
Genetic and environmental influences on variance
in phenotypic traits may be estimated with

normal theory Maximum Likelihood (ML). However,
when the assumption of multivariate normality is not
met, this method may result in biased parameter
estimates and incorrect likelihood ratio tests. We
simulated multivariate normal distributed twin data
under the assumption of three different genetic
models. Genetic model fitting was performed in six
data sets: multivariate normal data, discrete uncen-
sored data, censored data, square root transformed
censored data, normal scores of censored data, and
categorical data. Estimates were obtained with
normal theory ML (data sets 1–5) and with categori-
cal data analysis (data set 6). Statistical power was
examined by fitting reduced models to the data.
When fitting an ACE model to censored data, an
unbiased estimate of the additive genetic effect was
obtained. However, the common environmental
effect was underestimated and the unique environ-
mental effect was overestimated. Transformations
did not remove this bias. When fitting an ADE
model, the additive genetic effect was underesti-
mated while the dominant and unique
environmental effects were overestimated. In all
models, the correct parameter estimates were
recovered with categorical data analysis. However,
with categorical data analysis, the statistical power
decreased. The analysis of L-shaped distributed data
with normal theory ML results in biased parameter
estimates. Unbiased parameter estimates are
obtained with categorical data analysis, but the
power decreases.

Thanks to computational and methodological
advances over the last few decades, genetic covariance
structure modeling in genetically informative samples is
relatively straightforward. Estimates of genetic and
environmental variance components may be obtained
readily using programs like Mx (Neale, 1997), Lisrel
(Jöreskog & Sörbom, 1996a), or Mplus (Muthén &
Muthén, 2001; Prescott, 2004). The dominant method
of estimation is normal theory Maximum Likelihood
(normal theory ML), which is based on the assumption
of multivariate normality. Unfortunately, the distribu-

tion of phenotypic data may display a large degree of
skewness and kurtosis, which renders the choice of
normal theory ML to estimate parameters suboptimal.
The problem of nonnormality is acute in the study of
symptom data, where the distribution of observed
symptoms is often L-shaped, due to the fact that the
vast majority of subjects display few or no symptoms
(Van den Oord et al., 2003). Failure to account for
nonnormality may lead to biased parameter estimates
and incorrect likelihood ratio tests (Amos, 1994).

There are many possible causational factors for
the presence of nonnormality. These can be divided
into two categories: a) factors that lead to a nonnor-
mal distribution of the latent trait; and b) factors that
lead to a nonnormal distribution of the measured
indicators of a normally distributed latent trait. If the
distribution of the latent trait is not normal, a possi-
ble solution is to adopt a more appropriate
distribution (e.g., Poisson). If the latent trait is nor-
mally distributed, but the observed trait is not, for
example due to censoring, a possible solution is to
correct the observed data for the censoring event.

Van den Oord et al. (2003) proposed that the
latent distribution of L-shaped behavioral checklist
data is normal. They examined this hypothesis by
means of Item Response Theory (IRT; Hambleton &
Swaminathan, 1985) and found that a model that
allowed for nonnormality in the latent distribution
did not provide a better fit than a model that did not
allow for nonnormality. In other words, they found
no evidence against a normal latent distribution.
Therefore, we assume that the L-shaped distribution
of behavioral checklist data belongs to the second cat-
egory. This seems plausible because questions in
behavior checklists are often developed with the
purpose of determining the degree of behavioral dys-
functioning. In the latent normal distribution,
children with well-adapted behavior may be found at
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the left tail of the distribution, and children with dys-
functional behavior may be found at the right tail of
the distribution. Because of the focus on behavioral
dysfunction, variation in the right tail in the distribu-
tion is measured while variation in the left tail of the
distribution is not. This results in an L-shaped observ-
ed distribution. An example of such a distribution is
shown in Figure 1. This figure illustrates the degree of
sleep problems in three-year-old children. The distrib-
ution clearly is not normally distributed, which is
probably caused by censoring.

Censored data arise if values below (or above) a
certain threshold y* are observed at y*. As a result,
below (or above) this threshold, variation in the dis-
tribution of the latent trait is unobserved, and the
observed distribution is skewed. The effect of censor-
ing from below is illustrated in Figure 2.

There are numerous practical examples of cen-
sored distributions in many different fields of inquiry
(e.g., economics, medicine and the social sciences).
One of the earliest attempts to address censoring is
that of Tobin (1958). He studied the demand for
various categories of capital goods such as automo-
biles. Many households report zero expenditures in a
given year. Among the households that made an
expenditure, there is large variability in amount. The
observed demand for capital goods in a given year is
therefore censored below. An example from the field
of medicine is the assessment of coronary artery calci-
fication (Epstein et al., 2003). Coronary artery
calcification is only assumed to be present when it
exceeds a certain threshold. Below this threshold, the
level is assumed to be zero (Bielak et al., 2001).
Finally, censoring is present in behavioral ratings
(Nagin & Tremblay, 1999; Rietveld et al., 2003). 

There are several methods to correct for nonnor-
mality. First, the data may be transformed in order to
achieve normality. Often-applied transformations are
the logarithmic and square root transformations
(Lynch & Walsh, 1998). Transformations may be sub-
stantively motivated, for example, the use of a
logarithmic transformation when a trait is measured
on a geometric scale instead of an arithmetic scale
(Falconer & Mackay, 1996). Examples of such traits
are body weight and growth. Alternatively, transfor-
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Figure 1
Distribution of maternal reports of sleep problems.
Note: Graph is based on 9415 first-born twins; data of second-born twins are similar.
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Figure 2
A graphical representation of the censoring process.
Note: Before censoring, the complete normal distribution is shown. After censoring, values below y* are observed at value y*.



mations may be ad hoc. An example of this is the
single parameter Box–Cox transformation, where a
parameter is optimized to achieve normality. In the
case of behavioral rating data, the transformation is
generally ad hoc. The calculation of so-called normal
scores (Jöreskog et al., 1999) may also be viewed as
an ad hoc transformation. The aim of this transfor-
mation, which is based on the assumption of an
underlying normal distribution, is to render the skew-
ness and kurtosis of the data consistent with a normal
distribution (i.e., values of approximately 0 and 3,
respectively). Unfortunately, given major deviations
from normality, transformations may fail to achieve
this aim. 

Second, we may assume that the observed data is
measured on an ordinal scale instead of a continuous
scale and adopt a method of estimation which is suit-
able for ordinal data. Parameter estimates of the
genetic model fitting can be obtained under the
assumption of an underlying continuous liability dis-
tribution that has one or more thresholds that define
categories. This technique was independently devel-
oped by Crittenden (1961) and Falconer (1965; Lynch
& Walsh, 1998, p. 730). The estimates obtained with
ordinal data analysis should be unbiased, but the
analyses may be computationally more demanding,
especially when the number of categories is large.
Another disadvantage is the potential presence of
empty cells in the contingency tables. For example,
the contingency table of a highly heritable trait in MZ
twins is likely to have some empty off-diagonal cells. 

The purpose of this study is to examine the effect
of censoring on the results of genetic modeling. We
assume that a latent trait is normally distributed, and
that censoring arises due to failure of the measure-
ment instrument to detect values smaller than some
general threshold y* (see Figure 2). Three methods
which may be used to deal with nonnormal data are
compared in a simulation study. Two of these
methods concern ad hoc transformations: a square
root transformation and the computation of normal
scores. The third method is the analysis of categorical
data which is based on the liability threshold model.
Finally, we apply these methods to real-life data on
sleep problems in a large sample of 3-year-old twins.

Methods
Genetic Modeling

Variation in a phenotypic trait can be decomposed
into latent genetic and environmental components.
The decomposition of variance may be achieved by
analyzing data of pairs of individuals who differ in
their degree of genetic relatedness. The twin design is
a well-known example of this approach. Monozygotic
(MZ) twins are genetically identical, while dizygotic
(DZ) twins on average share half of their segregating
genes. Limiting the genetic decomposition of pheno-
typic variance to additive genetic (A) effects and
dominant genetic (D) effects, the fact that MZ twins

are genetically identical implies that they share all the
additive and dominant genetic variance. DZ twins on
average share half of the additive genetic and one
quarter of the dominant genetic variance (Lynch &
Walsh, 1998). The environmental phenotypic variance
may be decomposed into shared environmental vari-
ance and unique environmental variance. The
environmental effects shared by two members of a
twin pair (C) are by definition perfectly correlated in
both MZ and DZ twins. The nonshared environmen-
tal effects (E) are by definition uncorrelated between
twin pair members. Estimates of the nonshared envi-
ronmental variance usually include measurement
error (Plomin et al., 2001; Neale & Cardon, 1992). In
fitting models to twin data, it is not possible to esti-
mate the effects of all components of variance (Va,
Vd, Vc and Ve) simultaneously. Specifically, one
cannot estimate Vd and Vc simultaneously due to
reasons of identification. 

Simulation Study

Data were simulated in accordance with three models.
In Models 1 and 2, the covariance structure of MZ
and DZ twins was attributable to A, C and E. The
values of Va, Vc and Ve in Model 1 equaled .50, .20
and .30, respectively. In Model 2, the values of Va, Vc
and Ve equaled .20, .50 and .30. In Model 3, the
covariances were influenced by A, D and E. The
values of the variance components Va, Vd and Ve
equaled .45, .25 and .30. 

The population covariance matrices of MZ and
DZ twins can be calculated under assumption of these
three theoretical models. We assumed that there is no
assortative mating, epistasis, gene–environment inter-
action or gene–environment correlation (Lynch &
Walsh, 1998). Under these assumptions, the covari-
ances of MZ twins are Va + Vc + Vd, and the
covariances of DZ twins are .5*Va + Vc + .25*Vd.
The variances equal Va + Vc + Vd + Ve in both MZ
and DZ twins. In the simulation study, the covari-
ances of MZ and DZ twins were .70 and .45 (Model
1), .70 and .60 (Model 2), and .70 and .2875 (Model
3), respectively. All variances equaled 1. 

In most European countries, the number of DZ
twins is larger than the number of MZ twins. For
example, in the Netherlands Twin Register, the
number of DZ twins is about twice the number of
MZ twins. Therefore, the number of DZ twins in the
simulation study was also twice the number of MZ
twins. We simulated data of 3000 MZ twin pairs and
6000 DZ twin pairs. This sample size is representative
for the sample size of twin registers such as the
Netherlands Twin Register (Boomsma, 1998;
Boomsma et al., 2002). The simulation study com-
prised 1000 replicates. 

Data simulation was performed in R (Venables et
al., 2002). Six different data sets were generated. The
distributions of these data sets are shown in Figure 3a
to Figure 3f. First, bivariate standard normal distrib-

661Twin Research December 2004

Effect of Censoring on Genetic Modeling



662 Twin Research December 2004

Eske M. Derks, Conor V. Dolan, and Dorret I. Boomsma

a. Normal distributed scores b. Discretized normal distributed scores

43322110–1–1–2–2–3–3–4

1000

800

600

400

200

0

76543210–1–2–3–4–5–6–7

2000

1000

0

c. Censored scores d. Square root transformed censored scores

76543210

6000

5000

4000

3000

2000

1000

0

2.471.911.35.79.23

6000

5000

4000

3000

2000

1000

0

Figure 3
Distributions of six simulated data sets. 
Data sets were generated from a bivariate normal distribution (a) and then discretized (b). Next, data were censored (c). These censored data
were either transformed by square root transformation (d) or to normal scores (e). Finally, the number of categories of the censored scores was
limited to four (f).

e. Normal scores of censored data f. Categorical scores of censored data
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uted data (Figure 3a) were simulated with the MASS
package that is available in the R library. Second,
because observational data are usually discrete, the
multivariate normal data were discretized (Figure 3b).
The number of categories was 15. The values of the
categories were chosen arbitrarily: a value of –7 was
assigned to the lowest category, and a value of +7 was
assigned to the highest category.

Third, the discrete data were censored (Figure 3c).
The value of the censor was equal to 0. The values of
all data points below 0, which made up 39% of the
total data set, were therefore reassigned to 0 in the
censored data set. This percentage was chosen
because the resulting distribution resembled the dis-
tribution of behavioral checklist data in terms of
skewness and kurtosis. The fourth and fifth data sets
were created by applying two transformations to the
censored data. The first transformation was a square
root transformation (Figure 3d). The second transfor-
mation was the computation of normal scores (Figure
3e). This transformation renders the skewness and
kurtosis of the data as close as possible to 0 and 3,
the expected values of the skewness and kurtosis
when the distribution is normal. The computation of
normal scores is implemented in Prelis (Jöreskog &
Sörbom, 1996b). For this simulation study, the Prelis
procedure was implemented in R. The R syntax is
available on request. Finally, the number of cate-
gories of the censored data was decreased to four
(Figure 3f). In contrast to the five other data sets,
where we applied normal theory ML, these data were
treated as categorical data. All analyses were per-
formed on raw data. 

Genetic Analyses of Sleep Problems

Participants

The participants were all registered at birth with the
Netherlands Twin Registry (Boomsma, 1998;
Boomsma et al., 2002). In the present study, we have
assessed a sample of Dutch twin pairs whose mothers
reported on their sleep problems when the twins were
three years old. These twins were all born between

1986 and 1997. The sample used for the genetic analy-
ses consisted of 6375 MZ twins and 12,192 DZ twins.
Zygosity diagnosis was assessed with the use of a 10-
item questionnaire. This procedure allows an accurate
determination of zygosity of nearly 95% (Rietveld et
al., 2000). For a more detailed description of the
sample, see Derks et al. (2004). 

Measure

The Child Behavior Checklist (CBCL/2–3) is a stan-
dardized questionnaire for parents to report the
frequency and intensity of behavioral and emotional
problems exhibited by their child in the past six
months (Achenbach, 1992). It contains 100 items that
measure problem behavior; the items are rated on a 3-
point scale ranging from ‘not true’, ‘somewhat or
sometimes true’ to ‘very true or often true’. The CBCL
measures the number of symptoms on seven behavioral
syndromes, including sleep problems (7 items; Koot et
al., 1997). The distribution of sleep problems is shown
in Figure 1 (first-borns only to save space).

Results
Simulation Study

The descriptive statistics of the simulated data before
and after transformation are reported in Table 1.
These descriptives are reported for one replication
and a single twin only. As expected, the skewness and
kurtosis of the noncensored continuous data did not
deviate significantly from the expected values of 0
and 3. After discretization, the variance increased as a
result of the larger range of values but the skewness
and kurtosis were unaffected. After censoring, the
skewness and kurtosis were both positive and devi-
ated significantly from 0 and 3. In addition, the mean
of the data increased and the variance decreased in
comparison to the noncensored discrete data. Both
the square root transformed data and the normal
scores showed less skewness and kurtosis than the
untransformed censored data, but their values still
deviated significantly from 0 and 3. 
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Table 1

Descriptive Statistics of Simulated Data

Data set Mean Standard deviation Skewness Kurtosis

1. Noncensored continuous data .000 .996 –.043 2.985
2. Noncensored discrete data (15 categories) .004 2.012 –.053 2.991
3. Censored discrete data (8 categories) .790 1.172 1.603 5.293
4. Square root transformed censored data 1.639 .317 1.277 3.779
5. Normal scores of censored data .786 1.172 .946 2.794

6. Categorical data Threshold 1 = 0.755
(4 categories based on censored data) Threshold 2 = 1.787

Threshold 3 = 2.748

Note: Data sets were generated from a bivariate normal distribution (1) and then discretized (2). Next, data were censored (3). These censored data were either transformed by
square root transformation (4) or to normal scores (5). For the 6th data set (four categories based on censored data), the thresholds are given. The number of replications
is 1000, but descriptives are given for a single replication and for a single twin only. The number of twins is 9000.
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Table 2a

Estimates of Standardized Genetic and Environmental Influences in the Six Simulated Data Sets, Averaged Over 1000 Replications 

Data set Method of analysis Means stand. Va (SD) Mean stand. Vc (SD) Mean stand. Ve (SD)

1. Noncensored continuous data Normal theory .501 .199 .300
ML (.025) (.021) (.008)

2. Noncensored discrete data (15 categories) Normal theory .491 .195 .314
ML (.025) (.021) (.008)

3. Censored discrete data (8 categories) Normal theory .496 .116 .389
ML (.040) (.031) (.014)

4. Square root transformed censored data Normal theory .488 .122 .390
ML (.037) (.029) (.014)

5. Normal scores of censored data Normal theory .471 .128 .401
ML (.036) (.029) (.013)

6. Categorical data Categorical data analysis .501 .200 .300
(4 categories based on censored data)a (.053) (.042) (.019)

Note: True values of Va, Vc and Ve are .50, .20 and .30 respectively.
Stand. = standardized; Va = variance explained by additive genetic effects; Vc = variance explained by common environmental effects; Ve = variance explained by unique
environmental effects. 
a The results of the categorical data analyses are based on 999 replications due to minimalization problems in 1 replication.

Table 2b

Estimates of Standardized Genetic and Environmental Influences in the Six Simulated Data Sets, Averaged Over 1000 Replications 

Data set Method of analysis Means stand. Va (SD) Mean stand. Vc (SD) Mean stand. Ve (SD)

1. Noncensored continuous data Normal theory .200 .500 .300
ML (.020) (.016) (.008)

2. Noncensored discrete data (15 categories) Normal theory .196 .490 .314
ML (.021) (.017) (.009)

3. Censored discrete data (8 categories) Normal theory .205 .406 .389
ML (.036) (.027) (.015)

4. Square root transformed censored data Normal theory .203 .407 .390
ML (.034) (.025) (.014)

5. Normal scores of censored data Normal theory .194 .404 .402
ML (.034) (.025) (.014)

6. Categorical data Categorical data analysis .199 .501 .300
(4 categories based on censored data)a (.048) (.036) (.018)

Note: True values of Va, Vc and Ve are .20, .50 and .30 respectively.
Stand. = standardized; Va = variance explained by additive genetic effects; Vc = variance explained by common environmental effects; Ve = variance explained by unique
environmental effects.
a The results of the categorical data analyses are based on 999 replications due to minimalization problems in 1 replication.

Table 2c

Estimates of Relative Genetic and Environmental Influences in the Six Simulated Data Sets, Averaged Over 1000 Replications

Data set Method of analysis Means stand. Va (SD) Mean stand. Vc (SD) Mean stand. Ve (SD)

1. Noncensored continuous data Normal theory .448 .252 .300
ML (.047) (.049) (.008)

2. Noncensored discrete data (15 categories) Normal theory .438 .248 .248
ML (.047) (.049) (.008)

3. Censored discrete data (8 categories) Normal theory .273 .338 .389
ML (.059) (.063) (.014)

4. Square root transformed censored data Normal theory .286 .323 .391
ML (.057) (.061) (.013)

5. Normal scores of censored data Normal theory .299 .300 .402
ML (.056) (.060) (.013)

6. Categorical data Categorical data analysis .446 .254 .300
(4 categories based on censored data)a (.087) (.093) (.018)

Note: True values of Va, Vd and Ve are .45, .25 and .30 respectively.
Stand. = standardized; Va = variance explained by additive genetic effects; Vd = variance explained by dominant genetic effects; Ve = variance explained by unique environ-
mental effects.
a The results of the categorical data analyses are based on 994 replications due to minimalization problems in 6 replications.



The Parameter Estimates of the ACE Models

Table 2a and Table 2b show the mean point estimates
of the standardized variance components and their
standard deviations in the 1000 replications. The
mean point estimate of the categorical data analyses
was based on slightly fewer than 1000 replications,
because the minimalization of the likelihood failed in
one of the replications. 

As expected, the analysis of noncensored continu-
ous data produced the correct mean parameter
estimates in both models. Discretization did not affect
the mean or standard deviation of the standardized
parameter estimates. After censoring, the estimate of
Va was unbiased but Vc was underestimated and Ve
was overestimated. A square root transformation or a
transformation to normal scores did not improve the
parameter estimates. In contrast, when the categorical
data were analyzed using the threshold model, the
correct parameter estimates were recovered. However,
as is to be expected given the reduced amount of
information, the standard errors of the parameter
estimates increased which results in wider confidence
intervals and less precise estimates. 

The Parameter Estimates of the ADE Model

The results of the ADE model (Table 2c) are in agree-
ment with the results of the ACE models. The
noncensored continuous data and the noncensored
discrete data both recovered the correct parameter
estimates. The analyses of the censored untrans-
formed data, the square root transformed data, and
the normal scores lead to biased parameter estimates.
Va was underestimated, while Vd and Ve were both

overestimated. When the categorical data option in
Mx was used, the unbiased parameter estimates were
obtained, but again with increased standard errors.
The mean point estimate of the categorical data
analyses was again based on slightly less than 1000
replications, because the minimalization of the likeli-
hood failed in six of the replications. 

The underestimation of Va in the ADE model was
large compared to the other deviations. While the
underestimation of Vc in the ACE model and the
overestimation of Vd and Ve in the ADE model varied
between 5% and 10% of the variance, the underesti-
mation of Va in the ADE model was about 20%.

Power Analyses

One of the desirable features of an estimation method
is that it should produce unbiased parameter esti-
mates. Another important feature is statistical power.
In this section, we compare the power of the different
methods. To this end, we compared the fit of the true
ACE model to the fit of an AE model and the fit of a
CE model. We also compared the fit of the ADE
model to the fit of an AE model. We did not compare
the fit of the ADE model to the fit of a DE model
because the presence of dominant genetic influences
in the absence of additive genetic influences is biologi-
cally implausible (Falconer & Mackay, 1996).

Table 3 shows the results of the power analyses.
We have used a type-I error rate of .05. Because of the
large sample size we are not interested in power per
se, but in the effect of the estimation method on
power. In Table 3, we first report the theoretical value
of the difference in –2LL and its standard deviation.
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Table 3

A Comparison of Statistical Power in the Six Simulated Data Sets 

Data set Model 1 Model 2 Model 3 

ACE–AE ACE–CE ACE–AE ACE–CE ADE–AE 
Mean –2LL (SD) Mean –2LL (SD) Mean –2LL (SD) Mean –2LL(SD) Mean –2LL (SD)

Theoretical population covariance matrices 83.347 365.304 625.616 83.620 28.053
(18.204) (38.200) (50.005) (18.234) (10.498)

1. Noncensored continuous data 83.583 367.988 627.045 84.245 29.506
(17.712) (35.632) (45.754) (17.342) (10.787)

2. Noncensored discrete data (15 categories) 78.391 335.681 582.241 75.763 27.927
(17.017) (33.895) (44.798) (16.447) (10.486)

3. Censored discrete data (8 categories) 25.436 259.637 336.466 59.437 45.865
(12.881) (42.549) (47.447) (20.792) (16.588)

4. Square root transformed censored data 27.583 250.526 335.946 57.857 41.761
(12.751) (39.616) (43.172) (19.375) (15.283)

5. Normal scores of censored data 29.410 228.906 324.412 51.337 35.741
(12.735) (35.763) (41.969) (17.443) (13.786)

6. Categorical data 23.298 84.15322 167.982 17.661 8.705
(4 categories based on censored data)a (9.545) (18.951) (27.309) (11.028) (5.707)

Note: The theoretical values of –2LL are based on analysis of the theoretical population covariance matrices. The number of twin pairs is 9000, and the number of replications is
1000.
–2LL = minus 2 log likelihood.
The true model parameters in Model 1: Va = .50, Vc = .20, Ve = .30; Model 2: Va2 = .20, Vc = .50, Ve = .30; Model 3: Va = .45, Vd = .25, Ve = .30
a In the categorical data analysis, the number of replications was 999, 999 and 996 for model 1 to 3 respectively.



The theoretical value of the difference in –2LL was
determined by analyzing the population covariance
matrices in Mx. It is equal to the number of degrees
of freedom (df) plus the noncentrality parameter (λ).
The standard deviation was calculated with the fol-
lowing formula: SD = (2 (df + 2 * λ))0.5. As can be
seen in Table 3, the mean –2LL of the continuous
data analyses was quite similar to the theoretical
value of –2LL. 

It is important to realize that the values of the
noncentrality parameter can only be interpreted in
terms of null and nonnull distributions of the likeli-
hood ratio test in the case of the normally distributed
data (continuous or 15-point scale), and in the case of
the categorical data estimator. For example, the
results observed in the case of Model 3 seem to
suggest that the power increased after censoring (e.g.,
from 28.053 to 45.865). However, this is due to the
fact that the test statistics do not follow their
expected noncentral and central chi-square distribu-
tions. This is also true in case of the transformed
censored data.

After discretization, the mean difference in –2LL
decreased slightly. This is a reflection of the decreased
power due to a loss of information after discretiza-
tion. In all three models, the power was lowest when
the categorical data were analyzed. This is evident in
the low mean difference in –2LL. In addition, when
we look at the categorical data analyses of the ADE
model, the drop of the D parameter did not lead to a
significantly worse fit in 20% of the cases, although
this parameter explained 25% of the variance. In
other words, the power to detect a dominant genetic
parameter that explains 25% of the variance is 80%.
In comparison, the power is 100% when any of the
other methods of analysis is chosen.

Genetic Analyses of Sleep Problems

To illustrate the previous findings, we analyzed data on
sleep problems in 6375 MZ twins and 12,192 DZ
twins. The descriptive statistics are summarized in
Table 4. These descriptives are only reported for the
first-borns to save space; the descriptive statistics of the
second-borns are similar. The skewness and kurtosis of
the raw scores are similar to the skewness and kurtosis
after censoring in the simulation study. A square root
transformation and the computation of normal scores
both reduced the skewness and kurtosis. 

The correlations were computed in four different
ways, namely the Pearson product moment correla-
tion (ppmc) of the untransformed raw scores, the
square root transformed scores, and the normal
scores. In addition, polychoric correlations of the cat-
egorical data were computed. The estimates are
shown in Table 5. The ppmc’s were quite similar, but
the polychoric correlations were somewhat higher in
both MZ and DZ twins. 

Based on the correlations, an ACE model seemed
to be most plausible. The MZ correlation was slightly
less than twice the DZ correlation, which implies the
absence of Vd and a small contribution of Vc. Genetic
model fitting analyses of untransformed, transformed
and categorical data showed that the influences of A
and C were both significant. Table 6 shows the point
estimates and the confidence intervals of the stan-
dardized variance components (Va, Vc and Ve) on
sleep problems. The estimate of Va was similar across
methods, which was to be expected in the light of the
results of the simulation study. The estimate of Vc
ranged from .055 to .081 when normal theory ML
was used. The estimate was .116 in the categorical
data analysis. In contrast, the estimate of Ve was
lower in the categorical data analyses. As expected,
the categorical data analyses showed wider confi-
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Table 4

Descriptive Statistics of Maternal Child Behavior Checklist Reports on Sleep Problems in 9415 Three-Year-Old Dutch Twins (First-Borns Only)

Data set Mean Standard Deviation Skewness Kurtosis

Raw data (15 categories) 1.983 2.229 1.444 5.220 
Square root transformed data 1.083 .900 .165 1.990 
Normal scores 2.074 2.053 .540 2.613

Table 5

Twin Correlations for Maternal Child Behavior Checklist Reports on Sleep Problems

Data set Correlation MZ (N = 3162 complete pairs) Correlation DZ (N = 6053 complete pairs)

Raw scores (ppmc) .745 .384
Square root transformed data (ppmc) .741 .408
Normal scores (ppmc) .748 .406
Categorical data (pc) .786 .451

Note: ppmc = Pearson product moment correlation; pc = polychoric correlation



dence intervals than the analyses based on normal
theory ML. 

Discussion

This paper deals with the effects of censoring on para-
meter estimates and statistical power in genetic
analyses of quantitative traits. The censoring of
normal distributed data results in data with an L-
shaped distribution. The distribution resembles the
distribution of most behavioral checklist data. This
paper looks at the effects of censoring through a
series of simulations. Data were simulated in accor-
dance with three genetic models: two ACE models
with different factor loadings of A, C and E, and one
ADE model.

Multivariate normal data were simulated and dis-
cretized because behavior checklist data are usually
discrete. We replicated the finding of Dolan (1994)
that discretization of normal distributed data does not
lead to biased parameter estimates when the number
of categories is seven or more and when the distribu-
tion is symmetric. Next, the simulated data were
censored, which resulted in L-shaped distributions.
When analyzing the censored ACE data with normal
theory ML, the common environmental component
was underestimated while the unique environmental
component was overestimated. Transformation of the
data did not eliminate this bias, although the skew-
ness and kurtosis decreased. Interestingly, a common
finding in behavioral genetic studies is a small influ-
ence of shared environment on individual differences
in behavior. This may partly be due to the fact that
the influence of this component is underestimated
when L-shaped data are analyzed with normal theory
ML. However, the underestimation of the relative
influence of the additive genetic component was only
8% to 10%. When analyzing the ADE data, a quite
large underestimation of about 20% of the additive
genetic component was found and both D and E were
overestimated by about 10%. 

In order to examine if these results hold when a
smaller percentage of the data is censored, we exam-
ined the amount of bias in parameter estimates when
10% of the data set was censored instead of 39%. In
this situation, the bias decreased and ranged from 3%
in the ACE model to 5% in the ADE model (data not

shown). Thus, depending on the level of censoring,
the results of twin studies which have used normal
theory ML to analyze L-shaped distributed data may
be biased. 

The bias in parameter estimates may be avoided
by using categorical data analysis. However, this
method has three disadvantages. First, the statistical
power is reduced. This result is in agreement with the
results of the simulation study of Neale et al. (2004)
who found that in categorical data analysis approxi-
mately three times the sample size was needed for
equivalent power to continuous data analysis. In our
study, the decrease in power was most apparent when
the simulated ADE data were analyzed. Even with
9000 twin pairs, the power to detect a dominant
genetic component that explains 25% of the varia-
tion, decreased with 20% (from 100% to 80%).
However, one should realize that the type-II error rate
may be lower when censored data are analyzed with
normal theory ML compared to categorical data
analysis, but that the actual type-I error rate may be
higher than the hypothesized value of .05. One way
to deal with the low power, is to choose a type-I error
rate of .10 or .15 instead of .05. Second, the analyses
are computationally more demanding. This problem
may be solved by using Weighted Least Squares
(WLS) in Lisrel (Jöreskog & Sörbom, 1996a).
However, this method has the disadvantage that
missing data are excluded which can be a problem
when dealing with incomplete twin data or with lon-
gitudinal data in which observations may be missing
at some time-points. A third disadvantage is that the
contingency tables may have empty cells. One remedy
to the presence of empty cells is to decrease the
number of categories.

To illustrate the results of the simulation study, we
analyzed real-life data on sleep problems. The skew-
ness and kurtosis were similar to the skewness and
kurtosis of the simulated data. In this example, the
small common environmental influence explained
enough variance to be detected in the categorical data
analysis. The heritability was quite stable and ranged
from 66 to 68%. The estimate of the common envi-
ronmental influence was somewhat higher in the
categorical data analysis (12%) than in the other
analyses (6% to 8%). Based on the results of the sim-
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Table 6

Estimates and 95% Confidence Intervals of Standardized Estimates of Genes and Environment on Maternal Child Behavior Checklist Reports
of Sleep Problems

Data set Va (low–high) Vc (low–high) Ve (low–high)

Raw scores .676 (.628–.724) .055 (.011–.097) .270 (.256–.284)
Square root transformed data .658 (.611–.705) .081 (.038–.122) .262 (.248–.276)
Normal scores .665 (.618–.712) .077 (.034–.118) .258 (.245–.272)
Categorical data .675 (.620–.733) .116 (.064–.166) .210 (.194–.227)

Note: Va = proportion of variance explained by additive genetic effects; Vc = proportion of variance explained by common environmental effects; Ve = proportion of variance
explained by unique environmental effects.



ulation study, we can conclude that the estimate of
12% in the categorical analysis, is the correct esti-
mate. The unique environmental influence ranged
from 21% to 27%. In conclusion, sleep problems are,
like other behavioral problems in young children,
explained by large genetic influences and moderate
environmental influences. The latter include shared
environmental influences. 

The main question that we addressed was: What is
the best approach when analyzing L-shaped distrib-
uted phenotypic data? The results of the simulation
study show that the analysis of L-shaped distributed
data with normal theory ML is not advisable when
the data show high skewness and kurtosis.
Transformations may reduce the skewness and kurto-
sis but do not eliminate the bias in parameter
estimates. Categorical data analysis is a better option,
because this is the only method with which unbiased
parameter estimates are obtained. Because this esti-
mation method has its own limitations, the best
option would be to develop checklists that measure
variation in the whole latent distribution of behavior.
To this end, items should reflect both well-adapted
and dysfunctional behavior. 
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