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A Note on the Power Provided by Sibships of Sizes 2, 3, and 4
in Genetic Covariance Modeling of a Codominant QTL
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The contribution of size 3 and size 4 sibships to power in covariance structure modeling of a
codominant QTL is investigated. Power calculations are based on the noncentral chi-square dis-
tribution. Sixteen sets of parameter values are considered. Results indicate that size 3 and size
4 sibships provided large increases in power over size 2 sibships. On average a size 3 (4) sib-
ship is 3 (6 to 7) times as informative as a size 2 sibship. The increase in power does not
depend on the specific effects sizes of the independent variables in the model. These findings
extend results presented by Fulker and Cherny (1996) and Schork (1993). We consider the in-
formativeness of the size 2, 3, and 4 sibships, which differ in the unique configuration of IBD
sharing. Three of the 10 size 3 and 7 of the 36 size 4 sibships are particularly informative. The
results presented concern random (unselective) sampling but do have implications for selective
sampling.

INTRODUCTION

Eaves et al. (1996) and Fulker and Cherny (1996) have
recently shown how effects of quantitative trait loci
(QTL) can be incorporated into standard genetic co-
variance structure modeling (GCSM) (Lange et al.,
1976; Martin and Eaves, 1977; Neale and Cardon,
1992) of sib-pair or dizygotic twin data. This extension
of GCSM follows similar developments in the closely
related area of variance component modeling of pedi-
gree data (Schork, 1993; Almasy and Blangero, 1998).
Compared to the more traditional methods of multi-
point sib-pair analysis, GCSM provides a statistically
more powerful means to test the presence of a QTL.
The method originally suggested by Haseman and El-
ston (1972) and the method suggested by Kruglyak and
Lander (1995) relate the average proportions of alleles
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shared by the sib pairs identically by descent (IBD) to
the squared sib-pair differences. The GCSM approach,
in contrast, involves fitting a model including a QTL
variance component to the bivariate covariance matrix
of the sib pairs [see Drigalenko (1998) for a discussion
of the relationship between the GCSM approach and
the Haseman and Elston regression method]. Both the
GCSM approach and the Kruglyak and Lander (1995)
method incorporate maximum-likelihood estimation
and are, therefore, amenable to standard power calcu-
lations based on noncentral chi-square distribution
(Hewitt and Heath, 1988). Fulker and Cherny (1996,
Table 1) compared the power of the GCSM approach
and the Kruglyak and Lander method for models in-
volving a QTL effect and shared environmental effects.
Based on the reported noncentrality parameters, the
GCSM approach is about a factor of 1.3 to 2 more pow-
erful, depending on the size of the effect. In addition,
Fulker and Cherny (1996) carried out a simulation
study which demonstrated that the Kruglyak and Lan-
der method outperformed the Haseman and Elston re-
gression method, but that GCSM provided the most
powerful test by far. Boomsma and Dolan (1999) com-
pared the Haseman and Elston regression method with
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GCSM of univariate and multivariate phenotypes. The
model that they considered included a codominant QTL,
unshared environmental effects, and additive polygenic
effects. Their power calculations indicated that, in the
analysis of a univariate phenotype, one requires about
a factor of 1.3 more sib pairs to obtain a power of .80
(a = .001) using the Haseman and Elston method com-
pared to GCSM. Similar results were observed for a
dominant QTL effect. The results reported by Fulker and
Cherny (1996) and by Boomsma and Dolan (1998) are
based on sibships of size 2. Schork (1993) reported re-
sults concerning the power provided by size 2 and size
3 sibships to detect a QTL. Size 3 sibships were found
to provide large increases in power compared to size 2
sibships. On average, a size 3 sibship was found to be
about three times as informative as a size 2 sibship.

The aim of the present paper is to extend the re-
sults mentioned by investigating how much power both
size 3 and size 4 sibships provide in GCSM of a QTL.
We base our power calculations on the noncentral chi-
square distribution within the normal theory maximum-
likelihood framework. We consider a simple model in
which phenotypic individual differences are due to
varying, Independent, contributions of a codominant
QTL, additive polygenic effects, and unshared and
shared environmental effects.

METHOD

We specify that the variance (S2) of an approxi-
mately normally distributed phenotype consists of an
additive polygenic component (S2), an unshared and
shared environmental component (S2 and S2), and an
oligogenic component (S2) due to a single codominant
QTL: S2 = S2 + S2 + S2 + S2. The phenotypic co-
variance between siblings is a function of the shared
environmental, additive polygenic, and QTL effects.
The contribution of the QTL to the phenotypic covari-
ance depends on the mean proportion of alleles that the
sibs share IBD. We assume that we can determine this
unambiguously for each sibpair, i.e., we observe a fully
informative marker situation upon the QTL. This as-
sumption allows us to summarize the sibpair data in co-
variance matrices without loss of information, i.e., the
phenotypic covariance matrices are sufficient statistics.
The phenotypic covariance of sibs is .5S2 + S2 + Pij

S2, where Pij denotes the proportion of alleles shared
IBD by sib i and sib j. These proportions, correspond-
ing to IBD = 0, IBD = 1, and IBD = 2, are 0, .5, and 1.
The proportion in a sib pair consisting of sibs i and j is
calculated as ij = .5prob (IBD = 1)ij + prob (IBD = 2)ij,

where prob (IBD = 1)ij [prob (IBD = 2)ij] is the prob-
ability of sibs i and j sharing one [two] alleles IBD. Our
assumption of a fully informative marker implies that
these probabilities assume values equal to zero or one,
so that Pij assumes the value 0, .5, or 1.

We define a sibship type by its unique configura-
tion of the values of Pij. We know that there are 3 types
of size 2 sibships and we deduce that there are 10 types
of size 3 sibships and 36 types of size 4 sibships. The
sibship types along with their expected frequencies are
shown in Tables I—III. The expected frequencies indi-
cate the proportion of a given sibship type in a random
sample of size 2, 3, or 4 sibships.

Given the hypothesis of the presence of a QTL ef-
fect, each sibship type is characterized by a unique Co-
variance matrix. In total there are 49 (3 + 10 + 36) co-
variance matrices. The true model for these covariance
matrices is (only the lower triangle is shown):

where S2 = S2 + S2 + S2 + S2. In carrying out the power
calculation, we choose values for the variance compo-
nents S2, S2, S2, and S2 (see Table IV) and fit a model
to the covariance matrices without the QTL variance
component (S2 = 0). Let Z2k, Z3k, and Z4k denote the
expected covariances under this false model.

Theoretical expression for these matrices may de
derived from S2k, S3k, and S4k simply by setting S2 to

and
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Table I. IBD Status in Sibships of Size 2 Defining 3 Sibship
Types (k) [The Asterisks Indicate the Most Informative

Sibship Types (See Fig. 2)]

Type
(k)

1*
2
3*

Sib paira

sls2

2
1
0

Expected
frequency

(f2)

4/16
8/16
4/16

a s1 s2 denotes sib i, sib j.

Here f2k, f3k, and f4k denote the frequencies of the sib-
pair types (subscript k) within each sibship size (see
Tables I-III). In minimizing the log-likelihood ratio
function in Eq. (1), S2 is fixed to equal zero and the
other variance components, if present in the true model,
are estimated. The components S2 and S2 are present
in all, and the component S2 is present in some of the
analyses (see Table IV). Because MZ twins are un-
informative in detecting QTL effects, we do not include
these in our calculations. Consequently, models that in-
clude the variance component S2, in addition to S2, S2,
and S2, are not identified. Full siblings, regardless of
sibship size, do not provide sufficient information to
estimate both S2 and S2. The variance component S2,
however, is identified, so that power calculations can
still be carried out. Given the absence of MZ twins, one
may adopt two strategies in dealing with S2: one may
either fix S2 to its true value or estimate it, even though

Table II. IBD Status in Sibships of Size 3 Defining 10 Sibship
Types (k) [The Asterisks Indicate the Most Informative

Sibship Types (See Fig. 2)]

Type
(k)

1
2
3*
4
5
6
7
8*
9

10*

Sib pair

sls2

2
2
2
1
1
1
1
0
0
0

sls3

2
1
0
2
1
1
0
2
1
0

s2s3

2
1
0
1
2
0
1
0
1
2

Expected
frequency(f3)

4/64
8/64
4/64
8/64
8/64
8/64
8/64
4/64
8/64
4/64

the model is not identified. As these strategies produce
identical results in calculating the probability of de-
tecting the (identified) component S2, we arbitrarily
choose to estimate S2.

We minimize the log-likelihood ratio function in
Eq. (1) by means of a quasi-Newton method employ-
ing exact gradients (Koval, 1997). Although we use our
own FORTRAN program, the MX program (Neale,
1997) can be used to this end.5 The minimum function
value is the noncentrality parameter (NCP) of the non-
central chi-square distribution. Using the method out-
lined by Hewitt and Heath (1988), we calculate the
power to detect a given QTL effect, for a given total
number of sibships, and a given a level. To this end,
we use our own FORTRAN routines, but again MX may
be used instead. To gain some insight into the contri-
butions of the size 3 and size 4 sibships, we consider
the contributions of these groups to the noncentrality
parameter. We are free to choose the total numbers of
size 2, 3, and 4 sibships (N2, N3, and N4), but once these
numbers are determined, the number of each sibship
type follows from the frequencies f2k, f3k, and f4k.

We suppose that we have at our disposal resources
to collect phenotypic and marker data in a fixed total
of N2 x 2 + N3 x 3 + N4 x 4 = M individual sibs. We
fix M to equal 5000 and consider four configurations
of values of N2, N3, and N4. These configurations are
{N2 = 2500, N3 = 0, N4= 0}, {N2 = 0, N3 = 1667, N4 =
0}, {N2 = 0, N3 = 0, N4 = 1250}, and {N2 = 1750, N3 =
333, N4 =125}. Note that the total number of sibships,
i.e., the number of cases in the analysis, varies but that

5 An MX script is available at the www site http://views.vcu.
edu/mx/examples/sibpowqtl.

equal zero. Model fitting is carried out by minimizing
the following function:

where N2, N3, and W4 denote the number of size 2, size
3, and size 4 sibships, respectively. The contributions
of these sibships to L(S2, S2, S2, S2) are the following
log-likelihood ratios:
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the total number of individuals subjects, and so the
costs incurred in obtaining the phenotypic and genetic
data, remains constant. We consider 2x8 sets of pa-
rameter values, which are shown in Table IV (to ease
presentation we refer to the first eight sets as parame-
ter sets 1, 2, etc., and to the second eight sets, as para-
meter sets 1', 2', etc.). In the first eight parameter sets,
shared environmental effects are absent. In sets 1 to 4,
we increase the contribution, to the phenotypic vari-
ance, of the QTL (from 5 to 20% of the phenotypic
variance) and decrease the contribution of the polygenic
effects. In sets 5 to 8, we increase the contribution of

Table IV. Sixteen Sets of Parameter Values Defining the Contri-
bution of Additive Polygenic (A), Shared and Unshared Environ-
mental (C and E), and QTL Effects to the Phenotypic Variance

(S2 = S2 + S2 + S2 + S2): Contributions Are Expressed as a
Percentage of the Total Phenotypic Variance

Parameter set

Source

S2

S2

S2

S2

S2

S2

S2

S2

1

45
50
05
0

1'

45
40
05
10

2

40
50
10
0

2'

40
40
10
10

3

35
50
15
0

3'

35
40
15
10

4

30
50
20
0

4'

30
40
20
10

5

50
45
05
0

5'

45
30
05
20

6

50
40
10
0

6'

40
30
10
20

7

50
35
15
0

7'

35
30
15
20

8

50
30
20
0

8'

30
30
20
20

the QTL (from 5 to 20% of the phenotypic variance)
and decrease the contribution of the unshared environ-
mental effects. Sets 1' to 4' are the same as sets 1 to 4
with respect to the genetic effects, but in sets 1' to 4'
the environmental effects include shared (10%), in ad-
dition to unshared (40%), environmental effects. Sets
5' to 10', are like sets 1' to 4', but here the contribu-
tions of shared and unshared environmental effects to
the phenotypic variance are 20 and 30%, respectively.

RESULTS

Table V contains the noncentrality parameters for
the four sample configurations along with the observed
power given the present sample sizes and the a of .001.
The results in Table V pertain to parameter sets 1 to 8.
Table VI contains similar results for parameter sets 1'
to 8'. We first discuss the results in Table V.

It is clear that size 3 and size 4 sibships provide a
good deal of information concerning the QTL. The NCP
of the size 3 (4) sibships is just over a factor 2 (3.3) larger
than that of the size 2 sibships. In terms of power, we
find large differences. For instance, in the case of para-
meter set 2, where the QTL accounts for 10% of the vari-
ance, the power associated with size 2, 3, and 4 sibships,
is .09, .32, and .60, respectively. Differences in power
are further illustrated in Fig. 1. This figure contains the
plots relating power to the number of individual subjects
and the number of sibships for parameter set 2.

The fourth configuration of sample sizes is meant
to resemble what one might encounter in reality: the ma-

Table III. IBD Status in Sibships of Size 4 Defining 36 Sibship
Types (k) [The asterisks indicate most informative

sibship types (see Figure 2)

Type
(k)

1
2
3*
4
5
6
7
8*
9

10*
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27*
28
29*
30
31
32
33
34*
35
36*

Sib pair

sls2

2
2
2
2
2
2
2
2
2
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0

sls3

2
2
2
1
1
1
1
0
0
0
2
2
2
2
1
1
1
1
1
1
1
1
0
0
0
0
2
2
2
1
1
1
1
0
0
0

s2s3

2
2
2
1
1
1
1
0
0
0
1
1
1
1
2
2
2
2
0
0
0
0
1
1
1
1
0
0
0
1
1
1
1
2
2
2

sls4

2
1
0
2
1
1
0
2
1
0
2
1
1
0
2
1
1
0
2
1
1
0
2
1
1
0
2
1
0
2
1
1
0
2
1
0

s2s4

2
1
0
2
1
1
0
2
1
0
1
2
0
1
1
2
0
1
1
2
0
1
1
2
0
1
0
1
2
0
1
1
2
0
1
2

s3s4

2
1
0
1
2
0
1
0
1
2
2
1
1
0
1
2
0
1
1
0
2
1
0
1
1
2
2
1
0
1
2
0
1
0
1
2

Expected
frequency (f4)

4/256
8/256
4/256
8/256
8/256
8/256
8/256
4/256
8/256
4/256
8/256
8/256
8/256
8/256
8/256
8/256
8/256
8/256
8/256
8/256
8/256
8/256
8/256
8/256
8/256
8/256
4/256
8/256
4/256
8/256
8/256
8/256
8/256
4/256
8/256
4/256
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Table V. Noncentrality Parameters and, in Parentheses, Power
Given an a of .001 for Parameter Sets 1-8

Seta

1
2
3
4
5
6
7
8

M =5000
N2 = 2500
#3 = 0
#4 = 0

0.94 (<.02)
3.78 (.09)
8.53 (.37)

15.22 (.73)
.98 (<.02)

4.12 (.11)
9.77 (.44)

18.41 (.84)

M =5000
N2 = 0
N3 = 1667
N4 = 0

1.99 (.03)
7.89 (.32)

17.67 (.82)
31.28 (>.98)
2.09 (.03)
8.72 (.36)

20.63 (.89)
38.79 (>.98)

M =5000
N2 = 0

N 3 = 0

N4 = 1250

3.14 (.06)
12.59 (.60)
28.47 (.98)
51.06 (>.98)

3.31 (.07)
14.03 (.68)
33.72 (>.98)
64.53 (>.98)

M = 5000
N2 = 1750
N3 = 333
N4 = 125

1.37 (<.02)
5.48 (.17)

12.35 (.59)
22.01 (.92)

1.43 (.02)
6.03 (.20)

14.33 (.69)
27.08 (.97)

a Each set corresponds to the specific set of parameter values given in Table IV.

jority of the sibships are size 2 (1750), and smaller num-
bers are sizes 3 (333) and 4 (125). Compared to the first
configuration, consisting solely of size 2 sibships, the
gains in power are again considerable. The contributions
of the size 2, 3, and 4 sibships to the NCP equal about
48, 29, and 23%, respectively, regardless of the exact
values of the parameters. So the size 3 and 4 sibships
contribute over 50% to the NCP, while together these
sibships comprise just 21% of the total number of sib-
ships, or 30% of the individual subjects (i.e., 1500/5000).

The presence of shared environmental effects is
known to increase the power of tests based directly on

the proportion of alleles shared IBD by sibs (Risch and
Zhang, 1995). To assess the effects of the presence of
shared environment in the present context, we carry out
power calculations using parameter sets 1' to 8'. The
result can be compared with those obtained with para-
meter sets 1 to 4 in Table V. As expected, the presence
of shared environmental effects increases the power to
detect the QTL effect. For instance, in the [N2 = 1750,
N3 = 333, N4 = 125} configuration, the power to detect
the QTL effect accounting for 10% of the variance,
given S2 = 0 (parameter set 2), S2 = 10% (parameter
set 2'), and S2 = 20% (parameter set 6), is .17, .24, and

Table VI. Noncentrality Parameters and, in Parentheses, Power
Given an a of .001 for Parameter Sets 1'-8'

M =5000
N2 = 2500
N 3 = 0

N4 = 0

Seta

1' 1.13 (<.02)
2' 4.57 (.13)
3' 10.31 (.45)
4' 18.41 (.85)
5' 1.47 (<.02)
6' 5.93 (.20)
7' 13.40 (.64)
8' 24.00 (.95)

M =5000
N 2 = 0

#3 = 1667
N 4 = 0

2.46 (.04)
9.78 (.43)

21.90 (.92)
38.79 (>.99)

3.26 (.07)
12.95 (.62)
28.99 (.98)
51.42 (>.99)

M =5000
#2 = 0

#3 = 0

N4 = 1250

3.96 (.10)
15.88 (.76)
35.94 (>.99)
64.53 (>.99)
5.32 (.16)

21.33 (.91)
48.34 (>.99)
87.05 (>.99)

M = 5000
N2 = 1750
N3 = 333
N4 = 125

1.68 (.02)
6.74 (.24)

15.18 (.73)
27.09 (.97)
2.22 (.04)
8.87 (.38)

20.00 (.88)
35.77 (>.99)

a Each set corresponds to the specific set of parameter values given in Table IV.
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Fig. 1. Top: Number of size 2, 3, and 4 sibships (right to left) against
power for parameter set 2. Bottom: Number of individual subjects
in size 2, 3, and 4 (right to left) sibships against power for parameter
set 2 (a = .001).

.38, respectively. Comparing the NCPs for the para-
meter sets 2, 2', and 6', the presence of shared envi-
ronmental effects accounting for 10% (20%) of the
variance, increases the NCP in sibship of sizes 2, 3, and
4 by about a factor of 1.21, 1.24, and 1.26 (1.57, 1.64,
and 1.70), respectively.

It is well known that sibships are not all equally
informative. In the case of size 2 sibships, for instance,
the IBD = 1 sibships are not informative at all. Selec-
tive sampling strategies have been suggested to iden-
tify, on phenotypic grounds, the most informative sib
pairs (Eaves and Meyer, 1994; Carey and Williamson,
1991; Cardon and Fulker, 1994; Risch and Zhang,
1995, 1996; Gu et al., 1996; Allison et al., 1998; Dolan
and Boomsma, 1998). To obtain an indication of the
variation in informativeness within the size 2, 3, and
4 sibships, we plot the unweighed contributions to the
minimum of the log-likelihood function [Eq. (1)], i.e.,
we plot the values of log (del [Zjk]) + trace (Z-1Sjk) -
log (det [Zjk]) -J(J= 2,3,4) of each sibship type. Note
that in calculating the actual multigroup log-likelihood
ratio [Eq. (1)], these values are weighed by sample
sizes and added. To facilitate comparison, these val-
ues have been scaled so that the value in sibship type
k = 1 of size 2 (see Table I) equals 1. Figure 2 (top)
contains the plots for parameter set 4. We also plot the
values of log(det [Zjk]) + trace (Z-1Sjk) - log(det [ S j k ] )
- J]/J (J = 2,3,4) to provide an indication of informa-
tiveness that takes into account the variation in sibship

size (Fig. 2, bottom). These values have again been
scaled so that the value in sibship type k = 1 of size 2
(see Table I) equals 1.

The difference in informativeness between the
sibship sizes, which is demonstrated above, is clear in
Fig. 2. The differences within sibship size, however,
are also considerable. Within the size 3 sibships, six
of the sibship types (Nos. 2, 4, 5, 6, 7, 9; see Table
II) are about as informative as IBD = 0 and IBD = 2
size 2 sibships, and three sibship types (Nos. 3, 8, 10)
are a lot more informative. Within the size 4 sibships,
we have seven sibship types that are extremely infor-
mative (Nos. 3, 8, 10, 27, 29, 34, 36; see Table III).
As expected, the most informative sibship types are
composed of IBD = 0 and IBD = 2 sib pairs. We have
marked the most informative sibship types with an as-
terisk in Tables I-III.

DISCUSSION

The results presented here clearly demonstrate the
relatively large informativeness of size 3 and size 4 sib-
ships in detecting QTL effects in genetic covariance
structure modeling. Based on the results in Tables V
and VI, we find that on average a size 4 (3) sibship is

Fig. 2. Informativeness of size 2 sibships ( Circle ), size
3 sibships ( + ), and size 4 sibships ( * ). The order
of sibship types corresponds to that in Tables I-III. Top: The Y axis
represents log (det [ Z j k ] ) + trace (Z-1Sjk) - log (det [Sjk]) - J (J =
2,3,4) for parameter set 4 (see Table IV). The dotted line represents
the average over size 2, 3, and 4 sibships. Bottom: The Y axis rep-
resents [log(det [Zjk]) + trace (Z-1Sjk) - log (det [Sjk) - J]/J (J =
2,3,4) for parameter set 4 (see Table IV). The dotted line represents
the average over size 2, 3, and 4 sibships.
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about a factor 6 to 7 (3) more informative than a size
2 sibship. In terms of individual subjects, we find that
on average an individual in a size 4 (3) sibship is about
3.3 (2.1) times as informative as an individual in a size
2 sibship. These findings agree with results presented
by Schork (1993).

We have not considered selective sampling, but
Fig. 2 (top) shows clearly that there is quite a large vari-
ation in informativeness within the size 2, 3, and 4 sib-
ships. It is striking that all size 4 sibships are a lot more
informative than the most informative size 2 sibships
and that size 3 sibships are at least as informative as
the most informative size 2 sibships. Taking sibship
size into account (Fig. 2, bottom), we still see that size
4 sibships provide a lot more information concerning
the QTL. As the unit of sampling is sibship, one could
argue that one should include as many size 3 and 4 sib-
ships in one's sample as possible, regardless of their
phenotypic scores. This is not to say that selective sam-
pling applied to size 3 and 4 sibships will not result in
large increases in power. However, M individuals in
size 2 sibships ascertained through selective sampling
may be expected to provide less information than M in-
dividuals in size 4 sibships ascertained through random
sampling.

We have limited the presentation of results to
power calculations involving a codominant QTL. We
did look at a dominant QTL (see also Boomsma and
Dolan, 1999). The results indicated that the detection
of the total QTL effect (additive and nonadditive com-
ponents; a 2-df test) is as feasible as the detection of a
codominant QTL effect. The levels of power resemble
those reported in Table V. However, the detection of
the variance component due to nonadditive QTL effects
(a 1-df test), is difficult given the sample sizes consid-
ered. For instance, we repeated power calculations for
parameter set 3, but specified that the 15% of variance
due to the QTL consisted of 5% additive and 10% non-
additive variance. In the size 2, 3, and 4 sibships the
power to detect the additive and nonadditive QTL ef-
fects simultaneously equaled .36, .84, and >.98, re-
spectively (a = .001, df = 2). These probabilities dif-
fer marginally from those in Table V. The power to
detect the dominance variance component, however,
equaled .02, .09, and .24 (a = .001, df = 1).

A complication that larger sibships introduces is
that such sibships may contain individuals that differ
with respect to many important variables, such as age.
Such heterogeneity will complicate model specifica-
tion and increase the number of parameters to be esti-
mated. This may partially offset the increase in power

to detect a QTL provided by sibships larger than size 2.
To a degree, the plausibility of such heterogeneity can
be investigated in standard twin covariance structure
modeling. Martin et al. (1998) have emphasized the im-
portance of such modeling as a prelude to QTL analysis
in DZ twins.

The power calculations presented here are simple
to carry out, because IBD status at the QTL was taken
to be known with certainty. In practice, the presence of
less than perfectly informative marker data will mean
that data summary in phenotypic covariance matrices
will not generally be possible without loss of informa-
tion. We do not believe that less than perfect informa-
tion concerning IBD status will result in appreciably
different conclusions concerning the relative informa-
tiveness of size 2, 3, and 4 sibships. Covariance struc-
ture modeling including QTL effects in unbalanced sib-
ships with imperfectly informative markers itself does
not pose any fundamental problems (Almasy and
Blangero, 1998).
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