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Abstract
There is ongoing debate whether the efficiency of local cognitive processes leads to global cognitive ability or whether global ability feeds

the efficiency of basic processes. A prominent example is the well-replicated association between inspection time (IT), a measure of

perceptual discrimination speed, and intelligence (IQ), where it is not known whether increased speed is a cause or consequence of high IQ.

We investigated the direction of causation between ITand IQ in 2012 genetically related subjects from Australia and The Netherlands. Models

in which the reliable variance of each observed variable was specified as a latent trait showed IT correlations of �0.44 and �0.33 with

respective Performance and Verbal IQ; heritabilities were 57% (IT), 83% (PIQ) and 77% (VIQ). Directional causation models provided poor

fits to the data, with covariation best explained by pleiotropic genes (influencing variation in both IT and IQ). This finding of a common

genetic factor provides a better target for identifying genes involved in cognition than genes which are unique to specific traits.

# 2005 Elsevier B.V. All rights reserved.
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Psychophysical approaches to the study of individual

differences in intelligence (IQ) have spawned an era of

debate on the causality between lower-level and higher-level

cognitive processes, with reductionists upholding the view

that complex cognition is driven by basic cognitive

components (Brody, 2001; Jensen, 1998). But, as Deary

(2001) reminds us ‘‘It is necessary to prove rather than

assume that a cognitive variable is causal to intelligence

differences, and it is necessary to test the reverse hypothesis

and the possibility that some other variable or variables is

causal to both’’ (p. 168). In this study, the use of genetically

informative data enables the unique specification of these

alternative models so that their likelihood can be evaluated.

We apply this genetic modeling to the association between a

basic cognitive process, inspection time, and IQ.
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The inspection time (IT) task provides an index of

sensory discrimination speed, usually requiring participants

to distinguish between two vertical lines that vary

noticeably in length. The shortest duration of the stimulus

display necessary to make a correct decision at a desired

level of accuracy (e.g., 85%) is the IT estimate. A quarter

century ago, IT was shown to correlate with IQ; as

perceptual speed increases, performance on complex

cognitive tasks improves. The most recent meta-analysis

of 92 studies (N = 4197) reported an uncorrected correlation

of �0.30 and a corrected (for sampling error, error of

measurement, restriction of IQ range) correlation of �0.51

(Grudnik and Kranzler, 2001). The association between IT

and IQ is generally independent of the type of visual

stimulus used in the task (Alexander and Mackenzie, 1992;

Longstreth et al., 1986), is consistent across age (Anderson,

1986; Nettelbeck and Rabbitt, 1992; Nettelbeck, 1989), and

invariant across visual and auditory modalities (Deary et al.,

1989).
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Reductionists have appealed to the notion that IT reflects

some fundamental property of the brain, such as neuronal

transmission speed, which directly affects information

processing speed which in turn influences complex

cognition through an intermediate cognitive process such

as working memory (Jensen, 1993). Critics of the bottom-up

processing view suggest that more intelligent individuals are

better able to optimize their information processes, employ

cognitive strategies, or attend to a repetitive task, thus

improving their ITs (Mackintosh, 1986). Some research on

cognitive strategies and motivational effects has been

undertaken. The most commonly reported strategy is the

use of apparent motion cues (i.e., a flicker radiating from the

bottom of the shorter line on appearance of the mask), but

while cue users were found to have shorter ITs than non-cue

users, they did not have accompanying higher IQs (Egan,

1994). Motivational influences have been studied by Bates

and Eysenck (1993) and Stough (1996) who demonstrated

that personality factors, suggestive of a motivational

temperament, did not mediate the IT–IQ relationship.

Bottom-up theorists have also relied on developmental

research to advocate their view. For instance, they cite the

correlation between infant habituation (i.e., the rate at which

an internal representation of a stimulus is formed) and

childhood IQ as support for their argument that IT

determines IQ, claiming that IT precedes the formation of

IQ (Bornstein and Sigman, 1986; Fagan, 1984; Fagan and

McGrath, 1981). However, this is not an explicit test of IT as

infant habituation is only a proxy for IT. One of the best

longitudinal designs to determine direction of causation is

the cross-lagged panel design. Using this methodology,

Nettelbeck and Young (1990) repeated the measurement of

IT and IQ in children after 1 year; finding no differences in

the cross-lagged correlations, they concluded that a third

factor, akin to general ability, influenced both IT and IQ.

Conversely, another longitudinal study in children showed

that the first assessment of auditory IT predicted subsequent

IQ test scores attained 2 years later, rather than the reverse

(Deary, 1995).

An alternative method to establish direction of causation

is to use data from genetically related individuals such as

monozygotic (MZ; genetically identical) and dizygotic

(fraternal) twins (DZ; sharing roughly half of their genes).

When two correlated traits display relatively different

sources of variation, e.g., variation in one trait is mainly

genetic and in the second trait mainly non-genetic, it is

possible to resolve the direction of causation between them

(Heath et al., 1993). For example, if Trait A is mostly

influenced by genes, whereas Trait B is mostly influenced by

the common environment, then the direction of causation

from A to B predicts the cross-covariance between Twin 1

Trait A and Twin 2 Trait B to be predominantly genetic (i.e.,

larger MZ than DZ covariance), whereas if B causes A, the

cross-covariance will be largely environmental. Different

expectations for the co-twin cross-covariances apply as long

as the genetic influence on each variable is sufficiently
different in magnitude and if the sample of twins is

sufficiently large (Duffy and Martin, 1994).

In this paper, we investigate the direction of causation

between IT and IQ by combining the data from studies of

IT and IQ in Australia (Luciano et al., 2001) and The

Netherlands (Posthuma et al., 2001). Data are available on

2012 subjects, which give reasonable statistical power to

address the question of causation.
1. Methods

1.1. Participants

The Australian sample was recruited from the ongoing

Brisbane Memory, Attention and Problem-Solving (MAPS)

twin study (Wright et al., 2001). Thirteen families comprised

twins with two singleton siblings, but only data from one

sibling was included to simplify statistical modeling.

Zygosity was determined by ABO, MN and Rh blood

groups and by nine independent polymorphic DNA markers.

Dutch families were recruited from The Netherlands Twin

Registry to participate in a large ongoing project on the

genetics of cognition and adult brain function (Boomsma,

1998). A maximum of four singleton siblings per family was

imposed to simplify analyses, so the data of five individuals

were excluded. Zygosity was determined by DNA finger-

printing.

Exclusion criteria included: history of significant head

injury, neurological or psychiatric illness, substance

dependence, and long-term medications with central

nervous system effects. Participants reported normal or

corrected-to-normal vision, and this was better than 6/12

Snellen equivalent in the Australian sample whose vision

was checked at the time of testing. Written informed consent

was obtained before testing.

1.2. Sample characteristics

The study is an extended twin family design, i.e., it uses

MZ and DZ twins and one or more of their singleton siblings

(see Posthuma and Boomsma (2000) for a detailed

description of the extended twin design and its statistical

properties). The sample size and family configuration of

participants is shown in Table 1, with the total number of

families equaling 877 and comprising 2012 individuals.

In the Australian sample, twins were mostly in their

penultimate year of secondary school and aged between 15

and 18 years (16.2 � 0.3 years), while siblings were aged

between 15 and 22 years (17.2 � 1.1 years). The Dutch

sample comprised two cohorts based on the age of the twins

(young cohort <36 years; old cohort �36 years): the mean

age of the young cohort was 25.8 (�2.9) years and the mean

age of the old cohort was 49.4 (�6.8) years. There was a

slight overlap in age of the non-twin siblings between the

two cohorts.
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Table 1

Family configuration—number of families (fam) and individuals (ss)—by number of non-twin siblings in family (N ranging 0–4) in the Australian and Dutch

samples according to zygosity and age cohort (young vs. old)

Number of additional non-twin siblings

N = 0 N = 1 N = 2 N = 3 N = 4

fam ss fam ss fam ss fam ss fam ss

Australia

MZ—twin pair + N siblings 208 416 46 138 – – – – – –

DZ—twin pair + N siblings 112 224 38 114 – – – – – –

DZOS—twin pair + N siblings 128 256 29 87 – – – – – –

Total Australia 448 896 113 339 – – – – – –

The Netherlands

Young cohort

MZ—twin pair + N siblings 37 74 22 66 2 8 1 5 – –

MZ—singles + N siblings 1 1 3 6 – – – – – –

DZ—twin pair + N siblings 19 38 24 72 7 28 – – – –

DZ—singles + N siblings 1 1 4 8 1 3 – – – –

DZOS—twin pair + N siblings 11 22 12 36 2 8 1 5 – –

DZOS—singles + N siblings 2 2 4 8 1 3 1 4 – –

No twins – – 2 2 2 4 – – – –

Total Dutch—young 71 138 71 198 15 54 3 14 – –

Old cohort

MZ—twin pair + N siblings 43 86 18 54 6 24 2 10 – –

MZ—singles + N siblings 2 2 3 6 – – – – – –

DZ—twin pair + N siblings 28 56 16 48 1 4 – – – –

DZ—singles + N siblings 4 4 2 4 1 3 – – – –

DZOS—twin pair + N siblings 10 20 10 30 2 8 – – 1 6

DZOS—singles + N siblings 3 3 1 2 – – – – – –

No twins – – 2 2 – – 1 3 – –

Total Dutch—old 90 171 52 146 10 39 3 13 1 6

Total Dutch 161 309 123 344 25 91 6 27 1 6

Total combined 609 1205 236 683 25 91 6 27 1 6

Notes: Australian sample includes 12 incomplete sets of IT and IQ data (no IT for 9 pairs, no IQ for 3 pairs and 3 co-twins). Dutch sample is missing IT data for

37 participants.
1.3. Measures

1.3.1. Inspection time

An identical IT task was administered for both cohorts

(see Luciano et al., 2001). Briefly, it consisted of a line

discrimination task requiring the participant to identify the

longer of two lines differing in length by pressing the

corresponding left or right arrow key on the keyboard (see

Fig. 1a). The stimulus duration was variable, ranging

between 14.2 and 2000 ms. A flash mask, consisting of two
Fig. 1. The inspection time task stimulus (a) is presented briefly, and then

hidden by a mask (b).
vertical lines (37 mm) shaped as lightning bolts (see

Fig. 1b), immediately followed the stimulus and was

presented for a period of 300 ms to limit further stimulus

processing (Evans and Nettelbeck, 1993).

The stimulus duration on each trial was altered using a

parameter estimation by sequential testing procedure, which

allows an efficient estimation from short to long ITs

(Findlay, 1978; Pentland, 1980). To minimize bias from

random responses and lapses in attention, IT was estimated

by fitting post hoc a cumulative normal curve (mean = 0) to

accuracy as a function of stimulus onset asynchrony (SOA).

The statistic of interest is the standard deviation of the curve,

which in this study is the SOA at which 84% accuracy is

achieved. Participants with a high proportion of guesses

could be identified by their poor fit (R2 < 0.95) to the

cumulative normal function. In the Australian sample, 57

participants (4.6%) were excluded on this basis, while none

were excluded from the Dutch sample. Inspection time was

transformed by a logarithmic function in both samples (note

that Posthuma et al. (2001) reported a reciprocal transfor-

mation); outliers were removed from the Australian (2.7% of

sample) and Dutch (1.4%) datasets. As the procedure for
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administering the IT task was the same for both Australian

and Dutch cohorts, the much higher proportion of guessing

and longer ITs observed for the Australian sample may be a

reflection of their younger age and lessened maturity to

conscientiously approach the IT task, which is very sensitive

to lapses in attention or random responding.

1.3.2. Psychometric intelligence

In the Australian sample, a shortened version of the

Multidimensional Aptitude Battery (MAB; Jackson, 1998)

was used which included three verbal subtests (Information,

Arithmetic and Vocabulary) and two performance subtests

(Spatial and Object Assembly). In the Dutch sample, IQ was

measured with the Dutch adaptation of the Wechsler Adult

Intelligence Scale-III (WAIS-III, 1997). The shortened

version included four verbal subtests (Information, Simila-

rities, Vocabulary and Arithmetic) and three performance

subtests (Picture Completion, Block Design and Matrix

Reasoning). While the IQ tests differed between cohorts,

there is good evidence to suggest that the MAB and WAIS-R

(predecessor to the WAIS-III) tap highly related constructs.

The factor structure of the MAB and WAIS-R (excluding the

Digit Span subtest) has been compared statistically, with the

verbal and performance factors demonstrating correlation

coefficients of 0.97 and 0.96, respectively; correlations on

the verbal and performance scaled scores were 0.94 and 0.79

(Jackson, 1984).

As the IQ subtests varied between cohorts and because

Dutch normative data were not available, Verbal and

Performance IQs were calculated as an average percentage

correct across the subtests within each scale. Sex and age

corrections were factored into the genetic modeling through

adjustments to the mean. In the Australian sample, there

were four univariate outliers (three verbal, one perfor-

mance).

1.4. Statistical procedure

1.4.1. Preliminary analyses

Empirical models examined the equality of means and

variances across twin birth order in the Australian sample,

and across zygosity and family member type (twin versus

sibling) within each country cohort. Co-twin correlations

were tested for homogeneity between DZ twin and twin

sibling pairings, and between males and females within MZ

and DZ same-sex groups. Mean sex and age effects were

also tested for significance. Following empirical testing

within countries, IT means and variances, and IT and IQ co-

twin correlations were tested for equality between countries.

Models were estimated by maximum likelihood using the

statistical program, Mx 1.51 (Neale et al., 1999), with

goodness-of-fit assessed by the likelihood ratio chi-square

test (x2). Multivariate outliers (four in the Australian sample,

none in the Dutch) were identified using the mx%P function,

which calculates likelihood statistics for each family

conditional on the model (the z-score is based on the
Mahalanobis distance of the data vectors, i.e., twin/sibling

pairs with scores on IT and IQ), and were excluded from

further analysis.

1.4.2. Genetic model fitting

The expected variance–covariance matrix was parame-

terized in terms of additive genetic (A), common environ-

mental (C) and unique environmental (E) components.

Genetic theory predicts the MZ covariance as A + C, and the

DZ covariance as (1/2)A + C. The covariance between twins

and their non-twin siblings was fixed to that of DZ twins.

Using Mx 1.51, models were fitted to raw data rather than to

variance–covariance matrices since the varying number of

singletons in each family resulted in incomplete data. Means

and variances were modeled according to the best-fitting

empirical models (described earlier). Prior to investigating

directional causation models, the heritabilities of IT and IQ

(Performance, Verbal) and their genetic covariance were

tested for homogeneity between Australian and Dutch

cohorts. This involved modeling the covariance between IT

and IQ (separately for Verbal and Performance IQ) in terms

of a bivariate Cholesky decomposition (see Neale and

Cardon, 1992) and estimating A, C and E parameters for

each country (note that A, C and E parameters have shown to

be equivalent between Dutch young and old cohorts;

Posthuma et al., 2001). A submodel which constrained the

A, C, and E parameters to equal between the cohorts was

assessed by the likelihood ratio chi-square test on nine

degrees of freedom. Acceptable fit of this model then

allowed direction of causation modeling using the combined

Australian and Dutch data.

In the direction of causation (DOC) models, a unidirec-

tional phenotypic pathway was included between IT and IQ,

separately for Performance and Verbal IQ (Duffy and

Martin, 1994; Neale et al., 1994). Each causal model is

nested within the full bivariate Cholesky decomposition of

IT and IQ (Verbal/Performance) enabling model comparison

using the likelihood ratio chi-square test. Measurement error

in the directional causation model will increase estimates of

unique environment and therefore bias all other parameter

estimates since the expectation for the phenotypic covar-

iance between traits includes the multiplication of the causal

parameter by the unique environmental variance in the

causal variable (Heath et al., 1993). To avoid this bias, ITand

IQ were modeled as latent variables with the standardized

pathway leading to the observed variable fixed to the square

root of the test–retest correlation (r) of each respective

measure. Hence, in the DOC model, the causative pathway is

included between the latent IT and IQ factors, which are free

of measurement error (see Fig. 2). Test–retest correlations

had been estimated from a sample of 50 Australian twin

pairs who were retested 3 months after their initial visit and

are as follows: IT, 0.69; Performance IQ, 0.87; Verbal IQ,

0.89 (Luciano et al., 2001). While these estimates were

derived from a subsample of participants, they are consistent

with test–retest reliabilities reported in other studies of IT
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Fig. 2. Path diagrams showing the alternate direction of causation (DOC) models (1 and 2) and the best-fitting genetic model (pleiotropy) for covariation

between (a) IT and Performance IQ (PIQ), and (b) IT and Verbal IQ (VIQ). In the standardized DOC models, the relationship between the observed variables, IT

and IQ, is modeled in terms of each measure’s reliable variance, i.e., the latent IT and IQ factors are constrained to unit variance, while the pathways leading

from the latent factors to the observed variables are fixed to the square root of the test–retest correlation (rIT and rIQ) of each respective measure. Neither DOC

models provided good fit to the data (p-values <0.0001): (a) DOC Model 1, x2 = 55.8 (1 d.f.), DOC Model 2, x2 = 54.5 (1 d.f.); (b) DOC Model 1, x2 = 44.9

(3 d.f.), DOC Model 2, x2 = 29.3 (3 d.f.). Standardized path coefficients are presented for the pleiotropic gene model.
(e.g., Nettelbeck and Rabbitt, 1992) and for the MAB and

WAIS-R (Jackson, 1984; Wechsler, 1981), and therefore

should be generaliseable to the full sample.
2. Results

2.1. Preliminary analyses

Means and variances were generally found to be equal

across twin birth order and zygosity, and between twins and

singletons for all measures. Any significant age and sex

effects were factored into the genetic modeling as fixed

mean effects. As different IQ tests were administered across

countries, a between country comparison of means and

variances is only relevant for IT. Mean adjustments for age
Table 2

Test–retest correlations and phenotypic correlations (r) between inspection time a

presented separately for MZ and DZ groups

r MZ D

Inspection time (IT)a 0.69 0.39

Performance IQ (PIQ) 0.87 0.73

Verbal IQ (VIQ) 0.89 0.81

IT–PIQ �0.34 (�0.44) �0.31 �
IT–VIQ �0.26 (�0.33) �0.31 �
Notes: Estimates in parentheses have been adjusted for test measurement error.

environmental (E) proportions of variance, obtained from the bivariate inspectio
a A, C and E estimates are derived from the bivariate IT–VIQ Cholesky decom
and sex showed the observed Australian raw score mean IT

(71 ms) to be aligned with the Dutch young cohort estimate

(74.13 ms), while the age adjusted mean for the Dutch old

cohort appeared larger, calculated as 78.45 ms.

In both Australian and Dutch (young and old) cohorts,

MZ female and MZ male co-twin correlations were equal

for all variables, and likewise, the DZ same-sex, DZ

opposite-sex, and twin–singleton correlations could be

equated. Furthermore, co-twin correlations within MZ and

DZ groups were homogenous between countries. MZ and

DZ co-twin correlations and cross-trait correlations for the

combined sample are shown in Table 2 and are estimated

from a model in which no adjustment for test measure

unreliability was made. MZ co-twin correlations were

larger than DZ co-twin correlations for all measures and

cross-trait associations, indicative of genetic effects. The
nd IQ are shown; with co-twin correlations and cross-variable correlations

Z A C E

0.19 0.39 (0.57) 0 (0) 0.61 (0.43)

0.36 0.72 (0.83) 0 (0) 0.28 (0.17)

0.47 0.68 (0.77) 0.14 (0.15) 0.18 (0.08)

0.15

0.13

Estimates of additive genetic (A), common environmental (C) and unique

n time–IQ Cholesky decompositions, are also displayed.

position.
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phenotypic intercorrelations between IT and IQ (adjusted

for test–retest reliability) were �0.44 for Performance IQ

and �0.33 for Verbal IQ (unadjusted estimates were �0.34

and �0.26).

2.2. Causal genetic modeling

Bivariate additive genetic (A), common environmental

(C) and unique environmental (E) Cholesky decompositions

between IT and each IQ scale were fitted to Australian

and Dutch data separately and then using the same

parameters. Both analyses showed A, C and E estimates

to be homogenous across countries (IT–Performance IQ,

x2
9 ¼ 1:87, p = 0.99; IT–Verbal IQ, x2

9 ¼ 8:61, p = 0.47).

The parameter estimates (see Fig. 2) show that additive

genetic and unique environmental effects are important for

each measure, while common environmental influences are

substantial for Verbal IQ only. Estimates of heritability and

proportions of environmental variance (non-adjusted and

adjusted for test measurement error) are shown in Table 2.

As the adjusted heritabilities for IQ (0.83 for Performance,

0.77 for Verbal) and IT (0.57) are different, bivariate

direction of causation models between (1) IT and

Performance IQ and (2) IT and Verbal IQ are tested (see

Fig. 2). Their goodness-of-fit is compared to respective AE

and ACE full bivariate models (incorporating test measure-

ment error), in which each DOC model is nested. The results

of each analysis showed that neither DOC model provided

good fit to the data. Since it is conceivable that aspects of IT

may influence IQ and vice versa, a reciprocal causation

model that allowed causative pathways in both directions

was tested. In both analyses, this model also failed to provide

acceptable fit to the data ( p < 0.0001). Thus, the Cholesky

decomposition in each analysis gave the most parsimonious

account of the data (see Fig. 2 for parameter estimates

adjusted for test measurement error). The relationship

between IT and Performance IQ was explained primarily by

genes with some influence from the unique environment,

while for Verbal IQ, the relationship was mediated solely by

genes. Genetic effects were correlated�0.55 between ITand

Performance IQ, and a genetic correlation of �0.49 was

observed between IT and Verbal IQ.
3. Discussion

The direction of causation between IT and IQ has been a

source of debate amongst proponents of opposing bottom-up

and top-down processing theories of cognition (Jensen,

1993, Brody, 2001; Mackintosh, 1986). Whilst bottom-up

theorists argue that IT, as a basic processing skill reflecting

neuronal functioning, influences variation in IQ, top-down

advocates maintain that differences in IT stem from

variation in IQ. Our study indicates that neither of the

direction of causation models (nor one allowing reciprocal

causation effects) sufficiently describe the covariation
between IT and IQ (Performance or Verbal). The Cholesky

decompositions of covariance indicated pleiotropic genetic

influences between IT and IQ, so that the same set of genes

influenced variation in IT (�57%) and IQ (Performance,

25%; Verbal, 19%). These results have been previously

discussed (see Luciano et al., 2001; Posthuma et al., 2001).

In short, there is no causal relationship between IT and IQ;

instead, both processes/abilities are partially dependent on

the same underlying cause, which analysis has shown to be

genetic.

This finding is in line with that of Nettelbeck and Young

(1990), where an equality of cross-lagged panel correlations

between IT and IQ in each predictive direction was found.

The authors appealed to the notion of a common cognitive

ability factor influencing IT and IQ. Within this framework,

IT can be interpreted as simply another measure of general

cognitive ability, similar to IQ subtests. Our study, which

uses an alternative research design to that of Nettelbeck and

Young, therefore confirms that IT neither causes variation in

IQ nor is it a consequence of one’s IQ. Nettelbeck (2001)

suggests that the psychological processes underpinning IT

involve focused attention and decision processes used in

response monitoring. We speculate that these same

processes are required for the successful completion of

IQ subtests irrespective of their informational content, and

hence the generality of effects. The possibility also exists

that IT taps a broad perceptual speed group factor rather than

a general ability factor, both of which have been supported in

factor analytic studies of IT and IQ subtests (Crawford et al.,

1998; Mackintosh, 1998). But a recent genetic analysis of IT,

choice RT and five IQ subtests including Digit Symbol in the

Australian twin dataset used here indicated that most of the

genetic variance in IT was explained by genes influencing

general ability and not the perceptual speed/organization

factor (Luciano et al., 2004).

What is the nature of the individual differences in brain

structure and function underlying both IT and IQ? A single

fMRI study of IT exists to date (Deary et al., 2001), and this

pilot study showed that the patterns of brain activation

during IT task performance were aligned with those reported

for complex cognitive tasks, such as the Raven’s Matrices

and Wisconsin Card Sorting Test. The areas of overlapping

activation between the studies included the cingulate gyrus

of the limbic lobe and the inferior, medial and superior

frontal gyri of the frontal lobes. An imaging study in which

both IT and higher-order cognitive tasks are sampled on the

same individuals is required to confirm these preliminary

findings. Neurotransmitters that have been implicated in IT

via pharmacological studies that systematically manipulate

neurochemical systems include acetylcholine, nicotinic

receptors and muscarinic receptors, while serotonin,

noradrenaline and dopamine have not yet received support

(Stough et al., 2001). Stough et al. (2001) speculate that the

cholinergic system contributes to the observed relationship

between IT and IQ. The cholinergic corticopetal projection

system (projecting from basal forebrain areas to cortical
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areas and layers) has been hypothesized to affect detection,

selection and discrimination of sensory input (Sarter and

Bruno, 1997). Indeed, an association of the cholinergic

muscarinic receptor 2 (CHRM2) to WAIS-R IQ scores and

years of education has been reported by Comings et al.

(2003), whose regression analysis uncovered 1% of over-

lapping variance between genotype and each cognitive

phenotype.

As IT is less cognitively complex than IQ, it may prove

simpler to model biologically, and hence present a more

tractable framework for the selection of other candidate

genes influencing cognitive ability. Part of the common

genetic factor influencing IT and IQ may represent genes

coding for basic structural aspects of neural wiring like

connectivity, myelination, number of ion channels and speed

of synaptic transmission (Jensen, 1998). Posthuma et al.

(2001) suggested that genes related to central nervous

system axonal conduction would be good candidates for

genetic association studies of IT, as factors such as fibre

diameter of the axon, the number and form of ion channels in

the axon membrane, and the quality of the myelin sheath

(generated by the oligodendrocytes) determine the optic

nerve conduction velocity and conduction velocity from

lateral geniculate nucleus neurones to cortical areas. While

other aspects of visual processing are bound to affect the

variation of IT, these may not necessarily overlap with IQ,

which may explain the moderate genetic correlations

observed between IT and IQ. Nonetheless, the results of

the present study suggest that various candidate genes

selected to play a role in IT will also be important for IQ.

This may be more so for Performance than Verbal IQ, which

demonstrated a slightly larger genetic correlation with IT,

and hence an increased reliance on the same genes. Our own

planned association studies of IT will benefit from the

potential for replication studies between Australian and

Dutch cohorts, in which the same candidate genes will be

typed.

The finding of a moderate IT heritability and largely

genetic mediation of its phenotypic covariation with IQ in

cohorts from two different countries has positive implica-

tions for the gene finding strategy of linkage. Firstly, the

equality of findings across countries suggests that further

data pooling incorporating additional countries may be

possible and this will greatly increase statistical power for

linkage. Secondly, the multivariate linkage analysis of IT

and IQ should reduce the number of sib pairs required to

detect linkage (Boomsma and Dolan, 2000; Williams et al.,

1999); although the gain in power by multivariate methods is

greatest if the QTL is the only cause of covariation between

the traits (Martin et al., 1997). While it is unlikely that a

single QTL accounts for the total covariation between IT and

IQ, multivariate analysis will nonetheless improve power

relative to the univariate case. Future analyses could

therefore be directed toward a molecular genetic analysis

of IT and IQ in a combined sample of DZ twin and/or sibling

pairs from diverse research groups.
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