.7 (14.5) 

13.8% 

38 48.0 (8.8) 

7.9% 

35 46.8 (8.9) 

8.6% 
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Table S2. Mean and SD of T-scores of maternal ratings at the Attention problems (AP) scale and 

the percentage of children with a T score > 65 at age 3, 7, 10, and 12 for each birth weight (BW) 

category in first born males (M) and females (F) with gestational age ≥ 37 weeks. 

Sex BW n AP 3 n AP 7 n AP 10 n AP 12 

M 1,500–
1,999 

72 52.3 (10.7) 

12.5% 

41 53.5 (10.6) 

17.1% 

28 53.1 (8.7) 

14.3% 

27 51.5 (7.6) 

3.7% 

 2,000–
2,499 

715 50.8 (9.8) 

7.6% 

458 50.8 (10.0) 

9.2% 

284 51.4 (10.2) 

8.1% 

242 52.6 (12.0) 

14.5% 

 2,500–
2,999 

2,040 49.9 (9.7) 

6.4% 

1,188 49.9 (9.8) 

9.4% 

799 50.1 (9·9) 

6.3% 

678 50.0 (9.7) 

8.0% 

 3,000–
3,499 

1,278 49.5 (9.7) 

6.5% 

809 49.0 (9.3) 

7.9% 

525 48.4 (9.3) 

5.5% 

466 48.9 (9.6) 

7.3% 

 ≥3,500 226 48.6 (9.9) 

5.3% 

128 49.2 (9.8) 

7.0% 

85 50.4 (9.7) 

5.9% 

72 49.4 (8.2) 

4.2% 

          

F 1,500–
1,999 

98 52.4 (9.0) 

12.2% 

63 52.9 (12.0) 

12.7% 

39 52.6 (9.1) 

7.7% 

30 52.7 (10.5) 

20.0% 

 2,000–
2,499 

1,001 50.6 (10.1) 

11.1% 

597 51.1 (10.5) 

8.9% 

446 51.1 (10.8) 

9.9% 

351 51.5 (11.0) 

12.8% 

 2,500–
2,999 

2,188 49.7 (10.0) 

9.2% 

1,382 49.6 (9.8) 

8·0% 

913 49.7 (9.7) 

6.4% 

786 49.8 (9.9) 

8.9% 

 3,000–
3,499 

945 48.8 (9.7) 

8.6% 

584  49.0 (9.6) 

7.2% 

382 48.9 (9.2) 

5.5% 

335 49.0 (9.4) 

7.5% 

 ≥3,500 131 48.6 (9.4) 

6.1% 

76 49.4 (11.0) 

11.8% 

54 47.4 (9.0) 

3.7% 

35 46.1 (8.3) 

6.8% 
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Chapter 4 

A prospective study of the effects of breastfeeding and FADS2 polymorphisms on cognition 

and hyperactivity/attention problems 

Groen-Blokhuis MM, Franić S, van Beijsterveldt CEM, et al. A prospective study of the effects 

of breastfeeding and FADS2 polymorphisms on cognition and hyperactivity/attention problems. 

Am J Med Genet B Neuropsychiatr Genet 2013;162B:457-465. 
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Abstract 

Breastfeeding has been associated with improved cognitive functioning. There is a beneficial 

effect on IQ, and possibly on associated phenotypes such as attention problems. It has been 

suggested that the effect on IQ is moderated by polymorphisms in the FADS2 gene, which is 

involved in fatty acid metabolism. In this study we tested the relation between breastfeeding and 

FADS2 polymorphisms on the one hand and IQ, educational attainment, overactivity, and 

attention problems on the other hand. IQ at age 5, 7, 10, 12, and/or 18 (n=1,313), educational 

attainment at age 12 (n=1,857), overactive behavior at age 3 (n=2,560), and attention problems 

assessed at age 7, 10, and 12 years (n=2,479, n=2,423, n=2,226) were predicted by breastfeeding 

and two SNPs in FADS2 (rs174575 and rs1535). Analyses were performed using structural 

equation modelling. After correction for maternal education, a main effect of breastfeeding was 

found for educational attainment at age 12 and overactive behavior at age 3. For IQ, the effect of 

breastfeeding across age was marginally significant (p=0.05) and amounted to 1.6 points after 

correcting for maternal education. Neither a main effect of the FADS2 polymorphisms nor an 

interaction with breastfeeding was detected for any of the phenotypes. This developmentally 

informed study confirms that breastfeeding is associated with higher educational attainment at 

age 12, less overactive behavior at age 3 and a trend toward higher IQ after correction for 

maternal education. In general, the benefits of breastfeeding were small and did not interact with 

SNPs in FADS2. 
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Introduction 

The positive effects of breastfeeding for the newborn have been shown in many studies and have 

led the WHO to promote breastfeeding worldwide.1 A positive association between breastfeeding 

and cognition has been reported in a substantial number of studies, as reviewed by Horta et al.1 

However, studies examining the effect of breastfeeding on IQ are complicated by several 

confounding effects, most importantly maternal IQ, socioeconomic status (SES) and maternal 

education.2, 3 Although a meta-analysis and a large randomized trial reported an effect of 

breastfeeding on cognition independent of several confounders, other studies, including a meta-

analysis and a sibling pairs analysis, did not find an association after control for confounding 

effects.2-5 

During childhood, IQ consistently shows a negative association with Attention 

Deficit/Hyperactivity Disorder (ADHD) and attention problems (AP).6 The effect of 

breastfeeding on AP and ADHD is less well studied than the effect of breastfeeding on IQ. In a 

case-control study in 100 children aged 4-11, ADHD cases were breastfed for a significantly 

shorter period than controls.7 Furthermore, a prospective cohort study in 500 children found that 

long-term breastfeeding was associated with fewer ADHD symptoms and improved executive 

functioning after correction for sociodemographic characteristics of the parents.8 A study of 

1,287 boys aged 6-13 found that inattention was significantly higher among bottle-fed boys, but 

this effect was not observed for hyperactivity/impulsivity or combined ADHD.9 Finally, a large 

study (n=12,167) focusing on the relationship between eczema and ADHD, reported no effect of 

breastfeeding on ADHD after control for a range of confounding factors including SES.10 Thus, 

studies investigating the protective effect of breastfeeding on AP/ADHD have shown 

inconclusive results. However, the effect of breastfeeding on ADHD is of particular interest in 

the light of a randomized controlled trial that suggested a hypersensitivity reaction to food as a 

causal factor for ADHD.11 As breastfeeding has been suggested to protect against 

hypersensitivity reactions, breastfeeding might play a role in the development of AP/ADHD.  

The positive effects of breastfeeding on brain development and IQ are thought to be mediated by 

the presence of long-chain polyunsaturated fatty acids (LC-PUFA) in breast milk, since LC-

PUFA’s such as docosahexanoic acid (DHA) and arachadonic acid (AA) play a role in neural 

function. Several studies have shown benefits of supplementation with LC-PUFA’s or oily fish 
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intake during pregnancy for ADHD/AP and IQ.12, 13 Although a meta-analysis on the effect of 

supplementation did not support a beneficial effect of LC-PUFA’s on IQ,14 another meta-

analysis showed significant improvement of symptoms of ADHD.15 DHA and AA are the 

products of a process in which essential fatty acids like 3-omega and 6-omega fatty acids are 

desaturated and elongated.16, 17 The rate limiting step in the production of DHA and AA is 

mediated by the FADS enzymes. The importance of these fatty acids for neural development led 

Caspi et al. to study two SNPs in the FADS2 gene under the hypothesis that these SNPs could 

moderate the relationship between breastfeeding and IQ.18 These two SNPs, rs174575 and 

rs1535, are in linkage disequilibrium (LD) with other SNPs throughout the promoter and 

intragenic region of the FADS2 gene. A gene-environment interaction was found in two 

independent cohorts; children carrying one or two C alleles of the rs174575 SNP showed a clear 

benefit of breastfeeding, whereas children homozygous for the G allele showed similar IQ scores 

in the breastfed and non-breastfed groups. Importantly, the interaction effect was significant after 

correction for maternal IQ and social class and it was shown that the interaction effect was not 

due to the maternal genotype influencing breast milk quality.18 

Thus far, two studies have attempted to replicate this interaction effect. In a prospective cohort 

study of 6,000 children, the relationship between breastfeeding and IQ scores at age 8 was found 

to be modified by the two SNPs in the FADS2 gene.19 However, the interaction effect was in the 

opposite direction of the effect observed by Caspi et al., with the effect of breastfeeding being 

significantly larger in children homozygous for the G allele. 

A second replication study was performed in a cohort of 700 twin families that provided 

retrospective data on breastfeeding at age 16-18. Neither a main effect of breastfeeding nor an 

interaction of the FADS2 gene and breastfeeding was found after control for parental 

socioeconomic status and education.20 

With the present study we contribute to the discussion whether breastfeeding is associated with 

IQ. We extend the IQ phenotype with associated phenotypes, namely educational attainment 

(EA) and overactive behavior (OA) / AP throughout childhood and investigate the possible role 

of FADS2 and its interaction with breastfeeding. Data on IQ, educational attainment (EA) and 

OA/AP were available for 1,739, 10,669 and 30,561 twins and siblings, respectively. Of these, 

1,313, 1,857 and 2,849 individuals were successfully genotyped for the FADS2 SNPs. 



72 
 

Materials and methods 

Subjects. The twins included in this study were registered as newborns with the Netherlands 

Twin Register (NTR).21, 22 Longitudinal data on health and behavior are collected starting at 

registration. Questionnaires are sent out to the parents of the twins at registration and at twins’ 

ages 2, 3, 5, 7, 10, and 12 years. Hereafter, their siblings are invited to participate as well, and 

both twins and siblings rate their own behavior. At age 18, the parents, twins and siblings are 

invited to participate in the adult register. Subsamples of twins and siblings are invited to 

participate in projects that use more elaborate measures such as IQ tests, MRI assessment or 

neuropsychological test to assess cognitive functioning and development. 

IQ data were available for 1,739 individuals (birth cohorts 1974-1998), of whom 1,313 were 

genotyped for the FADS2 SNPs. IQ was measured in twins at ages 5, 7, 10, 12, and/or 18 and in 

siblings at age 12 and/or 18. Data on EA at age 12 were available for 10,669 twins and siblings 

(birth cohorts 1981-1999). Of these, 1,857 were genotyped for the FADS2 SNPs. Data for 

OA/AP at any time point were available for twins only (n=30,561, birth cohorts 1986-2004); 

28,245 twins had OA data at age 3 and 18,296, 12,834, and 9,143 had data on AP at age 7, 10, 

and 12 years, respectively. Of these, 2,560, 2,479, 2,423, and 2,226 were genotyped for the 

FADS2 SNPs. Children suffering from a severe handicap that interfered with daily functioning 

were excluded from the analyses of OA/AP. Ethnic outliers were excluded from the analyses on 

the main and interaction effect of FADS2. If available, ethnicity was based on genome wide SNP 

data, otherwise information on the country of birth of the (grand)parents was used. 

Breastfeeding. Breastfeeding status was reported in several surveys. For most twins, 

breastfeeding information was available from a survey administered at age 2 of the twins. 

Mothers reported the duration of breastfeeding for each child using the following categories: 

‘no’, ‘less than two weeks’, ‘2 - 6 weeks’, ‘6 weeks – 3 months’, ‘3 – 6 months’ and ‘more than 

6 months’. For all siblings and a small subgroup of twins, breastfeeding information was based 

on parental reports from three surveys of the adult register (in 1991, 1995 and 2009) when the 

children were age 5-33. In one of these surveys, two answer categories were used (‘yes’ and 

‘no’), while in the other questionnaires the same six answer categories were used as in the young 

twin register. Breastfeeding was re-coded into two categories: never breastfed (‘no’ and ‘less 

than two weeks’) versus ever breastfed (all other categories); as this dichotomization led to the 
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highest consistency across raters and across time in individuals measured on multiple occasions. 

When multiple reports were available, maternal reports were preferred over paternal reports; and 

the rating closest to the moment of breastfeeding was selected. In children with phenotypic data, 

the frequency of breastfeeding was 45.0% in twins and 71.4% in siblings. Twin pairs were 

concordant for breastfeeding in 97.8 % of the cases and twin-sibling pairs were concordant for 

breastfeeding in 72.8% of the cases. Of the children that were breastfed and had detailed 

information on the duration of breastfeeding, 40.6% were breastfed for more than three months 

(40.1% for twins and 63.5% for siblings). The frequency of breastfeeding was similar in the 

groups of genotyped and ungenotyped children (43.5% and 45.6%). 

Maternal education. Maternal education was assessed in surveys sent out at twins’ ages 3, 7 and 

10, on a 13-point scale ranging from primary to post-doctoral education. The most recent 

measure of maternal education was re-coded into one of three categories: low, middle or high 

educational level. For a small subgroup, data on maternal education were based on surveys from 

the adult register and recoded into the same three categories as the data from the young register. 

Zygosity. For twin pairs in which both twins were genotyped for the FADS2 gene, zygosity was 

based on a series of SNP markers and repeat polymorphisms or, where available, on genome-

wide SNP data (van Beijsterveldt et al., 2012). In the twin pairs that had no FADS2 data, 

zygosity was determined by analysis of blood group or DNA polymorphisms in respectively 

77.4%, 10.1% and 6.3% of same-sex twin pairs with data on IQ, EA and OA/AP. In the 

remaining cases, zygosity was based on opposite-sex information or a set of questions that gives 

a correct determination of zygosity in 93% of same-sex twin pairs.23 

IQ. IQ was measured at ages 5, 7, 10, 12, and/or 18 as part of several studies.6, 24-26 At ages 5, 7 

and 10, children completed the Revised Amsterdamse Kinder Intelligentie Test (RAKIT).27 The 

short version of the RAKIT was used, containing six subtests with age-appropriate items 

measuring verbal and nonverbal abilities. At age 10 and 12 the Dutch version of the Wechsler 

Intelligence Scale for Children-Revised (WISC-R and WISC-R-III) was used.27-29 Both the 

complete test, consisting of 6 verbal and 6 nonverbal subtests and a short version, consisting of 6 

subtests, were used. At age 18, IQ was assessed using the Dutch version of the Wechsler Adult 

Intelligence Scale (WAIS-III)30 and the Raven Advanced Progressive Matrices.31 All tests were 

standardized with equal norms across sex groups. Norms were based on a population sample of 
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same-aged subjects in the Netherlands, except for the Raven scores for which age-corrected 

standardized scores were calculated based on the NTR dataset. Standardized scores were then 

calculated for each project separately. For convenience, these z-scores were transformed to 

scores with mean 100 and standard deviation 15. 

EA. The CITO-elementary test is a standardized test of Educational Attainment that is 

administered to 85% of Dutch children in their last year of primary education.32 The test is taken 

on 3 consecutive days and covers four domains: Language, Mathematics, Information Processing 

and World Orientation. The total score ranges between 501 and 550. Bartels et al. showed that 

scores on the CITO-elementary test correlate .41, .50, .60, and .63 with IQ at ages 5, 7, 10, and 

12, respectively.33 

OA & AP. An age-appropriate version of the Child and Behavior Checklist (CBCL) was included 

in the questionnaires that were sent out to mothers of twins at ages 3, 7, 10 and 12 of the 

children. The Overactive scale at age 3 (OA) contains 5 items describing overactive behaviors 

and the Attention Problems scale (AP) at ages 7, 10 and 12 contains 11 items that describe both 

hyperactive and inattentive behaviours.34-37 The sum score of the AP scale has been shown to 

converge with a DSM-based ADHD diagnosis.38 As the two scales were analyzed 

simultaneously, scores were standardized by subtracting the mean score and dividing the 

outcome by the standard deviation. 

FADS2 genotyping. The twins and siblings included in the study were genotyped as part of 

several projects. Most genotype data come from the SNP fingerprint chip that was used to 

determine zygosity and identify sample switches using a set of SNPs in candidate genes (see van 

Beijsterveldt et al., 2012). The remaining FADS2 genotype data come from genome-wide SNP 

arrays that were imputed against the 1000 genomes references set (June 2011, all panels) after 

stringent quality control. SNP quality control before imputation included filtering on the 

following criteria: HWE p-value > 0.00001; MAF > 0.01; SNP call rate > 0.95; SNP 

concordance rate < 2%; Mendel error rate < 2% and allele frequency difference with reference 

set < 0.20. C/G and A/T SNPs were only included if MAF < 0.35. Samples were included if the 

missing rate was < 10%, known gender was in line with the X-chromosome genotypes, IBS/IBD 

relationships were in line with known family relations and there were no issues of excessive 

heterozygosity or IBS sharing. The rs174575 and rs1535 SNPs were imputed with high quality 
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(R² for rs174575=0.93, R² for rs1535=0.98). Genotypes of the rs174575 and rs1535 SNPs were 

in Hardy-Weinberg equilibrium (p > 0.05) and allele frequencies were comparable to HapMap. 

 

Analyses 

To assess the effect of breastfeeding on IQ, EA and OA/AP, different structural equation models 

were fit; here, the EA, IQ and OA/AP scores were regressed on maternal education, sex and 

breastfeeding. To correct for the dependency in the data, covariances across ages and family 

members were estimated. For the analysis of EA, a single observation at age 12 was available for 

both twins and siblings, and a 3 x 3 matrix was estimated. In this matrix, the variance of EA and 

the covariances of EA within twin-sibling and twin pairs were estimated, with separate estimates 

for monozygotic and dizygotic twin pairs. For the analyses of IQ and OA/AP, longitudinal data 

were available, and we fit a model in which (co)variances were estimated across all available age 

groups. Thus, in the IQ analyses for instance, a 12 x 12 full covariance matrix was estimated (5 

ages x 2 twins + 2 ages x 1 sibling). Separate covariance matrices were estimated for twin-

sibling, monozygotic twin and dizygotic twin pairs, consisting of covariances between family 

members. The covariance across ages within individuals was constrained to be equal across 

twins and siblings.  

The effects of breastfeeding, sex and maternal education were estimated as fixed effects in the 

total sample of genotyped and ungenotyped individuals. For IQ and OA/AP, it was first tested 

whether the effect of breastfeeding could be constrained to be equal across ages without a 

significant deterioration of model fit. If this was allowed it was tested whether the parameter 

could be excluded from the model. To assess the effect of FADS2 and the FADS2-by-

breastfeeding interaction, similar models were fitted to the data of the subgroup with available 

rs1535 and rs174575 genotypes, with the SNP and SNP-by-breastfeeding effect as fixed effects 

in the model (see Figure 1). For IQ, it was first tested whether the breastfeeding, SNP and SNP-

by-breastfeeding effect could be constrained to be equal across ages without a significant 

deterioration of model fit, both for each effect separately and for the breastfeeding, SNP and 

SNP-by-breastfeeding effects together. If this was allowed, it was tested whether excluding a 

predictor from the model across all ages led to a significantly worse model fit. For OA/AP, the 

effect of breastfeeding was significantly different across age and the breastfeeding and SNP-by-

breastfeeding effect was therefore tested for each age separately. Predictors whose exclusion did 
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not lead to a significant decline in model fit where left out from subsequent models. The two 

SNPs were tested separately in an additive and a recessive model. The interaction of 

breastfeeding and FADS2 genotype was tested in the presence of main effects of breastfeeding 

and FADS2.  

 

Figure 1. Model to estimate the effect of maternal education (ME), sex, breastfeeding (BF), SNP and 

SNP-by-breastfeeding (SNP*BF) on IQ. For the sake of clarity only two time points and two family 

members are shown. Included but not shown in the model are the within person residual variance of IQ 

and the intercept at each time point. Paths that have the same colour in the figure are constrained to be 

equal in the full model. Covariances across twins were estimated for monozygotic and dizygotic twins 

separately.

 

The Mx software package was used for all analyses.39 Mx uses a full information maximum 

likelihood (FIML) method to fit a specified model to the data. The difference in minus two times 

the log-likelihood (-2LL) between two models has an asymptotic χ² distribution with the degrees 

of freedom (df) equalling the difference in parameters between the two models. The fit of nested 
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models can therefore be compared using the log-likelihood ratio test (LRT). As we analyzed 

three phenotypes, α-level of 0.05 was divided by the number of phenotypes: 0.05/3=0.017.  

We performed a simulation study to estimate the power to detect the interaction effect described 

by Caspi et al. in the current dataset. The effect sizes for breastfeeding, rs174575 and its 

interaction were calculated based on the descriptive statistics reported by Caspi et al.; the 

interaction effect explained 0.3% of the variance in IQ in their dataset. We simulated ten 

thousand datasets that mimicked the structure of the current dataset with regard to sample size, 

family relations, longitudinal data structure and patterns of missingness, using the statistical 

package R (script available in Supplementary Material I). Effects were assumed to be equal 

across age and were not corrected for sex and maternal education, as only unadjusted effect sizes 

could be derived from the study by Caspi et al. 
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Results 

The effect of breastfeeding on IQ was not significantly different across the different ages. After 

correction for sex and maternal education, the effect of breastfeeding was significant for EA at 

age 12 and marginally significant for IQ across all ages (p=0.05), see Table I. The effect of 

breastfeeding on OA/AP differed significantly across age and reached significance for OA at age 

3. After correction for sex and maternal education, breastfed children scored on average 1.6 

points (95% CI -0.00 - 3.14) higher on IQ, 1.3 points (95% CI 0.93-1.69) higher on the EA scale 

and 0.15 points (95% CI 0.09-0.21) lower on the OA scale.  

For the children with genotype data, the mean IQ, EA and OA/AP scores for breastfed and non-

breastfed children are shown in Table II, for each genotype group of rs174575 separately. This 

SNP showed the most convincing results for a gene-environment interaction in previous studies. 

In Figure 2 the same results are shown graphically for one measurement of each phenotype, OA 

at age 3 was selected because this was the only age for which a significant breastfeeding effect 

was found in the OA/AP analyses and IQ at age 18 was selected as this was the age at which 

most IQ data were available. Following previous studies, we first tested a recessive model. The 

main and interaction effects of breastfeeding and the child’s genotype on IQ did not significantly 

differ across age, either when tested separately or with the three effects together. The main effect 

of the SNP and the SNP-by-breastfeeding interaction were not significant for IQ, EA and OA/AP 

for rs174575 and rs1535 (Table III). The point estimate of the interaction effect in the IQ 

analyses (not breastfed versus breastfed children coded 0-1 and CC/CG versus GG genotypes 

coded 0-1), was -5.30 (95% CI -11.32 - 0.73). The additive models also showed no significant 

results (Supplementary Table I). Results for the SNP and SNP-by-breastfeeding effect did not 

change meaningfully when not corrected for maternal education and sex (results available upon 

request). 

The simulation study indicated that, at a significance level of 0.05, we were at 53% power to 

detect the previously reported interaction effect on IQ. For EA and OA/AP, we had 54% and 

86% power to detect an interaction effect similar in effects size as the interaction effect on IQ 

reported by Caspi et al.
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Table I. Model fitting results for the effect of breastfeeding in the total group with available data, adjusted for maternal education and 

sex. 

 Model vs Model -2LL df Χ²  Δdf p Conclusion 

IQ 1. Full model  28605.199 3681     

 2. Equal β’s BF across 

age  

1 28605.963 3685 0.765 4 0.943 Effect of BF is the same across age 

 3. Drop β breastfeeding 2 28609.804 3686 3.841 1 0.050 Effect of BF is marginally 

significant 

         

EA 1. Full model  72965.872 10661     

 2. Drop β breastfeeding 1 73010.491 10662 44.619 1 <  0.001 Effect of BF is significant 

         

OA/AP 1. Full model  165167.102 68472     

 2. Equal β’s BF across 

age 

1 165179.228 68475 12.126 3 0.007 Effect of BF is different at different 

ages 

 3. Drop β BF age 3 1 165193.105 68473 26.003 1 < 0.001 Effect of BF is significant at age 3 

 4. Drop β BF age 7 1 165167.368 68473 0.266 1 0.606 Effect of BF is not significant at 

age 7, 10 and 12  5. Drop β BF age 10 4 165168.165 68474 0.797 1 0.372 

 6. Drop β BF age 12 5 165168.705 68475 0.540 1 0.462 
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EA=educational attainment, OA=overactive behavior, AP=attention problems 

Table II. Mean and standard deviation of IQ, educational attainment (EA), overactive behavior (OA) and attention problems (AP) 

scores for breastfed and non-breastfed children and genotype groups of rs174575 separately. 

  rs174575 CC carriers rs174575 CG carriers rs174575 GG carriers 

  Not breastfed Breastfed Not breastfed Breastfed Not breastfed Breastfed 

  n Mean (SD) n Mean (SD) n Mean (SD) n Mean (SD) n Mean (SD) n Mean (SD) 

IQ Age 5 205 99.5 (14.9) 131 101.0 (13.8) 143 100.5 (14.9) 105 103.6 (14.4) 25 104.4 (10.7) 12 107.1 (10.7) 

 Age 7  77 100.3 (14.3) 69 102.1 (14.5) 62 99.7 (14.2) 38 103.3 (15.1) 9 107.5 (12.3) 5 103.8 (8.9) 

 Age 10 139 98.9 (13.6) 120 98.6 (15.4) 86 97.2 (14.3) 74 102.7 (13.5) 13 103.2 (13.2) 14 108.6 (10.7) 

 Age 12 238 98.5 (14.0) 182 99.6 (14.5) 144 98.9 (13.9) 128 104.3 (14.4) 28 101.4 (13.1) 17 104.0 (12.9) 

 Age 18 278 98.5 (15.5) 169 102.6 (12.9) 179 100.0 (15.2) 152 103.4 (13.6) 40 104.6 (13.4) 21 97.1 (13.9) 

              

EA Age 12 539 537.0 (8.2) 449 539.1 (8.4) 405 536.9 (8.8) 346 539.9 (8.0) 59 536.0 (9.3) 54 539.6 (8.1) 

              

OA Age 3 813 2.74 (2.18) 602 2.40 (2.14) 528 2.95 (2.22) 456 2.35 (2.10) 78 2.91 (2.53) 76 2.13 (1.81) 

AP Age 7 779 2.99 (3.00) 579 2.66 (2.89) 525 3.08 (2.99) 438 2.70 (3.10) 79 2.99 (3.28) 74 2.01 (2.03) 

AP Age 10 764 3.03 (3.08) 569 2.46 (2.87) 521 3.23 (3.34) 419 2.78 (3.37) 77 3.34 (3.28) 68 2.29 (2.44) 

AP Age 12 698 2.63 (2.77) 524 2.24 (2.80) 467 2.94 (3.14) 397 2.34 (2.71) 72 2.54 (3.30) 63 2.10 (1.73) 

EA=educational attainment, OA=overactive behavior, AP=attention problems  
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Table III. Model fitting results for the recessive model of rs174575 and rs1535, adjusted for maternal education and sex. 

   rs174575      rs1535     

 Model  vs -2LL df Χ²  Δdf p  -2LL df Χ²  Δdf p 

IQ 1. Full model  22070.409 2818     22172.311 2831    

 2. Equal β’s across age 1 22079.993 2830 9.584 12 0.652  22185.362 2843 13.051 12 0.365 

 3. Drop β SNP*BF 2 22082.960 2831 2.967 1 0.085  22188.678 2844 3.316 1 0.069 

 4. Drop β SNP 3 22083.582 2832 0.622 1 0.430  22189.577 2845 0.899 1 0.343 

              

EA 1. Full model  12547.612 1842     12569.755 1844    

 2. Drop β SNP*BF 1 12547.821 1843 0.209 1 0.648  12569.921 1845 0.166 1 0.684 

 3. Drop β SNP 2 12548.077 1844 0.256 1 0.613  12572.235 1846 2.314 1 0.128 

              

OA/AP 1. Full model  22092.026 9612     22134.252 9628    

 2. Drop β SNP*BF age 3 1 22092.974 9613 0.948 1 0.330  22134.603 9629 0.351 1 0.553 

 3. Drop β SNP*BF age 7 2 22094.743 9614 1.769 1 0.184  22135.309 9630 0.706 1 0.401 

 4. Drop β SNP*BF age 10 3 22094.774 9615 0.031 1 0.860  22135.969 9631 0.660 1 0.417 

 5. Drop β SNP*BF age 12 4 22095.263 9616 0.489 1 0.484  22139.407 9632 3.438 1 0.064 

 6. Equal β SNP across age 5 22097.483 9619 2.220 3 0.136  22147.392 9635 7.985 3 0.046 

 7. Drop β SNP  6 22097.893 9620 0.410 1 0.522  22147.393 9636 0.001 1 0.975 

EA=educational attainment, OA=overactive behavior, AP=attention problems 
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Figure 2. Mean IQ (age 18), educational attainment (EA, age 12) and overactive behavior (OA, 

age 3) scores, for breastfed and non-breastfed children and genotype groups of rs174575 

separately. 
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Discussion 

Breastfeeding was associated with educational attainment at age 12 and overactive behavior at 

age 3. For IQ at age 5-18, the effect was marginally significant after correction for maternal 

education. Polymorphisms in the FADS2 gene did not moderate the relationship between 

breastfeeding and IQ, educational attainment or overactive behavior. In addition, no main effects 

of the SNPs were found.  

The positive effect of breastfeeding on IQ and EA is in line with findings of previous studies, 

including a study on the effect of breastfeeding on EA from our own group.4, 5, 40 The effect of 

breastfeeding did not significantly differ across age, in line with a meta-analysis that found no 

moderation of the effect of breastfeeding by age at measurement.41 A small protective effect of 

breastfeeding after correction for maternal education was found for OA at age 3, but not for AP 

at age 7, 10, and 12. Thus far, several studies on smaller samples suggested an effect of 

breastfeeding on ADHD/AP, but a large cohort study did not detect such an effect if the results 

were corrected for a range of confounding factors including SES.7-10 The fact that we found a 

significant effect of breastfeeding only on OA at age 3 could suggest that the effect of 

breastfeeding is only present at a young age, or that the effect is specific to the OA scale. There 

are only 2 overlapping items between the OA and the AP scale; however, both scales describe 

hyperactive and inattentive behaviors with no clear difference in the overall content of the scales.  

The results on the main effects of FADS2 on OA/AP are in line with a meta-analysis of genome-

wide association studies on ADHD that showed no evidence for an association with any of the 

FADS2 SNPs included in the study.42 Significant associations between FADS2 and AP/ADHD 

have only been reported for rs498793, which is in low LD with rs1535 and rs174575.43 

 The current study did not replicate the interaction effect between breastfeeding and the FADS2 

genotype found by Caspi et al.18 A previous replication effort reported an interaction effect in the 

opposite direction,19 and another replication effort detected no interaction effect between FADS2 

and breastfeeding on IQ.20 Martin et al. stressed that the plausibility of the interaction effect of 

FADS2 and breastfeeding is not extensively supported given the fact that all studies to date have 

failed to detect a main effect of the FADS2 SNPs on IQ.20 Munafo et al. showed that GxE 

interaction is unlikely to be present in the absence of a main effect of the genetic factor, given 
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sufficient power.44 That is, when the environmental factor is not rare, the effect of the genotype 

in the exposed group will have a diminished but detectable effect in the total group of exposed 

and unexposed individuals and will thus be reflected as a significant main effect in the total 

group. However, it should be noted that the argument by Munafo et al. specifically focused on 

the case in which one of the groups (i.e. the unexposed group) shows no differences in the 

outcome variable across genotype groups. This is not the case for the results reported by Caspi et 

al.; breastfed children showed the lowest IQ scores in the GG group, whereas non-breastfed 

children showed the highest IQ scores in the GG group. This leads to the absence of a main 

effect of the genotype in the presence of a true interaction effect, as the genotype is advantageous 

in the non-breastfed group and non-advantageous in the breastfed group.  

The sample size of the current study was smaller than the sample size of some of the previous 

studies. The simulation study showed that, at a significance level of 0.05, we were at 53%, 54%, 

and 86% power to detect an interaction effect on IQ, EA and OA/AP, respectively, assuming an 

interaction effect on IQ similar in size to the effect reported by Caspi et al. Altogether, the lack 

of an interaction effect in the present study and in the study by Martin et al. add to the conflicting 

results of the earlier studies.18-20 The observed pattern is in line with the so called “winner’s 

curse” phenomenon. In a context of low power in which claims of discovery are based on 

thresholds of statistical significance, newly discovered associations are prone to overestimate 

true effect sizes.45 Further replication efforts and a successive meta-analysis are needed to further 

evaluate the possible interaction effect of FADS2 and breastfeeding on IQ. 

Limitations. Participants included in the OA/AP analysis were born between 1986 and 2004. 

Modern formula contains DHA and AA since the early 2000s, which could lead to a smaller 

effect of breastfeeding on OA/AP in the later cohorts. While maternal education is a reasonable 

proxy for maternal IQ, the latter is to be preferred according to some researchers.2 Although this 

could be regarded as a limitation for the analysis of the effect of breastfeeding, for the replication 

effort of the FADS2-by-breastfeeding effect this is of little importance, as the results by Caspi et 

al. were reported to be significant without correction for maternal IQ. 

In conclusion, a protective effect of breastfeeding was found for overactive behavior at age 3 and 

educational attainment at age 12. These results were obtained after correction for maternal 

education. For IQ at ages 5, 7, 10, 12 and 18, the effect was marginally significant after 
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correction for maternal education. No main effect of SNPs in FADS2 nor an interaction between 

FADS2 SNPs and breastfeeding was detected for any of the phenotypes. 
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Supplementary Materials 

Supplementary Table I. Model fitting results for the additive model of rs174575 and rs1535, adjusted for maternal education and sex. 

   rs174575      rs1535     

 Model  vs -2LL df Χ²  Δdf p  -2LL df Χ²  Δdf p 

IQ 1. Full model   22075.891 2818     22176.344 2831    

 2. Equal β’s BF across age 1 22082.093 2830 6.202 12 0.906  22186.431 2843 10.087 12 0.608 

 3. Drop β SNP*BF 2 22082.131 2831 0.038 1 0.845  22189.110 2844 2.679 1 0.102 

 4. Drop β SNP 3 22083.582 2832 1.451 1 0.228  22189.577 2845 0.467 1 0.494 

              

EA 1. Full model  12547.841 1842     12571.455 1844    

 2. Drop β SNP*BF 1 12547.841 1843 0.000 1 0.626  12571.552 1845 0.097 1 0.755 

 3. Drop β SNP 2 12548.078 1844 0.237 1 < 0.001  12572.235 1846 0.683 1 0.409 

              

OA/AP 1. Full model  22086.988 9612     22135.234 9628    

 2. Drop β SNP*BF age 3 1 22089.555 9613 2.567 1 0.109  22135.900 9629 0.665 1 0.415 

 3. Drop β SNP*BF age 7 2 22089.676 9614 0.121 1 0.728  22136.387 9630 0.487 1 0.485 

 4. Drop β SNP*BF age 10 3 22090.060 9615 0.384 1 0.535  22139.061 9631 2.674 1 0.102 

 5. Drop β SNP*BF age 12 4 22091.160 9616 1.100 1 0.294  22139.157 9632 0.096 1 0.757 

 6. Equal β SNP across age 5 22096.625 9619 5.465 3 0.141  22146.332 9635 7.175 3 0.067 

 7. Drop β SNP  6 22097.893 9620 1.268 1 0.260  22147.393 9636 1.061 1 0.303 

EA=educational attainment, OA=overactive behavior, AP=attention problems
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Supplementary Material I  
 
R script to estimate the power to detect a gene (rs174575) by environment (breastfeeding/milk) 

effect in a dataset with related individuals with longitudinal measures. Due to the extensive 

missingness, the power is calculated by means of data simulation, i.e., we calculate the observed 

or empirical power based on the likelihood ratio test over many replications. To reduce 

computational burden, the background covariance matrix, i.e., conditional on the fixed effects, 

was fixed to its expected (true) value in optimizing the likelihood with and without the effects of 

interest (e.g., the interaction).   

  

In the first part of the script several functions are created that are necessary to simulate and 

analyze the data, namely a loglikelihood function, a function to standardize data in a matrix and a 

multivariate normal density function. 

 

Then, the number of datasets to simulate is specified as well as the data structure. The user can 

indicate the number of monozygotic (MZ) and dizygotic (DZ) twin families and the patterns of 

missingness that occur in the dataset (individuals from a family that have no data at all, and 

individuals that have no data at a particular time point). 

 

Then, the MAF of the candidate gene, the frequency of breastfeeding and the correlation of 

breastfeeding across family members are specified as well as the effect sizes of the candidate 

gene, breast feeding and interaction effect expressed in terms of proportion of variance 

explained. 

 

In addition, the alpha level and the background covariance matrices (covariance within person 

across time, covariance within MZ twin pairs, DZ twin pairs and twin-sibling pairs) can be 

specified. 

 

Next, genotype and breastfeeding data are simulated. Then, phenotypic data are simulated given 

a particular genetic model (additive, dominant or recessive) and the effect sizes specified in the 

model. Subsequently, the simulated dataset is analyzed using the loglikelihood function and the 

statistical output is collected. 
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rm(list=ls(all=TRUE)) 
# 
# semfitg is a function that calculates the derivatives of the loglikelihood  
# function with respect to the parameters  
# b0 (intercept), b1 (gene), b2 (milk), and b3 (gene x milk): 
# 
semfitg=function(par,alldatm,alldat,zyg,  
nmz,ndz, eff, npar,smz,sdz) { 
# 
nfam=nmz+ndz 
np=1 # parameter 4 
gp=rep(0,1+sum(eff)) 
g0=g1=g2=g3=0 
b0=par[np] 
b1=b2=b3=0 
if (eff[1]==1) {np=np+1; b1=par[np]} 
if (eff[2]==1) {np=np+1; b2=par[np]} 
if (eff[3]==1) {np=np+1; b3=par[np]} 
#print(c(b1,b2,b3)) 
mus=matrix(0,nfam,22) 
mus[,1:5]=(b1*alldat[,2]+b2*alldat[,5]+b3*alldat[,2]*alldat[,5]) 
mus[,6:10]=(b1*alldat[,3]+b2*alldat[,6]+b3*alldat[,3]*alldat[,6]) 
mus[,11:15]=(b1*alldat[,4]+b2*alldat[,7]+b3*alldat[,4]*alldat[,7]) 
mus=mus+b0 
#  
# derives ---------------------- 
for (i in 1:nfam) { 
if (i==(ndz+1) | i==1) { test=rep(-1,15) } 
cnew=(sum(test==alldatm[i,8:22]))==15 
keep=which(alldatm[i,8:22]==1) 
keep2=keep+7 
n1=sum(alldatm[i,8:12]==1) 
n2=sum(alldatm[i,13:17]==1) 
n3=sum(alldatm[i,18:22]==1) 
# 
mum=as.vector(mus[i,keep])  
if (zyg[i]==0 & !cnew) { 
stmpi=solve(sdz[keep,keep]);  
} # 
if (zyg[i]==1 & !cnew) {  
stmpi=solve(smz[keep,keep]) # 
} 
dldm=stmpi%*%as.matrix((alldat[i,keep2]-mum)) 
g0=g0-sum(dldm) 
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# 
if (eff[1]==1) { 
tmp=c(rep(alldat[i,2],n1),rep(alldat[i,3],n2),rep(alldat[i,4],n3)) 
g1=g1-sum(dldm*tmp) 
} 
if (eff[2]==1) { 
tmp=c(rep(alldat[i,5],n1),rep(alldat[i,6],n2),rep(alldat[i,7],n3)) 
g2=g2-sum(dldm*tmp) 
} 
if (eff[3]==1) { 
tmp=c(rep(alldat[i,5]*alldat[i,2],n1), 
rep(alldat[i,6]*alldat[i,3],n2), 
rep(alldat[i,7]*alldat[i,4],n3)) 
g3=g3-sum(dldm*tmp) 
} 
test=alldatm[i,8:22] 
} 
np=1 
gp[np]=g0 
if (eff[1]==1) {np=np+1; gp[np]=g1} 
if (eff[2]==1) {np=np+1; gp[np]=g2} 
if (eff[3]==1) {np=np+1; gp[np]=g3} 
# print(gp) 
gp 
} 
# 
# The semfit function calculates the loglikelihood function 
# We seek values of b0, b1, b2, b3 to maximize this function  
# Once maximized the values of b0 b1 b2 b3 are maximumlikelihood estimates 
# 
semfit=function(par,alldatm,alldat,zyg,  
nmz,ndz, eff, npar,smz,sdz) { 
# 
nfam=nmz+ndz 
np=1 # parameter 4 
b0=par[np] 
b1=b2=b3=0 
if (eff[1]==1) {np=np+1; b1=par[np]} 
if (eff[2]==1) {np=np+1; b2=par[np]} 
if (eff[3]==1) {np=np+1; b3=par[np]} 
#print(c(b1,b2,b3)) 
mus=matrix(0,nfam,22) 
mus[,1:5]=(b1*alldat[,2]+b2*alldat[,5]+b3*alldat[,2]*alldat[,5]) 
mus[,6:10]=(b1*alldat[,3]+b2*alldat[,6]+b3*alldat[,3]*alldat[,6]) 
mus[,11:15]=(b1*alldat[,4]+b2*alldat[,7]+b3*alldat[,4]*alldat[,7]) 
mus=mus+b0 
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#  
# log likelihood function ---------------------- 
logl=0 
for (i in 1:nfam) { 
if (i==(ndz+1) | i==1) { tmp=rep(-1,15) } 
cnew=(sum(tmp==alldatm[i,8:22]))==15 
keep=which(alldatm[i,8:22]==1) 
keep2=keep+7 
mum=as.vector(mus[i,keep])  
if (zyg[i]==0 & !cnew) { 
# 
sdzkk=as.matrix(sdz[keep,keep]) 
# 
stmpi=solve(sdzkk);  
# 
#logdet=log(det(sdz[keep,keep])) 
logdet=log(det(sdzkk)) # does not work no scalar s[i,i] 
# 
} # 
if (zyg[i]==1 & !cnew) {  
# 
smzkk=as.matrix(smz[keep,keep]) 
# 
stmpi=solve(smz[keep,keep]) # 
#logdet=log(det(sdz[keep,keep])) 
logdet=log(det(sdzkk)) 
#print(logdet) 
} 
# 
# dmv is the multivariate normal density function 
# 
#if (length(keep2)>1) { 
d=dmv(x=alldat[i,keep2],mean=mum,sigma=stmpi,logdet) 
#} 
#if (length(keep2)==1) { 
#d=dnorm(x=alldat[i,keep2],mean=mum,sigma=sqrt(1/stmpi),log=T) 
#} 
# cannot happen 
if (is.nan(d)) {return(100000)} 
# 
logl=logl+d 
# 
tmp=alldatm[i,8:22] 
} 
# print(c(logl,b0,b1,b2,b3)) 
# 
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-logl 
} 
# 
# standi is a function to standardize data in a matrix 
# 
standi=function(dat) { 
nr=dim(dat)[1] 
nc=dim(dat)[2] 
sds=diag(1/apply(dat,2,sd)) 
ms=t(as.matrix(apply(dat,2,mean))) 
dat=(dat-(matrix(1,nr,1)%x%ms))%*%sds 
dat 
} 
# 
# dmv is the multivariate normal density function 
# 
dmv=function (x, mean, sigma, logdet)  
{ 
  if (is.vector(x)) { 
    x <- matrix(x, ncol = length(x)) 
  } 
  distval <- mahalanobis(x, center = mean, cov = sigma, inverted=TRUE) 
  logretval <- -(ncol(x) * log(2 * pi) + logdet + distval)/2 
    return(logretval) 
} 
# --------------------------------------------------- 
# 
# Start main program 
# Specify the number of simulations, the data structure and patterns of missingness 
# 
library(MASS) 
library(mvtnorm) 
# 
T=5     # the number of measurements over time 
nmem=3    # the number of individuals per family 
maxny=ny=T*nmem 
# 
# Specify the number of MZ and DZ twin families, the number of simulations and the 
# patterns of missingness 
# 
selfseed=F 
if (selfseed) set.seed(10208) 
nrep=10000     # specify the number of simulations 
nmulti=1 
nmz0=round(300*nmulti)   # specify the number of monozygotic twin families 
ndz0=round(344*nmulti)   # specify the number of dizygotic twin families 
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# 
nmismz=14  # specify the number of missingness patterns for monozygotic twin families 
nmisdz=14  # specify the number of missingness patterns for dizygotic twin families 
# 
# now the patterns of missingness will be specified by use of a missing values  
# indicator, 1=observed 0=missing. Each row specifies a particular pattern of 
# missingness per family with the following columns: p geno milk t12345 t12345 t12345 
# 
#   p = proportion of the total dataset with this pattern of missingness 
#   geno and milk indicate which individuals in the family have data available 
#   geno = geno_twin1 geno_twin2 geno_sib 
#   milk = milk_twin1 milk_twin2 milk_sib 
#   t12345 indicates at which time points individuals have data available 
#   t12345 t12345 t12345, IQ measurements 1-5 twin1, twin2, sib 
# 
missmz=matrix(c( 
# p  geno  milk  t12345   t12345   t12345 
.033, 1,0,0, 1,0,0, 1,1,1,1,1, 0,0,0,0,0, 0,0,0,0,0, # sample I –1 twin 
.110, 1,1,0, 1,1,0, 1,1,1,1,1, 1,1,1,1,1, 0,0,0,0,0, # sample I -2 twins 
.053, 1,1,1, 1,1,1, 1,1,1,1,1, 1,1,1,1,1, 0,0,0,0,1, # sample I –basis 
.130, 1,1,0, 1,1,0, 0,0,1,1,0, 0,0,1,1,0, 0,0,0,0,0, # sample II -2 twins 
.060, 1,0,0, 1,0,0, 1,0,0,1,0, 0,0,0,0,0, 0,0,0,0,0, # sample III –1 twin 
.113, 1,1,0, 1,1,0, 1,0,0,1,1, 1,0,0,1,1, 0,0,0,0,0, # sample III –2 twins - a 
.090, 1,1,0, 1,1,0, 1,0,0,1,0, 1,0,0,1,0, 0,0,0,0,0, # sample III –2 twins - b 
.023, 1,1,1, 1,1,1, 1,0,0,1,1, 1,0,0,1,1, 0,0,0,1,0, # sample III –basis - a 
.030, 1,1,1, 1,1,1, 1,0,0,1,0, 1,0,0,1,0, 0,0,0,1,0, # sample III –basis - b 
.010, 1,0,0, 1,0,0, 0,0,0,0,1, 0,0,0,0,0, 0,0,0,0,0, # sample IV –1 twin 
.157, 1,1,0, 1,1,0, 0,0,0,0,1, 0,0,0,0,1, 0,0,0,0,0, # sample IV -2 twins 
.010, 1,0,0, 1,0,0, 0,0,0,0,1, 0,0,0,0,0, 0,0,0,0,0, # sample V -1 twin 
.157, 1,1,0, 1,1,0, 0,0,0,0,1, 0,0,0,0,1, 0,0,0,0,0, # sample V -2 twins 
.023, 1,1,1, 1,1,1, 0,0,0,0,1, 0,0,0,0,1, 0,0,0,0,1 # sample V -basis 
),nmismz,22,byrow=T) 
missdz=matrix(c( 
# p  geno  milk  t12345   t12345   t12345 
.012, 1,0,0, 1,0,0, 1,1,1,1,1, 0,0,0,0,0, 0,0,0,0,0, # sample I –1 twin 
.160, 1,1,0, 1,1,0, 1,1,1,1,1, 1,1,1,1,1, 0,0,0,0,0, # sample I -2 twins 
.073, 1,1,1, 1,1,1, 1,1,1,1,1, 1,1,1,1,1, 0,0,0,0,1, # sample I –basis 
.148, 1,1,0, 1,1,0, 0,0,1,1,0, 0,0,1,1,0, 0,0,0,0,0, # sample II -2 twins 
.015, 1,0,0, 1,0,0, 1,0,0,1,0, 0,0,0,0,0, 0,0,0,0,0, # sample III –1 twin 
.076, 1,1,0, 1,1,0, 1,0,0,1,1, 1,0,0,1,1, 0,0,0,0,0, # sample III –2 twins - a 
.105, 1,1,0, 1,1,0, 1,0,0,1,0, 1,0,0,1,0, 0,0,0,0,0, # sample III –2 twins - b 
.061, 1,1,0, 1,1,0, 1,0,0,0,0, 1,0,0,0,0, 0,0,0,0,0, # sample III –2 twins - c 
.023, 1,1,1, 1,1,1, 1,0,0,1,1, 1,0,0,1,1, 0,0,0,1,0, # sample III -basis 
.049, 1,0,0, 1,0,0, 0,0,0,0,1, 0,0,0,0,0, 0,0,0,0,0, # sample IV –1 twin 
.090, 1,1,0, 1,1,0, 0,0,0,0,1, 0,0,0,0,1, 0,0,0,0,0, # sample IV -2 twins 
.020, 1,0,0, 1,0,0, 0,0,0,0,1, 0,0,0,0,0, 0,0,0,0,0, # sample V -1 twin 
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.137, 1,1,0, 1,1,0, 0,0,0,0,1, 0,0,0,0,1, 0,0,0,0,0, # sample V -2 twins 

.032, 1,1,1, 1,1,1, 0,0,0,0,1, 0,0,0,0,1, 0,0,0,0,1 # sample V -basis 
),nmisdz,22,byrow=T) 
# 
nmz=sum(round(missmz[,1]*nmz0)) # just in case ndz .ne. ndz0  
ndz=sum(round(missdz[,1]*ndz0)) # just in case ndz .ne. ndz0 
# 
p=maf=.258     # specify MAF of rs174575 
pmilk=pm=.409    # specify probability of being breastfed 
# 
# correlation of breastfeeding within family members. 
# matrix: twin1 - twin2 - sib  
# 
dzmilk=mzmilk=matrix(c( 
1,.997,.71, 
.997,1,.71, 
.71,.71,1),3,3,byrow=T) 
# 
# specify the effect sizes of the main effects and the interaction effect 
# expressed as proportion of variance explained 
# 
mainmilk=0.04764   # specify the effect size of breastfeeding 
maincan=0.00002415   # specify the effect size of rs174575 
milkxcan=0.00265   # specify the effect size of the interaction effect 
#  
alpha=.05    #specify alpha 
# 
pu=matrix(0,nrep,5) 
# 
rtot=1-(mainmilk+maincan+milkxcan) # residual variance 
# 
b0=0 # intercept.  
b1=sqrt(mainmilk) 
b2=sqrt(maincan) 
b3=sqrt(milkxcan)  
# ---------------------------------------------------  
# 
# specify the background covariance structure 
# 
# background correlations within the individual across time as observed in the 
# current dataset. 
# 
Sph=matrix(c( 
1.0000,0.5984,0.5782,0.5174,0.4599, 
0.5984,1.0000,0.6915,0.6086,0.6446, 
0.5782,0.6915,1.0000,0.7360,0.7216, 
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0.5174,0.6086,0.7360,1.0000,0.7181, 
0.4599,0.6446,0.7216,0.7181,1.0000)*rtot,5,5) 
# 
# background correlations across dizygotic twins across time as observed in the 
# current dataset. 
# 
Sdz2=matrix(c( 
0.5487,0.3444,0.3204,0.2909,0.2338, 
0.3444,0.4112,0.3282,0.3089,0.2440, 
0.3204,0.3282,0.4336,0.4234,0.3297, 
0.2909,0.3089,0.4234,0.4772,0.3738, 
0.2338,0.2440,0.3297,0.3738,0.3632)*rtot,5,5) 
# 
# background correlations across monozygotic twins across time as observed in the  
# current dataset. 
# 
Smz2=matrix(c( 
0.6782,0.5711,0.5445,0.4899,0.4121, 
0.5711,0.5541,0.6243,0.5557,0.4900, 
0.5445,0.6243,0.7677,0.7167,0.6786, 
0.4899,0.5557,0.7167,0.7998,0.6573, 
0.4121,0.4900,0.6786,0.6573,0.7148)*rtot,5,5) 
# 
# background correlations across sibling-twin pairs across time as observed in the # current 
dataset. 
# 
Ssib2=matrix(c( 
0.2,0.2,0.2,0.2921,0.1424, 
0.2,0.2,0.2,0.2,0.3453, 
0.2,0.2,0.2,0.2,0.2440, 
0.2,0.2,0.2,0.1569,0.1445, 
0.2,0.2,0.2,0.1445,0.3488)*rtot,5,5) 
# 
# total 15 x 15 variance/covariance matrix in MZ families 
# 
Smz=rbind( 
cbind(Sph,t(Smz2),t(Ssib2)), 
cbind(Smz2,Sph,t(Ssib2)), 
cbind(Ssib2,Ssib2,Sph)) 
# 
# total 15 x 15 variance/covariance matrix in DZ families 
# 
Sdz=rbind( 
cbind(Sph,t(Sdz2),t(Ssib2)), 
cbind(Sdz2,Sph,t(Ssib2)), 
cbind(Ssib2,Ssib2,Sph)) 



100 
 

# 
# now simulate genotypes for family members, start from parental genotypes 
# 
nmember=nmem2=nmem+2 # plus parents. 
q=1-p 
gf=c(p^2,2*p*q,q^2) # genotype freqs 
pf=outer(gf,gf) # parent uncorrelated candidate.  
# 
nfamdz=ndz 
nfammz=nmz 
nfam=ndz+nmz # 
nsib=nmem=3 
nf=round(pf*nfam)  
zyg=c(rep(0,nfamdz),rep(1,nfammz)) 
psib=array(0,c(3,3,3)) 
# A is decreasing its freq is MAF = p 
# 
# conditional offspring genotype frequencies 
# 
psib[1,1,1:3]=c(1,.0,.0) # parents AA=3 & AA=3, offspring AA 
psib[1,2,1:3]=c(.5,.5,.0) # parents AA and Aa, offspring AA (.5) and Aa (.5) 
psib[1,3,1:3]=c(.0,1,0) # parents AA and aa, offspring Aa 
psib[2,1,1:3]=c(.5,.5,.0) # parents Aa and AA, offspring AA (.5) Aa (.5) 
psib[2,2,1:3]=c(.25,.5,.25) # etc. 
psib[2,3,1:3]=c(.0,.5,.5) 
psib[3,1,1:3]=c(.0,1,.0) 
psib[3,2,1:3]=c(.0,.5,.5) 
psib[3,3,1:3]=c(.0,.0,1) # parents aa & aa, offspring aa  
dose=c(3,2,1) 
dose0=dose-1 
dosep=c(1,2,3) 
# 
#specify the genetic model 'dom' or 'rec' or 'add' 
# 
gact='rec' 
# 
for (irep in 1:nrep) { 
print(irep) 
genos=matrix(0,nfam,nmem) 
genosp=matrix(0,nfam,2) 
# 
# parental genotypes 
# 
genosp[,1]=sample(dosep,nfam,replace=T,prob=gf) # father 
genosp[,2]=sample(dosep,nfam,replace=T,prob=gf) # mother 
# 
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# offspring genotypes 
# 
for (i in 1:nfam) { 
ig1=genosp[i,1] #*-1+4 
ig2=genosp[i,2] #*-1+4 
# 
# conditional probabilities given parental genotypes 
# 
ptmp=psib[ig1,ig2,1:3] 
# 
# offspring genotypes 
# 
genos[i,1:nmem]=sample(dose,nsib,replace=T,prob=ptmp) 
} 
# 
# mz twins are identical 
# 
for (i in 1:nfam) { 
if (zyg[i]==1) {genos[i,2]=genos[i,1]} 
} 
# 
# simulate the variable milk 
# 
milkdat=matrix(1,nfam,nmem) 
tmp=mvrnorm(nfam,mu=rep(0,nmem),Sigma=dzmilk) 
thresh=qnorm(pmilk) 
milkdat[tmp>thresh]=0   # no milk 
# 
# collect the data in a matrix 
# 
alldat=matrix(0,nfam,22) # zyg m1-m3 g1-g3 t1-t5 t1-t5 t1-t5 
# 
alldat[,1]=zyg 
alldat[,2:4]=milkdat 
if (gact=='dom') genos[genos==3]=2 # 1,2=3 
if (gact=='rec') { # 1=2, 3 recoded 1,2  
genos[genos==2]=1;  
genos[genos==3]=2; 
} 
alldat[,5:7]=genos[,1:3]-1 # coded 0,1 
# 
# background covariance structure 
# 
alldat[zyg==1,8:22]=mvrnorm(nmz,mu=rep(0,maxny),Sigma=Smz) 
alldat[zyg==0,8:22]=mvrnorm(ndz,mu=rep(0,maxny),Sigma=Sdz) 
# 
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# effect sizes main effects and milk X candidate gene 
#  
# ... b0+alldat[,2]*b1+alldat[,5]*b2+alldat[,2]*alldat[,5]*b3 
# 
alldat[,2:7]=standi(alldat[,2:7]) 
# add effects  
alldat[,8:12]=alldat[,8:12]+ 
b0+alldat[,2]*b1+alldat[,5]*b2+alldat[,2]*alldat[,5]*b3 
alldat[,13:17]=alldat[,13:17]+ 
b0+alldat[,3]*b1+alldat[,6]*b2+alldat[,3]*alldat[,6]*b3 
alldat[,18:22]=alldat[,18:22]+ 
b0+alldat[,4]*b1+alldat[,7]*b2+alldat[,4]*alldat[,7]*b3 
# 
# now get missing indicators of each case  
# 
misnmz1=diffinv(round(missmz[,1]*nmz0))       
misndz1=diffinv(round(missdz[,1]*ndz0)) + nmz  
# 
# the matrix for the missing indicator 
# 
alldatm=matrix(0,nfam,22) # zyg m1-m3 g1-g3 t1-t5 t1-t5 t1-t5 
# 
# introduce missingness 
# 
for (i in 1:nmismz) { 
blockmz=round(missmz[i,1]*nmz0) # cvd 1 nov 
tmp=matrix( missmz[i,2:22] , blockmz, 21, byrow=T) 
alldatm[ (misnmz1[i]+1):(misnmz1[i+1]),2:22]=tmp 
} 
# 
# missingness info is now in alldatm 
# 
for (i in 1:nmisdz) { 
blockdz=round(missdz[i,1]*ndz0) # cvd 1 nov + correction maria 
tmp=matrix( missdz[i,2:22] , blockdz, 21, byrow=T) 
alldatm[(misndz1[i]+1):(misndz1[i+1]),2:22]=tmp 
} 
# now fit the model using maximum likelihood (ML) estimation and a fixed background 
# covariance structure 
# 
par=c() 
npar=1 
par[npar]=b0 # bo 
eff=c(1,1,1) 
if (eff[1]==1) {npar=npar+1; par[npar]=b1} # b1 gene 
if (eff[2]==1) {npar=npar+1; par[npar]=b2} # b2 milk 
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if (eff[3]==1) {npar=npar+1; par[npar]=b3} # b3 gene X milk 
# 
# ---------- ML estimation 4 parameters 
# 
fit1=T 
fit2=T 
pchi=-1 
if (fit1) { 
res1=optim(par,semfit,semfitg,method="L-BFGS-B",lower = -Inf, upper = 
Inf,alldatm=alldatm,alldat=alldat,zyg=zyg, 
nmz=nmz,ndz=ndz,eff=eff,npar=npar,smz=Smz,sdz=Sdz) 
} # fit1 
# 
par=c() 
npar=1 
par[npar]=b0 # bo 
eff=c(1,1,0) 
if (eff[1]==1) {npar=npar+1; par[npar]=b1} # b1 
if (eff[2]==1) {npar=npar+1; par[npar]=b2} # b2 
if (eff[3]==1) {npar=npar+1; par[npar]=b3} # b3 
# 
# ---------- ML estimation 3 parameters drop b3  
# 
if (fit2) { 
res2=optim(par,semfit,semfitg,method="L-BFGS-B",lower = -Inf, upper = 
Inf,alldatm=alldatm,alldat=alldat,zyg=zyg, 
nmz=nmz,ndz=ndz,eff=eff,npar=npar,smz=Smz,sdz=Sdz) 
} 
# 
# likelihood ratio test of dropped parameter 
# 
if (fit1 & fit2) { 
chi2=-2*(res1$value-res2$value) 
pchi=pchisq(chi2,1,lower=F) 
} 
ures11=lm(alldat[,8]~alldat[,2]*alldat[,5],data=as.data.frame(alldat)) 
ures12=lm(alldat[,8]~alldat[,2]+alldat[,5],data=as.data.frame(alldat)) 
ures11vs2=anova(ures12,ures11) 
ures21=lm(alldat[,13]~alldat[,3]*alldat[,6],data=as.data.frame(alldat)) 
ures22=lm(alldat[,13]~alldat[,3]+alldat[,6],data=as.data.frame(alldat)) 
ures21vs2=anova(ures22,ures21) 
ures31=lm(alldat[,18]~alldat[,4]*alldat[,7],data=as.data.frame(alldat)) 
ures32=lm(alldat[,18]~alldat[,4]+alldat[,7],data=as.data.frame(alldat)) 
ures31vs2=anova(ures32,ures31) 
# 
# collect p values 
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# 
pu[irep,1]=ures11vs2[6][2,1] 
pu[irep,2]=ures21vs2[6][2,1] 
pu[irep,3]=ures31vs2[6][2,1] 
pu[irep,4]=pchi 
pu[irep,5]=chi2 
# 
} # next replication 
# show empirical power given alpha 
# 
epower=apply(pu[,1:4]<alpha,2,mean) 
epower 
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Part II  

Gene finding studies for ADHD and other childhood phenotypes 
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Chapter 5 

Attention Deficit Hyperactivity Disorder polygenic risk scores predict  Attention Problems 

in a population-based sample of children 

Groen-Blokhuis MM, Middeldorp CM, Abdellaoui A, et al. Attention Deficit Hyperactivity 

Disorder polygenic risk scores predict Attention Problems in a population-based sample of 

children. J Am Acad Child Adolesc Psychiatry. Under review. 
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Abstract 

Objective. Clinically, Attention Deficit Hyperactivity Disorder (ADHD) is characterized by 

hyperactivity, impulsivity and inattention and is among the most common childhood disorders. 

However, these same traits that define ADHD are variable in the general population and the 

clinical diagnosis may represent the extreme end of a continuous distribution of inattentive and 

hyperactive behaviors. This hypothesis can be tested by assessing the predictive value of 

polygenic risk scores derived from a discovery sample of ADHD cases in a target sample from 

the general population with continuous scores of inattention and hyperactivity. In addition, the 

genetic overlap between ADHD and continuous ADHD scores can be tested across rater and age. 

Method. The Psychiatric Genomics Consortium has performed the largest GWA study of ADHD 

so far, including 5,621 clinical cases and 13,589 controls. The effects sizes of SNPs estimated in 

this meta-analysis were used to obtain individual polygenic risk scores in an independent 

population-based cohort of children from the Netherlands Twin Register. The variance explained 

in Attention Problems by the polygenic risk scores was estimated by linear mixed models. 

Results. The ADHD polygenic risk scores significantly predicted both parent and teacher ratings 

of Attention Problems in preschool and school-age children. 

Conclusions. These results indicate genetic overlap between a diagnosis of ADHD and Attention 

Problems scores across raters and age groups and provides evidence for a dimensional model of 

ADHD. Future GWA studies on ADHD can likely benefit from the inclusion of population-

based cohorts and the analysis of continuous scores. 
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Introduction 

Attention Deficit Hyperactivity Disorder (ADHD) is a condition characterized by age-

inappropriate hyperactivity/impulsivity and inattention, resulting in significant impairment in 

about 5% of children.1, 2 In the diagnostic manuals used in clinical practice, e.g. the ICD-10, 

DSM-IV and now the DSM-5,1, 3, 4 a clinical diagnosis of ADHD is a binary trait which can be 

useful for defining treatment and care. However, ADHD might be the extreme end of a 

continuous distribution of inattentive and hyperactive behaviors that can be observed in the 

general population.5-7 One approach to test for this dimensional model of ADHD is by assessing 

whether genetic risk factors for an ADHD diagnosis influence behavior across the entire 

spectrum of inattentive and hyperactive behavior. In addition, the evaluation of genetic factors 

for ADHD may clarify apparent differences in the ADHD assessment across raters and age 

groups; correlations between parent and teacher ratings are generally only moderate, as is the 

correlation within maternal ratings across preschool and school-age.8-10 Previous twin studies 

support the validity of the dimensional model at the genetic level and indicate a large stability of 

genetic effects across both raters and time, but this has not yet been investigated using genome-

wide genotype data.8-12  

Both ADHD diagnosis and continuous measures of ADHD behaviors are highly heritable in 

childhood, with about 60-80% of the variance being due to genetic variation.13-17 Despite this 

high heritability, current genome-wide association (GWA) studies have thus far been 

unsuccessful in detecting genetic risk variants for ADHD at genome-wide significant levels, 

suggesting a high degree of polygenic inheritance.18 A study by the Psychiatric Genomics 

Consortium (PGC) showed that 28% of the liability to ADHD is explained by the SNPs present 

on current GWA platforms.19 This implies indeed that many common variants of small effect 

stay undetected in current GWA studies due to limited sample size, but do contribute to the 

genetic liability of ADHD. The effect sizes obtained in ADHD GWA studies can be employed to 

estimate the genetic risk of the individual; so called polygenic risk scores are obtained by 

multiplying the observed number of risk alleles at a particular locus by the effect size observed in 

a GWA study summing over all SNPs that surpass a certain threshold of significance.20, 21 With 

regard to ADHD specifically, polygenic risk scores based on the results of the PGC ADHD 

meta-analysis published in 2010, significantly predicted ADHD status in an independent sample 
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of 452 clinical ADHD cases and 5,081 controls, with higher polygenic risk scores in ADHD 

cases with comorbid aggression.18, 22 Polygenic risk scores can also be used to assess the genetic 

overlap across traits. For example, polygenic risk scores based on a GWA study on 

schizophrenia have been utilized to test for the genetic overlap between schizophrenia and 

quantitative measures of psychosis.23 Similarly, polygenic risk scores based on a GWA study in 

cases with major depressive disorder have been shown to be predictive of continuous scores of 

anxiety and depression in a general population sample.24 In the current study, we obtained 

polygenic risk scores to assess the genetic overlap between ADHD as a clinical diagnosis and 

Attention Problems in a general population sample of children, using parent ratings at preschool 

age and parent and teacher ratings at school age.
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Method 

Genotype and phenotype data come from the Netherlands Twin Register (NTR) which was 

established in 1986.25, 26 In the Young NTR (YNTR), surveys assessing the health and behavior 

of newborn twins are sent out to their parents at registration and at age 2, 3, 5, 7, 10 and 12 years. 

At age 7, 10 and 12, the teachers of the twins are invited to provide ratings of the children’s 

behavior.  

Attention Problems. Age-appropriate versions of the Achenbach System of Empirically Based 

Assessment (ASEBA) have been included in the YNTR surveys.27, 28 At ages 3, 7, 10 and 12 the 

Child Behavior Checklist (CBCL) was collected from parents. At ages, 7, 10 and 12, the Teacher 

Report Form (TRF) has been included in teacher surveys. Respondents were asked to rate the 

child’s behavior on ~120 items on a 3-point scale (0 = Not true; 1 = Somewhat or sometimes 

true; 2 = Very true or often true). The Attention Problems scale describes both hyperactive and 

inattentive behavior and contains 5 items in the CBCL at preschool age, 10 items in the CBCL at 

school-age and 26 items in the TRF at school-age. When multiple measures were available for 

the school-age (age 6-13) mother or teacher ratings, the measure closest to age 10 was chosen. 

As mother and father ratings were highly correlated (r = 0.71 and 0.73) and showed essentially 

similar results, we report only on the larger set of maternal ratings. 

Genotype data. All children were genotyped on the Affymetrix 6.0 platform. Quality control and 

imputation were performed on a larger dataset that also included genotype data from the parents 

of the twins. Data were cleaned with the following criteria for SNP cleaning: Hardy-Weinberg 

equilibrium (HWE) p-value > 0.00001, minor allele frequency (MAF) > 0.01, call rate > 0.95, 

concordance rate in duplicate samples > 0.98, Mendelian error rate < 0.02 and allele frequency 

difference with reference set < 0.20. C/G and A/T SNPs were only included if MAF < 0.35. 

Samples were cleaned on the following criteria: call rate > 0.90, heterozygosity -0.10 < F < 0.10, 

consistency of X chromosome genotypes with known gender, consistency of expected and 

observed family relations between samples and Mendelian error rate < 0.02. Ethnic outliers were 

identified using principal component analysis and excluded from the analyses. Data were phased 

using Mach 1.0 and imputed with Minimac using all ethnicity panels of the 1000 Genomes Phase 

I Integrated Release Version 3 (2010-11-23 sequence data freeze, 2012-03-14 haplotypes).  
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Within PGC, a meta-analysis of 5,621 clinical ADHD cases and 13,589 controls has been 

conducted (Peter Holmans for the Psychiatrics Genomics Consortium (PGC), abstract of oral 

presentation 21st World Congress of Psychatric Genetics, October 17-21, Boston, USA,19). 

Polygenic risk scores were calculated in Plink. For each individual, the number of observed risk 

alleles at a particular locus (0,1,2) was multiplied with the ln(OR) observed in the PGC meta-

analysis and summed over all SNPs. Several sets of polygenic risk scores were created based on 

different p-value thresholds in the discovery set (thresholds 0.0001, 0.001, 0.01, 0.05, 0.1, 0.2, 

0.3, 0.4, 0.5 and 1). SNPs were selected on the following criteria: info score > 0.30 in both the 

discovery and the target set, MAF > 0.02 in both sets, consistency of reported alleles across sets 

and a frequency difference across sets < 0.15. SNPs with C/G or A/T alleles were included only 

if MAF < 0.35. 

Next, the Attention Problems scores were regressed on the polygenic risk scores in a linear 

mixed model. Polygenic risk scores were included as fixed effects in the model, while the 

dependence between measures in related individuals were accounted for by including an additive 

and a dominance genetic variance component. In all analyses, sex and age at measurement were 

included as covariates, as well as four Principal Components that reflect the Dutch population 

structure.29 The polygenic risk scores and Attention Problems scales were standardized within 

each subset, that is, the mean of the subsample was subtracted from each score and divided by 

the standard deviation. The variance explained by the polygenic risk scores was then calculated 

by squaring the regression coefficient. 
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Results 

Table 1 shows the number of individuals, and the means and standard deviations (SD) of age at 

measurement and Attention Problems scores for the mother and teacher ratings at preschool and 

school-age.  

Table 1. Number of children and mean and standard deviation (SD) of age at measurement and 

Attention Problems scores for maternal ratings at preschool and school age, and for teacher 

ratings. 

Measure N Age – mean (SD) Attention Problems score – mean (SD) 

Attention Problems 

preschool; age 3; mother 

rating CBCL 

2,087 3.32 (0.26) 2.29 (2.00) 

Attention Problems school; 

age 7-13; mother rating 

CBCL 

2,132 9.93 (0.88) 3.26 (3.38) 

Attention Problems school; 

age 7-13; teacher rating 

TRF 

1,612 10.61 (1.40) 6.73 (7.92) 

CBCL=Child Behavior Checklist, TRF=Teacher Report Form 

Because of the longitudinal structure of the data, there is substantial overlap of individuals across 

these measures; 1,899 of 2,132 children with maternal ratings at school-age also had ratings at 

preschool age (phenotypic correlation 0.44), and 1,516 of 1,612 children with teacher ratings 

also had school-age maternal ratings (phenotypic correlation 0.49). In Figure 1, the variance in 

Attention Problems explained by the polygenic risk scores is shown, for the mother and teacher 

ratings at preschool and school-age, for different p-value bins. The polygenic risk scores based 

on the GWA meta-analysis results of clinical ADHD cases versus controls significantly predicted 

maternal ratings of Attention Problems at preschool and school-age, as well as teacher ratings at 

school-age. All significant effects were in the expected direction, i.e. higher polygenic risk 

scores were associated with higher Attention Problems scores. The maximum explained variance 

for each of the ratings varied between 0.5% and 0.6%, with no clear difference across preschool 
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and school-age, or mother and teacher ratings. All three measures showed significant skewness 

and kurtosis. To test whether the violation of distributional assumptions could influence the 

results analyses were repeated on quantile normalized scores (van der Waerden transformation30, 

ranks averaged for tied data); results were essentially the same. 
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Figure 1. Proportion of variance explained in Attention Problems by polygenic risk scores based on different p-value bins. The 

number displayed below the bins is the upper threshold of p-values for inclusion, the lower theshold is always 0. 
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Discussion 

Polygenic risk scores based on a GWA meta-analysis of clinical ADHD cases significantly 

predicted Attention Problems in an independent population-based sample of children. This 

indicates genetic overlap between ADHD assessed as a categorical disorder and Attention 

Problems assessed as a continuous trait in a general population sample. Other studies that 

examined whether ADHD should be considered a category or a continuum have used latent class 

analysis (LCA), factor analysis (FA), factor mixture models (FMM) and taxometric procedures 

on item level data to detect the underlying structure. Whereas some studies found evidence for 

distinct subtypes (e.g. predominantly inattentive, predominantly hyperactive/impulsive or 

combined inattentive and hyperactive/impulsive symptoms), others found evidence for the 

existence of a continuum within or across subtypes.6, 31-35 The current study provides evidence in 

support of a dimensional model of ADHD at the genetic level. While categorical models of 

ADHD are necessary in clinical contexts where one needs to answer categorical questions with 

regard to e.g. treatment, future research on the underlying continuous trait could provide the 

necessary information to decide on the appropriate cutoffs for these categories. The National 

Institute of Mental Health has therefore launched the Research Domain Criteria (RDoC) project 

that aims to develop a research classification system for mental disorders based on dimensions of 

neurobiology and observable behavior.36 Meanwhile, awareness of the dimensional nature of 

ADHD may already impact clinical practice, as shown by clinics that have successfully 

incorporated dimensional models in their daily clinical practice.37  

Our finding also has important implications for gene finding studies. In line with previous 

studies, the results indicate that despite the lack of genome-wide significant findings, current 

GWA studies on ADHD contain a relevant signal.19 Whereas one previous study drew on the 

genetic similarities across cases and controls based on SNP genotypes, the current study used the 

effect sizes from a PGC meta-analysis to predict Attention Problems in and independent sample. 

Another study that applied the same method to an independent sample of ADHD cases and 

controls also found a significant prediction of ADHD case status by ADHD GWA meta-analysis 

results.22 These studies imply that GWA studies on ADHD can be successful, but that larger 

sample sizes are needed to identify common genetic variants for ADHD. Moreover, our results 

indicate that case-control cohorts can likely benefit from an increase in power by including the 
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available information on symptom severity in their analyses;38 although this gain in power may 

be limited by the non-uniformity of measurement error across the distribution. Another 

possibility to increase power is the inclusion of super-normals as controls. In practice the choice 

of study design will likely depend on the costs of genotyping and phenotyping, and the 

availability of already existent datasets. In this context it is worthwhile to note that many 

population-based cohort studies have both genome-wide SNP data and continuous measures of 

ADHD available, but are currently underused for gene finding studies on ADHD and other 

psychiatric phenotypes. Although case-control studies benefit from the ascertainment of 

individuals from the extreme end of the distribution, the power to find genetic variants for 

ADHD is roughly equal in an equally sized population based cohort with a continuous measure 

of ADHD as in the latest PGC meta-analysis of ADHD, due to the relative high prevalence of 

ADHD and the somewhat small proportion of cases in the latest PGC meta-analysis. The latter 

follows from the formula for the NCP ratio between a case-control and population-based study as 

provided by Yang et al.39: NCP01/NCPQT = (i²v(1-v)N01)/(1-K)²NQT, where K is the disease 

prevalence, N01 is the sample size of the case-control study, NQT is the sample size of the 

population based study, v is the proportion of cases in the case-control study and i=z/k, with z 

the height of the standard normal distribution at the threshold of disease prevalence (if for 

ADHD a prevalence of 0.05 is assumed, i=2.063). Other advantages of population based studies 

include the richness of available phenotypic information allowing for multivariate analyses and 

the investigation of gene-environment interactions.40  

Polygenic risk scores were predictive of Attention Problems at both preschool and school-age. 

This similarity of genetic effects across time is in line with twin studies that demonstrate a high 

genetic stability of maternal ratings of Attention Problems in childhood.10, 11 A similar pattern of 

explained variance was observed for mother and teacher ratings of Attention Problems at school 

age. This is in agreement with the literature; although the phenotypic correlation of maternal and 

teacher ratings of Attention Problems is usually only moderate, the behavior that parent and 

teachers rate in common is highly heritable.8, 41 Moreover, an ADHD diagnosis requires the 

behavior to be present in multiple settings, it is therefore expected that the genetic factors that 

influence a clinical diagnosis of ADHD correlate with both parent and teacher ratings of ADHD 

symptoms. Nevertheless, our finding that the genetic overlap with ADHD extends to both mother 

and teacher ratings of Attention Problems is informative for GWA studies as it indicates that 
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both ratings can be included, and that even ratings as early in childhood as age 3 contain 

information important to GWA studies. Eventually, lumping of all available data irrespective of 

rater and age could be considered for genetic studies. The resulting increase in sample size and 

statistical power probably outweighs the negative effects of increased phenotypic heterogeneity. 

In any case, possible age and rater-specific genetic effects are likely of less interest than genetic 

effects that influence ADHD scores across raters and age groups. 

The assessment of genetic overlap by means of polygenic risk scores has some limitations. First, 

the genetic overlap that can be assessed is restricted to the set of SNPs that are present in both 

the discovery and target set, which effectively limited the analyses in the current study to SNPs 

included in HapMap with MAF > 0.02. Second, although the discovery set that was used is the 

largest ADHD GWA meta-analysis available, its sample size still limits the accuracy of the 

estimates of the small effect sizes typically observed in psychiatric GWA studies. It is therefore 

not surprising that the total variance of Attention Problems explained by the polygenic risk 

scores was below 1%. As a comparison, a study of 452 clinical ADHD cases and 5,081 controls 

in which polygenic risk scores were calculated based on a previous PGC ADHD meta-analysis 

(based on 2,064 trios, 896 case subjects and 2,455 comparisons) reported 0.098% explained 

variance.18, 22 Although these estimates are not directly comparable due to difficulties with the 

interpretation of Nagelkerke's R² and the use of different discovery sets, it does show that the 

current observed variance explained is not exceptional.42, 43 Finally, we included all SNPs that 

surpassed a certain threshold of significance in our polygenic risk scores, thereby ignoring the 

fact that SNPs in close proximity are often not in linkage disequilibrium and thus do not provide 

an independent association signal. When the analyses were repeated with a clumping procedure 

in Plink (option --clump, with settings --clump-p1 1 --clump-p2 1 --clump-r2 0.25 --clump-kb 

500) the explained variance was somewhat lower for preschool maternal and school teacher 

ratings and non-significant for the maternal ratings at school age (results available upon request 

from the first author). 

As both our and the previous study are able to predict ADHD/Attention Problems from ADHD 

polygenic risk scores, it is clear that the PGC ADHD meta-analysis picks up genetic variation 

relevant to ADHD, encouraging current efforts to increase the sample size for ADHD GWA 

studies. In the mean time, the available GWA results can be used to investigate the underlying 
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structure of ADHD and other relevant issues, such as the genetic overlap between ADHD and 

other disorders, rater and age effects, and gene-environment interplay. Our study supports the use 

of dimensional models of ADHD and indicates that future GWA studies can benefit from the 

inclusion of both population-based and case-control studies, and by analyzing ADHD as a 

quantitative rather than a categorical trait.  
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Abstract 

Within the field of childhood psychiatric genetics, the first GWA studies have been initiated. 

One of the phenotypes of interest is Attention Deficit Hyperactivity Disorder (ADHD) which has 

a heritability of around 75 percent. As of yet, no genome-wide significant findings have been 

reported. Previous studies have nevertheless shown that common SNPs explain a substantial part 

of the liability to ADHD and that there is a genetic overlap between the ADHD diagnosis and 

continuous measures of ADHD symptoms in the general population. Therefore, continuous 

measures of ADHD symptoms available in population-based cohorts can be used in gene finding 

studies for ADHD. 

Within the EAGLE consortium, nine population-based cohorts including a total of 17,560 

children had ADHD symptom data available as well as genotype data imputed against the 1000 

Genomes reference panel. ADHD symptoms were rated by mothers and teachers at preschool 

and school age. Each cohort performed a linear regression of the symptom score on genotype 

dosages, sex, age and principal components. A p-value based meta-analysis was performed; the 

results of this meta-analysis were taken further and tested for gene-based associations and 

enrichment of biological pathways, using both biological processes and cellular annotations and 

information on knock-out mouse phenotypes. 

None of the variants included in the GWA meta-analysis reached genome-wide significance, and 

no genes or pathways were associated with ADHD symptoms at a false-discovery rate of 5%. 

GWA studies of larger samples will thus be needed to detect genetic variants for ADHD related 

traits; the inclusion of population-based cohorts in GWA studies of ADHD can help to increase 

sample size and hence improve statistical power for gene finding. 
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Introduction 

Attention Deficit Hyperactivity Disorder (ADHD) is a common psychiatric condition in 

childhood; its prevalence is around five percent across countries worldwide.1 As an objective test 

is lacking, a diagnosis is made by a clinician based on the occurrence of age-inappropriate 

impulsive, hyperactive and inattentive behaviors that occur in multiple settings and cause 

significant impairment.2, 3 The heritability of ADHD is estimated around 75 percent, yet no 

genetic variants have been identified that show a replicable association with ADHD.4, 5 The 

largest genome-wide association (GWA) study so far has been performed by the Psychiatric 

Genomics Consortium (PGC) and included 5,621 cases and 13,589 controls. No SNPs exceeded 

the threshold of genome-wide significance.6 In a sample that overlapped this meta-analysis (but 

excluding a Chinese case-control study), a genetic complex trait analysis (GCTA) was 

performed, in which the variance explained by all SNPs is calculated by comparing the 

phenotypic similarity to the observed genotypic similarity across all possible pairs included in 

the study. It was estimated that 28% of the liability to ADHD can be attributed to SNPs included 

in GWA studies.7 This suggests that GWA studies can be effective in identifying genetic risk 

variants for ADHD, but that current samples lack the statistical power to do so.  

Besides increasing sample sizes, power in GWA studies can be enhanced by improving 

phenotypic measurements.8 Several studies have indicated that ADHD can be regarded the 

extreme end of a continuous distribution of inattentive and hyperactive behaviors.9-11 Genetic 

epidemiological studies indicate that there is a substantial overlap between the genetic factors for 

a clinical diagnosis of ADHD and continuous measures of ADHD in the general population.10, 11 

Moreover, a molecular genetic study showed that the effect sizes reported in the latest PGC 

ADHD GWA could be used to predict Attention Problems in an independent population-based 

cohort of children, suggesting that the genetic overlap is present for variants included in GWA 

studies.12  

Although case-control studies benefit from the oversampling of the high scoring end of the 

distribution, using the full information on symptom severity in the population can enhance 

power, especially for a relatively common disorder as ADHD.8, 13 Many population-based 

cohorts have genome-wide SNP data and continuous scores of ADHD symptoms available and 
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thus provide an excellent yet underused opportunity for gene-finding studies for ADHD. The 

current report describes the first GWA meta-analysis of continuous measures of ADHD 

symptoms in population-based samples of children including a total of nine cohorts with a total 

sample size of 17,560 children.  
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Materials and Methods 

GWA meta-analysis. The EArly Genetics & Lifecourse Epidemiology (EAGLE) consortium is a 

collaboration between several population based birth cohorts from Europe, Australia and the 

United States. The consortium focuses on a wide range of phenotypes in childhood; previous 

EAGLE studies have e.g. reported on GWA studies of eczema, infant head circumference, and 

internalizing problems.14-16 For the current study, all EAGLE cohorts with continuous measures 

of ADHD-like behaviors in childhood (age at measurement < 13 years) were invited to 

participate in the meta-analysis. In addition, several other pediatric cohorts of Caucasian descent 

with genotype and ADHD symptom data were approached to participate in the current project. 

Different measurement instruments were used across cohorts, such as the Attention Problems 

scale of the Child Behavior Checklist (CBCL), the Hyperactivity scale of the Strengths and 

Difficulties Questionnaire (SDQ) and the DSM-IV ADHD items as included in the Conners’ 

Rating Scale (see Supplementary Table 1 for the items included in each scale).3, 17-20 If available, 

cohorts were asked to analyze the scores of different measurement instruments, preschool (ages 0 

through 5) and school-age (ages 6 through 12) ratings, and mother and teacher ratings separately. 

For the meta-analysis, one rating was selected for each cohort: where applicable, school-age 

ratings were preferred over preschool age ratings, mother ratings were preferred over teacher 

ratings and the measurement instrument with the largest information density was preferred over 

the other instruments (DSM-IV > CBCL > SDQ). An overview of the cohorts and the ADHD 

measures included in the meta-analysis is provided in Table 1. All cohorts recruited children 

during pregnancy or at birth, except for TRAILS where children were recruited at age 10-12. 

More information on the individual cohorts can be found on the websites and in the papers listed 

in Table 1. 
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Table 1. Description of the cohorts and ADHD symptom scores included in the meta-analysis. 

 

 

Cohort N Measurement 

instrument 

Rater Age in 

years 

mean (SD) 

Sum score 

mean (SD) 

Website Reference 

papers 

ALSPAC 5,757 SDQ Parent 9.65 (0.12) 2.91 (2.24) www.bristol.ac.uk/alspac/ 21 

Generation R 2,211 CBCL/1.5-5 Parent 6.01 (0.38) 1.38 (1.69) www.generationr.nl 22 

GINI / LISA 1,389 SDQ Parent 10.04 (0.20) 2.71 (2.36) www.helmholtz-

muenchen.de/epi/arbeitsgruppen/umweltepide

miologie/projects-projekte/lisa-

plus/index.html 

23 

INMA 804 DSM Teacher 4.91 (0.69) 5.38 (6.83) www.proyectoinma.org/ 24 

MOBA 665 CBCL/1.5-5 Parent 3.05 (0.10) 2.05 (1.67) www.fhi.no/morogbarn 25 

NTR 1,605 CBCL/6-12 Parent 9.95 (0.85) 3.25 (3.39) www.tweelingenregister.org 26 

Raine 1,338 CBCL/6-12 Parent 10.58 (0.20) 2.60 (3.17) www.rainestudy.org.au 27-29 

TEDS 2,606 Conners’ Parent 7.88 (0.52) 10.51 (8.62) www.teds.ac.uk 30 

TRAILS 1,285 CBCL/6-12 Parent 11.08 (0.56) 4.27 (3.40) www.trails.nl 31 
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All cohorts imputed their genotype data with the March 2012 release of the 1000 Genomes 

reference set using all ethnicity panels. Cohorts were asked to perform a linear regression of 

the sum score of the ADHD symptom scale on sex, age at measurement, genotype dose, and 

principal components as necessary. All cohorts analyzed sets of unrelated individuals, except 

for the NTR that included two individuals of each dizygotic twin pair; in this cohort standard 

errors were corrected in Plink with the --family option. An overview of the imputation and 

analysis procedure followed in each cohort is provided in Supplementary Table 1. Results 

were checked and meta-analyzed by two independent analysts. Quality control included 

calculation of the inflation factor lambda (calculated as the observed median chi-square 

divided by the expected median chi-square), format checking, visual inspection of QQ plots, 

Manhattan plots, and histograms of minor allele frequency (MAF) and INFO scores, 

consistency of reported allele frequency with the reference set (1000 Genomes, EUR panels), 

consistency of reported p-value with reported beta and standard error (SE) and consistency of 

reported SE with reported sample size, SD and MAF. All files were filtered based on INFO 

metric > 0.3, expected minor allele count (EMAC; 2*N*MAF*INFO) > 125, duplicates (first 

occurrence was taken), consistency of reported alleles with the reference set and SE > 0 and < 

10000. As different measurement instruments were used across cohorts, the meta-analysis was 

based on p-values and performed in the METAL software (option SCHEME SAMPLESIZE) 

with application of genomic control to the results of the individual cohorts. Meta-analysis 

results were filtered on a total sample size > 10,000. A p-value < 5E-8 was considered 

genome-wide significant. 

Gene-based and pathway analyses. A gene-based test was performed in VEGAS,32 with the 

HapMap CEU panel as a reference set (note that this excludes a large number of SNPs from 

the meta-analysis as cohorts imputed their data with the 1000 Genomes reference set; VEGAS 

is not yet updated to include information from the latter reference set). Results from the meta-

analysis were included only if based on at least 90% of the total sample size (n > 15,804). All 

SNPs in a gene were included to obtain gene-based p-values. Genes with a p-value in the 

lowest quartile were then taken further to test for enrichment in biological pathways. Three 

different pathway analyses were run. Enrichment of pathways of biological processes and 

cellular localizations annotations were tested with the DAVID software (Gene Ontology, 

"FAT" selected subset).33-35 In addition, an analysis was run with information from mouse 

knock-out phenotypes, in which we tested both specific nervous system, behavior and 

neurological gene sets and 30 overarching phenotypes. For each abnormal nervous system or 
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behavior/neurological mouse phenotype, 1-1 human orthologues of the corresponding mouse 

genes were considered as a pathway, following a method described by Webber et al.36 These 

data were retrieved from the Mouse Genome Database (MGD),37 Mouse Genome Informatics, 

The Jackson Laboratory, Bar Harbor, Maine. World Wide Web (URL: 

http://www.informatics.jax.org). (January, 2014). A Benjamini-Hochberg False-Discovery 

Rate (FDR) of 5% was used as significance threshold for the pathway analyses.38 

GCTA. The GCTA software was used to obtain an estimate of the variance in ADHD 

symptoms that can be attributed to variants included in GWA studies.39, 40 Individual level 

genotype data from the Netherlands Twin Register were imputed against the 1000 Genomes 

reference set after appropriate quality control (for more information, see 12). Genetic variants 

were subsequently filtered on MAF > 0.01 and imputation quality (r²) > 0.6 and used to 

estimate a genetic relationship matrix (GRM), which contains a measure of genetic similarity 

across all possible pairs of individuals. CBCL Attention Problem scores were used as an 

outcome measure, with separate analyses of mother ratings at preschool and school age, and 

teacher ratings at school age. For each analysis, a set of unrelated individuals was selected 

(genetic relatedness < 0.05). A linear mixed model was then fit to the data in which the GRM 

was included as a random effect and sex, age at measurement and 5 Principal Components 

were included as fixed effects in the model.
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Results 

GWA meta-analysis A summary of the QC metrics for each cohort can be found in Table 2. 

There was little evidence for population stratification in the results of the individual cohorts 

(all lambda’s <= 1. 09) and the meta-analysis (lambda = 1.02).  

Table 2. Results of the data cleaning for the nine cohorts included in the meta-analysis 

Cohort N N variants 

uploaded 

N variants 

cleaned 

lambda 

ALSPAC 5,757 31326386 8307884 1.011 

Generation R 2,211 31337615 6939416 1.021 

GINI / LISA 1,389 16275553 6428573 1.022 

INMA 804 17405727 5593205 1.093 

MOBA 665 14154076 5175847 1.018 

NTR 1,605 9160231 6159203 1.027 

Raine 1,338 29832393 5798626 0.986 

TEDS 2,606 12223562 7134263 0.988 

TRAILS 1,285 18183428 6443944 1.024 

 

Figure 1 shows the QQ-plot of the meta-analysis filtered on results that were based on at least 

10,000 individuals. Again, there was no evidence of population-stratification. The Manhattan 

plot in Figure 2 shows that there were no genome-wide hits. However, in the QQ-plot, there is 

a lift-off from the expected line for the smallest p-values that could be indicative of the 

polygenic nature of the trait, with many variants of small effect influencing ADHD 

symptoms. 
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Figure 1. QQ-plot of all meta-analysis results based on at least 10,000 individuals. 

 

Figure 2. Manhattan plot of the meta-analysis results based on at least 10,000 individuals.

 

A summary of the top-signals that surpassed a threshold of suggestive association at p < 1E-5 

included in Table 3; six out of ten top variants were located in intragenic regions. 
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Table 3. Top variants, list of independent signals with a p-value < 1E-5 and sample size > 10,000 

Genetic 

variant 

Chr position 

(b37) 

Effect/oth

er allele 

Freq/freq in 

Refset 

total N Direction of 

effect 

p-value Location to nearest gene 

rs56159542 19 19682971 T/C 0.21 (0.18) 17,560 - (---------) 1.585E-7 intronic PBX4 

rs2860942 2 77330790 T/G 0.21 (0.21) 17,560 - (---------) 2.824 E-7 intronic LRRTM4 

rs144768233 7 123318554 I/R 0.47 (0.45) 17,560 + (+++++++++) 1.092 E-6 downstream WASL 

rs66692521 5 83303821 T/C 0.34 (0.31) 17,560 - (---------) 1.519 E-6 intronic EDIL3 

rs79162905 14 89796072 A/G 0.11 (0.11) 17,560 - (---------) 2.853 E-6 intronic FOXN3 

rs8083343 18 73283067 A/G 0.08 (0.09) 16,895 - (----?----) 3.070 E-6 intergenic 

rs144888127 7 101832644 D/R 0.41 (0.39) 17,560 + (++++++++-) 3.214 E-6 intronic CUX1 

rs5912618 23 77764553 T/C 0.93 (0.95) 11,660 - (----????-) 8.409 E-6 intergenic 

r s199512223 23 150863165 D/R 0.33 (0.32) 10,936 - (--?--???-) 9.199 E-6 upstream PRRG3 

rs72891061 2 182764998 A/G 0.19 (0.21) 17,560 + (++++-++-+) 9.980 E-6 intronic SSFA2 
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Gene-based and pathway analyses. Of the total of 17,526 genes tested in VEGAS, none 

surpassed the Bonferroni corrected significance threshold of 2.85E-6. The top 10 genes with 

the lowest gene-based p-values are listed in Table 4. 

Table 4. Top 10 genes from gene-based test in VEGAS, HapMap CEU reference panel. 

Gene Chr start position 

b36 

stop position 

b36 

N 

SNPs 

p-value 

LMOD2 7 123083096 123091383 82 0.00001 

WASL 7 123109232 123176352 141 0.00001 

ASB15 7 123036347 123065168 99 0.00002 

NCOA5 20 44123032 44151987 93 0.00003 

PBX4 19 19533521 19590439 62 0.00009 

NCAN 19 19183781 19224061 59 0.00010 

SLC12A5 20 44091244 44122196 76 0.00010 

LGALS12 11 63030131 63040815 32 0.00011 

EIF5A2 3 172088897 172109120 66 0.00014 

RPL22L1 3 172065358 172070739 64 0.000147 

 

In both the individual variant and gene-based association tests the top results included the 

genes PBX4 and WASL. Forest plots and association plots zoomed in on the regions 

surrounding the top variants in these genes are shown in Figure 1-4 ; association plots were 

created with LocusZoom.41 
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Figure 1. Forest plot of rs56159542 in PBX4. Note that the effect sizes are on standardized to 

allow comparison across cohorts with different measurement instruments. 

 

 

Figure 2. Forest plot of rs144768233, downstream of WASL. Note that the effect sizes are 

standardized to allow comparison across cohorts with different measurement instruments. 
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Figure 3. Association plot zoomed in on the region surrounding rs56159542 in PBX4.

 

Figure 4. Association plot zoomed in on the region surrounding rs144768233, downstream of 

WASL. Note that information of LD is currently lacking for indels, so that the color coding is 

based on the variant with the second lowest p-value in this region, rs7809453.
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The three pathway enrichment analyses using annotations of biological processes and cellular 

localizations, and mouse knockout overarching and specific neurobehavioral phenotypes did 

not show enrichment of a specific pathway at an FDR of 5%.  

GCTA. 858-1,099 unrelated children were included in the GCTA analyses; estimates of 

variance in Attention Problems explained by common SNPs varied from 0.22 to 0.78 (Table 

5). The variance explained in maternal school-age ratings was significantly different from 

zero, but it should be noted that the standard errors around the estimates are large. 

Table 5. Estimates of variance in CBCL Attention Problems explained by measured genetic 

variants, as estimated with GCTA. 

CBCL Attention Problems N variance 
explained 

SE p-value LRT 

Maternal rating preschool age 1,072 0.32 0.30 0.1 1.177 
Maternal rating school age 1,099 0.78 0.30 0.004 7.036 
Teacher rating school age 858 0.22 0.39 0.3 0.300 
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Discussion 

The current study comprises the largest GWA of continuous measures of ADHD so far, and 

included a larger number of variants than previous studies, since all cohorts provided results 

for 1000 Genomes imputed datasets. In our meta-analysis of 17,560 individuals, we did not 

detect specific variants at genome-wide significance levels; neither did we detect significant 

gene-based associations or enrichment of biological pathways. Analysis with the GCTA 

software in a sample of ~1,000 individuals provide a first indication that common variants 

included in GWA studies explain variation in ADHD symptom measures in the general 

population. 

In both the individual variant and gene-based association tests the top results included the 

genes PBX4 and WASL. Both genes are expressed in the brain; PBX proteins play a role in 

the coordination of gene expression programs during development,42 whereas WASL is 

involved in cytoskeletal organization during neuronal development, including long spine 

formation and neurite extension.43 While we did not find evidence for enrichment of specific 

biological pathways in our analyses, a previous study found enrichment of genes involved in 

directed neurite outgrowth when analyzing the combined results of published GWA studies 

on ADHD; a finding that seems to overlap with our result for WASL.44 

The largest GWA of clinical cases of ADHD so far has been performed by the PGC. With 

5,621 cases and 13,589 controls, this GWA mega-analysis had roughly the same power as the 

current study, but no variants reached genome-wide significance.13 In general, GWA studies 

on psychiatric phenotypes have proven to require larger sample sizes than non-psychiatric 

phenotypes to find genome-wide results. Where early large-scale GWA studies were often not 

successful, recently important progress has been made in analyses of larger sample sizes; 

more than a hundred genome-wide significant findings have now been reported for 

schizophrenia when including 35,476 cases and 46,839 controls.45 For bipolar disorder, 8 

genome-wide significant hits were reported in a GWA study that included 13,741 cases and 

19,762 controls.46 If one extrapolates the success of the bipolar disorder study to ADHD, one 

would need 58,000 individuals with continuous measures of ADHD symptoms, or 25,000 

cases and 25,000 controls to detect genetic variants at genome-wide significant levels 

(assuming a normal distribution of the data, following formula’s for the Non Centrality 

Parameter (NCP) provided by Yang et al.13). Clearly, current sample sizes are still not 

approximating these numbers and substantial efforts will be required to reach them. 
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Population-based cohorts such as the ones collaborating in the EAGLE consortium could 

make an important contribution to the desired increase in power. The current study can thus 

be valued as an important first step towards the use of population-based cohorts in psychiatric 

gene-hunting studies.  

A complication of the combination of results from population-based studies is the 

heterogeneity in measurement instruments that are typically used. Across the nine cohorts 

included in the current meta-analysis, there are considerable differences in both the items 

included in the symptom scales, the raters that provided the assessment and the ages at which 

the rating was collected. Phenotypic correlations across instruments, raters and time are often 

moderate. Yet, there is evidence from behavior genetic studies that genetic factors influence 

partly instrument, rater and age-specific behavior, but also a construct that is common across 

these measures.47-51 This was confirmed by a polygenic risk score analysis that indicated a 

genetic overlap between the aggregate genetic signals in the latest PGC ADHD GWA mega-

analysis and both parent and teacher ratings, and preschool and school-age ratings of 

Attention Problems in the Netherlands Twin Register (NTR).12 It seems therefore plausible 

that the effects of increased phenotypic heterogeneity will be outweighed by the increase in 

sample size and hence statistical power. In addition, statistical methods like Item Response 

Theory (IRT) could be used to synchronize cohorts with different measurement instruments in 

a sophisticated manner; this approach has for example been successfully applied in a GWA 

meta-analysis of personality measures.52,53 

In this context it is noteworthy that issues of heterogeneity are not unique to population-based 

cohorts; it seems likely that the small effect sizes observed in current psychiatric GWA 

studies are related to a larger genetic and phenotypic heterogeneity, which in turn reflect the 

fact that the diagnostic system is based on expert opinions and descriptions of symptoms, and 

may insufficiently reflect underlying biological categories. Refinement of the diagnostic 

system could result from studies that focus on observable behavior and neurobiological 

measures, such as imaging techniques or biomarkers; research that is currently explicitly 

stimulated by the Research Domain Criteria Project (RDoC) of the National Institute of 

Mental Health (NIMH).54 If successful, GWA studies of these measures could likely increase 

statistical power, as they would benefit both from the full information of continuous measures 

and the closer reflection of biological entities. 
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Although current sample sizes are limited in their ability to detect individual genetic variants, 

they have been used successfully to assess aggregate genetic risk for ADHD with polygenic 

risk score analyses, and to estimate the contribution of common SNPs to overall variation in 

the liability to ADHD.12, 55-57 Our GCTA analysis performed in one sample from the meta-

analysis provides a first indication that common SNPs explain variance in Attention 

Problems. The precision of the estimate is currently still limited by the relatively small sample 

size. Unfortunately it is not straightforward to combine individual level genetic data from 

multiple cohorts; but efforts are currently made to combine the data of two cohorts from the 

EAGLE consortium to allow estimates of much larger precision. Two previous studies have 

used the GCTA software to estimate the amount of variance in ADHD liability or symptoms 

that can be attributed to variants included in GWA studies. Whereas the earlier mentioned 

study by the PGC estimated that 28% of the liability to ADHD could be explained by 

common SNPs, another study on self, parent and teacher ratings of ADHD symptoms by 

TEDS found non-significant estimates close to zero.7, 58 As there is no obvious explanation for 

these differences, future studies such as the one currently performed within cohorts of the 

EAGLE consortium can hopefully help to clarify this issue. 
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Supplementary Materials 

Supplementary Table 1. Description of methods used for imputation and analysis in each cohort included in the GWA meta-analysis. 

Cohort Genotyping 
platform 

Pre-imputation variant filters Pre-imputation sample filters Imputati
on 
software 

Post-
imputation 
filters 

Association 
software 

  call rate MAF HWE other filers call 
rate 

heteroz
ygosity 

etnici
ty 

gen
der 

other filers    

ALSPAC Illumina 
HumanHap550 
quad-chip 

0.95 0.01 5E-7  0.97 yes yes yes > 10% identity 
by descent, 
insufficient 
sample 
replication  

Phasing 
with 
Mach, 
Imputati
on with 
Minimac 

None Mach2QTL
V112 

Generation R Illumina 
Human 610 and 
660 Quad Array 

0.95 0.001 1E-7  0.975 yes yes yes familial 
relationship 
mismatch 

Mach None Plink 1.07 

GINI / LISA Affymetrix 5.0 
and Affymetrix 
6.0 

0.95 0.01 1E-5  0.95 > 4 SD  yes similarity QC 
based on MDS 

Impute 
v2.3.0 

SNPTEST 
NA for 
BETA, SE 
and 
P_VAL 

SNPTEST 
v2.4.1 

INMA Illumina 
Human Omni1  

0.95 0.01 1E-6  0.98  no yes LRR SD > 
0.3, duplicates 
and 
relatedness 
checked 

Impute 
v.2 

None SNPtest v.2 

MOBA Illumina 
Human 660W 
Quad Array 

0.97 0.01 1E-6  Mitochodrial SNPs; 
chrY&PAR SNPs; 
SNPs that could not 
be updated to hg37; 
non-"rs" SNPs 

0.96 > 4 SD yes yes Cryptic 
Relatedness 

SHAPEI
T 
(v2.r644)
, Impute 
(version 
2.3.0) 

SNPTEST 
NA for 
BETA and 
P_VAL  

SNPTEST 
v2.5-beta4 

NTR Affymetrix 6.0 0.95 
 

0.01 1E-5 double typed error 
rate > 0.02; Mendel 
error rate > 0.02; 

0.90 F > 
0.10 or 
F < -

no yes IBS/IBD 
discrepencies; 
Mendel error 

Minimac 
and 
Mach 

Plink NA 
for BETA, 
SE and 

Plink 1.07 



149 
 

allele frequency 
frequency difference 
with reference set > 
0.20; C/G and A/T 
SNPs with MAF > 
0.35  

0.10 rate > 0.02  P_VAL 

Raine Illumina 
Human 660W 
Quad Array 

0.95 0.01 5.7E-7 C/G and A/T SNPs 
removed 

0.97 F > 
0.1875; 
heteroz
ygosity 
> 0.30 

no yes  Mach   

TEDS Affymetrix 6.0 0.80 0.01 1E-20 SNP plate association 
p-value < 10^-6, 
SNPTEST info > 
0.975; visual 
inspection of 
hybridization 
intensity plots 

yes yes yes yes unusual 
hybridization 
intensity, 
relatedness 
(IBD < 5%), 
regenotyping 
low 
concordance 

Impute 
v2 

None Plink 1.07 

TRAILS Illumina Cyto 
SNP12 v2 

0.95 0.01 1E-3 chr X SNPs > 1% 
heterozygous in men 

0.95 > 4 SD yes yes duplicates Impute 
v2 

Callrate 
10%, 
duplicates 

SNPtest 
2.4.1 
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Supplementary Table 2. Item content of ADHD symptom scales included in the GWA meta-analysis. 

CBCL 1.5-5: Attention Problems scale  Can't concentrate, can't pay attention for long 
 Can't sit still, restless, or hyperactive 
 Poorly coordinated or clumsy 
 Quickly shifts from one activity to another 
 Wanders away 

CBCL 6-18: Attention Problems scale  Acts too young for his/her age 
 Fails to finish things he/she starts 
 Can't concentrate, can't pay attention for long 
 Can't sit still, restless, or hyperactive Confused or seems to be in a fog 
 Daydreams or gets lost in his/her thoughts 
 Impulsive or acts without thinking 
 Poor school work 
 Inattentive or easily distracted 
 Stares blankly 

SDQ: Hyperactivity-inattention scale  Restless, overactive, cannot stay still for long 
 Constantly fidgeting or squirming 
 Easily distracted, concentration wanders 
 Thinks things out before acting 
 Sees tasks through to the end, good attention span 

Conners’ Rating Scales-Revised: Long Form 
Other DSM-IV based rating scales 
(items may be phrased slightly differently 
across scales) 

 Often fails to give close attention to details or makes careless mistakes in schoolwork, work, 
or other activities 

 Often has difficulty sustaining attention in tasks or play activities 
 Often does not seem to listen when spoken to directly 
 Often does not follow through on instructions and fails to finish schoolwork, chores, or duties 

in the workplace (not due to oppositional behaviour or failure of comprehension) 
 Often has difficulty organizing tasks and activities 
 Often avoids, dislikes, or is reluctant to engage in tasks that require sustained mental effort 

(such as schoolwork or homework) 
 Often loses things necessary for tasks or activities at school or at home (e.g. toys, school 
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assignments, pencils, books or tools) 
 Is often easily distracted by extraneous stimuli 
 Is often forgetful in daily activities 
 Often fidgets with hands or feet or squirms in seat 
 Often leaves seat in classroom or in other situations in which remaining seated is expected 
 Often runs about or climbs excessively in situations in which it is inappropriate  
 Often has difficulty playing or engaging in leisure activities quietly 
 Is often 'on the go' or often acts as if 'driven by a motor' 
 Often talks excessively 
 Often has difficulty awaiting turn 
 Often blurts out answers to questions before they have been completed 
 Often interrupts or intrudes on others, e.g. butts into other children's games 
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Chapter 7 

 

Developmental Trajectories in Twins (DETECT): an overview of genotyping, data cleaning, 

imputation and analyses 

 

Groen-Blokhuis MM, Willemsen AHM, Ehli EA, Abdellaoui A, Hottenga JJ, Scheet PA, Middeldorp 

CM, Boomsma DI 
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During my PhD thesis, a large genotyping project was undertaken in which samples from the NTR 

were genotyped in collaboration with three USA based institutions: the University of Vermont, the 

Avera Institute for Human Genetics and the University of Houston. The data that were generated in 

this project were subsequently used for genetic analyses; the results of the analyses on attention 

problems are described in chapter four, five and six of this thesis. This chapter aims to describe the 

results of genetic analyses on other phenotypes that were performed for international consortia, as well 

as the data generation, cleaning and imputation steps that were performed in order to enable these 

analyses. 

 

Content 

I.   Genome Wide Association analyses 

II. Project description, aims and goals 

III. Sample shipment and selection 

IV. Fingerprinting 

V. Affymetrix genotyping 

VI. Imputation 

VII. Principal Component Analysis 

VIII. dbGaP upload 

 

Abbreviations (in alphabetical order) 

ANTR  Adult Netherlands Twin Register 

ARRA  American Recovery and Reinvestment Act 

CEU  Utah Residents with Northern and Western European ancestry 

CNV  Copy Number Variant 

CQC  Contrast Quality Control 

dbGaP  Database of Genotypes and Phenotypes 

DZ  Dizygotic 

TdT  Terminal Deoxynucleotidyl Transferase 

DETECT Developmental Trajectories in Twins 

EAGLE EArly Genetics and Lifecourse Epidemiology 
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EGG   Early Growth Genetics 

GO  Grand Opportunity 

GoNL  Genome of the Netherlands 

GWA  Genome Wide Association 

GWAS  Genome Wide Association Study 

HWE  Hardy-Weinberg equilibrium 

IBD   Identity by Descent 

MAF  Minor Allele Frequency 

ME   Mendelian Errors 

MZ  Monozygotic 

NESDA Netherlands Study of Depression and Anxiety 

NIMH   National Institute of Mental Health 

NTR  Netherlands Twin Register 

PCA  Principal Component Analysis 

PC  Principal Component 

PCR  Polymerase Chain Reaction 

PI  Principal Investigator 

QC  Quality Control 

RPM  Revolutions Per Minute 

SAPE  Steptavidin Phycoerythrin 

SNP   Single Nucleotide Polymorphism 

USA  United States of America 

VNTR  Variable Number of Tandem Repeats 

YNTR  Young Netherlands Twin Register 
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I. Genome Wide Association analyses 

 

Context. All GWA analyses using DETECT data were performed within two closely collaborating 

European consortia that perform GWA meta-analysis projects in large population based cohorts 

focusing on childhood phenotypes. The EGG consortium focuses on traits related to early growth and 

the EAGLE consortium focuses on a broad range of childhood phenotypes such as blood pressure, 

eczema, and behavioral phenotypes. More information on the genotyping, cleaning and imputation 

procedures performed on the DETECT set is provided in paragraphs II-VIII. 

1. Genome-wide association study on atopic dermatitis – HapMap imputation 

The first imputation of the DETECT set was performed in order to participate in a GWA meta-analysis 

on atopic dermatitis in childhood within the EAGLE consortium. This GWA meta-analysis project had 

finished the discovery phase and was seeking replication of the top 10 SNPs that came out of the 

discovery phase. Data on eczema were available from a YNTR survey that is sent out to the parents of 

twins at age 5. Parents were asked to indicate for each child separately whether a doctor had ever 

diagnosed the child with eczema. A similar question concerned doctor diagnosed baby eczema. 

Children were considered cases if their parents answered yes to any of the two questions and controls 

if they answered no to both questions. One twin was selected from each family. If both twins were 

cases or controls, one individual was picked at random, otherwise the case was selected. A total of 123 

cases and 306 controls were included in the study. A logistic regression was performed in Plink in 

which eczema status was regressed on SNP dosage scores in an additive model with sex as a covariate. 

SNP dosage scores represent the estimated expected allele count for the effect allele on a scale from 

zero to two and are used to take into account the uncertainty of the imputation in the model. The results 

for the 10 replication SNPs are listed in Table 1. In the final meta-analysis in which the discovery and 

replication studies were combined (total n = 51,423), three SNPs reached genome-wide significance. 

Two SNPs (rs479844 and rs2164983) were near genes that have been implicated in epidermal 

proliferation and differentiation and one SNP (rs2897442) was located within the cytokine cluster at 

5q31.1.1 

  



156 
 

Table 1. Results of the logistic regression of eczema status on the 10 replication SNPs for the NTR. 

SNP Effect allele Effect allele 

frequency 

Beta SE P-value 

rs7000782 A 0.3747 -0.14156 0.1716 0.4095 

rs1327914 C 0.1799 0.074922 0.1917 0.6959 

rs2164983 A 0.1461 0.5652 0.2173 0.009296 

rs479844 A 0.4558 -0.06646 0.1537 0.6657 

rs10994675 A 0.4371 -0.05077 0.1492 0.7335 

rs4821544 C 0.2716 0.15965 0.1766 0.3659 

rs10983837 A 0.0333 0.323387 0.6118 0.5971 

rs2897442 C 0.2746 0.194085 0.1704 0.2546 

rs3853601 C 0.8583 -0.71805 0.2327 0.002031 

rs4520482 A 0.4732 -0.00844 0.1507 0.9551 
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2. Genome-wide association study on atopic dermatitis – 1000 Genomes imputation 

After the initial EAGLE atopic dermatitis GWA meta-analysis was published,2 a follow-up project was 

started in which cohorts were requested to run the analyses on SNP data imputed against the 1000 

Genomes haplotypes reference panel for all ancestries. For the NTR, genotype data as available in 

MRG5 were used and the same phenotype definition as in the previous replication analysis applied. 

For MZ twin pairs, one individual was selected at random, for DZ twin pairs, both twins were included 

in the analysis while correcting for familial clustering with the --family option in Plink. After exclusion 

of individuals with non-Dutch/non-European ancestry, 1,466 individuals were available for analysis. A 

logistic regression was performed in Plink in which eczema status was regressed on genome-wide SNP 

data, sex, the 3 Dutch PCs, one chip covariate and the buccal PC. To test whether the results showed 

any systematic inflation, the inflation factor lambda (the observed median chi-square divided by the 

expected median chi-square) was calculated and a QQ-plot was drawn. The lambda of the cleaned 

results was 1.017. The QQ and Manhattan plot of all SNPs cleaned on MAF > sqrt(5/1466) and Plink 

INFO > 0.4 are shown in Figure 1 and 2. The discovery phase of this project has now been closed and 

the analysis team is working on the meta-analysis.  

Figure 1. QQ-plot of the NTR GWAS on eczema status with SNPs cleaned on MAF > sqrt(5/1466) and 

Plink INFO > 0.4. 
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Figure 2. Manhattan plot of the NTR GWAS on eczema status with SNPs cleaned on MAF > 

sqrt(5/1466) and Plink INFO > 0.4. 
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3. Epistatic interaction study of known atopy and atopic dermatitis GWAS hits on atopic 

dermatitis 

As a side project to the 1000 Genomes atopic dermatitis GWAS, an effort was made to analyze 

epistatic interactions among SNPs that were previously reported as top hits in GWAS on eczema and 

other atopic diseases. Mutations in the Filaggrin gene were of special interest in the study, but were 

unfortunately not available for the NTR. Of the 42 remaining SNPs selected by the consortium, 41 

were imputed in MRG5 (one SNP was only available for cohorts genotyped on the Illumina platform). 

SNPs were extracted from the MRG5 set and dosage scores were calculated for those SNPs such that 

the dosage score reflected the number of risk alleles (Linux and Pearl script provided by Jouke-Jan 

Hottenga and Andrew R. Wood). The phenotype data were the same as for the GWA analysis. SNP-

by-SNP interactions were then tested in Stata; a logistic regression was performed in which eczema 

status was regressed on SNP1, SNP2, SNP1-by-SNP2, sex, the 3 Dutch PCs, one chip covariate and 

the buccal PC, while correcting for familial clustering with the “robust cluster” option. For two SNPs 

with a low minor allele frequency (rs987870 and rs6932730), some interaction analyses could not be 

performed due to the empty cells that occurred. In, total 793 interactions were tested. As can be seen in 

Figure 3, a relative excess of small p-values were observed for the interaction analyses in the NTR 

dataset. The analysis team has finished the data cleaning and is performing a meta-analysis of all 

results. 

Figure 3. Histogram of the p-values of the SNP-by-SNP interactions tested in the NTR sample. 
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4. Genome-wide association study on height at age one 

Within the EGG consortium various GWAS have been initiated that focus on growth in the early years 

of life. In one specific project, a GWA meta-analysis was planned for height at age one, two, three and 

four. Initially, analyses for the NTR have been performed for all these ages on the imputed set of 

February 2011. When the imputed set of September 2011 became available, the consortium had 

decided to focus solely on height at age 1 and these analyses are reported here. Data on height at age 

one were available from maternal reports and laboratory measures. Maternal reports were collected in 

the YNTR survey that is sent out at age two. Mothers were asked to copy the measurements on height 

and weight that have been performed at the Dutch Community Health Services at a regular basis 

during the first two years of life. Laboratory measures were available from smaller projects focusing 

on cognition and physical development.3 Improbable data points were checked for data entry errors 

and corrected where possible. For each individual, the measurement between age 6-18 months closest 

to age 12 months was selected. When both were available, laboratory measures were preferred over 

maternal reports. Sex- and age standardized scores were calculated in the software package Growth 

analyser 3 (2004) using the 1997 Dutch reference growth charts for the general population. After 

exclusion of individuals with non-Dutch / non-European ancestry, 1,674 children were available for 

analysis. Analyses were performed in Plink; standardized height scores were regressed on genome-

wide SNP data and the PC that correlated with a north-south gradient in the Netherlands, as the latter 

was significantly correlated with the phenotype. The lambda of the cleaned results (MAF > 

sqrt(5/1674) and Plink INFO > 0.4) was 1.004. Manhattan and QQ plots are provided in Figure 4 and 

5. This project has closed the discovery phase and the meta-analysis is currently in progress. 
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Figure 4. QQ-plot of the NTR GWAS on height at age 1, SNPs cleaned on MAF > sqrt(5/1674) and 

Plink INFO > 0.4. 

 

Figure 5. Manhattan plot of the NTR GWAS on height at age 1, SNPs cleaned on MAF > sqrt(5/1674) 

and Plink INFO > 0.4. 
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5. Genome-wide association study on BMI in childhood 

Within EGG, another GWA meta-analysis project focused on BMI in childhood. Three age-bins 

were defined: BMI at 4 years (24-60 months), BMI at 9 years (60-120 months) and an overall 

analysis in which the measurement point between 24 and 120 months closest to 120 months was 

selected. In the NTR, data on BMI were available from the surveys sent out at age 2, 3, 5, 7 and 

10. At age 2 and 3, parents were asked to fill out all the dates and measures of height and weight 

as measured by the Dutch Community Health Services at regular intervals. At age 5, parents 

were asked to fill out the height and weight of the twins with the dates of measurement since the 

3th birthday. At age 7 and 10, parents were asked to fill out the current height and weight of the 

twins with the date of assessment. In addition, laboratory measures were available for a group of 

individuals that participated in smaller subprojects.3 Improbable data points were checked for 

data entry errors and corrected or excluded where necessary. Sex- and age adjusted standardized 

BMI scores were calculated with the 1990 British growth reference charts using the program 

LMSGrowth (available from http://www.healthforallchildren.co.uk). Individuals with non-Dutch 

/ non-European ancestry were excluded from the analyses, which resulted in a sample size of 

respectively 1,664, 1,480 and 1,810 individuals for the analysis of BMI at age 4, age 9 and the 

overall analysis. Analyses were performed in Plink in a linear regression framework; age and sex 

adjusted standard deviation scores were regressed on genome-wide SNP data and the first 2 

principal components, as this was requested in the analysis protocol. Standard errors were 

adjusted for family clustering using the --family option in Plink. The results of the NTR analyses 

are shown in Figure 6-11, the lambda’s of the cleaned results of the 3 analyses were 1.015, 1.017 

and 1.005 (cleaned on MAF > sqrt(5/total sample size) and INFO > 0.4). A preliminary meta-

analysis was reported in December 2013; additional cohorts have been contacted for replication 

of the top signals. Simultaneously, cohorts from the discovery phase will be asked to rerun the 

analyses on datasets imputed against the 1000 Genomes reference set. 
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Figure 6. QQ-plot of the NTR GWAS on BMI at 4 years (24-60 months), SNPs cleaned on MAF > 

sqrt(5/1664) and Plink INFO > 0.4. 

 

Figure 7. Manhattan plot of the NTR GWAS on BMI at 4 years (24-60 months), SNPs cleaned on 

MAF > sqrt(5/1664) and Plink INFO > 0.4. 
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Figure 8. QQ-plot of the NTR GWAS on BMI at 9 years (60-120 months) with SNPs cleaned on MAF 

> sqrt(5/1480) and Plink INFO > 0.4. 

 

Figure 9. Manhattan plot of the NTR GWAS on BMI at 9 years (60-120 months) with SNPs cleaned 

on MAF > sqrt(5/1480) and Plink INFO > 0.4. 
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Figure 10. QQ-plot of the NTR GWAS on BMI at the latest age between 24-120 months with SNPs 

cleaned on MAF > sqrt(5/1810) and Plink INFO > 0.4. 

 

Figure 11. Manhattan plot of the NTR GWAS on BMI at the latest age between 24-120 months with 

SNPs cleaned on MAF > sqrt(5/1810) and Plink INFO > 0.4. 

 



166 
 

6. Genome-wide association study on pubertal staging 

Within EGG, a GWA meta-analysis on pubertal staging using the Tanner stages was initialized. 

Within the NTR, data on Tanner stages have been collected in several projects. In some projects, 

Tanner staging was based on self-reports using pictures or drawings. In others, Tanner staging 

was assessed by a doctor or a trained researcher. Analyses were performed for each sex group 

separately and restricted to the age bins 10.5-12.5 years for girls and 12.6-15 years for boys. In 

the NTR, the number of boys with data in the specified age bin was 59, and it was decided that 

the sample size was too low to justify a GWA analysis. The number of Caucasian girls with 

GWA data and data on Tanner staging, was 265. The mean age at assessment was 12.06 (SD 

0.32). Tanner stage was analyzed as a quantitative trait in Plink by linear regression with exact 

age at measurement and SNP dosage scores in an additive model as predictors. As the PCs were 

not significantly associated with the phenotype, none of them were included in the analysis. The 

--family option was used to correct for the relatedness of the data. One individual of each MZ 

twin pair was included, so that only full sibling relationships are present in the final dataset. The 

lambda of all results was 1.019 after cleaning on MAF > sqrt(5/265) and Plink INFO > 0.4. A 

Manhattan and QQ plot of the data cleaned on MAF and Plink INFO are shown in Figure 12 and 

13. 

 A follow-up analysis was performed on the same dataset excluding girls with a BMI in the top 

20% (n=188), as it was hypothesized that BMI interferes with a correct estimation of breast 

development in adolescent girls. A lambda of 1.042 was observed after cleaning on MAF > 

sqrt(5/188) and Plink INFO > 0.4. A Manhattan and QQ plot of the cleaned results are shown in 

Figure 14 and 15. 

The results of both analyses have been uploaded to the server and the meta-analysis is currently 

in progress. 
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Figure 12. QQ-plot of the NTR GWAS on Tanner staging, SNPs cleaned on MAF > sqrt(5/265) 

and Plink INFO > 0.4. 

 

Figure 13. Manhattan plot of the NTR GWAS on Tanner staging, SNPs cleaned on MAF > 

sqrt(5/265) and Plink INFO > 0.4. 
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Figure 14. QQ-plot of the NTR GWAS on Tanner staging excluding girls with a BMI in the top 

20%, SNPs cleaned on MAF > sqrt(5/188) and Plink INFO > 0.4. 

 

Figure 15. Manhattan plot of the NTR GWAS on Tanner staging girls with a BMI in the top 

20%, SNPs cleaned on MAF > sqrt(5/188) and Plink INFO > 0.4. 
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7. Genome-wide association meta-analysis on height and growth in puberty 

A GWA meta-analysis on height and growth in puberty was also conducted within EGG. Several 

analyses were conducted, focusing on prepubertal height (female height at 10, male height at 12) 

pubertal growth (age 8 to adulthood) and late pubertal growth (age 14 to adulthood). Analyses were 

performed for the two sex-groups separately and combined. The NTR participated late in the 

replication stage. Consequently, only the result of one SNP was used in the meta-analysis, namely 

rs281379 for the replication of a signal of male height at age 12. As described previously, data on 

height at age 12 were available from maternal reports (survey at age 12) and, for a smaller subgroup, 

laboratory measures. The measurement closest to the requested age within one year of the requested 

age was selected. The software package Growth analyser 3 (2004) was used to calculate sex specific 

age standardized scores using the 1997 Dutch reference growth charts for the general population. After 

exclusion of individuals with non-Dutch / non-European ancestry, data were available for 602 males. 

Plink was used to perform a linear regression in which age-adjusted height standard deviation scores 

were regressed on SNP and the PC that correlates with a north-south gradient in the Netherlands, as 

this PC was significantly correlated with the phenotype. Within the NTR, the effect observed in the 

discovery meta-analysis was not replicated for rs281379 (Table 2). In the final meta-analysis, 10 

genome-wide results were found for the different phenotypes analyzed (6 for the combined analysis of 

male and female height at age 12/10).5 Eight of those signals have previously been associated with 

adult stature, three with age at menarche and one with BMI. Only one SNP had not been implicated in 

any of these phenotypes. 

 

Table 2. Results of the linear regression of height SDS scores at age 12 in males for the NTR and the 

discovery meta-analysis. 

Cohort N SNP Chr Effect 

allele 

Non effect 

allele 

Beta SE P-value 

NTR 602 rs281379 19 G A -0.04 0.063 0.5278 

Discovery 4282  rs281379 19 G A 0.08 0.017 2.85 E-6 
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8. Genome-wide association study on motor development 

Independent locomotion is considered an important developmental milestone; general motor 

development is associated with intelligence and delayed achievement is considered an early predictor 

of neuropsychiatric conditions.6 Following a GWAS study on tooth development that found 5 genome-

wide significant hits in a relatively small sample (n~6,000),7 a GWA meta-analysis on motor 

development within EAGLE was proposed, specifically focusing on the age at which children can 

walk without support. Cohorts were asked to analyze the data using a survival model with a log-

logistic distribution as this was previously shown to well describe the data of age at independent 

locomotion. In addition, such models deal with any interval or right censoring of the data that might 

occur in some cohorts. Children born prematurely (< 37 weeks) and children with cerebral palsy or 

intellectual disabilities (IQ < 70) were excluded from the analyses. One child of each NTR family was 

selected at random. After exclusion of individuals with non-Dutch / non-European ancestry, this led to 

a total sample size of 696 children. Log time to walking was regressed on sex, gestational age and 

genome-wide SNP data using the survival library in R (script provided by Alexandra Lewin). No PCs 

were included in the analyses as none were associated with the phenotype. In addition, the analyses 

were repeated for males and females separately. As some cohorts had no information on the exact age 

of locomotion but did have data on whether children were walking without support at either age 15 or 

18 months, an additional set of analyses was run in which the data were dichotomized at those ages. 

The results for the NTR analyses are summarized in Figure 16-21. The lambda for each of the cleaned 

sets was 1.077 (survival regression), 1.018 (dichotomized at 15 months) and 1.015 (dichotomized at 18 

months). 

A preliminary meta-analysis has been performed for this project, but no genome-wide significant 

findings were found. Given the relatively small sample size of the total discovery set of the survival 

regression analysis (N ~6,600), the discovery phase has been reopened. 
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Figure 16. QQ-plot of the NTR genome-wide survival regression of age at walking without support 

filtered on MAF > sqrt(5/696) and Plink INFO > 0.4. 

 

 

Figure 17. Manhattan plot of the NTR genome-wide survival regression of age at walking without 

support filtered on MAF > sqrt(5/696) and Plink INFO > 0.4. 
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Figure 18. QQ-plot of the NTR genome-wide logistic regression of walking without support at age 15 

months filtered on MAF > sqrt(5/696) and Plink INFO > 0.4. 

 

Figure 19. Manhattan plot of the NTR genome-wide logistic regression of walking without support at 

age 15 months filtered on MAF > sqrt(5/696) and Plink INFO > 0.4. 
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Figure 20. QQ-plot of the NTR genome-wide logistic regression of walking without support at age 18 

months filtered on MAF > sqrt(5/696) and Plink INFO > 0.4. 

 

Figure 21. Manhattan plot of the NTR genome-wide logistic regression of walking without support at 

age 18 months filtered on MAF > sqrt(5/696) and Plink INFO > 0.4.
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9. Genome-wide interaction study on birth weight and maternal smoking 

Within EGG, a genome-wide interaction study was conducted in order to find genetic variants that 

moderate the effect of maternal smoking during pregnancy on fetal birth weight. Twins were excluded 

from the discovery phase of the study, but invited to take part in the replication phase. Fourteen SNPs 

that showed a p-value < 1E-4 in the discovery meta-analysis were selected for replication, as well as up 

to 5 proxy SNPs for each of the 14 lead SNPs. In the NTR, data on maternal smoking were based on a 

survey that is sent out after registration of the twins in the first year after birth. The way in which 

maternal smoking during pregnancy was assessed in this first survey has changed over time (see Table 

3). The consortium requested to recode the data in a binary fashion with mothers that never smoked 

coded as 0 and mothers who smoked more than one cigarette per day at any time during pregnancy as 

1 (see Table 3 for the recoding of each version of the NTR data). Only Caucasian, term-born (>= 37 

weeks of gestation) children were included in the analyses, and one child of each family was selected 

at random, resulting in a sample size of 734 children. Birth weight data were quantile normalized using 

an R script provided by the consortium. 

Analyses were performed in quicktest using the MRG4 dataset. One out of the 14 index SNPs and 6 

out of the 65 proxy SNPs did not pass the SNP quality control filters applied after imputation and were 

excluded from the analyses. A linear regression was run in which quantile normalized birth weight was 

regressed on gestational age, sex, the 3 ‘Dutch’ PCs, one dummy covariate indicating the chip on 

which individuals where genotyped, SNP dosage scores, maternal smoking during pregnancy and the 

interaction term of SNP dosage score by maternal smoking during pregnancy. The results are shown in 

Table 4 (13 index SNPs from the meta-analysis) and Figure 22 (13 index SNPs plus 59 proxy SNPs). 

In addition, a linear regression was run in which quantile normalized birth weight was regressed on 

gestational age, sex, the 3 ‘Dutch’ PCs, the previously mentioned chip covariate and SNP dosage 

scores stratified by maternal smoking during pregnancy. 

A combined meta-analysis of the discovery and replication phase is under way. 
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Table 3. Assessment of maternal smoking during pregnancy in the different NTR questionnaires over 

time and their recoding for the current analysis. 

Version Answer categories Recoded as 

1.  1. No, not at all. 

2. Yes, now and then 

3. Yes, during the whole pregnancy 

0 

NA 

1 

2. 1. no. 

2. Yes, pipe, cigars 

3. Yes, less than 10 cigarettes per day 

4. More than 10 cigarettes per day 

0 

NA 

1 

1 

3. 

 

1. No. 

2. Yes, pipe, cigars 

3. Yes, 0-5 cigarettes per day 

4. Yes, 5-10 cigarettes per day 

5. Yes, more than 10 cigarettes per day. 

0 

NA 

1 

1 

1 
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Table 4. Results of the linear regression of quantile normalized birth weight on the interaction of the 14 

top SNPs from the discovery meta-analyses with maternal smoking during pregnancy. 

SNP Ch

r 

Position 

(B36) 

Gene Description Interaction 

p-value 

NTR 

rs4551142 6 77 922 500 NA Inter-genic region 0.634 

rs10825665  10  51 744 000  SGMS1 Sphingomyelin synthase 1  0.554 

rs16977814  15  55 966 900  NA  Inter-genic region  0.445 

rs11729139  4  63 021 300  NA  Near pseudo gene  0.734 

rs3737907  1  7 646 120  CAMT

A1  

Calmodulin binding transcription 

activator 1  

0.007 

rs4779939  15  29 985 100  NA  Inter-genic region near OTUD7A 

and CHRNA7  

0.881 

rs2151877  10  109 820 000  NA  Inter-genic region  0.800 

rs691605  8  19 072 900  NA  Inter-genic region  0.943 

rs4140870  22  35 955 700  RAC2  Ras-related C3 botulinum toxin 

substrate 2  

0.029 

rs765161  2  215 483 000  NA  Inter-genic region  0.005 

rs2906644  7  99 794 250  PILRB  Paired immunoglobin-like type 2 

receptor beta  

0.997 

rs6435220  2  149 570 000  KIF5C  Kinesin heavy chain isoform 5C  0.080 

rs6069125  20  53 159 625  NA  Pseudo gene  NA 

rs8016733  14  26 628 625  NA  RNA gene 0.640 
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Figure 22. Plot of the negative log of the p-values of the linear regression of quantile normalized birth 

weight on the interaction of the 13 top SNPs from the discovery meta-analyses and 59 proxy SNPs 

with maternal smoking during pregnancy. Note that the SNPs are sorted on chromosome and position 

and that each cluster of a lead SNPs plus its proxy SNPs is plotted in the same color. 
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Conclusion 

The projects reported here are in various stages; some are still waiting for cohorts to provide results for 

the discovery phase, other have finished their follow-up analyses and have resulted in published 

papers. Genome wide significant findings have been published for the meta-analyses on atopic 

dermatitis and pubertal height growth, several other projects have also identified variants at genome-

wide significant levels in their preliminary analyses. These studies thereby show the power of 

collaboration in genetics, and the success of large-scale GWA studies. Moreover, they indicate that a 

specific meta-analysis of pediatric cohorts is worthwhile, as both new and known loci have been found 

for phenotypes such as height and BMI, phenotypes that were previously analyzed in adults only.
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II. Project description, Aims, and Goals 

 

The “Grand Opportunity” (GO) (American Recovery and Reinvestment Act (ARRA)) enabled 

genotyping in participants from the NTR. The project was financed by the NIMH and was entitled 

‘Genomics of Developmental Trajectories in Twins’ (Grant: 1RC2MH089995-01; PI: James Hudziak). 

In a later stage the project was named DETECT (Developmental Trajectories in Twins). The project 

involved collaboration of the NTR (VU University, Amsterdam) and, in the USA, the University of 

Vermont, the Avera Institute for Human Genetics and the University of Houston. 

Goals 

The goals of the project were formulated as follows: 

1. Generate genome-wide Single Nucleotide Polymorphism (SNP) data and carry out GWA 

analysis to uncover associations between SNPs / haplotypes and behavioral and emotional 

problems in children. Associations will be tested using pedigree-based approaches and will 

identify SNPs that influence average trait expression across childhood. 

2. Use SNP data from MZ twin pairs to carry out GWA tests for sensitivity genes that influence 

trait expression as a function of environment. We expect only partial overlap between genes 

influencing the average expression of a trait and genes influencing the sensitivity to 

environmental exposures. 

3. Complete a GWA study on copy number variants (CNVs) in these same families. CNVs will be 

assessed in both members of MZ pairs, and in all other family members. 

4. Compare the location and inheritance patterns of CNV across twin pairs who are concordant for 

having a behavioral phenotype, concordant for not having the phenotype, and discordant for the 

phenotype. In the entire sample, count total number of CNVs as a function of phenotype. 

5. Identify MZ twin pairs who are discordant for CNVs; search the phenotype database for 

parallel discordance in behavioral and emotional problems. CNV’s will play a greater role in 

the development of psychopathology in affected members of MZ pairs discordant for a trait 

(e.g. an MZ pair where one member has ADHD and the other does not) than in concordant 

affected pairs. 
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6. In a subset (N = 606 subjects) assess CNV in blood and buccal samples collected at the same 

time in order to determine across-tissue CNV structure. 

7. In a second subset (N = 330; (165 complete twin pairs) carry out a longitudinal assessment of 

stability and changes in CNV in buccal samples assessed at two points in time.  
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III. Sample shipment and selection for DETECT 

 

The hereafter reported quality control and imputation was sometimes performed on samples from the 

DETECT project only, and sometimes on samples from DETECT combined with samples from other 

NTR projects; where only samples from DETECT were used, this will be mentioned in the text. 

Starting end 2009, samples collected by the NTR were shipped to the Avera Institute for Human 

Genetics (South Dakota, USA). In total 12,463 samples were shipped belonging to 7,419 individuals. 

For some individuals, multiple samples were available, that is, samples that were collected at different 

time points or from different tissues. Next to these multiple samples, the total of 12,463 samples 

includes 3,593 duplicate samples, meaning that one buccal DNA sample was taken at a particular time 

point and divided in two portions; the two portions were then counted as separate samples. Removal of 

those duplicate samples resulted in 8,870 samples belonging to 7,419 individuals. Most samples 

consisted of isolated DNA. In some cases, the samples consisted of buccal cells that still needed DNA 

isolation. 

Most samples came from twins, either from children or from adolescent / adult twins (a large group of 

twins had provided buccal DNA for zygosity typing and for research purposes). Samples also came 

from parents of (young) twins, and others came from non-twins (e.g. siblings of twins). The year of 

sample collection ranged from 1994 to 2009. 

Not all 8,870 samples were of equal relevance for the DETECT project and thus samples were 

prioritised for fingerprinting, which would provide information on zygosity and familial relatedness, 

and for genome-wide genotyping on the Affymetrix 6.0 platform. A further selection was needed as 

financial resources were available for genome-wide genotyping of ~4,700 samples, this selection was 

based on the availability of highly informative phenotypes for DETECT and included participants that 

were registered with the Young NTR (YNTR) or with the Adult NTR (ANTR). 

Samples were prioritized in the following order: 

1. All persons with blood and/or buccal samples of twins, sibs and parents who participated in the 

study of Dr. Hoekstra and Dr. Estourgie-van Burk and were followed from age 5 in a project in 
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which longitudinal IQ, EEG and other data were collected.8, 9 In the lab, these samples were 

known as the “ROSA” group. 

2. All persons with blood and/or buccal samples of the CHIMEAR group. This study collected 

blood samples at a young age.10 

3. All persons with longitudinal DNA samples from buccal cells who met the following criteria: - 

2 year or 7/8 year period between buccal collection. 

 - both twins have either 2 or 7/8 year follow-up. 

 - in case a sibling was present, his/her buccal sample was included 

(2 samples if 2 or 7/8 year follow-up present). 

 - in case parents were present, parental buccal samples were included  

(only one buccal sample per parent). 

4. Twins selected to be informative for ADHD whose mothers had participated in the DISC 

interview for their children.11 

5. Twins and siblings with psychometric IQ data (multiple projects; e.g. projects by Dr. van Baal, 

Dr. Bartels, Dr. van Soelen, Dr. Polderman and Dr. van Beijsterveldt). 

6. Twins and siblings with MRI data (projects by Dr. van Leeuwen, Dr. Peper and Dr. van 

Soelen). 

7. Participants with many relevant parental and teacher ratings of behavioural phenotypes (e.g. 

CBCL and TRF). 

8. Participants with many relevant self-ratings of behavioural phenotypes (YSR, YASR, ASR). 

9. Participants with few relevant YNTR phenotype data. 

10. Participants with few relevant ANTR phenotype data. 

11. Participants with no relevant phenotype data.  

These priority codes are consecutive – all twins in the first group have IQ data but are not counted 

again for priority 5. For some individuals, the priority scores changed, because they had already been 

genotyped in previous or ongoing studies. This group was manually examined, as family structure was 

also important for priority 1 and 2. Next, for the persons with priority code of 4 or higher, one sample 

(if duplicates or multiples were available) was selected for the analysis. This selection was based on 

the most recent sample of isolated DNA. 
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Out of the total of 8,870 samples, 2,573 were already genotyped and 468 did not fulfil the criteria to be 

included as a longitudinal sample. This resulted in a total of 5,829 samples with a priority code from 1-

10 representing 5,034 individuals from 1,904 families. All these were selected to be fingerprinted on a 

64 SNP fingerprint chip. In a later stage, it was decided to exclude samples from the CHIMAER 

project as material was sparse and Affymetrix 6.0 genotyping was considered to be of greater 

importance. Of the 5,034 individuals, 680 had 2 samples, 56 had 3 samples and 1 person had 4 

samples. For genotyping on the Affymetrix 6.0 platform, samples were selected if they had a priority 

code ranging between 1 and 9 (so individuals with few relevant YNTR data were included but 

individuals with few relevant ANTR data were not), leading to a total of 4,813 samples selected for 

genotyping on Affymetrix 6.0. 
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IV. Fingerprinting 

 

As a subproject within DETECT, a large proportion of samples that were planned to be genotyped on 

Affymetrix 6.0 were also genotyped for 64 SNPs (on a fingerprint chip) and 5 VNTRs (Variable 

Number Tandem Repeats). The 5 VNTRs and 38 of the SNPs were selected from the literature as 

polymorphisms in candidate genes for ADHD and other behavioral phenotypes. The remaining 26 

SNPs were selected from the Affymetrix 6.0 platform (see Table 6).  

After the DETECT project was finished, different sets of SNPs, partly overlapping with the DETECT 

set, were used in ongoing projects for determination of zygosity and familial relatedness.  

Four different sets of SNPs/VNTRs have been used over time; 

 Set 1: a set of 64 SNPs (38 in candidate genes) and 5 VNTRs used in the DETECT project as 

described above, genotyping took place at the Avera Institute for Human Genetics 

 Set 2: a set of 63 (37 in candidate genes) SNPs used after DETECT, genotyping took place at the 

VU medical centre 

 Set 3: a set of 62 (36 in candidate genes) SNPs and 7 VNTRs, genotyping took place at Avera 

Institute for Human Genetics as a follow up on the genotyping project at the VU medical centre 

 Set 4: a set of 30 SNPs (all in candidate genes) currently in use at the Avera Institute for Human 

Genetics  

An overview of the number of samples and information on the individuals and family relations present 

in each file are provided in Table 5.  

Table 5. Overview of the number of samples and individuals genotyped in each fingerprint set (before 

cleaning), as available December 2012. 

N Set 1 Set 2 Set 3 Set 4 

Samples 5448 1152 365 456 

Individuals 4702 1148 365 455 

Families 1657 395 195 223 

Twins 2899 699 310 353 



185 
 

Triplets 25 0 0 0 

Siblings 267 56 43 64 

Parents 1511 393 12 38 

 

An overview of the different sets of SNPs and VNTRs that were used in each project is presented in 

Table 6.  

Table 6. Overview of the different SNPs and VNTRs used in subsequent sets for determination of 

zygosity and familial relatedness (1=yes, 0=no). 

Candidate Genes dbSNP ID# Genotyped 

in Set 1 

 

Genotyped in 

Set 2 

 

Genotyped in 

Set 3 

 

Genotyped in 

Set 4 

BDNF rs6265 * 1 0 0 1 

COMT rs4680 1 1 1 1 

DRD2 rs1800497 1 1 1 1 

DBH rs1611115 1 1 1 0 

DBH rs2519152 1 1 1 1 

SNAP-25 rs3746544 1 1 1 0 

SNAP-25  rs1051312 * 1 0 0 1 

NET rs998424 1 1 1 0 

NET rs3785157 1 1 1 1 

CLOCK rs1801260 * 1 0 0 1 

ApoE rs7412 1 1 1 0 

ApoE rs429358 1 1 1 1 

NPY rs16139 1 1 1 1 

ADRA2A rs1800544 1 1 1 1 

ADRA2A rs1800545 1 1 1 0 

ADRA2A rs553668 1 1 1 0 

AADAT rs13145318 1 1 1 1 

PCLO rs2715148 1 1 1 1 
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PCLO rs2522833 * 1 0 0 0 

HTR1B rs6296 1 1 1 1 

HTR2A rs6314 1 1 1 1 

TPH2 rs1843809 1 1 1 0 

TPH2 rs1386497 * 1 0 0 1 

GRIN2A rs8049651 1 1 1 1 

DRD1 rs265981 * 1 0 0 1 

FADS2 rs174575 1 1 1 1 

FADS2 rs1535 1 1 1 1 

ApoE rs2075650 * 1 0 0 1 

CLU/ApoJ rs11136000 1 1 1 1 

PICALM rs3851179 1 1 1 1 

CR1 rs6656401 1 1 1 1 

DAT rs2652511 1 1 1 0 

DAT rs40184 1 1 1 1 

DRD4 rs1800955 * 1 0 0 1 

DRD4 rs3758653 1 1 1 0 

SRC1 rs11125744 * 1 0 0 1 

FTO rs9939609 0 1 1 1 

FTO rs1121980 0 0 0 1 

FTO rs6499640  0 0 0 1 

FTO rs8050136 0 0 0 1 

ADRB2 rs1042714 0 1 1 0 

CHRNA5 rs16969968 0 1 1 0 

FADS1 rs174550 0 1 1 0 

GRM8 rs2237781 0 1 1 0 

GRIK2 rs6570989 0 1 1 0 

CD53 rs6679497 0 1 1 0 

GABRG3 rs8036270 0 1 0 0 
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Remaining SNPs dbSNP ID# Genotyped 

in Set 1 

 

Genotyped in 

Set 2 

 

Genotyped in 

Set 3 

 

Genotyped in 

Set 4 

 

SNP on Y 

chromosome 
rs768983 

    

Affymetrix SNP rs10010369  1 1 1 0 

Affymetrix SNP rs11123433  1 1 1 0 

Affymetrix SNP rs1333340  1 1 1 0 

Affymetrix SNP rs1709915  1 1 1 0 

Affymetrix SNP rs17272796  1 1 1 0 

Affymetrix SNP rs1810467  1 1 1 0 

Affymetrix SNP rs2128347  1 1 1 0 

Affymetrix SNP rs216459  1 1 1 0 

Affymetrix SNP rs2306641  1 1 1 0 

Affymetrix SNP rs242076  1 1 1 0 

Affymetrix SNP rs2499636  1 1 1 0 

Affymetrix SNP rs2577256  1 1 1 0 

Affymetrix SNP rs2588333  1 1 1 0 

Affymetrix SNP rs4775699  1 1 1 0 

Affymetrix SNP rs4793172  1 1 1 0 

Affymetrix SNP rs6469617  1 1 1 0 

Affymetrix SNP rs6734275  1 1 1 0 

Affymetrix SNP rs685449  1 1 1 0 

Affymetrix SNP rs6909592  1 1 1 0 

Affymetrix SNP rs7116710  1 1 1 0 

Affymetrix SNP rs7627201  1 1 1 0 

Affymetrix SNP rs7728335  1 1 1 0 

Affymetrix SNP rs7795959  1 1 1 0 

Affymetrix SNP rs7924984  1 1 1 0 

Affymetrix SNP rs9293511  1 1 1 0 
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Affymetrix SNP rs9865763  1 1 1 0 

      

VNTRs Polymorphism Genotyped 

in Set 1 

 

Genotyped in 

Set 2 

 

Genotyped in 

Set 3 

 

Genotyped in 

Set 4 

 

SERT 5-HTTLPR + 

rs25531 

1 0 1 0 

DRD4  1 0 1 0 

DAT1  1 0 1 0 

DRD5  1 0 1 0 

MAOA  1 0 1 0 

DRD4 Promotor, 120 

bp-repeat 

0 0 1 0 

SERT Intron 2, 17-bp 

repeat 

0 0 1 0 

Amelogenin 
6 bp deletion 

on AMELX 

1 1 1 0 

 

Within the DETECT set (Set 1), nine SNPs did not perform well initially; these are marked with an 

asterisk in Table 6. All nine SNPs were successfully rerun on the Taqman if samples had sufficient 

material available; this excluded 162 buccal and 382 blood samples (a total of 4,904 samples were 

retyped). The five VNTRs were genotyped only in the set of 4,904 samples with sufficient material. 

The nine SNPs that were retyped replaced the original typings. For samples that were not retyped, the 

nine SNPs were put to missing.  

QC was applied to each set separately. SNPs and VNTRs were tested for call rate, HWE, and 

correspondence of the allele frequency in the current set with the frequency in the reference set 

(HapMap release 22, CEU panel) In some sets there were enough parent-child relationships to test for 

Mendelian errors and in the DETECT set, a substantial number of individuals had multiple samples 

genotyped allowing for a test of concordance of SNPs across duplicate samples. Table 7 lists the SNPs 

that were excluded in each subset with the reason for exclusion.  
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Table 7. SNPs showing problematic QC. 

 SNP ME Blood-buccal errors HWE 

Set 1 rs7412 Problematic Problematic Not in HWE 

 rs2652511 Problematic Problematic In HWE 

 rs429358 Problematic Problematic Not in HWE 

Set 2 rs6469617 OK Not applicable Not in HWE 

 rs7795959 OK Not applicable Not in HWE 

 rs2519152 OK Not applicable Not in HWE 

 rs7412 Problematic Not applicable Not in HWE 

Set 3 rs429358 Not applicable Not applicable Not in HWE 

Set 4 To be done To be done To be done To be done 

 

Across sets, samples were checked for Mendelian errors, sex errors, inconsistencies between blood-

buccal and longitudinal samples and inconsistencies between questionnaire and genotype-based family 

relations and zygosity, where possible. Samples that were suspected sample switches were put on a 

blacklist and excluded from further analyses. The call rate of each sample was determined separately 

for SNPs and VNTRs, all SNP calls were put to missing if the call rate was < 90%, for the VNTRs, all 

VNTR genotypes were put to missing if more than one was missing. Table 8 gives the number and 

percentage of samples that were excluded from each subset. Note that the total number of excluded 

samples is sometimes lower than the number of samples with e.g. a low SNP call rate, due to the fact 

that some samples had a low call rate for the SNPs but not the VNTRs and vice versa. 

Table 8. Number of samples showing problematic QC. 

 Set 1 Set 2 Set 3 Set 4 

N total 5,448 1,152 365 456 

N on blacklist 115 (2.1%) 9 (0.8%) 0 (0%) To be done 

N with low call rate SNPs 201 (3.7%) 50 (4.3%) 11 (3.0%) 4 (0.9%) 

N with low call rate VNTRs 38 (0.8%) Not applicable 12 (3.3%) Not applicable 

N excluded 155 (2.8%) 59 (5.1%) 5 (1.4%) 4 (0.9%) 
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Note that some individuals were genotyped multiple times within or across subsets, leaving the total 

number of individuals that have a genotyped sample that passed QC of either fingerprint or VNTR data 

at 6,347. A final file was created in which each individual has only one genotype call per SNP/VNTR. 

Only calls from non-blacklisted samples that are consistent across samples from the same individual 

were included in the final dataset.  

Zygosity was determined using the program ZygProb/ECLIPSE2 (available via: 

http://gump.qimr.edu.au/general/daleN/ZygProb/).12, 13 This program estimates the MZ/DZ 

likelihood for each twin pair at different genotyping error rates. For the current dataset, a 

genotyping error rate of 0.01 was chosen. In case the genotype-based zygosity differed from the 

survey-based zygosity, the questionnaire and genotyped data were checked to see whether the 

observed difference was likely due to a sample swap or low quality sample or to an incorrect 

assignment of questionnaire based zygosity. 

Twin families who had indicated that they wanted to be informed about their zygosity received a 

letter with the results of the zygosity determination. In the letter they were asked to contact the 

NTR if there were reasons to question the zygosity assessment. 
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V. Affymetrix Genotyping 

 

Microarray processing. SNP and CNV data were generated from each DNA sample using high-density 

SNP 6.0 microarrays (Affymetrix; Santa Clara, CA, USA). This array represents 1.8 million markers 

evenly distributed across the whole genome, including more than 906,600 markers to detect SNPs and 

another 946,000 probes for the detection of CNVs.  

Sample preparation and microarray processing were performed according to Affymetrix protocols. In 

brief, 500 ng of purified genomic DNA is prepared for restriction digest, according to strict protocol 

specifications. Two aliquots (250 ng) of each sample were used. One was digested by the restriction 

enzyme NspI, the other by StyI (New England Biolabs; Ipswich, MA, USA). The digested samples 

were then subjected to adaptor-ligation using T4 DNA ligase (New England Biolabs). The adaptors 

recognize the cohesive 4bp overhangs; consequently, all fragments from the digest are substrates for 

ligation, regardless of size. 

A polymerase chain reaction (PCR) was used to amplify the genomic DNA for each of the ligated 

samples, using a generic primer which recognizes the universal adaptor sequence. Assay conditions 

have been optimized to generate fragments between 200bp and 1100bp. The optimal fragment size was 

confirmed by performing a QC 2% agarose gel electrophoresis. PCR products were then purified using 

an AMPure® magnetic bead protocol (Beckman Coulter Genomics; Danvers, MA, USA). Purified 

PCR product was quantified using a Spectramax® Plus 384 Spectrophotometer (Molecular Devices; 

Sunnyvale, CA, USA) to ensure adequate PCR fragment yield. The resulting DNA was subjected to 

fragmentation using the Affymetrix supplied DNA fragmentation enzyme (DNaseI) to produce 

fragments of optimal size for hybridization to the markers on the microarray (< 180bp). Following 

fragmentation, the digestion product size was confirmed using an additional QC check with a 4% 

agarose gel electrophoresis. 

The resulting fragments were end-labeled (biotinylated) using an Affymetrix supplied DNA labeling 

reagent consisting of Biotin and the enzyme terminal deoxynucleotidyl transferase (TdT). The labeled 

products were mixed with a hybridization solution and denatured on a thermal cycler. The 

hybridization reactions were loaded onto a Genome-Wide Human SNP Array 6.0 and hybridization 

occurred for 16-18 hrs at 50ºC with 60 Revolutions Per Minute (RPM) of rotation.  
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Following hybridization, the arrays were subjected to the following cycles of staining and buffer 

stringency washes: a Steptavidin Phycoerythrin (SAPE) stain cycle, an Antibody Stain cycle, a second 

Streptavidin stain step, a final buffer wash, and finally the microarray is filled with holding buffer. All 

of the wash and stain steps were carried out in automated fluidics stations (Affymetrix; Santa Clara, 

CA, USA). The arrays were then scanned in a GeneChip Scanner 3000 7G (Affymetrix; Santa Clara, 

CA, USA) with an autoloader accessory. The command console software creates a (.DAT) file for each 

sample/array that is subsequently scanned. This file is captured by Affymetrix Genotyping Console 

4.0, converted to the standard intensity file (.CEL) where it can be stored and/or converted into 

different files for further analysis.  

All raw intensity (.CEL) and attribute (.ARR) files were uploaded to the Secure File Transfer Protocol 

server initially with no cleaning from Avera Institute for Human Genetics. 

Genotype calling. Genotype calling from the Affymetrix CEL files was performed by Xiao Xiangjun 

and Paul Scheet at the University of Houston using Birdsuite version 2 (Birdseed). 

CNV calling. CNV calling from the Affymetrix CEL files has been performed by Abdel Abdellaoui 

and Jouke-Jan Hottenga at the VU University. 
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VI. Imputation: 

Between February 2011 and May 2013, five different imputations had been performed that included 

the DETECT Affymetrix 6.0 data. The first two included only DETECT data and were imputed against 

HapMap release 22, the third and fourth included all available NTR and NESDA samples in December 

2011 and December 2012 respectively, and were imputed against the 1000 Genomes reference set. The 

fifth imputation included the same set of individuals as the fourth but including only one individual 

from each MZ pair, and was imputed against the GoNL reference set. The set that was used in the 

second round of imputation consisted of the full set of DETECT samples; for this set of samples the 

data cleaning will be described more extensively. 

 

1. Imputation DETECT February 2011 

In the beginning of 2010, an imputation was performed in Houston by Paul Scheet and Xiangjun Xiao 

on the first 26 Affymetrix 6.0 plates in order to use these data for replication of GWAS signals for 

consortia that were closing their analyses very soon afterwards. In total, there were 2,281 genotyped 

samples (excluding control samples), of which 1,603 were included in the imputed dataset. This is due 

to the fact that all individuals with multiple samples were genotyped on the first plates, and only one 

sample per individuals was included for imputation (the sample with the best quality was picked). In 

addition, 102 samples were excluded as they were suspected sample switches in the fingerprint set. 

Prior to imputation, SNPs were filtered based on the following criteria: missing data rate, minor allele 

frequency (MAF), Hardy-Weinberg equilibrium (HWE) and Mendelian errors (Table 9). SNPs that 

passed all 4 criteria were propagated to the imputation stage. Since for the imputation program 

individuals are essentially independent, an individual-level filter was not applied. That is, poor quality 

of one sample will not adversely affect the imputation accuracy for other samples.  

Table 9. Criteria for SNP cleaning and the number of excluded SNPs before imputation. 

Criterion Value N SNPs failing 

Call rate < 0.90 1,275 

MAF < 0.01 101,191 
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HWE (p-value) < 0.0001 4,134 

MEs > 35 1,171 

 

There were 872,242 SNPs before the QC process. Of these, 761,750 pass all 4 criteria. 

Imputation was conducted with the software BEAGLE using HapMap release 22 haplotype data of 

the CEU population as a reference set. BEAGLE was chosen for its ability to handle trios, which can 

be arranged and constructed to take advantage of the informative data structure in the samples from the 

NTR.14 For purposes of speed and testing, in this initial phase, BEAGLE was run treating all 

individuals as unrelated. This has been shown to be reasonably accurate. 

Post imputation samples were checked for call rate, family structure, Mendelian errors and 

heterozygosity. Samples that failed QC were excluded from the analyses. 

 

2. Imputation DETECT September 2011 

When all plates were genotyped, genotype calling and imputation on the total set of 55 plates and 

4,801 samples were performed in Houston by Paul Scheet and Xiangjun Xiao. Genotype calling was 

again performed using Birdsuite version 2 (Birdseed).  

Before imputation, the following sample selection was performed in Houston. Of the total of 4,801 

samples, 169 were removed because they did not survive QC in the lab, the fingerprint dataset or in the 

first DETECT imputation. In addition, 110 samples were excluded because their Contrast Quality 

Control (CQC) was below 0.4 (cutoff suggested by Affymetrix). Duplicates were removed by selecting 

the sample with the highest quality, and one sample of each monozygotic twin pair was selected at 

random (for a twin pair thought to be monozygotic, one sample was removed if the IBD estimate in 

Plink was > 1.5, for a twin pair thought to be dizygotic, one sample was removed if the IBD estimate 

in Plink was > 1.8). This resulted in a total of 3,266 samples before imputation.  

To ensure quality control, SNPs were checked for their call rate, minor allele frequency, Hardy-

Weinberg equilibrium, Mendelian error rate and concordance rate in duplicate samples. Here, we will 

give a short, mainly graphical, summary of the results. 
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In Figure 23, a histogram of the SNP call rate is shown (note that the y-axis has been truncated at 

2,000). The call rate is an important indicator of the quality of the genotype data. Only a few SNPs 

showed a call rate lower than 0.95 (2,379 out of 872,242 SNPs).  

Figure 23. Call rate per SNP in the 3,266 samples included in the second DETECT imputation, 

genotyped SNPs (y-axis truncated at 2,000). 

 

 

In Figure 24, the minor allele frequency of all SNPs is shown as calculated on the set of parents in 

DETECT (n=709). As expected, there is a relatively large number of low frequency SNPs, whereas the 

remaining SNPs shows a more or less uniform distribution. The quality of SNPs with a low minor 

allele frequency is generally worse, therefore SNPs with a MAF < 0.01 were excluded before 

imputation. 
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Figure 24. Minor allele frequency of the genotyped SNPs in709 parents in the DETECT set. 

 

 

In Figure 25, the minor allele frequency in the DETECT set is plotted against the frequency of the 

same SNP and allele in a reference set (HapMap release 24, CEU reference panel), which showed a 

correlation of 0.97. The vertical lines in the left and right side of the plot consists of SNPs that were 

non-polymorphic in the reference set but polymorphic in the DETECT set. 
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Figure 25. Frequency of genotyped SNPs against the frequency of the same SNP and allele in HapMap 

release 24 CEU reference panel. 

 

A common problem that occurs with genotype calling is that only two of the three possible genotype 

calls are being called. These kind of errors and other issues are readily identified by a test for Hardy-

Weinberg equilibrium. In Figure 26, the minus log10 of the p-value of the test for Hardy-Weinberg 

equilibrium of all SNPs is plotted against their position in the genome. Strong deviations occurred 

across the genome; 4,245 SNPs showed a HWE p-value lower than 1E-5 and were excluded from the 

dataset before imputation. 
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Figure 26. Minus log10 of the p-value of the Hardy-Weinberg equilibrium test for all genotyped SNPs. 

 

As the dataset consisted of family members, it is possible to test whether SNPs show an excess of 

Mendelian errors, another measure of SNP quality. A histogram of the number of Mendelian errors per 

SNP is show in Figure 27; SNPs with more than 26 Mendelian errors were excluded before imputation. 
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Figure 27. Histogram of the number of Mendelian errors per SNPs for the genotyped set (y- axis 

truncated at 20,000). 

 

A check for the concordance rate of SNPs in duplicate samples was performed in Houston, leading to 

the exclusion of 24,573 SNPs with a concordance rate < 0.95. Table 10 gives an overview of the 

criteria that were used to clean the SNPs before imputation and the number of SNPs that were 

excluded based on each criterion. 

Table 10. Criteria for SNP cleaning and the number of excluded SNPs before imputation. 

Criterion Value N SNPs failing 

Call rate < 0.95 2,379 

MAF < 0.01 Unclear  

HWE (p-value) < 0.00001 4,245 

MIs > 26 8,594 

Concordance rate in duplicates < 0.95 24,573 
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In total 726,842 of 872,242 genotyped SNPs passed all criteria and were used for imputation. 

Imputation was performed with the software BEAGLE using HapMap release 22 haplotype data of 

the CEU population as a reference set. All individuals were treated as unrelated. 

Post imputation sample cleaning was performed; all samples were checked for call rate, family 

structure, Mendelian errors, sex errors and heterozygosity where possible. As stated earlier, samples 

were already filtered in Houston based on CQC and previous quality checks. Figure 28 shows the call 

rate of the 3,266 samples that were imputed. The sample selection resulted in a very high call rate for 

the remaining samples, and, therefore, no additional samples were excluded based on this criterion. 

Figure 28. Histogram of the sample call rate for the 3,266 samples included in the second DETECT 

imputation. 

 

 

Further checks were based on a dataset of genotypes that underwent basic cleaning (filtered on 

SNP call rate >= 0.95, SNP Mendelian errors <= 26, HWE p-value > 0.00001, MAF in DETECT 

and reference set > 0.01, difference of frequency with reference set < 0.1% and > 99.9% 

quantile). 
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As an excess of heterozygous calls can indicate sample contamination from e.g. surrounding 

samples on the plate, the relative heterozygosity of a sample is an important measure of its 

quality. A histogram of a measure of relative heterozygosity (F) estimated in Plink is shown in 

Figure 29. Samples with .10 < F < -.10 were excluded from further GWAS analyses on the 

imputed set (n=23). Another way to detect sample contamination and to check for sample 

switches is to investigate whether the known sex of the individual is in line with the genotypes 

on the X-chromosomes. This check was performed in Houston and led to the exclusion of 

another 33 samples. 

Figure 29. Estimated inbreeding coefficient from Plink, for the 3,266 samples included in the second 

DETECT imputation (y-axis truncated at 50). 

 

Samples that showed genetic relations that were not in line with the expected relationships had already 

for a large part been identified during the quality control steps performed on the fingerprint dataset and 

the GWAS set imputed in February 2011, and were filtered out before imputation. A plot of the 

Mendelian errors per individual for the remaining 3,266 samples is shown in Figure 30. As the total 

number of possible Mendelian errors depends on the number of SNPs genotyped and the number of 

family relations observed for an individual, these numbers cannot be readily interpreted, but none of 
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the samples showed an Mendelian error rate > 2%, and therefore no samples were excluded based on 

this criterion. 

Figure 30. Number of Mendelian errors per individual, for the 3,266 samples included in the second 

DETECT imputation 

 

An estimate of the Identity by Descent (IBD) for each possible pair of individuals in the dataset 

was derived in Plink using the option --genome. A pruned set of SNPs with MAF > 0.1 was 

selected from the cleaned genotyped SNP set (window size=50, number of SNPs to shift after 

each step=5, variance inflation factor (VIF)=2). In Figure 31, the estimated proportion IBD (PI-

HAT) is plotted for the 4 groups of relationships: unrelated individuals (expected PI-HAT 0), full 

siblings (expected PI-HAT around 0.5), parent-offspring pairs (expectation PI-HAT exactly 0.5), 

and parent-parent pairs (expected PI-HAT 0). In Figure 32, the estimated proportion IBD 0 is 

plotted against the estimated proportion IBD 1 for each pair of individuals. The expected 

proportions IBD 0 – IBD 1 – IBD 2 for several types of family relations are shown in Table 11. 
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Table 11. Expected proportions IBD 0, IBD 1 and IBD 2 for several type of family relationships. 

Relationship IBD 0 IBD 1 IBD 2 
Monozygotic twins 0 0 1 
Dizygotic twins / full siblings .25 5 .25 
Parent-offspring 0 .5 0 
Avuncular .5 .5 0 
First Cousins .75 .25 0 
Unrelated 1 0 0 
 

Figure 31. Estimated proportion IBD (PI-HAT) for all possible pairs of individuals in the 

DETECT set, separately for groups expected to be unrelated, full sibling, parent-offspring or 

parent-parent pairs. 
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Figure 32. Estimated proportion IBD 0 against the estimated proportion IBD 1 for all possible 

pairs of individuals in the DETECT set. 

 

A can be seen in the figures, the vast majority of observed relationships was in line with the 

expectation, but there were some family relationships among individuals thought to be unrelated. 

These relationships were all checked to see whether the observed relations occurred consistently 

across all possible family members and whether they were in line with questionnaire 

information. The family relationships that were judged to be genuine were incorporated in the 

family structure. For four individuals, the relationships were judged to be improbable and they 

were excluded from subsequent GWAS analyses. It is interesting to note that the observed 

relationships for unrelated individuals quite often show a deviation from the expected value of 

zero. For some pairs these might be genuine, but for the vast majority, these are due to samples 

with a high heterozygosity, making them appear as genetically similar to all other samples, 

especially those that also have a higher heterozygosity due to e.g. sample contamination. 
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Samples were only excluded based on their inbreeding coefficients, not on the above zero 

relationships with unrelated individuals shown here. 

Finally, the quality of the imputation procedure was investigated by repeating the checks for 

frequency, HWE and Mendelian error rate on the best-guess genotypes in the imputed set. As 

can be seen in Figure 33-35, the imputation was successful, as, in general, there were no large 

deviations of the observed frequencies with the frequencies in the reference set, few SNPs with a 

high number of Mendelian errors and few SNPs with a very small p-value when tested for HWE. 

As most consortia request analyses results for all SNPs after imputation unfiltered for imputation 

quality, these SNPs were kept in the dataset. 

Figure 33. Frequency of imputed SNPs against the frequency of the same SNP and allele in HapMap 

release 24 CEU reference panel. 
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Figure 34. Histogram of the number of Mendelian errors per SNPs for the imputed set (y- axis truncated at 

20,000). 

 

Figure 35. Minus log10 of the p-value of the Hardy-Weinberg equilibrium test for all imputed SNPs. 
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3. MRG4 

Genotyping. In recent years, whole blood and /or buccal DNA samples, were collected for 

various projects done by the NTR and NESDA studies.15-18 These sets have been combined and 

imputed together, as will be described in more detail below. New versions of the total combined 

set have been created over time, when new samples were added or new reference sets became 

available. These merged sets are abbreviated as MRG and numbered consecutively. DETECT 

samples have been included from MRG4 onwards.  

DNA extraction and purification of the total set of samples has been performed at various stages 

in time, following several manufacturer specific protocols in order to obtain the best quality and 

concentration prior to SNP platform genotyping. The genotyping subsequently has been done on 

multiple chip platforms, for several partly overlapping subsets of the total sample collection. 

Chronologically the following platforms have been used Affymetrix Perlegen 5.0 (N=3,840), 

Illumina 370 (N=290), Illumina 660 (N=1,501), Illumina Omni Express 1M (N=445) and 

Affymetrix 6.0 (N=8,770, 4 subsets). After array specific data analysis, genotype calls were 

made with the platform specific software (Genotyper, Beadstudio). 

Pre-imputation QC. Quality control has been done within -, as well as between chip platforms. 

For each platform the individual SNP markers were lifted over to build 37 (HG19) of the Human 

reference genome, using the LiftOver tool (http://genome.ucsc.edu/cgi-bin/hgLiftOver). SNPs 

that were not mapped at all, SNPs that had ambiguous locations, and SNPs that did not have 

matching - or strand opposite alleles were removed. Subsequently, the data were strand aligned 

with the 1000 Genomes phase I Interim release ALL panel of 23 November 2010 (sequence) and 

June 2011 (haplotypes) prepared by J. Marchini & B. Howie for IMPUTEv2.1. SNPs from each 

platform were removed if they still had mismatching alleles with this imputation reference set, if 

the allele frequencies differed more than 0.20 with the reference set, if the MAF was < 1%, if the 

HWE p-value was < 0.00001, if the Mendelian error rate was > 2%, if the double typed error rate 

was > 2% or if the call rate was < 95%. All samples were excluded from the data if their 

expected sex did not match their genotyped sex, if the genotype missing rate was above 10% or 

if the Plink measure of elative heterozygsosity F was either > 0.10 or < -0.10. After these steps 

the data of the individual chips were merged into a single dataset using the Plink 1.07 software.  
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Within the merged set IBD was calculated between all possible individual pairs and compared to 

the expected family structure of the NTR and NESDA studies. Samples were removed if the data 

did not match the expected IBD sharing, or if potentially consistent with biographic data, 

corrections were made to the family structure. DNA samples that were typed on multiple 

platforms were tested if the overlapping SNPs had a concordance rate above 99.0%. In case this 

was not true we removed all data of these samples. On the merged data, the HWE and MAF SNP 

filters were re-applied, as well as the reference allele frequency difference < 0.20 checks. As a 

final prior step to imputation SNPs with C/G and A/T allele combinations were removed if the 

MAF was between 0.35 and 0.50 to avoid wrong strand alignment for these SNPs.  

Imputation. Genome wide SNP imputation was done with the IMPUTE 2.1.2 program for the 

autosomal genome using the above phase I integrated reference panel. A total number of 10,726 

unique samples (from MZ twin pairs 1 person was removed) were imputed in batches of around 

500 individuals for 5 million base blocks, a 250 kb buffer and the NE parameter set to 20,000. 

Monomorphic SNPs present in the 500 individual subsets were removed. To avoid issues having 

SNPs from different platforms partly imputed and partly genotyped we re-imputed all genotyped 

SNPs. After imputation of these SNPs, we generally find a high concordance between re-

imputed SNPs and the original genotype (0.9868), if the SNP info or R2 is above 30%. 

Post imputation QC. After imputation, additional QC included evaluation of the SNP platforms 

effect, the Mendelian error rate in families and filters for HWE, imputation quality and MAF. 

First we tested the effect of having different platforms imputed, and we removed SNPs showing 

platform effects. This was done, defining an individual with a specific platform as a case and the 

remaining individuals as controls. Allelic association was then calculated and SNPs were 

removed if the specific platform allele frequencies were significantly different from the 

remaining platforms with p < 0.00001. Subsequently, HWE was calculated on the SNPTEST 

allele probability counts for the full sample and SNPs were removed if the p-value < 0.000001. 

The Mendelian error rate was calculated on the best guess genotypes in families (trios and sib-

pairs with parents) using first Gtool and then Plink 1.07. SNPs were removed if the Mendelian 

error rate was above 2%. SNPs were subsequently filtered from the dataset if the imputation 

quality R2 < 0.30 (mean is 0.85) and if the MAF in the total sample was less than 0.004. Finally, 

all SNPs were removed that were by then known to show problems in the reference sequence 
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data of the phase I Interim set (159k). As a last step all MZ twins whose zygosity was confirmed 

by DNA testing were again duplicated in the data. To correct for any remaining confounding by 

differences in imputation quality across different platforms, chip dummy covariates were created 

(coded 1 for anyone included on a particular platform and 0 for all others).
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4. MRG5 

In December 2012, additional GWAS samples were available and another effort was made to 

combine all available NTR GWAS data, this set comprised 14,003 individuals (including both 

twins from 1,890 MZ twin pairs). Data were imputed using the 1000 Genomes phase I Integrated 

release ALL panel of 23 November 2010 (sequence) and 14 March 2012 (haplotypes). Cleaning 

steps were roughly the same as for MRG4 described above and are not repeated here. 

5. GoNL imputation 

The same set of individuals that was included in MRG5 was also imputed against the GoNL 

reference set,19 but including only one individual of each MZ twin pair, leading to a total of 

12,113 individuals. 
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VII. Principal Component Analysis 

Several Principal Component Analyses (PCAs) have been performed by Abdel Abdellaoui in order to 

identify systematic frequency differences in the NTR genotype datasets. This is an important step in 

GWA studies because spurious associations can arise when batches or subpopulations differ 

systematically in both their allele frequencies and their phenotype data. These confounding effects can 

be (partly) corrected for by including Principal Components (PCs) as covariates in the analyses. In 

addition, the PCs can be used to identify individuals with non-Dutch / non-European ancestry in order 

to ensure that the GWAS is performed on a homogenous population. A short description of the PCAs 

conducted on the NTR data is included here, for a more detailed description, please see Abdellaoui et 

al., 2013.20 

To identify individuals with non-Dutch, a PCA was run on genotype data of 1,014 unrelated 

individuals included in the 1000 Genomes project, coming from 14 different populations across 5 

continents. SNPs were selected to overlap with the Affymetrix 6.0 platform and excluded 24 

long-range LD regions. These PCs were then projected on the NTR dataset; individuals were 

identified as non-Dutch / non-European when their PC score was higher or lower than all 

European individuals in the 1000 Genomes population. 146 Individuals from the DETECT 

dataset were identified as non-Dutch / non-European and excluded from GWAS analyses. 

Subsequently, a PCA was run on a set of 4,666 unrelated individuals genotyped on the 

Affymetrix 6.0 platform that were of Dutch/European ancestry; this included all DETECT 

samples, as far as they were unrelated. A pruned SNP set was used excluding 24 long-range LD 

regions. The first PC from this analysis seemed to reflect a batch effect, caused by a somewhat 

lower quality of some of the buccal-derived samples. Excluding the samples that were outliers on 

this PC and using the same procedure, PCs were derived that reflected the Dutch population 

substructure. The first PC was highly correlated with a north-south gradient and the second PC 

correlated with an east-west gradient. Finally, a PCA has been ran on the imputed SNPs of 

MRG4 and MRG5 in order to identify bias due to differential imputation across different chips. 

A set of unrelated individuals was selected, and 1 million SNPs were selected at random, 

cleaned, stripped from long-range LD regions and pruned.  
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VIII. dbGaP upload 

As the genotyping of the DETECT samples was funded by the NIMH, it was mandatory that a 

clean set of genotype and phenotype data was uploaded to the database of Genotypes and 

Phenotypes (dbGaP).21 The initial cleaning of the DETECT set led to the exclusion of 60 

samples; when the DETECT set was merged with the other NTR genotype dataset an additional 

68 samples were selected for exclusion, leaving 3,138 samples for upload. This number included 

794 samples of individuals that were part of a monozygotic twin pair (shown by blood or DNA 

tests), so that genotype data were available for 3,932 individuals. The final upload was done 

from the VU University by Gonneke Willemsen.  
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Chapter 8 

 

Summary and General Discussion 
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The aim of this thesis was to identify genetic and environmental risk factors for behavioral 

problems, in particular Attention Problems (AP) and Attention Deficit Hyperactivity Disorder 

(ADHD), and to quantify the contributions of latent and measured genotypes and environmental 

factors to the observed phenotypic variation. Longitudinal information collected by the 

Netherlands Twin Register (NTR) over the past 25 years was used to investigate early predictors 

of AP in childhood. In addition, information from DNA markers available in a subsample of 

participants was combined with the behavioral data in genetic association studies. Alongside this 

work, genome-wide association (GWA) studies for other phenotypes in childhood were 

performed for the EArly Genetics & Lifecourse Epidemiology (EAGLE) and Early Growth 

Genetics (EGG) consortium; these are two large international consortia of population-based 

cohorts that perform genetic association studies on a range of childhood phenotypes, including 

behavioral and somatic traits. Within the EAGLE consortium, I performed a meta-analysis on 

continuous measures of ADHD symptoms. Data from the Psychiatric Genomics Consortium 

(PGC),1 a consortium that focuses on large GWA studies of clinical psychiatric cases and 

controls including childhood ADHD, were used to test whether the association results based on a 

study of clinical ADHD were predictive of AP in the NTR. Below I present a summary of the 

main findings of each chapter included in this thesis; next, I will discuss the results and offer a 

perspective on future research. 

 

Summary 

In chapter two I looked at two early indicators of childhood temperament, i.e. items on “crying 

without a cause” and “being easily upset”. These items were included in a questionnaire sent out 

to parents of 2-year old twins. The heritability of crying without a cause was estimated at 60% in 

boys and girls; the heritability of being easily upset was estimated at 43% in boys and 31% in 

girls. The shared environment explained 35 to 63% of the variance. Exploration of the large 

contribution of the shared environment indicated that it was not accounted for by the influence of 

birth cohort, gestational age, socioeconomic status, parental age, parental smoking behavior and 

alcohol use during pregnancy, or personality characteristics of the mother. The association 

between the two items (polychoric correlation of 0.36) was explained both by genetic and shared 

environmental factors. Importantly, both items were predictive of internalizing problems, 
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externalizing problems and Attention Problems 5 years later, at age seven, with effect sizes 

between 0.28 - 0.42. 

 

Chapter three reports on a study on the effect of birth weight on AP in childhood. In a sample 

of > 29,000 children, a lower birth weight was associated with higher AP scores at age 3, 7, 10 

and 12 years. In monozygotic and dizygotic twins discordant for birth weight, the twin with the 

lower birth weight scored significantly higher on the continuous AP scale. The differences in AP 

scores that were observed within unrelated pairs of children and within monozygotic and 

dizygotic twin pairs were of similar size. This finding strongly supports a causal effect of birth 

weight on AP. Twin pairs concordant for low birth weight but discordant for catch-up growth 

showed similar AP scores; the observed relationship between birth weight and AP was therefore 

unlikely to be explained by catch-up growth in low birth weight children. 

 

Chapter four describes an attempt to replicate a previously reported interaction effect between a 

measured environmental exposure, namely breastfeeding, and measured genetic polymorphisms 

of the fatty acid desaturase 2 (FADS2) gene on IQ. These analyses were extended to include 

overactive behavior at age 3, AP at age 7, 10 and 12, and educational attainment at age 12 as 

outcome variables in addition to IQ. After correction for maternal education, a small effect of 

breastfeeding was observed for educational attainment at age 12, overactive behavior at age 3 

and IQ across age 5-18; the latter effect was only marginally significant (p=0.05). The 

polymorphisms in the FADS2 gene showed no main effect on any of the included phenotypes; 

neither did they moderate the effect of breastfeeding. 

 

Chapter five reports on an analysis in which AP in children who take part in NTR research 

projects were predicted based on polygenic risk scores for ADHD from an independent 

discovery sample. The results of the most recent ADHD meta-analysis on 5,621 clinical ADHD 

cases and 13,589 controls, which was carried out by the PGC, were used to calculate polygenic 

risk scores in Dutch twins and predict their continuous AP scores. Polygenic scores were 

obtained by multiplying the number of observed effect alleles by the effect size found in the 

meta-analysis, summed over all loci (a locus refers to a location on the genome where a Single 

Nucleotide Polymorphism (SNP) was assessed). In the population based NTR sample, the 
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ADHD polygenic risk scores were predictive of preschool and school-age maternal ratings and 

school-age teacher ratings of AP.  

 

Chapter six includes the first report of a GWA meta-analysis of continuous measures of AP and 

ADHD symptoms that was conducted within the EAGLE consortium. Results of nine 

population-based cohorts were included leading to a total sample size of 17,560 children with 

genotype data imputed against the 1000 Genomes reference set. The Manhattan plot showed 

promising signals, but as expected with this sample size, no genome-wide significant findings 

were found at the stringent p-value threshold of 5E-8. The tests of individual genetic variants 

were supplemented with gene-based tests and pathway analyses, but no signals were significant 

at a false discovery rate of 5%. 

 

Chapter seven documents the results of several more GWA studies of behavioral and somatic 

phenotypes that were run for the EAGLE and EGG consortia, including atopic dermatitis, 

childhood and pubertal height, body mass index (BMI) in childhood, pubertal staging and motor 

development. The NTR results have been uploaded for meta-analysis, together with the results 

from other childhood cohorts from Australia, Finland, the UK, Germany and other Dutch cohorts 

like Generation R. Genome-wide significant findings have already been published for eczema 

and pubertal height growth, and reported from preliminary meta-analyses of pubertal staging and 

BMI in childhood.2, 3 This chapter contains a detailed description of the genotyping, data 

cleaning and imputation procedures that preceded the genetic association analyses. 
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Discussion 

Although the identification of genetic risk factors for psychiatric disorders turns out to be much 

more involved that initially anticipated, one could argue that an even bigger challenge is to 

identify the environmental risk factors for psychiatric disorders in children and adults. One 

design that lends itself for the ‘environmental enterprise’ is the cotwin control design, which 

controls for a wide range of confounding factors, thereby eliminating important non-causal 

explanations for observed associations between environmental exposure and outcome measures 

such as AP and ADHD. The confounding factors that are controlled for in this design include 

genetic factors, and environmental factors shared by twins like smoking during pregnancy and 

gestational age. The NTR data confirmed the association between low birth weight and AP, a 

finding that was also reported in two previous studies of twins discordant for birth weight. 

Together, these studies provide strong evidence for a causal relationship between birth weight 

and ADHD symptoms and underscore the importance of intervention programs that aim to 

prevent low birth weight.4, 5 Moreover, they indicate that a close survey of these children at 

school age may be advisable; AP is negatively correlated with executive functioning, IQ and 

educational attainment in childhood and there is evidence that low birth weight children with 

learning disabilities are often not receiving the special academic assistance they need.6, 7  

 

A low birth weight is one of the first measureable phenotypes in children. NTR characterizes the 

early development and environment of twins and multiples by asking mothers about early 

temperament and breastfeeding. Breastfeeding has been suggested to be beneficial for cognitive 

development; I looked at the association between breastfeeding on the one hand and IQ, 

educational attainment and overactive behavior at age 3 on the other hand. In these types of 

association analyses, maternal IQ and education can confound the association between 

breastfeeding and these outcomes, as mothers with a higher education are more likely to 

breastfeed their offspring.8, 9 Given the high concordance of breastfeeding within twin pairs, it 

was not possible to apply the cotwin control design to the association of breastfeeding and 

cognition, but we controlled for maternal education in these analyses, as this information is 

collected in NTR surveys. The results presented in chapter three and four thus underscore both 

the importance and difficulty to address issues of confounding.  
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"No aspect of human behavior genetics has caused more confusion and generated more 

obscurantism than the analysis and interpretation of the various types of non-additivity and non-

independence of gene and environmental action and interaction..." (Eaves et al., 1977).10 This 

statement seems as true today as when it was written. I looked at a previously reported gene-

environment interaction (GxE) effect between breastfeeding and variants in the FADS2 gene on 

IQ and did not find evidence for this specific gene-environment interaction; an Australian group 

earlier reported another non-replication.11 The only other replication effort performed before 

found a significant interaction, but in the opposite direction as found in the initial study.12 These 

results are representative of the literature on candidate gene association and candidate GxE 

studies, as the field has been plagued by an inability to detect replicable results. This 

phenomenon may be due to difficulties to select appropriate candidate genes based on currently 

limited biological knowledge, and the small effects of individual genetic variants that we have 

now learned from GWA studies. In the context of small effects, small sample sizes and a 

publication bias towards positive results; false-positive findings are likely to occur.13 This issue 

is further complicated by the fact that interaction effects can be mere statistical phenomena, 

depending fully on the chosen model and scale of measurement, or anomalies in the data 

distribution; in these cases non-replication can be due to subtle differences in methodology and 

data distributions.14-16 In a critical review of candidate gene GxE findings in psychiatry,17 many 

more novel GxE studies than replication attempts turned out to be statistically significant, 

suggesting that GxE hypotheses appear more robust than they actually are. Given the progress in 

gene-findings studies since the advance of genome-wide methods, these hypothesis-free 

approaches should also be applied in GxE research. Finally, another explanation for the lack of 

robust findings in the gene-environment literature that needs to be considered here, is that gene-

environment interactions explain little of the variation in psychopathology. This might not be a 

fashionable view, but given the fact that little empirical data support the importance of gene-

environment interactions so far, this is a possibility one needs to consider seriously. 

 

This thesis includes the first large-scale genome-wide association (GWA) study on continuous 

measures of Attention Problems and ADHD symptoms based on data in 17,560 children from 

nine population-based cohorts from the Netherlands, Germany, the UK, Australia, Spain and 
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Norway. Although this is a large sample size in absolute terms, it is still modest if we compare it 

to sample sizes of other consortia such as GIANT (the Genetic Investigation of ANthropometric 

Traits), MAGIC (the Meta-Analyses of Glucose and Insulin-related traits Consortium) and 

SSGAC (Social Science Genetic Association Consortium) which meta-analyze data in up to 

250,000 participants. I carried out a power analysis for AP/ADHD, assuming a normal 

distribution of the phenotype and no phenotypic heterogeneity. Results showed that we had 80% 

power to detect a genetic variant that explained 0.23% of the variation (estimated with the 

Genetic Power Calculator).18 As we did not detect genetic variants at genome-wide significant 

levels, it must be assumed that effect sizes are even smaller. The power in our analysis is 

comparable to the latest PGC meta-analysis of childhood ADHD that included 5,621 clinical 

ADHD cases and 13,589 controls, and also did not detect genome-wide significant variants.19 

For ADHD, and for other psychiatric phenotypes such as adult major depressive disorder 

(MDD), it has proven difficult to detect genetic variants in GWA studies. The latest PGC GWA 

study on major depression found no genome-wide significant hits when including 17,929 cases 

and 34,693 controls.20 This is in contrast to the successes that have been reported for 

schizophrenia in particular, but also bipolar disorder. 108 Loci have been reported in the latest 

PGC analysis on schizophrenia that included 35,476 cases and 46,839 controls.21 For bipolar 

disorder, 8 genome-wide significant hits were reported in a GWA that included 13,741 cases and 

19,762 controls.22 These successes were achieved in samples with much larger statistical power 

than available for ADHD and MDD; it should be kept in mind that the statistical power depends 

not only on the sample size, but also on the proportion of cases and the prevalence of the 

disorder.23 As the prevalence of schizophrenia and bipolar disorder is much lower than for MDD 

and ADHD, cases represent a more extreme phenotype, which enhances statistical power 

substantially. Sample sizes for pediatric samples are generally smaller, and genome-wide studies 

of SNPs have so far not led to genome-wide significant variants in studies of autism, ADHD, and 

internalizing behaviors,19, 24-26 although for e.g. autism findings of the involvement of copy 

number variants (CNVs) and rare variants have been reported. Similarly, for AP and ADHD, 

involvement of rare CNVs has been observed.27, 28 

 

When analyzing genetic variants that are relatively common, such as SNPs, it is of importance to 

establish that these genetic variants contribute to variance in ADHD symptoms. This can be done 
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by using several different methods, including so called chip-based heritability and polygenic risk 

score analyses. These chip-based heritability analyses employ methods for the estimation of 

narrow-sense heritability that use measured genome-wide genetic variants in large groups of 

unrelated subjects, rather than employing the theoretical values of genetic resemblance in 

relatives. There are two chip-based heritability approaches that differ substantially, with one 

approach resembling the variance decomposition methods as used in twin studies,29, 30 and the 

other based on density estimation (DE) methods.31 The first method requires raw genotype data 

and uses these to obtain a measure of genetic similarity between all possible pairs of unrelated 

individuals in the study. In a second step, this genetic relatedness matrix (GRM) is used to 

predict the phenotype similarity between individuals. The DE method can be applied after a 

genome-wide association study has been done. Here, the distribution of z-statistics from a 

GWAS is compared to the theoretical Null distribution of z-statistics representing no effects. 

Two studies that used the GRM method to assess the chip-based heritability of ADHD and 

ADHD symptoms in childhood found contradicting results. Whereas the PGC estimated a chip-

based heritability of 28% for the liability to ADHD, a study of self, parent and teacher ratings of 

ADHD symptoms as measured with the SDQ and Conners’ rating scale in the Twins Early 

Development Study (TEDS) found chip-based heritability estimates close to zero.32, 33 There is 

no obvious explanation for this discrepancy, especially in light of the fact that I found that 

polygenic risk scores based on the PGC ADHD meta-analysis predict AP scores in a population 

based cohort such as TEDS is as well. It also is important to note that the study from TEDS 

included a wide range of psychopathology ratings, all with estimates close to zero, in 

contradiction with other studies that found chip-based heritability estimates of 13-43% for 

internalizing problems and 18% for social communication traits.25, 34 

 

The second approach to test for the relevance of common SNPs makes use of the effect sizes 

obtained in GWA studies to calculate genetic risk scores based on measured genotypic 

information in an independent set of individuals. These polygenic scores can then be tested for 

their ability to predict the phenotype studied in the GWA; if the prediction is significant, this 

indicates that the effect estimates from the GWA in aggregate contain a relevant signal for the 

disease or trait. With regard to ADHD, ADHD polygenic risk scores have been shown to be 

predictive of ADHD case status, and, as described in chapter five of this thesis, of measures of 
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Attention Problems in a population-based samples.35, 36 The latter hints to the possibility to use 

polygenic scores to test for the genetic overlap across traits, in which polygenic risk scores based 

on one trait are used to predict the other trait in an independent sample. Such a cross-trait 

analysis is also possible with the GRM method, as it allows for the estimation of a chip-based co-

heritability of two traits. Thereby, these methods contribute to the exciting shift from the analysis 

of single traits to cross-disorder studies. The PGC group, for example, has performed a GWA of 

33,332 cases of five psychiatric disorders (autism spectrum disorder, attention deficit 

hyperactivity disorder, bipolar disorder, major depressive disorder, and schizophrenia) and 

27,888 controls and detected four loci that contribute to variation across these disorders.37 

Moreover, using both polygenic risk score and chip-based co-heritability methods, they found 

convincing evidence for a genetic overlap across several psychiatric disorders, most 

convincingly bipolar disorder and schizophrenia.32, 37 These studies thus show that even when 

individual genetic variants confer only small relative risks, analyses that consider all risk variants 

together can contribute to an enhanced understanding of the etiology of psychiatric traits. In 

addition, they can be used to investigate the heterogeneity of psychiatric disorders and the 

genetic associations with endophenotypes, such as cognitive functioning. 

 

Before discussing how research on AP and ADHD should proceed, I will also discuss the 

findings of this thesis in the light of the ongoing debate, both in the literature and in the popular 

media, on the validity of ADHD as a clinical psychiatric disorder. Opponents claim that ADHD 

is a social construct leading to unnecessary medicalization of difficult children. They argue that 

there is no clear physical cause of ADHD and that the steep increase in ADHD diagnoses and 

stimulant use over time imply an important influence of social factors. Others defend the ADHD 

concept by pointing out that the observed behavior constitutes an impairment to the child and is 

associated with long-term negative consequences.38 Although large heritability estimates and 

reported genetic associations are sometimes taken as evidence for the reality of ADHD as a 

disorder, it is important to note that the question whether ADHD is a ‘real’ medical condition or 

a social construct cannot be answered by only looking at genetic effects. Many so-called social 

constructs such as education or socioeconomic status turn out to be influenced by genes, while 

some somatic diseases such as lung cancers clearly have a huge non-genetic component to 

explain their etiology. 
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Yet, genetic analyses are of importance to aid our understanding of ADHD. The polygenic risk 

score analysis described in chapter five indicates that the genetic liability for ADHD is 

continuously distributed. This implies that the clinical cutoff applied in clinical practice is in 

essence arbitrary; one’s score on the ADHD scale can be more or less extreme, with the 

subsequent impairment also partly depending on the context in which you are functioning. This 

idea is further supported by the fact that in the NTR the number of reported AP and ADHD 

symptoms has stayed constant over the last two decades, while the number of ADHD diagnoses 

and stimulant prescriptions has seen a steep increase in this period, as indeed also reported by 

parents of NTR twins, thereby signifying that which score on the continuous scale is considered 

impairing is partly influenced by social factors. Moreover, it is of interest to note that children in 

the youngest one third of a class have a 50% increased risk of being prescribed stimulant 

medication when compared to the oldest one third. This is probably due to the fact that the same 

behavior is considered more impairing when children are surrounded by somewhat older children 

that have matured to higher levels of self-control.39 

 

The notion that children with a certain level of ADHD symptoms are now more often considered 

clinical cases than before, does not answer the question whether this is because the clinical 

disorder is now recognized more often, or whether the increase is due to misclassification, or 

whether the number of symptoms stayed the same while the environment of the child became 

less tolerant of the behaviors. In the end, questions on the validity of the ADHD diagnosis can 

only be answered by a careful reflection on the nature of psychiatric disorders, the borders 

between psychiatry and normality and the difference between treatment and enhancement; a 

clear-cut answer cannot be provided. Given the earlier mentioned negative long-term 

consequences and impairment associated with extreme scores in current society, there is no 

reason to put ADHD aside as a nonsense diagnosis; the impairment is a reality that needs to be 

reacted upon. Yet, the understanding of ADHD as the extreme end of a continuous distribution 

can hopefully help to lessen stigmatization and to keep an open view on the possibilities of 

treatment for individuals at threshold and subthreshold levels of the disorder. 

 

Future prospects  
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If we accept that there is convincing evidence for the implication of genetic variants in the 

etiology of psychiatric traits and ADHD, it is clear that GWA studies will continue to play an 

important role in genetic studies of ADHD in the near future. Such studies will enlighten us 

about the genetic architecture of traits and will, maybe paradoxically, also aid research on 

environmental factors by enabling methods that go beyond establishing an association between 

the environment and a trait, to explain the underlying cause of the association. 

 

An important question is how GWA studies should move forward in order to find replicable 

associations. Clearly, increasing sample sizes is of major importance for success; current efforts 

to collect GWA data in larger sets of ADHD cases are thus worthwhile. Several issues need to be 

considered when one aims to increase sample sizes for GWA studies. It is for example, of 

importance to look at the implications of the organizational structure of GWA consortia. Two 

different strategies are currently followed; the PGC is the most prominent example of a 

consortium that requires all participating cohorts to upload their individual-level genotype and 

phenotype data to a common server. The main advantage of this approach is that quality control, 

imputation and analyses can be performed on the total dataset, enhancing uniformity across 

cohorts. Once the data have been uploaded, the speed of the project is dependent on the 

consortium analysts only; in general, this will speed up the process. Moreover, this approach 

allows for more complex analyses for which individual level data are required, such as the GRM 

chip-based heritability estimates. A clear downside of this approach is that the requirement of 

individual level data sharing hampers the number of cohorts that are able or willing to 

participate. Sharing of individual level data comes with many ethical and legal issues, so that 

some cohorts will not be able to contribute. Moreover, it is not easy to find a balanced system to 

distribute academic credit over the contributors; once data have been uploaded, contributing 

cohorts are in a somewhat difficult position to negotiate. To bypass these problems, other 

consortia only require the sharing of GWA summary statistics, an approach that is taken in for 

example ENIGMA, MAGIC and GIANT and also in the EAGLE and EGG consortia. To be 

effective, it is essential that there is a clear and comprehensive analysis plan and that cohorts are 

able to provide high quality results within a reasonable time frame. In practice, this strategy has 

proven to work well, both in the EAGLE and EGG consortia as in other consortia of even larger 
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scale, such as the SSGAC that recently included 126,559 individuals from 54 cohorts in a report 

on three genome-wide significant SNPs for educational attainment.40 

 

Another important issue when it comes to increasing sample size is the issue of phenotype 

definition. For studies focusing on gene finding rather than precise effect estimation, a cost-

effective approach may be to collect large samples with less in-depth, but easier to obtain 

phenotypic information than extensive clinical assessments; this type of phenotype measure is 

often collected in large twin registers. The disadvantage of survey measures may be compensated 

by the increase in sample size and availability of longitudinal phenotype information; using this 

information may be a promising approach for future projects. Another option is the use of 

electronic medical records and information on medication use as a proxy for case status, or the 

use of single questionnaire items that ask a participant whether he has ever been diagnosed with 

a particular disease. The latter can be a fruitful approach, as shown by the GWA on atopic 

dermatitis reported in chapter seven, and studies that successfully replicated known genetic 

associations with self-reported health data.3, 41 However, it should be noted that the use of a 

single item phenotype definition will probably be more challenging for diseases with a low 

prevalence, such as for ADHD (the prevalence of ADHD is around 5%, whereas eczema has a 

prevalence around 15-30% in childhood).42 In these cases, the collection of behavior 

questionnaires that assess the full range of behaviors in the population remains an attractive 

alternative, as was done in the GWA meta-analysis on continuous measures of ADHD symptoms 

described in chapter six. These population-based cohorts have further advantages in terms of 

cost-effectiveness, as they generally assess a wide range of phenotypes, instead of being focused 

on one particular disease only. Another worthwhile option is to perform a meta-analysis in which 

data from clinical case-control and population-based cohorts are analyzed together. Although the 

heterogeneity in phenotypic assessment will lead to a decrease in statistical power, this effect 

could very well be outweighed by the increase in sample size. With regard to ADHD, it will be 

worthwhile to start with a combined meta-analysis of the PGC and EAGLE data. As an extension 

of such a cross-consortium meta-analysis, the inclusion of adult data could be considered, as 

behavior genetic studies have found a considerable overlap of genetic variants for ADHD 

symptoms across the life span.43  
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Obviously, this approach is only fruitful if the genetic variants for a clinical diagnosis of ADHD 

overlap to a sufficient extent with genetic variants that influence ADHD symptoms in the general 

population. In line with previous behavior genetic studies based on twin data, our polygenic risk 

score analysis indicated a significant genetic overlap between the genetic variants detected by 

GWA of clinical ADHD cases and continuous measures of ADHD as measured with the CBCL 

AP scale in the NTR in childhood.44, 45 As a follow-up on this analysis, I tested for the overlap 

between the GWA meta-analysis results of PGC and EAGLE; the latter included a considerably 

larger number of children and a wider variety of measures of ADHD symptoms in terms of 

measurement instrument, age and rater. Selecting independent top SNPs from the PGC analyses 

after appropriate quality control, the top hits of PGC did not show significant overall inflation of 

p-values in EAGLE (as indicated by the inflation factor lambda). However, the direction of 

effect was significantly more consistent across the consortia than expected by chance, as 

indicated by a sign-test (see Table 1), with a stronger level of significance at less stringent p-

value thresholds of inclusion. This consistency of effect direction at more liberal p-value 

thresholds shows that there is a relevant genetic signal in the PGC ADHD mega-analysis that 

overlaps with the genetic signal in the EAGLE meta-analysis of ADHD symptoms, providing 

support for the above-mentioned possibility to perform a cross-consortium meta-analysis of PGC 

and EAGLE. At the same time, the most significant top hits from PGC (p-value < 1E-5) showed a 

similar direction of effect in the EAGLE meta-analysis in only 50% of the cases; this again 

underscores the difficulty to identify individual genetic variants for ADHD with current sample 

sizes. It will therefore be worthwhile to not focus too extensively on the top hits, but instead 

search for replication for a longer list of variants, thereby incorporating also biological 

information in the process of prioritizing variants for follow-up analyses. 
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Table 1. Overall inflation and consistency of direction of effect in the EAGLE ADHD symptoms 

meta-analysis for the independent top SNPs from the PGC ADHD case-control mega-analysis. 

SNP set, p-value threshold 

PGC results 

n SNPs Lambda empirical p-

value 

Sign-test 

(same/different 

direction) 

p-value 

sign-test 

1E-5 12 1.813 0.1555 6/6 1 

1E-4 75 0.808 0.7808 45/30 0.1053 

1E-3 600 0.965 0.6621 322/278 0.7909 

1E-2 4,563 0.992 0.6526 2,409/2,150 1.3E-4 

1E-1 32,623 1.021 0.0766 17,045/15,562 2.2E-16 

1 168,871 1.005 NA 85,735/82,747 3.4E-13 

 

Different methods have been developed to analyze the genetic architecture of traits and their 

chip-based heritability. These methods have not yet been extensively tested for their robustness 

against violations of assumptions. Moreover, the effects of specific thresholds applied in quality 

control steps are often unknown. It is currently, for example, unclear how quality control 

filtering affects the estimates of explained variance from the GRM and DE methods, and the 

outcomes of polygenic risk score analyses. This includes filtering on MAF, imputation quality 

and HWE, but also correction for patterns of linkage disequilibrium. The latter is an important 

practical issue, obtaining a set of independent variants is essential for e.g. the DE method, and 

may be of importance for polygenic risk score analyses; but both the appropriate methods and 

cutoffs are yet to be agreed on. In studies that apply polygenic risk score analyses, results are 

often reported for both pruned and un-pruned datasets, but whenever results are dissimilar, it is 

hard to judge which result is more appropriate. For the GRM method, several options have been 

proposed to correct for LD, but it remains to be established which method performs best under 

which scenario.46, 47  

With regard to GWA studies, outstanding issues include variability in QC thresholds both at the 

individual cohort and meta-analysis level, the appropriate cutoff for genome-wide significance 

when analyzing 1000 Genomes imputed datasets and the use of fixed versus random effect 

models. Obviously, this situation is a consequence of the pace of development in the field, and is 

as such inescapable. Nevertheless, studies that look further into these issues are timely and 
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needed. Where discrepancies have been found such as for the above mentioned differences in 

chip based heritability estimates of ADHD and ADHD symptom scores, these studies may help 

to elucidate whether these differences can be attributed to methodological differences. The last 

year has seen a positive development in this regard. Papers by Dudbridge et al. and Lee et al. on 

polygenic risk score analyses provided a helpful examination of the behavior of these tests under 

different scenarios, although they do not address the issue of pruning.48, 49 With regard to the 

GRM method, a recent paper has tested the effects of violations of five main assumptions.47 

More of these methodological issues will likely consolidate in the near future, increasing the 

validity and consistency in application of these methods. 

 

In the meanwhile, research on environmental risk factors should also proceed. Several methods 

have been suggested to test for causality of associations with environmental risk factors, 

including randomized controlled trials, statistical control for measured confounding factors, twin 

and family designs and Mendelian randomization.50 While each method has its own limitations, 

together these methods can provide convincing support for causal effects of established risk 

factors. So far, they have been applied somewhat sparsely to environmental risk factors for 

ADHD. In addition to the two studies, I have performed, two other studies, one applying a 

discordant sibling design and another employing an assisted reproduction designs of mothers that 

are genetically unrelated to their child, suggest that the relationship between smoking during 

pregnancy with ADHD is at least partly due to confounding by genetic and other familial 

factors.51, 52 A sibling study found that the association between low income during early 

childhood and ADHD remained after control for familial factors.53 Further use of these methods 

can hopefully contribute to the clarification of the role of the environment in ADHD and identify 

genuine risk factors. 

 

The lack of significant findings in GWA studies is sometimes attributed to the hypothesized 

contribution of gene-environment or gene-gene interactions to the phenotypic variation. 

However, given the above-mentioned lack of empirical evidence for the contribution of gene-

environment interaction to psychopathology, the initial focus of current studies should be on the 

identification of robust genetic associations. Subsequently, gene-environment or gene-gene 

interactions can be investigated. Given the growing number of established associations and the 
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clear predictive value of polygenic scores, studies that combine GWA data with measured 

environmental factors are a clear way forward to the field.54, 55 One example of such a study is 

provided in chapter seven, where we contributed to a genome-wide study on the interaction of 

smoking during pregnancy and genetic variants on birth weight. A similar argument can be made 

for studies on gene-gene interactions. Although the number of possible interactions is extremely 

large and the power for interaction studies is generally lower than for main effects, the multiple 

testing burden can be reduced substantially by including only interactions between known loci, a 

strategy that was used in the EAGLE GWA on atopic dermatitis, reported in chapter seven. 

 

It is not expected that genetic variants will be suitable for risk prediction and prevention in the 

near future.56 However, there have already been examples of pharmacological agents based on 

genetic findings.57 Such examples show that the identification of genetic variants can be very 

valuable, even when they do not explain all heritability. In the end, the hope of many who work 

in psychiatric genetics may thus prove grounded; that psychiatric genetic studies can make an 

important contribution to the improvement of mental health. 
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