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Abstract
The classical twin model can be reparametrized as an equivalent multilevel model. The multilevel parameterization has 
underexplored advantages, such as the possibility to include higher-level clustering variables in which lower levels are 
nested. When this higher-level clustering is not modeled, its variance is captured by the common environmental variance 
component. In this paper we illustrate the application of a 3-level multilevel model to twin data by analyzing the regional 
clustering of 7-year-old children’s height in the Netherlands. Our findings show that 1.8%, of the phenotypic variance in 
children’s height is attributable to regional clustering, which is 7% of the variance explained by between-family or common 
environmental components. Since regional clustering may represent ancestry, we also investigate the effect of region after 
correcting for genetic principal components, in a subsample of participants with genome-wide SNP data. After correction, 
region no longer explained variation in height. Our results suggest that the phenotypic variance explained by region might 
represent ancestry effects on height.
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Introduction

The classical twin model (CTM) is often approached from 
a structural equation modeling (SEM) framework (Bentler 
and Stein 1992; Boomsma and Molenaar 1986; Heath et al. 
1989; Neale and Cardon 1992; Rijsdijk and Sham 2002). In 
this framework, it is a one-level model with family as level 

one sampling unit. The analysis of twin data can, however, 
also be approached from a multilevel model (MLM) per-
spective. MLMs were developed specifically for the analysis 
of clustered data (Goldstein 2011; Laird and Ware 1982; 
Longford 1993; Paterson and Goldstein 1991). Classical 
examples are children (level 1 units), who are clustered in 
classes (level 2) within schools (level 3; Sellström and Brem-
berg 2006). Other examples are fMRI measures (level 1) that 
are clustered in individuals (level 2), who are clustered in 
scanner type (level 3; Chen et al. 2012), or biomarker data 
(level 1) that are clustered in measurement batches (level 
2; Scharpf et al. 2011). The classical twin design is based 
on data that also have natural clustering, namely, twins are 
clustered within pairs. For this reason, the MLM framework 
can accommodate the CTM (Guo and Wang 2002; McAr-
dle and Prescott 2005; Rabe-Hesketh et al. 2008; Van den 
Oord 2001). Hunter (2020) provides a detailed account of 
the CTM in the MLM framework with example code and 
several extensions. While the MLM specification of the 
CTM is equivalent to the SEM approach, it also has some 
interesting, yet underexplored, advantages. In this paper 
we aim to elaborate on these advantages, and to provide 
an empirical illustration of a multilevel twin model, where 
we study the clustering of children’s height in geographical 
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regions in the Netherlands, and consider the role therein of 
genetic ancestry.

In the SEM approach to the CTM, the covariance struc-
ture of twin-pairs is modelled to decompose phenotypic vari-
ance into multiple components that represent genetic and 
non-genetic influences. Given the biometrical underpinning 
of the twin model (Eaves et al. 1978; Falconer and MacKay 
1996; Fisher 1918), the phenotypic variance can be decom-
posed into additive genetic variance (A), non-additive or 
dominance genetic variance (D), common environmental 
variance (C), and unique environmental variance (E) compo-
nents. Variance decomposition is based on the premise that 
monozygotic (MZ) twins share 100% of their DNA and dizy-
gotic (DZ) twins share on average 50% of their segregating 
genes. Hence, additive and non-additive genetic variance is 
fully shared by MZ twins, whereas additive and non-additive 
variance components are shared for 50% and 25% by DZ 
twins. In the CTM, all influences that are not captured by 
segregating genetic variants are labeled as “environment”. 
These influences can be categorized as common environ-
ment (i.e., shared by twins from the same family) or unique 
or unshared environment (i.e., creating variation among 
members from the same family). These are also referred 
to as between and within family environmental influences. 
The full ACDE model is not identified when analyzing one 
phenotype per twin, and only three of the four components 
can be simultaneously estimated. In this SEM approach to 
modeling twin data, the variance decomposition is based on 
the bivariate data observed in twin pairs (i.e., one phenotype 
for twin 1, and one for twin 2, which are both level 1 units).

In the MLM framework the phenotypic variance can be 
decomposed into a within-pair (level 1) and a between-pair 
(or family; level 2) components. This requires reparam-
eterization of the model into level 1 and level 2 variance 
components. Because the E component captures variance 
that is not shared by twins, this component is an individual 
level 1 variance component. The C component is by defini-
tion shared by twins, regardless of zygosity, and is a family 
level 2 variance component. The A component, however, 
is more complicated, as it is a level 2 component in MZ 
twin pairs, but both a level 1 and a level 2 component in DZ 
twin pairs. To account for this, the A-component is divided 
into two orthogonal components, unique additive (AU) and 
common additive (AC). Here, AU is a first-level component 
representing the A variance at the individual level (within 
pairs or within families), while AC is a second-level com-
ponent (between pairs or between families), representing 
the A variance at the twin-pair level. These definitions are 
consistent with the classical notations in which AC refers 
to within family genetic variance known as A1 (Boomsma 
and Molenaar 1986; Martin and Eaves 1977), or the aver-
age breeding value variance (Barton et al. 2017), while AU 
refers to the between family genetic variance known as A2 

(Boomsma and Molenaar 1986; Martin and Eaves 1977), 
or the segregating genetic variance (Barton et al. 2017). In 
MZs, the AU variance component is 0, since all the variance 
explained by A is shared by both twins from a pair. For DZ 
twins, the variance of both AC and AU are constrained to 
equal 0.5, since on average 50% of the A variance is shared 
by the individuals and 50% of the A variance is unique for 
the individual.

An important, yet underexplored, advantage of the MLM 
approach, is the possibility to include higher-level variables 
in which lower-levels are nested. By including these higher-
level variables, we can identify variance components which 
are attributable to higher-level clustering. Such clusters may 
be a consequence of data acquisition or design, e.g., clus-
tering of biomarker data that are measured in batches, or 
clustering of brain imaging data by fMRI scanner type. They 
may also occur naturally, for example, families in regions, 
neighborhoods or schools. If the higher-level variable is not 
included in the variance decomposition models, the variance 
that it explains will be captured as part of the C-component, 
since both twins, regardless of zygosity, share the higher-
level variable (i.e., the twin pair is nested in the higher-level 
variable).

Within the SEM framework, higher-level variables can be 
included in the model as a fixed effect on the individual level 
(i.e., covariate) by means of (linear) regression. For nominal 
covariates (i.e., factors in the ANOVA sense), this approach 
requires the variable to be dummy coded, which may be 
impractical, for example when the number of assays for a 
biomarker or the number of schools that twins are enrolled in 
is large. In the MLM framework, however, the higher-level 
variable is treated as a random rather than a fixed effect, and 
this reduces the number of parameters to one single variance 
component. That is, given a factor with L categories, the 
fixed effects approach requires L-1 additional parameters, 
whereas the random effects approach requires one additional 
parameter (a variance component). In addition, the MLM 
approach is more suitable than the SEM framework in deal-
ing with unequal group sizes (Gelman 2005). Finally, an 
MLM approach allows us to evaluate the contribution of the 
higher-level component to the C-component, as estimated in 
the standard twin model. This can be achieved by compar-
ing the C-component estimate of the two-level model (i.e., 
the standard twin model) to the estimate of the three-level 
model.

In this paper, we illustrate the use of multilevel twin 
models by investigating the regional clustering of children’s 
height with twin data from the Netherlands Twin Register 
(Boomsma et al. 1992; Ligthart et al. 2019). Height serves 
as an indicator of the general development of a country, and 
is known to decrease in times of scarcity and increase in 
times of prosperity (Baten and Blum 2014; Baten and Kom-
los 1998). Also, children’s height is an indicator of overall 
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development, where height is associated with cognitive 
development and school achievement (Karp et al. 1992; 
Spears 2012). In 7-year-old children, resemblance between 
family members for height is explained by additive genetic 
(approximately 60%) and common environmental (approxi-
mately 20%) factors (Jelenkovic et al. 2016; Silventoinen 
et al. 2004, 2007).

In the Netherlands, the association between height and 
geographical region is well established (Abdellaoui et al. 
2013), which makes this a clustering variable of interest. 
Inhabitants of different geographical region may display 
genetic and environmental differences. Location is associ-
ated with genetic differences (e.g. Abdellaoui et al. 2019) 
and differences in social and cultural traditions, diet, socio-
economic status, and living circumstances (e.g., rural vs 
urban, e.g. Colodro-Conde et al. 2018). By analyzing height 
and geographical region data in a three-level MLM, we can 
determine whether variance in children’s height is associated 
with geographic region, and estimate the proportion of the 
common environmental or between-family variance that can 
be explained by these regional effects.

In a subsample of 7-year-old participants, we investigated 
the extent to which regional clustering may be due to genetic 
ancestry by including the first three genetic principal compo-
nents (PCs; Hotelling 1933). The genetic PCs are obtained 
through principal component analysis of the covariance 
matrix of the genotype Single Nucleotide Polymorphism 
(SNP) data (Reich et al. 2008). In the Netherlands, the first 
genetic PC is associated with a north–south height gradient 
(Abdellaoui et al. 2013; Boomsma et al. 2014). This gradi-
ent is likely a result of social, geographical and historical 
divisions between the north and the south. Southern regions 
were conquered by the Roman empire, adopted Catholicism, 
and were geographically separated from the northern regions 
by five large rivers in the Netherlands (Schalekamp 2009). 
This first Dutch PC also shows a strong correlation with 
the European PC that differentiates northern from south-
ern European populations (1000 Genomes PC4; Abdellaoui 
et al. 2013). The second PC is associated with the east–west 
division of the Netherlands. This PC may reflect differences 
between rural and urban environments, since the east of 
the Netherlands is characterized by less populous and rural 
areas, while the west includes the largest concentration of 
urban areas in the Netherlands. Alternatively, it could also 
be a result of geographical separation by the IJssel river or 
the Veluwe hillridge. The third PC is associated with the 
more central regions of the country (Abdellaoui et al. 2013). 
By adding the PCs to our models, we assessed the role of 
genetic ancestry of individuals between regions.

In this paper, we first considered regional clustering of 
children’s height in a large data set of MZ and DZ twins 
(N = 7436). Secondly, we considered the model within a 
subgroup of children who were genotyped on genome-wide 

SNP arrays (N = 1375). Subsequently, we determined 
whether the region effects represent genetic ancestry. And 
finally, we analyzed the relationship between the three PCs 
and height in 7-year-old children, and included the genetic 
PCs that show an association as an individual level (level 1) 
covariate in the model.

Methods

Participants and procedure

The data were obtained from the Netherlands Twin Register 
(NTR), which has collected data on multiple-births and their 
family members since 1987 (Ligthart et al. 2019). In the 
longitudinal NTR surveys of phenotypes in children, parents 
were asked to complete questionnaires on their children’s 
health, growth, and behavior with intervals of approximately 
two years.

For the present study, we included data on 6- and 7-year-
old twin children (range 6 years and 0 months to 7 years and 
11 months). The sample included 7346 twin children (50.3% 
girls) in 3724 families. The twins were 7.4 (SD 0.3) years old 
on average, when their mothers reported their height. Of these 
children, 1375 (18.7% of total) were genotyped. Genotyping 
largely took place independent of phenotype criteria. The 1375 
genotyped individuals were from 714 families, 52.4% of this 
subsample were girls and the average age was 7.4 (SD 0.3).

We included data from 2002 onwards, as that was when 
active collection of postal code data began. In approximately 
1% of the questionnaires that were sent out after 2002, postal 
code was missing and approximately 20% of the parents did 
not report their children’s height at age 7. We only included 
participants with both height and postal code information 
at age 7 in our initial selection. Next, children with severe 
handicaps were excluded, as were multiple twin pairs per 
family, twins born before 34 weeks of gestation, and twins 
outside the 6-8 age range. A flowchart outlining the sam-
ple size after every step of exclusion is displayed in Fig. 1. 
Zygosity was determined by DNA polymorphisms or by a 
parent-reported zygosity questionnaire on twin similarity. 
The zygosity determination by questionnaire has an accu-
racy of over 95% (Ligthart et al. 2019). Table 1 displays the 
descriptive statistics of the phenotypic data by zygosity for 
the total and for the genotyped sample.

Measures

Height

Mothers reported child height in centimeters and the date of 
measurement. Estourgie-van Burk et al. (2006) demonstrated 
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that the correlation between maternal report and height 
measured in the laboratory was 0.96 in 5-year-old children 
in NTR. Mothers reported the age of their children at the 
moment of completing the survey and the date of the height 
measurement. In 5% of the children, the date at the time of 
height measurement was not available. Therefore, in this 5%, 
we took the age at the time of questionnaire completion. The 
correlation between age at questionnaire completion and age 
at height measurement is 0.95, and the mean difference in 
age is 0.01 years.

Region

At the time of reporting height, parents also reported the four 
digits of the postal code of their current address. In the Neth-
erlands, postal codes map to geographical locations. The 
postal code consists of four digits and two letters, where the 
first two digits map to region and the second two digits and 
letters map to city, neighborhood within the city, and street. 
In our analyses, region is specified by the first two digits of 
the postal code, resulting in 90 regions which are displayed 
in Fig. 2. They cover on average 462 km2 and have a mean 
population of around 192,000 (total area of the country is 
41,543 km2, including ~ 19% water bodies). Most regions 
encompass several municipalities. In the total sample, the 
number of children per postal code unit ranged from 10 to 
194 (M = 81.6, SD = 38.4). In the genotyped sample, the 

number of children per postal code unit ranged from 1 to 43 
(M = 15.6, SD = 8.6).

Principal components

Genotype data in 1375 individuals were collected by the 
following genotype platforms: Affymetrix 6, Axiom and 
Perlegen, Illumina 1 M, 660 and GSA-NTR. The SNP data 
obtained on the 6 platforms were pruned in Plink to be inde-
pendent, with additional filters to ensure Minor Allele Fre-
quency (MAF) > 0.01, Hardy–Weinberg Equilibrium (HWE) 
p > 0.0001 and call rate over 95%. Subsequently, long range 
Linkage Disequilibrium (LD) regions were excluded as 
described in Abdellaoui et al. (2013), because elevated levels 
of LD result in overrepresentation of these loci in the PCs, 
disguising genome-wide patterns that reflect ancestry. For 
each platform, the NTR data were merged with the data of 
the individuals from the 1000 Genomes reference panel for 
the same SNPs, and Principal Components were calculated 
using SMARTPCA (Prince et al. 2006), where the 1000 
genomes populations were projected onto the NTR partici-
pants (Privé et al. 2020). Population outliers were identi-
fied using pairwise PC plots. People who were identified as 
outliers from the central population on the basis of visual 
inspection of these pairwise PC plots, were excluded, ren-
dering the final clustering homogeneous. The NTR platform 
genotype data of this cluster were aligned to the GoNL refer-
ence panel V4 (The Genome of the Netherlands Consortium 

Fig. 1   Flowchart containing 
sample size for the total sample 
(upper row) and the genotyped 
subsample (lower row) after 
every step of exclusion

Table 1   The number of twins, 
the mean, standard deviation 
and the twin correlation per 
zygosity group for the total 
sample and the genotyped 
subsample

MZm DZm MZf DZf DZmf DZfm

Total sample
 N (individuals) 1283 1228 1338 1208 1163 1126
 Mean height 128.3 128.4 127.3 127.8 128.6 128.4
 SD height 6.1 5.8 5.8 5.8 5.7 6.2
 Twin correlation 0.95 0.61 0.94 0.63 0.58 0.68

Genotyped subsample
 N (individuals) 350 167 251 221 136 150
 Mean 128.5 129.1 127.7 127.4 128.2 128.0
 SD 6.0 5.8 5.7 6.1 5.6 5.7
 Twin-correlation 0.97 0.71 0.95 0.68 0.57 0.69
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2014), merged into a single dataset, and then imputed in 
MaCH-Admix (Liu et al. 2013). From the imputed data, 
SNPs were selected that satisfied R2 ≥ 0.90, and that were 
genotyped on at least one platform. These SNPs were sub-
sequently filtered on MAF < 0.025, HWE p < 0.0001, call 
rate ≥ 98%, and the absence of Mendelian errors. Again, 
the long-range LD regions were removed from these SNP 
data. With this selection of SNPs, 20 new PCs were calcu-
lated with SMARTPCA (Prince et al. 2006), to indicate the 
residual Dutch genetic stratification.

Models

The classical twin model

In the classical twin model, the phenotypic variance can 
be decomposed into three components: Additive genetic 
(A), Common environmental (C) and unique Environment 
(E) component, which includes measurement error. As in 
most earlier publications, we will not consider genetic 
dominance variance for height (but see Joshi et al. 2015).

Assuming A, C, and E are mutually independent, we 
have the following decomposition of phenotypic variance:

The variance component model can be written as a path 
model in which A, C and E are standardized to have unit 
variance (see Fig. 3):

where y1 represents the phenotype of first twin and y2 of the 
second twin in a twin pair. A, C and E represent individual 
factor scores for twin 1 and twin 2, and a, c, e represent 
population specific factor loadings or path coefficients.

If A, C and E have unit variance, the variance decom-
position is:

In terms of the path coefficient model, the covariance 
between the twins equals �mz = a2 + c2 , in MZ twins, and 
�dz =

1

2
a2 + c2 in DZ twins.

Multilevel twin model

When specifying a CTM as an MLM, the variance compo-
nents of the CTM are parametrized as within and between 
family components. The additive genetic variance is sepa-
rated into two parts: a part that is shared by the members 
of a twin pair on the second level, AC, and a part that is 
unique to each individual on the first level, AU. The path 
coefficients associated with the AC and AU are equal. The 
variance of the common genetic factor (r) and the unique 
genetic factor (1-r) depend on the zygosity of the twin 
pair: for MZ r = 1.00, while for DZ r = 0.50. The common 
environmental factor, representing between family influ-
ences, is a level two component. Unique environmental 
factors E represent within family, level one, influences. 
The means (intercepts) μ are specified on the first level 
and are assumed to be equal for first- and second-born 
twins and zygosity. The ACE model in multilevel para-
metrization is illustrated in Fig. 4. Here, we included age 
at the individual level, because it represents the age at 
reported height measure and thus could differ between 
twins.

Multilevel twin model with third level clustering 
variable and individual level covariates

Other clustering variables can be added to this model, as 
displayed in Fig. 5. A higher-order clustering variable can 
be added to the third level of this model in two steps. On 
the third level, the higher-order clustering variable is added 

var(y) = �
2

A
+ �

2

C
+ �

2

E

y1 = � + a*A1 + c*C1 + e*E1,

y2 = � + a*A2 + c*C2 + e*E2,

var(y) = a2 + c2 + e
2
.

Fig. 2   Map of the 90 regions in the Netherlands based on first two 
digits of the postal code Note. This figure is reprinted from ‘Post-
codekaart van Nederland’ by postcodebijadres (2020), retrieved July 
29, 2020, from https​://postc​odebi​jadre​s.nl/postc​odes-neder​land

https://postcodebijadres.nl/postcodes-nederland
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with a variance of 1 and a path loading of 1 to a latent var-
iable on the second level, which has a variance of 0 and 
a freely estimated path loading from Region (reg) to the 
observed phenotype. Although the Region latent variable 
could directly affect the child-level phenotype and does not 
need to pass through the family level, we draw it here to 
indicate the nesting that region-level effects pass through 
the family level before impacting the child level. The same 
3-level model which also includes PC1 as a fixed covariate 
is displayed in Fig. 5.

Analyses

All analyses were performed in R (R Core Team 2020) with 
the package OpenMx (Boker et al. 2011; Neale et al. 2016; 
Pritikin et al. 2017). Age at measurement was converted 
to z-scores. Due to scaling, the variance of PC scores is 
extremely low compared to the variance of the other vari-
ables in the model. Therefore, we multiplied these scores by 
1000 to avoid ill-conditioning in the parameter covariance 
matrix, since ill-conditioning can cause optimization prob-
lems. First, in the full sample, a variance decomposition of 
the variance in height was obtained in the regular genetic 
covariance structure modeling. We included the z-scores of 
age at measurement and sex as covariates. Then, we repeated 
the analysis in the multilevel model to illustrate the equiv-
alence of the two approaches. Following this, we added 
region as a third level in the multilevel parametrization. We 
repeated these steps in the genotyped group to investigate the 
representativeness of this subsample. Finally, in the geno-
typed subset, we added the PC scores as individual level 
covariates in the 3- level model.

We tested the contribution of region to the variance of 
height by comparing the difference of fit in the 3-level model 
and the 2-level model without region with the log-likelihood 
ratio test. Under certain regularity conditions (Steiger et al. 
1985), the difference in fit between these models is distrib-
uted as Chi squared with one degree of freedom. For all 
analysis we employed an alpha level of 0.01.

Fig. 3   The Classical Twin 
Model including three latent 
factors per person, representing 
Additive genetic, Common and 
unique Environmental influ-
ences. Two additional covari-
ates, age and sex, are presented 
in a schematic way in grey

Fig. 4   Multilevel parametrization of the ACE model, where Y repre-
sents the phenotype, latent variables AU represent the unique additive 
genetic influences and E unique environment. μ is the intercept, sex 
and age are covariates, presented in a schematic way. On the family 
level, C is common environment and AC common genetic influences. 
The path coefficients, a, c, e, β1 and β2 represent regression coeffi-
cients. The r parameter represents variance (1 for MZ twins and 0.5 
for DZ twins)
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Results

The plot of the average height by region revealed a 
north–south trend, with the children in the northern 
regions being taller than those in the southern regions of 
the Netherlands (of the 12 provinces in the Netherlands, 
the northern province Drenthe had the highest mean height 
(M = 129.40) and the southern province Noord-Brabant had 
the lowest mean height (M = 127.01)). Figure 6 displays 
the mean height of 7-year-olds per region. In the genotyped 
group, height correlated with PC1 (i.e., the PC showing 
a north–south gradient) (r = 0.16), but not with other PCs 
(r = 0.01 for PC2, r = − 0.01 for PC3). Therefore, we incor-
porated PC1 into subsequent analyses and omitted PC2 and 
PC3.

The 2-level model fitted significantly worse than the 
3-level model with region as level three clustering vari-
able (Δ-2LL = 22.93, Δdf = 1, p < 0.001). So, region in 
the Netherlands accounts for a statistically significant pro-
portion (1.8%) of the variance in height in 7-year-olds. 
Table 2 displays the parameter estimates and the standard-
ized variance components of the models. Comparing the 
parameter estimates of the models shows that the variance 
attributable to region in the 3-level model was captured by 
the C-component in the 2-level model.

Results of analyses for genotyped sample

In the genotyped group, region explained 1.6% of the vari-
ance, which almost equals the percentage 1.8% reported 
above. The likelihood ratio test of this component was 
not significant: Δ-2LL = 0.85, Δdf = 1, p = 0.36. However, 
we ascribed this to a lack of power given the appreciably 
smaller sample size (in terms of individuals, N = 7346, 
vs. N = 1375). The parameter estimates and standardized 
variance components are displayed in Table 3.

Results of analyses for genotyped sample with PC1 
as covariate

Table 4 displays the parameter estimates and standardized 
variance components of the 2- and 3-level model with PC1 
included as a fixed covariate. When we included PC1 in 
the 3-level model, the variance explained by region went 
from 1.6% (before inclusion of PC1; see previous section) 
to < 0.001%. This indicates that when PC1 is included 
as a covariate, region no longer explains any phenotypic 
variance in height. This was confirmed by the likelihood 
ratio test comparing the 2-level and 3-level model. As 
expected, with PC1 as a covariate the 2-level model fit-
ted equally well as the 3-level model (Δ-2LL < 0.001,  

Fig. 5   Multilevel parametriza-
tion of the ACE model with 
Region as a third level, which 
loads on the region variable 
REG F on the family level, on 
which the observed variable Y 
is regressed with its coefficient 
estimating the effect of region. 
Sex and age are covariates. We 
compared the model where we 
included PC1 as a covariate 
with the model where we did 
not include PC1 as a covariate 
(we tested PC1, PC2, and PC3, 
but depict only PC1 to avoid 
clutter, and because our final 
model included only PC1). Note 
that the dummy REG F latent 
variable serves as a placeholder 
to stress the nesting of families 
in regions, but technically, it is 
not needed
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Fig. 6   Mean height (in centimeters) of 7-year-old children in centimeters by region in the Netherlands

Table 2   Results of CTM and 
2-level and 3-level MLM 
analyses for the full sample: 
path coefficient estimates 
with standard errors (SE) 
and standardized variance 
components of the 2-level and 
the 3-level models (with age 
and sex as covariates)

Key differences between the 2-Level and the 3-Level model are printed in bold
N = 7346 twins in 3724 families

Parameter CTM 2-Level model 3-Level model

Intercept
 Intercept (SE) 128.4 (0.11) 128.4 (0.11) 128.5 (0.14)

Covariates
 βsex (SE) − 0.62 (0.12) − 0.62 (0.12) − 0.62 (0.12)
 βage (SE) 1.43 (0.08) 1.42 (0.08) 1.42 (0.08)

a, c, e, Region path loadings
  a (SE) 4.70 (0.08) 4.70 (0.08) 4.70 (0.08)
  c (SE) 2.90 (0.16) 2.90 (0.16) 2.80 (0.16)
  e (SE) 1.39 (0.03) 1.39 (0.03) 1.39 (0.03))
  Region (SE) 92.33 (2.13)

Total variance (a2 + c2 + e2 (+ region2)) 32.46 32.46 32.47
A (standardized) 0.681 0.681 0.681
C (standardized) 0.259 0.259 0.241
E (standardized) 0.060 0.060 0.060
REGION (standardized) 0.018
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Δ df = 1), suggesting no effects of region after inclusion 
of PC1 in the model.

Discussion

In this paper we specified a multilevel twin model in 
OpenMx and fitted it to data on children’s height. We added 
a higher-level variable, region in the Netherlands, in which 
the twin pairs were nested. Adding a third level variable 
enabled us to determine whether part of the variance in chil-
dren’s height can be explained by differences in geographical 
region.

We found that 68% of the variance in 7-year-old chil-
dren’s height is attributable to additive genetic factors. Com-
mon environmental factors accounted for 26%, and unshared 
environmental factors (including measurement error) for 
6% of the variance. We found that regional differences 
accounted for a significant 1.8% of the phenotypic variance 
in the complete sample (1.6% in the genotype subsample). 
In a standard multilevel ACE-twin model, ignoring regional 
clustering, this variance was captured by the C-component. 
This is expected, because the common environmental com-
ponent captures between-family variance, regardless of its 
source. At age 7, cohabiting MZ and DZ twins necessarily 
share region, so that the effect of region will contribute to 
C variance.

In a subsample of children with genetic PC scores, i.e., 
the genotyped subsample, we found a statistically significant 
correlation (r = 0.16) between height and the first genetic 
PC, representing the geographical north–south gradient 
in the Netherlands. This correlation is similar to previous 
results for height in a Dutch sample of adults and in line with 
the findings in European samples, where northern popula-
tions are on average taller than southern populations (Abdel-
laoui et al. 2013). The correlations between the second and 
third PC and children’s height were negligible. After the 
inclusion of the first PC in the multilevel model, region no 
longer explained any variance.

This last result indicates that the variance in children’s 
height that is explained by region is attributable to differ-
ences in genetic ancestry. That is, although unmodeled 
regional clustering manifests as C, it does not mean that 
the inflation of the common environmental variance is due 
to genuine shared environmental factors like region. When 
we included the first PC, which reflects differences in allele 
frequencies between regions, no variance was explained by 
geographical region above and beyond what was already 
explained by the PC. Because offspring from the same fam-
ily share their ancestry, a proportion of the variance that 
is captured in the C-component of the CTM is actually of 
a genetic nature. This does not, however, entirely exclude 
the presence of environmental effects that are explanatory 
of regional clustering in height. The PC representing the 
north–south gradient could be correlated with environmental 

Table 3   Results of 2-level and 3-level MLM analyses in the geno-
typed sample (N = 1375 twins in 714 families)

Key differences between the 2-Level and the 3-Level model are 
printed in bold
Path coefficient estimates with standard errors (SE) and standardized 
variance components of the 2- and 3-level model (with age and sex as 
covariates)

Parameter 2-Level model 3-Level model

Intercept
 Intercept (SE) 128.4 (0.26) 128.5 (0.27)

Covariates
 βsex (SE) − 0.62 (0.31) − 0.63 (0.31)
 βage (SE) 1.16 (0.18) 1.15 (0.18)

a, c, e, Region path loadings
 a (SE) 4.53 (0.20) 4.53 (0.20)
 c (SE) 3.21 (0.34) 3.13 (0.16)
 e (SE) 1.13 (0.04) 1.13 (0.04))
 Region (SE) 0.71 (2.13)

Total variance (a2 + c2 + e2 
(+ region2))

32.11 32.11

A (standardized) 0.640 0.640
C (standardized) 0.320 0.305
E (standardized) 0.040 0.040
REGION (standardized) 0.016

Table 4   Results of 2-level and 3-level MLM analyses for the geno-
typed sample with PC covariate (N = 1375 twins in 714 families)

Path coefficient estimates with standard errors (SE) and standardized 
variance components of the 2- and 3-level ACER model, including 
PC1

Parameter 2-Level model 3-Level model

Intercept
 Intercept (SE) 128.5 (0.26) 128.5 (0.26)

Covariates
 βsex (SE) − 0.74 (0.31) − 0.74 (0.31)
 βage (SE) 1.16 (0.18) 1.17 (0.18)
 βPC1 (SE) 0.11 (0.02) 0.11 (0.02)

a, c, e, Region path loadings
 a (SE) 4.55 (0.20) 4.55 (0.20)
 c (SE) 3.03 (0.36) 3.03 (0.36)
 e (SE) 1.13 (0.04) 1.13 (0.04))
 Region (SE) 8.97 × 10−6 (0.76)

Total variance (a2 + c2 + e2 
(+ region2))

31.19 31.19

A (standardized) 0.664 0.664
C (standardized) 0.295 0.295
E (standardized) 0.041 0.041
REGION (standardized) 2.58 × 10−12
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factors that might contribute to the relationship between 
PC1, height and regional clustering.

We note the following limitations of our study. First, we 
did not explicitly model qualitative differences in genetic 
architecture between boys and girls. There is some evidence 
that the additive genetic correlation in opposite-sex twins is 
lower than 0.50, suggesting that partly different genes oper-
ate in 7-year-old boys and girls (Silventoinen et al. 2007). 
However, the twin correlations in our sample did not suggest 
the presence of qualitative sex differences (we observed cor-
relations of 0.61 and 0.63 in the DZ male and DZ female, 
versus 0.58 and 0.68 in the DZ opposite sex male–female 
and DZ opposite sex female-male twins, respectively).

Secondly, we surmise that the power to detect the region 
effect in the genotyped sample was low, given the sample 
size (N = 1375 in the genotyped sample). However, the effect 
sizes in both samples were very similar (1.8% vs 1.6%), and 
in the full sample (N = 7346) effect was statistically signifi-
cance. Therefore, we trust that the regional effect is real.

A final limitation to note is that the current approach 
assumes that lower levels are fully nested in the higher-
level. That is, members of a twin pair cannot differ on the 
clustering variable. It is therefore not possible to define a 
third-level clustering variable, when the variable of interest 
differs within a twin pair (e.g., adult twins who do not live in 
the same region). It is possible, however, to include variables 
in which both twins are not nested as a lower-level variance 
component. When the clustering variable is not specified as 
a higher-level (i.e., nesting) variable, the effect of clustering 
can also be manifested as any of the other variance compo-
nents (i.e., A/C/D/E) when unmodeled. Furthermore, miss-
ing data for higher-level clustering variable (here: region) is 
not allowed. The higher-level variable needs to have a suf-
ficient number of units for the model to have enough power 
to detect the effect of the higher-level variable (e.g., postal 
codes in our region example; Goldstein, 2011).

The current study showed that when data are nested in 
a higher-level variable, adding this higher-level variable to 
a multilevel model for twin data provides opportunities to 
further decompose the phenotypic variance. Clustering can 
be due to unwanted confounding, for example, batch effects. 
Applying a multilevel model to identify the nuisance vari-
ance that is explained by higher-level clustering would in 
this case serve as a correction. However, as is shown within 
this paper, the MLM can also be used to empirically study 
clustering.
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