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Hierarchical clustering analysis of blood plasma
lipidomics profiles from mono- and dizygotic
twin families

Harmen HM Draisma*,1,5, Theo H Reijmers1, Jacqueline J Meulman2, Jan van der Greef 1,
Thomas Hankemeier1,3,6 and Dorret I Boomsma4,6

Twin and family studies are typically used to elucidate the relative contribution of genetic and environmental variation to

phenotypic variation. Here, we apply a quantitative genetic method based on hierarchical clustering, to blood plasma lipidomics

data obtained in a healthy cohort consisting of 37 monozygotic and 28 dizygotic twin pairs, and 52 of their biological nontwin

siblings. Such data are informative of the concentrations of a wide range of lipids in the studied blood samples. An important

advantage of hierarchical clustering is that it can be applied to a high-dimensional ‘omics’ type data, whereas the use of

many other quantitative genetic methods for analysis of such data is hampered by the large number of correlated variables.

For this study we combined two lipidomics data sets, originating from two different measurement blocks, which we corrected

for block effects by ‘quantile equating’. In the analysis of the combined data, average similarities of lipidomics profiles

were highest between monozygotic (MZ) cotwins, and became progressively lower between dizygotic (DZ) cotwins, among

sex-matched nontwin siblings and among sex-matched unrelated participants, respectively. Our results suggest that (1) shared

genetic background, shared environment, and similar age contribute to similarities in blood plasma lipidomics profiles among

individuals; and (2) that the power of quantitative genetic analyses is enhanced by quantile equating and combination of

data sets obtained in different measurement blocks.
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INTRODUCTION

Genetic variation and variation in environmental influences among
individuals contribute to individual differences in measurable char-
acteristics, that is, to phenotypic variation. The estimation of the
relative contribution of genetic and environmental variation to
phenotypic variation is often a first step in the elucidation of the
specific causes of individual differences. For such analyses of the
heritability1,2 of traits, often genetically informative samples such as
(twin) families are used. Compared with heritability analyses in
nuclear families, studies on the basis of twin families have enhanced
power to detect genetic influences on phenotypic variation.3,4 One
cause for this is that the members of twin pairs living together are
particularly well-matched for age, prenatal factors and environmental
variation. A second cause is the difference in shared genetic variation
between MZ and DZ twin pairs. MZ twins share all genetic variation.
DZ twins, on the other hand, share only approximately half of the
variation at the DNA sequence level, and the same degree of genetic
variation is shared among biological nontwin siblings.5 Because of
this large difference in shared genetic variation between MZ and
DZ twin pairs, and the strong matching for environmental variation

within both types of twin pairs, comparison of the phenotypic
correlations between MZ and DZ twin pairs enables estimation of
heritability with relatively high power. This type of quantitative
genetic analysis is often carried out using structural equation
modeling (SEM).5,6

Quantitative genetic analysis can be performed either for directly
outward measurable phenotypes such as height or body weight, or on
the basis of measurements of so-called endophenotypes or inter-
mediate phenotypes7–9 that are physiologically in between the genome
and the phenotype. Examples of endophenotypes are gene expression
in cells, or levels of proteins or metabolites as measured in body fluids
such as blood or urine. Studies that incorporate endophenotypes are
potentially informative of the biological pathways leading to the
observed phenotypic variation among individuals. Among the
endophenotypes, metabolite levels are particularly interesting
because metabolites are relatively close to the phenotype and
therefore potentially directly relevant for phenotypic variation.
Metabolomics aims at the holistic analysis of the substrates,
intermediates and end products of cellular metabolism present in
biological samples.10 By using advanced analysis methods such as
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proton nuclear magnetic resonance spectroscopy or liquid chromato-
graphy coupled to mass spectrometry (LC–MS), it is possible to
detect the individual metabolites that belong to a particular
metabolite class rather than the conventional biochemical summary
measures such as ‘total triglycerides’.11,12 Because of their relatively
unbiased, comprehensive nature, metabolomics studies allow for a
more direct linking of findings to biological pathways.

When multivariate phenotypic data such as metabolomics data
have been obtained in (twin) families, hierarchical clustering analysis
(HCA) can be used as an alternative to quantitative genetic analysis
on the basis of SEM to obtain an impression of the importance of
genetic variation for phenotypic variation. The aim of HCA is to
group (ie, to cluster) objects (for example, family members) such that
objects that are relatively similar will be in the same cluster and
objects that are relatively dissimilar will be in different clusters.13

Information regarding group membership is not used during the
clustering process; rather, objects that have similar scores on the
variables will cluster. The input for HCA is a distance or dissimilarity
matrix that represents the dissimilarities among objects on the basis of
the multivariate data obtained for each object; the result is a
dendrogram (a tree) that represents the relative similarities and
differences among objects as a two-dimensional structure. When
performing HCA of multivariate data obtained in different families,
because of the genetic and environmental variation shared by family
members it is expected that members of the same family will cluster.
Members of different families, on the other hand, are expected to be
in different clusters. MZ twins of the same pair are expected to cluster
very strongly because they are genetically identical.

A useful property of HCA in general is that the sample covariance
matrix does not have to be invertible. Therefore, in contrast to for
example, maximum likelihood-based SEM, HCA can straightfor-
wardly be applied for quantitative genetic analysis based on typical
‘omics’ data that consist of large numbers of correlated variables.

In the context of (twin) family studies, another advantage of HCA
is that it acknowledges the pleiotropic effects of genes influencing the
variation of different traits belonging to the same biological pathway.
For example, if the blood plasma levels of different metabolites covary
because these metabolites are subject to conversion by the same
metabolic enzyme, in HCA the effects in all metabolites will be
pooled. This then contributes to the statistical power of the analysis.
Furthermore, because HCA is an exploratory data analysis technique,
in contrast to SEM it allows for the discovery of novel biological
effects causing heterogeneity among study participants. As an
example of the latter, in an earlier publication14 we demonstrated
that in HCA of blood plasma lipidomics data obtained in a sample
consisting mainly of MZ twin pairs, male and female study
participants were separated at the highest level in the clustering
dendrogram. This suggested that variation in lipidomics profiles is
relatively small among individuals of the same gender.

In the current paper, we report the results of HCA of blood plasma
lipidomics data from an unselected general population cohort of 37
MZ twin pairs, 28 DZ twin pairs, and in total 52 of their biological
nontwin siblings. Lipidomics, that is, the analysis of lipids with
metabolomics techniques, is an important branch of metabolomics
because lipids are involved in a plethora of (patho) physiological
processes.15 For the current study, we combined the data that
provided the basis for our previous article14 with additional data
mainly from DZ twin pairs and from biological nontwin siblings. The
initial data and the additional data were acquired with the same
LC–MS method but in different measurement ‘blocks’, that is, in
different sets of measurements consisting of one or more

measurement batches. Therefore, we applied the method of ‘quantile
equating’ to make the data from both measurement blocks combin-
able.16 The inclusion in the current study of more DZ twin pairs and
more nontwin siblings allowed for observation of the effect of age on
similarity of lipidomics profiles, in addition to observation of the
influences of genes and environment. Furthermore, the current paper
demonstrates that the application of quantile equating to make
combinable metabolomics data sets indeed causes biological effects
to be visible in the combined data set, rather than nonbiological
differences between the data from different measurement blocks.

SUBJECTS AND METHODS

Participants
Twins and biological nontwin siblings were recruited from the Netherlands

Twin Register.17 Characterization of participants, collection of fasting blood

and urine samples, and sample preparation were performed as described

previously.14,16,18 Participants completed a number of surveys; for the current

study, we used answers to questions regarding current use of any medication,

recent subjective health, current and earlier smoking habits and whether

participants currently lived together. Female participants reported the day of

their menstrual cycle at the time of blood sampling. Zygosity was determined

for all twin pairs by DNA genotyping.

Measures
Lipidomics profiling and measurement of C-reactive protein (CRP) concen-

tration in blood plasma samples were performed as described previously.14,16

In brief, lipidomics profiling was performed using an LC–MS method targeted

at the analysis of lipids that become positively charged during ionization in the

mass spectrometer. These measurements were carried out in two consecutive

‘blocks’, denoted as B1 and B2, respectively. The measurements of B2 were

performed almost one year after those of B1; samples from members of the

same family were always measured in the same block. In B1, two replicate

measurements were performed per study sample, whereas in B2 each study

sample was measured only once.

The nonbiological systematic differences between the normalized data from

the two measurement blocks were removed by ‘quantile equating’.16 In quantile

equating, the distributions of the observations for the same metabolite in

different data sets are averaged, assuming that all observations originate from

the same population. This corrects the data for practically unavoidable slight

technical differences between measurement blocks. For B1, we averaged the

data from the two replicate measurements for each sample before equating.

Hierarchical clustering analysis
Cluster analysis of lipidomics profiles was performed using the combined

(concatenated with the variables as the shared mode) B1–B2 data sets both

before and after application of the quantile equating method. First autoscaling

was applied to the columns (variables) of the data matrix consisting of the

internal standard-corrected responses for all detected lipids in all study

participants, with the aim to give all variables equal weight for the subsequent

HCA.14 Subsequently the lipidomics profiles were normalized among

individuals (rows) by standard normal variate (SNV) normalization.19 Then,

Euclidean distances among the scaled lipid profiles were computed. SNV

normalization followed by computation of the squared Euclidean distances

among objects is mathematically equivalent to computing (1�) the

correlations among unscaled objects (rows).20 Euclidean distance matrices

were subjected to HCA using the average linkage clustering algorithm, which

among the evaluated clustering algorithms (average, median, single, complete

and centroid linkage; Ward’s and McQuitty’s methods) gave the highest

Pearson correlation between the original distances and the cophenetic distances

among all study participants.21 Heatmaps and associated hierarchical clustering

dendrograms were generated using the ‘heatmap.2’ function in the ‘gplots’

package in the statistical computing environment R.22 The remaining analyses

were performed using the combined B1–B2 data set after quantile equating

only. The distributions of the Euclidean distances between MZ cotwins, between

DZ cotwins, among sex-matched nontwin siblings, and among sex-matched
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unrelated participants were visualized by box plots. To assess whether there

were statistically significant differences in median Euclidean distance among

these groups, we performed a multiple comparison procedure based on the

result of a nonparametric analysis of the variance within these groups of study

participants versus the variance of the group medians and adopting Tukey’s

honestly significant difference criterion.23 A multiple comparison procedure is

designed to be conservative when testing for significant differences for more than

one pair of groups.24 The stability of the hierarchical clustering based on the

distances among objects was assessed by a bootstrap analysis (10 000 resamplings)

using the ‘pvclust’ package25 in R. In a bootstrap analysis, the stability of the

clustering is assessed upon randomization of the number of occurrences of

each variable in the data set, while keeping the size of the data set equal.

Clustering of family members was characterized by counting for each pair of

same-sex relatives the number of separating nodes or branching points in the

dendrogram26,27 (see Supplementary Figure S1 for an example of this ‘node

analysis’). This number of separating nodes is representative of the relative

proximity of individuals according to their lipid profiles, and hence acknowl-

edges that the same Euclidean distance may have a different interpretation in

sparsely and densely populated areas of the total multivariate space put up by

the lipid profiles of all study participants.14

For each possible number of nodes separating MZ or DZ cotwins or same-

sex nontwin siblings in the dendrogram, we compared the observed number of

cotwin or sibling pairs separated by that number of nodes with the number of

observations that was expected on the basis of chance. Chance distributions

were created by permutation of the object labels over the leaves of the

clustering dendrogram. Such P-values were computed for each of in total 100

sets of permutations, where each set consisted of 10 000 permutations. On the

basis of these 100 permutation tests we computed the average P-values, as well

as the SDs of these average P-values. For these comparisons, we used a critical

value of 5% to denote statistical significance.

Association of node distances with Euclidean distance and with
important covariates
Spearman’s correlation coefficient was used to assess the correlation between

the numbers of nodes in the dendrogram connecting pairs of individuals, with

the original Euclidean distances among all study participants.

We performed linear regression analysis including several important

covariates to test the association of these variables with the numbers of nodes

separating sex-matched family members. The averaged log-transformed CRP

concentration for each pair of relatives was included as a covariate in this

regression as well, because in separate analysis of the B1 data this measure

appeared to correlate with increased dissimilarity of lipid profiles between MZ

cotwins.14 Hence, the total set of included covariates comprised of: sex; pair

average CRP level; measurement block; and monozygosity.

RESULTS

Participants
The participants originated from in total 65 families; 79 participants
were male and 103 were female (Table 1). In one monozygotic female
family and one DZ male family, a twin pair and two nontwin siblings
(in both the families, one male, and one female nontwin sibling)
participated; in all other families, only one nontwin sibling participated.
All DZ twin pairs included in the study were same-sex pairs; 33 of the
total 52 nontwin siblings were of the same sex as their twin siblings.

Measures
The combined data set, based on the measurements obtained in the
two measurement blocks, comprised data on 59 lipids from five
classes detected in the sample from each participant: lysophosphati-
dylcholines (LPCs; six lipids), phosphatidylcholines (twelve lipids),
cholesterol esters (ChEs; ten lipids), sphingomyelins (eight lipids),
and triglycerides (TGs; 23 lipids). One LPC and one TG displaying
high measurement variance in B2 were excluded from the combined
data set, as well as six additional LPCs, one TG and one ChE that had
been reported only in the samples measured in B2.

Hierarchical clustering analysis
The results of HCA are displayed as dendrograms, together with the
ordered heatmap that represents the Euclidean distance for each pair
of objects (Figure 1). The Pearson correlations between the original
Euclidean distances and the cophenetic distances based on HCA of
the combined B1–B2 data sets were equal to 0.75 and 0.60 before and
after equating, respectively (see Supplementary Table S1 for these
correlations for the other evaluated clustering methods). Before
quantile equating, the subjects in the combined (concatenated with
the variables as the shared mode) B1–B2 data set clustered very
strongly according to measurement block (Figure 1a). However, after
equating, subjects measured in the two respective blocks were
dispersed among each other (Figure 1b). The stability of the clustering
of participants in the combined equated B1–B2 data sets, as assessed
by a nonparametric bootstrap procedure, was similar to that observed
in the separate B1 data before equating (Supplementary Figure S2). In
concordance with our previous results using the separate B1 data
before equating, in the combined equated B1–B2 data sets the average
Euclidean distance appeared to increase when considering MZ
cotwins, nontwin siblings, and unrelated participants, respectively
(Figure 2). In addition, the distances between DZ cotwins appeared to
assume a middle ground between those separating MZ cotwins and
those separating nontwin siblings. Indeed, the differences in median
Euclidean distance between several subgroups of participants were
statistically significant according to a multiple comparison procedure
(Table 2).

Clustering of MZ cotwins, of DZ cotwins, and of nontwin siblings
in the combined equated B1–B2 data set were characterized using
‘node analysis’. Spearman’s correlation between the Euclidean dis-
tances for all pairs of study participants and their distances according
to node analysis was equal to 0.44, Po0.001. The statistical signifi-
cance of the clustering of family members was assessed by comparison
of the observed numbers of occasions where a particular number
of nodes separated cotwins or nontwin siblings, with a reference
distribution as provided by permutation testing. The results of these
comparisons are visualized and summarized in Figure 3 and in
Supplementary Table S2, respectively. For the MZ twin pairs only the
number of occasions (in the current study fifteen) where cotwins were
separated by one node in the dendrogram, was significantly larger than
the number of occasions that was to be expected on the basis of chance
(Figure 3a and Supplementary Table S2A). However, for the DZ twin
pairs, the number of twin pairs separated by one node (four pairs), as
well as the numbers of twin pairs separated by five (two pairs), six
(three pairs) or nine nodes (three pairs) in the dendrogram were
significantly larger than was expected on the basis of the permutation
test results (Figure 3b and Supplementary Table S2B). In the case of
the nontwin siblings, we observed no sibling pairs that were separated
by one node in the dendrogram, but we did observe significantly
larger numbers of pairs than was expected on the basis of the
permutation tests that were connected by two nodes (two pairs), or

Table 1 Basic description of participants

MZM MZF DZM DZF

Nontwin

siblings Total

Number of participants 34 40 20 36 52 182

Average age in years (SD) 18.1

(0.2)

18.1

(0.2)

18.2

(0.2)

18.2

(0.2)

19.3

(4.7)

18.5

(2.5)

Abbreviations: DZF, dizygotic female; DZM, dizygotic male; MZF, monozygotic female; MZM,
monozygotic male.
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by three (two pairs), five (three pairs), eight (six pairs) or nineteen
nodes (seven pairs) (Figure 3c and Supplementary Table S2C).
Indeed, when including all pairs of sex-matched related participants
in linear regression analysis, monozygotic cotwins were separated by
significantly smaller numbers of nodes in the dendrogram compared
with other types of pairs, t(121)¼ �3.201, P¼ 0.002. The effects of
sex, measurement block and mean CRP level on the number of nodes
separating pair members were not significant in this regression.

In Supplementary Tables S3 and S4, descriptions are given for MZ
cotwins separated by only one and by more than one node in the
combined equated B1–B2 data sets, respectively. Within the group of

MZ twin pairs, female sex was significantly associated with an increased
number of nodes separating cotwins when adjusting for measurement
block and for CRP concentration averaged over both cotwins:
t(33)¼ 2.498, P¼ 0.02. The regression coefficients for pair average
CRP level and for measurement block were not significantly different
from zero.

DISCUSSION

Influences of genes, environment and age
We report the results of application of HCA to multivariate data
from a genetically informative sample of individuals. These data were

0 5 10

Color Keya

b

Euclidean distance

Figure 1 Heatmaps of Euclidean distances between objects, and associated hierarchical clustering dendrograms for combined B1–B2 data set before and

after quantile equating. B1 and B2 data sets were combined by concatenation with the variables (lipids) as the shared mode. (a) Before quantile equating;

(b) After equating. In this figure, individual objects are labeled by two color codes: the first color encodes the gender of the participant of whom the sample

was obtained (red for females and blue for males). DZ female and DZ male twins are indicated with pink and light blue, respectively. The second color

encodes the block in which the sample of this participant was measured (white for B1 and black for B2).
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generated with a metabolomics platform that analyzed lipids in blood
plasma samples from twins and their biological nontwin siblings.
Our results suggest that shared genetic background and shared
environmental exposure contribute to similarity of blood plasma
lipidomics profiles among individuals. First, we observed that median
Euclidean distances, computed on the basis of these lipid profiles,
were smaller between individuals with higher degrees of shared
genetic background and/or shared environmental exposure. Second,
when analyzing the numbers of nodes separating pairs of relatives in
the hierarchical clustering dendrogram, in general relatives sharing
relatively much genetic background and/or environmental exposure
were separated by relatively small numbers of nodes. For example, the
median intrapair Euclidean distances were smaller between MZ twins
compared with DZ twins. We also observed a relatively small number
of DZ twin pairs separated by only one node compared with the
number of MZ twin pairs separated by one node. In addition, we
found more DZ twin pairs separated by more than one node than was
expected on the basis of chance. These observations together suggest
that the higher proportion of genetic variation shared by MZ cotwins
compared with DZ cotwins contributes to higher relative similarities
of lipidomics profiles within MZ twin pairs.

The median Euclidean distance among biological nontwin siblings
assumed a middle ground between the median distance between DZ

cotwins and the median distance among unrelated participants.
Although DZ cotwins and nontwin siblings share the same degree
of genetic variation, the variation in age was larger among the
nontwin siblings (range, 12–35 years) compared with the DZ cotwins
(Table 1). This larger variation in age might have been one of the

MZ cotwins DZ cotwins Non-twin
siblings

Unrelated
participants

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

E
uc

lid
ea

n 
di

st
an

ce

Figure 2 Box-whisker plots showing distributions of Euclidean distances

between MZ cotwins (N¼37 distances), between DZ cotwins (N¼28

distances), among sex-matched nontwin siblings (N¼66 distances), and

among sex-matched unrelated participants (N¼8203 distances) in the

combined equated B1–B2 data set. The observations indicated with a plus

sign in case of the unrelated participants illustrate the slight skewness of

the distribution of the Euclidean distances among all participants.

Table 2 Significance of differences in Euclidean distances among

subgroupsa

MZ

cotwins

DZ

cotwins

Nontwin

siblings

Unrelated

participants

MZ cotwins – – – –

DZ cotwins 40.05 – – –

Nontwin siblings o0.01** 40.05 – –

Unrelated participants o0.01** o0.01** o0.01** –

aP-values as resulting from multiple comparison test for differences in median Euclidean
distances between monozygotic (MZ) cotwins, dizygotic (DZ) cotwins, sex-matched nontwin
siblings, and sex-matched unrelated participants.
**Po0.01

Figure 3 Results of node analyses with respect to permutation-based chance

distributions. (a) MZ cotwins; (b) DZ cotwins; (c) Sex-matched nontwin siblings.

Numbers of nodes separating cotwins or nontwin siblings increase from left to

right in each panel. For each number of branching points, from bottom to top

the number of twin or nontwin sibling pairs separated by that particular number

of branching points in the permutation tests is displayed by gray bars. Black

dots indicate the number of observations given the original ordering of labels

along the leaves of the dendrogram as in Figure 1b and Supplementary

Figure S2. The depicted chance distributions were created by combination

of the results from all (ie, 100) sets of 10000 permutations. Asterisks

indicate average P-values o0.05 (see Supplementary Table S2).
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most prominent factors contributing to the larger Euclidean distances
among nontwin siblings compared with the DZ cotwins. The larger
Euclidean distances among unrelated participants compared with
nontwin siblings are as expected on the basis of the larger degrees of
shared genetic and environmental variation among the siblings.

As we investigated a relatively young sample, almost all participants
from the same family still lived together (with the exception of the
older non-twin siblings). This may have enhanced the contrasts in
genetic and environmental influences on phenotypic variation that we
found for the different groups of participants: MZ twins, DZ twins,
nontwin siblings, and unrelated participants. In a similarly composed
sample of older individuals, for example, one might find a smaller
influence of shared environment compared with our sample, as well
as a larger relative influence of non-shared environment for all groups
of participants. This would then result in more uniform results across
the four types of participants in this older sample compared with our
study sample.

It is conceivable that the genetic and environmental effects on lipid
profile similarity in this study were mediated in particular via the
TGs, because the lipids within this class comprised the largest number
over all classes and displayed the highest correlation (median r, 0.74;
median absolute deviation, 0.15).

Interestingly, we did not observe substantial changes in the
clustering when expressing the concentrations of the reported TGs
as a fraction of the total TG pool, suggesting that the levels of the
individual TGs are driven by additional genetic and environmental
factors other than those that determine the size of the VLDL-remnant
fraction of human blood plasma.

Successful data set combination
We used two combined data sets, originating from two ‘blocks’ of
measurements using the same LC–MS method. To correct the data for
practically unavoidable nonbiological differences between the blocks,
we applied the method of ‘quantile equating’ as described in one of
our previous publications.16 Although we showed in that paper that
the correction by this method was successful at the metabolite level,
our results in the current paper in addition suggest that after application
of this method the clustering of family members is largely retained.

First, nine MZ twin pairs in the combined B1–B2 data of which the
cotwins were separated by only one node, came from B1. All of these
pairs were separated by only one node in the analysis of the separate
B1 data as well;14 in this analysis of the separate B1 data the total
number of MZ twin pairs separated by one node was 13. The
remaining six pairs of MZ cotwins separated by only one node came
from the B2 data. Five of these six pairs were separated by one node in
the separate B2 data as well (results available by request); in the
analysis of the B2 data separately there was only one additional pair of
MZ cotwins separated by one node. However, another pair of MZ
twins (belonging to the family with identifier ‘43’, see the legend to
Supplementary Figure S2) who were separated by more than one
node in the separate B2 data, were separated by only one node in the
combined equated B1–B2 data set. This latter observation suggests
that due to quantile equating, the lipid profiles of the members of this
particular MZ pair have been made more similar. This could be
regarded a potentially unfavorable side effect of the data transforma-
tion effectuated by quantile equating, the primary aim of which is to
remove block effects.

A second indication for successful block effect correction is that
block effects were not significant in regression analysis of the number
of nodes separating sex-matched relatives, both in the total group of
participants, as well as in the MZ twins only.

Sex effects on clustering
We substantiate the finding that male MZ twin pairs have relatively
more similar lipid profiles compared with female MZ pairs. In line
with our previous results,14 in linear regression we observed a signifi-
cant association of female gender with an increased number of nodes
in the dendrogram separating MZ cotwins. This observation might
be related to asynchronous menstrual cycles (Supplementary Tables
S3 and S4).

However, we could not replicate the almost perfect segregation of
participants according to gender in the dendrogram as reported
earlier.14,28 In the dendrograms based on the separate B2 data set
(data not shown), as well as in the combined B1–B2 data sets both
before (Figure 1a) and after (Figure 1b) equating, we did not observe
strong clustering of male and female participants. This might have
been caused by the fact that in B1, for each study sample two replicate
lipidomics analyses were performed, whereas in B2 each sample was
measured only once. It is conceivable that the averaged replicate
measurements from B1 approximate the true biological effects, for
example, male–female differences, with higher precision than the
single replicate measurements from B2.

Comparison with other studies
We are aware of two studies by other authors that allow for a compa-
rison with our results obtained in the current study. Assfalg et al28

provided evidence of specific, but not necessarily unique metabolic
phenotypes in humans. The authors extracted an invariant part of the
urinary metabolic phenotype as assessed by NMR analysis of multiple
longitudinally (over a period of about 3 months) obtained samples.
The results described in the current paper are concordant with those
obtained by Assfalg et al, in the sense that healthy individuals appear to
have a specific metabolic phenotype corresponding to a specific position
of that individual in the multivariate ‘metabolite space’ put up by the
metabolite concentrations as can be measured in for example biofluids.

Bernini et al,27 on the basis of urine samples collected repeatedly in
a cohort of 31 healthy individuals over a period of about 3 years,
found that intra-individual differences in human metabolic pheno-
types correlated mainly with changes in lifestyle, and were possibly
also due to changes in microflora. In line with our results, the authors
found that the members of the only MZ twin pair included in their
study resembled each other more than any other pair of study
participants did. They also observed that the second closest pair of
individuals was a pair of father and son, and that in one individual
metabolic similarities persisted despite significant changes in environ-
ment due to the moving to a different country. In combination, in
accordance with our conclusions on the basis of the current study,
these observations suggest an important role for genes in determining
metabolic similarities among individuals.

Unique contributions of this study
In the current study, we build upon the work described in two of our
previous publications to make some novel observations that are
relevant for quantitative genetic analysis of lipidomics profiles.

First, due to the combination of the lipidomics data obtained in
two different measurement blocks, we were able to include in this
study many more DZ twin pairs and nontwin siblings compared with
our previous publication that was based mainly on MZ twin pairs.14

The additional participants in the current study enabled us to further
establish the effects of genes, environment and age on relative
similarities of lipid profiles among individuals.

Second, in this paper, we extend our hierarchical clustering
approach by incorporating a number of statistical tests for the
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observed effects. In particular, we tested the effects of monozygosity,
CRP levels, gender and measurement block on the lipid profile
similarity of sex-matched family members. Also, we report the results
of tests for the comparison of the observed numbers of nodes in the
dendrogram separating pairs of relatives, with the number of nodes as
expected on the basis of permutation.

Furthermore, the results in the present report are consistent with
successful correction of measurement block effects by ‘quantile
equating’,16 to make combinable metabolomics data sets for subse-
quent quantitative genetic analyses. This is a valuable addition to
the publication where we introduced this data correction method,
because the statistical tests in that paper mainly demonstrated the
beneficial effects of quantile equating on the comparability of data for
the same metabolites in different data sets. The current analyses
support that this correction was indeed beneficial at the subtle level of
the clustering of family members, which is informative of the relative
contribution of genes and environment to phenotypic variation.

CONCLUSIONS

Taken together, our findings support the notion that shared genetic
background and/or shared environmental exposures, as well as similari-
ties in age, contribute to similarities in blood plasma lipidomics profiles
among individuals. Furthermore, the results obtained in this study
suggest that quantile equating is useful to make metabolomics data
sets combinable for enhanced power in quantitative genetic analyses.

Application of our approach to genetically determined metabolite
ratios, as identified by for example recent genome-wide association
studies for metabolomics,9,29,30 might provide even more distinct
clustering of relatives than we have demonstrated here.
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