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Despite the wealth of studies indicating substantial genetic influences on general and
specific cognitive abilities in children and adolescents (Bouchard and McGue, 1981;
Boomsma, 1993; Cherny and Cardon, 1994; Devlin, Daniels and Roeder, 1997;
Rijsdijke ez al., 1995, 1997; Boomsma and van Baal, 1998: Rietveld ez al., 2001;
Bartels et al, 2002), relatively few studies have investigated the heritability of
cognitive ability during early and middle adulthood (Kallman, 1951; McGue,
Bouchard and Iacono, 1993; Pedersen, 1992; McClearn et al., 1997; also reviewed in
Pedersen and Lichtenstein, 1997). Heritability for general cognitive ability increases
from infancy (20%), to childhood (40%) to adolescence (50%), to early, middle and
late adulthood (60%). Plomin ez al., (1994) showed that the observed stability in
cognitive ability across the life span (i.e. smart kids will be smart adults) is largely
mediated by stable genetic factors. This genetic stability suggests the existence of
stable individual differences in underlying neurophysiological or biological
mechanisms. We still have little knowledge of the nature of these mechanisms
underlying cognitive ability.

The first goal of the present study is to investigate the heritability of cognitive
ability in early and middle adulthood. A second goal is to gain more insight in the
anatomical, electrophysiological, and behavioural substrates of cognitive ability. It
will be investigated whether anatomical, electrophysiological, and behavioural indices
of cognitive ability, derived mostly from non-genetic designs, show interindividual
variability. Next, it will be investigated to what extent this interindividual variability
can be ascribed to genetic or environmental variability between individuals. Finally,
it will be investigated whether there is a correlation between the genes that influence
individual differences in these biological indices and the genes that influence
individual differences in cognitive ability. A significant genetic correlation may
facilitate the future detection of genes for cognitive ability. Biological,
neurophysiological, electrophysiological and behavioural indices of the pathways that
connect genes and cognitive ability are called endophenotypes of cognitive ability. An
extended twin design, i.e. including twins and additional siblings, will be used to
quantify the relative contributions of genes and environmental influences to the (co)
variance in cognitive ability and its endophenotypes.

Outline of this thesis

This introductory chapter will give a brief overview of the anatomical,
electrophysiological and behavioural indices of cognitive ability used throughout this
thesis, and of the extended twin families on which observations on cognitive ability
and its endophenotypes were obtained. Recruitment procedures, structure of the
families in terms of age, sex, zygosity, and family composition, and a description of
tasks and measures will be given. In the ensuing chapter, the biometrical model
underlying quantitative genetic analyses will be discussed and a solid biometrical
basis for the extended twin design will be provided. In Chapter three the extended
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twin design is evaluated in terms of the statistical power to detect genetic and
environmental influences.

In Chapters four and five the extent to which heritability estimates derived from
twin studies can be generalized to the non-twin population is investigated, by
comparing twins with their non-twin siblings. In Chapter four this is done for
cognitive ability, in Chapter five this is done for brain volume.

Chapters 6 to 10 examine various endophenotypes for cognition. The ground
plan for each endophenotype is to first test the contribution of genetic factors to
individual differences in the endophenotype, followed by an examination of how the
endophenotype correlates to the various aspects of psychometric IQ and the genetic
or environmental source of this correlation. Chapter 6 reports on the genetic analysis
of brain volumes and specifically investigates the heritability of cerebellar volume. In
Chapter 7 the relation between brain volumes and intelligence is investigated in a
multivariate genetic design. In Chapters 8, 9, and 10 a multivariate genetic design is
employed to investigate the extent to which the relation between intelligence and
alpha peak frequency (Chapter 9), perceptual speed (Chapter 9), latency of selective
response activation (Chapter 10), and frontal inhibition (Chapter 10), is mediated
through common genetic factors or through common environmental factors.

In Chapter 11 a description of the practical application of existing linkage and
association methods to an extended twin design is given including some extensions of
these methods (e.g. non-additive genetic influences).

In the general discussion (Chapter 12), the empirical results from the chapters 3
to 10 are discussed and integrated with existing literature. A short note on future
linkage and association based gene-finding using the database on which this thesis is
based, concludes this thesis.

Anatomical indices of cognitive ability

In the course of this thesis I was fortunate to become part of the collaboration of our
department (Biological Psychology at the VU) with the structural Magnetic
Resonance Imaging (MRI) laboratory of the Utrecht Medical centre. Brain volumes
are an obvious source of individual differences in cognitive abilities. Since the second
half of the 19th century positive relations between head size and intelligence have
been observed, and these observations have gained tremendous weight by
confirmation through the much more reliable assessments of ‘head size’ by structural
MRI (Willerman et al., 1991; Egan at al. 1994; Andreasen ez al., 1993; Raz er al.,
1993; Storfer, 1999; Wickett ez al., 2000; Pennington et al., 2000). Recent progress
in the scoring and segmentation of MRI scans make it possible to separately assess
(regional) white and grey matter volumes. White matter volume may easily be
construed as a possible source of individual processing speed. Existing evidence now
explicitly suggests a link between (frontal) grey matter volume and the “g” factor of
intelligence (Thompson ez al, 2001). Very little, however, is known about the
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genetic architecture of cerebral and cerebellar brain volumes. In collaboration with
drs Baaré, Hulshoff Pol and Kahn (Posthuma et al, 2000; Baaré er al., 2001;
Hulshoff Pol ez al., 2002) this thesis has tried to remedy this situation somewhat.

Electrophysiological and behavioural indices of cognitive ability

Electrophysiological and behavioural indices of cognitive ability may be derived from
two specific domains of brain functioning: working memory capacity (Kyllonen and
Christal, 1990; Necka, 1992; Daneman and Merikle, 1996; Engle ef al., 1999) and
processing speed (Vernon, 1983, 1985, 1991; Jensen, 1982; Reed and Jensen, 1992;
Vernon, 1993; Vernon and Weese, 1993; Bowling and Mackenzie, 1996; Knorr and
Neubauer, 1996; Rijsdijk, Vernon and Boomsma, 1998; Fry and Hale, 2000).

Recent advances in the cognitive neurosciences have provided powerful methods
and designs for assessment within these domains, allowing the measurement of
various stages of information processing, such as stimulus detection, stimulus
perception, response selection, response initiation, response execution, memory
consolidation, and memory retrieval.

These methods include behavioral test-batteries, neurophysiological techniques
like electroencephalography (EEG) and event related potentials (ERP) (Gevins ez 4L,
1999), and neuroimaging methods like positron emission tomography (PET)
(Raichle et al., 1979: Colsher, 1980) or functional Magnetic Resonance Imaging
(fMRI) (Ogawa and Lee, 1990; Howseman and Bowtel, 1999; Logothetis ez /.,
2001). Currently, however, PET and fMRI are not feasible on the scale required by
genetic epidemiology.

Working Memory
All reasoning involves the use of working memory in which people temporarily store
and manipulate information. In fact, it has been suggested that reasoning ability is
nothing more than working memory capacity (Kyllonen and Christal, 1990).

Working memory, according to the model of Baddeley and Hitch (Baddeley,
1986; Baddeley and Hitch, 1974) denotes a modular system composed of a central
executive and two multimodal storage systems: the phonological loop and the visuo-
spatial sketch pad (Baddeley, 1986, 1992, 2000). The recently added fourth
component to Baddeley's modular model of working memory is the episodic buffer.
This component is thought to be responsible for the integration of information from
both the phonological loop and the visuospatial sketchpad, as well as from long-term
memory traces (Baddeley, 2000, Prabhakaran e a/, 2000). A recent study by
Prabhalkaran e 2/ (2000) located this episodic buffer in the right frontal region (BA
9, 10, and 46).

The central executive, which has often been localized in the frontal lobes (e.g.
Fuster, 1997; Smith and Jonides, 1999), controls the two slave systems responsible
for the encoding and temporary storage of either visual material (the visuospatial

General Introduction 5

sketchpad), or verbal material (the phonological loop). It also allocates attentional
resources during the simultaneous execution of two tasks, coordinates the capacity to
switch retrieval strategies, controls the capacity to hold and manipulate information
stored in long term memory, and controls the selective attention to relevant stimuli
while inhibiting irrelevant stimuli (Baddeley, 1996). This latter inhibitory function is
particularly interesting as a decline in this function has been suggested to be the
central cause of cognitive decline (Dempster, 1991, 1992; Kramer ez al., 1994; West,
1996). Executive functioning and inhibitory control have been associated with
cortical activity in the prefrontal cortex, specifically with Brodman's areas 45, 46
(Smith and Jonides, 1998, O'Reilly, Braver Barch and Cohen, 1999) and 8 (Rowe ¢t
al., 2000), but their precise mechanisms are unknown.

Inhibitory functioning can be assessed with any task that involves a target and a
(salient) distractor, such as the Eriksen Flanker Task (Eriksen and Eriksen, 1974). In
this task subjects are required to respond to a central target stimulus that is flanked
by stimuli that are either congruent or incongruent with the target stimulus. If the
central target is congruent with the flankers, a fast response is feasible. If, however,
the central target is incongruent with the flankers, the response that is automatically
activated by the flankers needs to be inhibited, which slows response times and
increases error probability (Eriksen and Eriksen, 1974; Coles ez al., 1985). Results
from brain imaging studies have suggested that the anterior cingulate cortex (ACC) is
a critical neurobiological substrate of frontal inhibition (Awh and Gehring, 1999)
and is the executive area for attention (Posner ez /., 1988). The ACC is located on
the medial surface of the frontal lobes and is thought to funnel command signals
originating from lateral prefrontal areas to motor output systems (Turken and Swick,
1999). It is involved in evaluation processes such as error and response-conflict
monitoring, and indicates when attentional control needs to be more strongly
engaged (MacDonald ez 4., 2000).

In this thesis the heritability of frontal inhibitory functioning, assed with the
Eriksen Flanker Task, across two age cohorts will be investigated as well as its
association with cognitive ability.

Processing Speed

The most salient feature of working memory is that it has a limited capacity that has
to be distributed over the competing functions of storage and processing. If working
memory storage increases due to activity of the visuospatial sketch-pad or
phonological loop, reasoning and comprehension are impaired (see for example
Fuster, 1997; Miyake and Shah, 1999). If reasoning demands are increased, storage
capacity rapidly diminishes. Anything that speeds up either storage or processing will
increase working memory capacity in terms of the number of items that can be
processed in a fixed time interval. A reasonable idea, therefore, is that individuals
with fast neural processing speed will also have the highest working memory capacity.
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This is the main idea of the limited capacity theory of working memory (Vernon,
1987; Jensen, 1998), and ties in neatly to the most researched hypothesis for a neural
basis of differences in cognitive ability: the neural speed hypothesis — the idea that
individual differences in neural speed or more general processing speed determine
individual differences in cognition (Vernon, 1983, 1985, 1991; Jensen, 1982; Reed
and Jensen, 1992; Vernon, 1993; Vernon and Weese, 1993; Bowling and
Mackenzie, 1996; Knorr and Neubauer, 1996; Rijsdijk, Vernon and Boomsma,
1998; Fry and Hale, 2000).

Speed of processing is the speed with which subjects can perform basic cognitive
operations, including stimulus detection and perception, response selection, response
initiation, response execution, memory consolidation, and memory retrieval.
Differences in this speed are thought to reflect structural aspects of neural wiring, like
myelin-sheathing, number of ion-channels, or the efficiency of neurotransmission.
Thus, it can be expected that individual differences in speed clearly depend on
genetic influences on the myriad of proteins influencing both axonal conduction and
synaptic transmission. At the same time processing speed also critically depends on
the actual neural networks wiring, which is, by its very nature, experiential. The
extended twin approach in the current study allows the estimation of the relative
contributions of genetic and environmental influences to processing speed.

In this thesis the heritability of several measures of processing speed and their
relation with cognitive ability will be investigated. These measures include a general
index of the speed of brain oscillations and indices of several stages of information
processing: perceptual speed, speed of premotor response selection, speed of motor
response selection, and speed of response initiation.

Experimental tasks and measures

The main tasks and measures reported on in this thesis are listed in Table 1.1 (for a
full listing of all collected measures see Appendix I). The experimental protocol for
the full set of tasks was divided in two sessions; an EEG session and an 1Q/Reaction
Time/Inspection Time session. Sessions lasted approximately 2 hours and 10
minutes each. In between sessions subjects had a 15 minutes break. The order of the
sessions was randomised across subjects.

Psychometric 1Q
Psychometric IQ was assessed with the Dutch version of the WAIS-IIIR (WAIS-III,
1997) of which eleven subtests were used to assess psychometric IQ. Block design,
Letter-number sequencing, Information, Matrix reasoning, Similarities, Picture
completion, Arithmetic, Vocabulary, Digit symbol-coding, Digit-symbol pairing and
Digit symbol-free recall.

Verbal IQ, performance IQ and the four standard WAIS-IIIR dimensions were
derived from these subtests. Performance IQ was derived from picture completion,
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block design, matrix reasoning; Verbal IQ was based on information, similarities
vocabulary, arithmetic. Verbal Comprehension was based on information,
similarities, and vocabulary; Working Memory was based on arithmetic and letter:
number sequencing, Perceptual Organization was based on block design, matrix
reasoning, and picture completion), and Processing Speed was based on digit-symbol
substitution.

Table 1.1
Overview of tasks and measures reported on in this thesis.
DOMAIN TASK MEASURE

Wechsler Adult Intelligence Block design, Letter-number

Scale-revised (WAISIIIR) sequencing, Information, Matrix
reasoning, Similarities, Picture
completion, Arithmetic, Vocabulary,
Digit symbol-coding, Digit-symbol
pairing, Digit symbol-free recall.

PSYCHOMETRIC
INTELLIGENCE

MRI: Intracranial space, gray matter

=

b g volume, white matter volume,

% 5 cerebellar volume, lateral ventricular

9 volume, third ventricular volume
- Head circumference
. % i{esting' EEG Alpha gcak frequency
ZuEn nspection time task Inspection time
g g @ E Erlks(eir.l Flanker Task — EEG L.RP—onset, peak latency, decision
Rt recording time, performance; effects of
BS & stimulus-response incongruency on
these

Demographics (age, education)
Body height

OTHER

Brain volume

Magnetic Resonance Imaging (MRI) was carried out by dr. Wim Baaré at the
Academic Hospital in Utrecht in the laboratory of dr. Kahn. Collaboration with this
laboratory allowed the inclusion of the analyses of several brain structures in this
thesis. The sample that participated in Baaré’s study (Baaré, 2001) consisted of 258
subjects from 112 extended twin families. MRI acquisition details have been
described in dr. Baaré’s thesis (Baaré, 2001). One hundred thirty five subjects from
60 families also participated in the present study.
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Head circumference was measured with a measuring tape in the sample (N=688)
that participated in the IQ and EEG measurements.

EEG recording

Brain oscillatory speed (i.e. peak alpha frequency) was extracted from the
electroencephalographic recordings. During the EEG measurements the subjects
were seated in a comfortable reclining chair in a dimly lit, sound-attenuated
electrically shielded room. EEG was recorded with 19 Ag/AgCl electrodes mounted
in an electrocap. Signal registration was conducted using an AD amplifier developed
by Twente Medical Systems, (Enschede, The Netherlands). Signals were
continuously represented online on a Nec multisync 17” computer screen using
POLY 5.0 software (POLY, 1999) and stored for offline processing. Standard 10-20
positions were F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1, and O2
(Jasper, 1958). Additionally F1 and F2 were placed halfway between F3 and Fz, and
between Fz and F4, respectively. Software-linked earlobes (Al and A2) served as
reference. The vertical electro-oculogram (EOG) was recorded bipolarly between two
Ag/AgCl electrodes, affixed one cm below the right eye and one cm above the
eyebrow of the right eye. The horizontal EOG was recorded bipolarly between two
Ag/AgCl electrodes affixed one cm left from the left eye and one cm right from the
right eye. An Ag/AgCl electrode placed on the forehead was used as a ground
electrode. Impedances of all EEG electrodes were kept below 3 kQ impedances of the

EOG electrodes below 10 k€. The EEG was amplified (0.05 - 30 Hz), digitized at
250 Hz and stored for offline processing.

Subjects were instructed to close their eyes, relax and minimize movement
during the three minutes of EEG recording of the eyes closed (EC) task. During the
three minutes recording of the eyes open (EO) task subjects were instructed to fixate
on the dot presented at the center of the computer screen, and to avoid blinking.

A power density spectrum was calculated by using a Fast Fourier transform
applied to 4 sec. epochs of the three minute-recordings of each condition. This
yielded 44 epochs (epoch 45 was not used for computational reasons) and a 0.25 Hz
resolution in the power spectra. The power density spectra on the occipital leads were
used to derive the individual alpha peak frequencies (IAF).

The peak frequency in the EC condition was determined as the highest peak in
a window of 7-14 Hz in the power spectrum, irrespective of the shape of the
spectrum. Visual inspection was conducted for peak frequencies occurring at the
boundaries of the search window. Final localization of the correct IAF was based on
an automated comparison between the peak frequency as determined in the EC
condition and the frequency at which alpha power was depressed most by opening of
the eyes (i.e. finding the peak frequency in the spectrum obtained by subtracting the
EO spectrum from the EC spectrum). If these two methods of peak detection yielded
an identical peak frequency, this was taken as the IAF.
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If the two methods yielded different peak frequencies, the spectra were visually
inspected in order to determine the real alpha peak frequency. For example, in cases
where the EC spectra showed two peaks of approximately the same magnitude, that
peak was taken at which alpha depression was highest.

Inspection time task

Perceptual speed was assessed with an inspection time task. The stimulus was
presented on a monitor at a viewing distance of approx. 0.5 meters. It consisted of
two vertical lines, 22 mm. and 27 mm. in length and joined at the top by a
horizontal line (12 mm. long). The longer line appeared on the left or the right with
equal probability. Duration of the stimulus was variable, ranging from 17 to 200 ms.
Following presentation of the stimulus, a mask consisting of two vertical lines 37
mm. long, shaped as lightening bolts, was presented for 300 ms. The inter-trial
stimulus interval was 2 seconds. Participants were required to judge which one of
two lines is the longest by pressing either the left or the right arrow keys on a
keyboard.

A Parameter Estimation by Sequential Testing (PEST) procedure (Pentland,
1980, Findlay, 1978) was incorporated into which uses a staircase method to alter
stimulus duration based on the subjects' previous response. The initial stimulus
duration was 100 ms. for all participants. If a correct answer was given, stimulus
duration time of the next trial was decreased, if an incorrect answer was given,
stimulus duration of the next trial was increased. The amount of increase/decrease
was dependent on the number of previous reversals of increase/decrease. Thus, after
many reversals, increases/decreases on subsequent trials became smaller and the PEST
procedure converged on the subjects’ inspection time. The task ended when the
PEST estimate had become sufficiently stable or as soon as the maximum number of
trials is presented.

For each subject a cumulative normal function (mean = 0) was fitted post hoc to
the stimulus duration times. The standard deviation of this curve is the stimulus
onset asynchrony (SOA, in this case the inspection time) at which 84% accuracy
(corrected for guessing) is achieved. The reciprocal of the standard deviation times
1000 can be interpreted as the number of inspections per second resulting in a
correct judgement (Smith, 2000). To ensure accurate SOA's, a dynamic backward
mask (Evans and Nettelbeck, 1993) was used. All instructions were given on a
computer screen and the importance of accuracy over reaction time was stressed in
the instruction.

Eriksen Flanker task

Inhibitory functioning, speed of premotor response selection, speed of motor
response selection, and speed of response initiation were assessed with the Eriksen
Flanker Task and simultaneous EEG recording. Two boxes with an upper and a
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lower response button were attached on the left and right hand side in front of the
monitor. The subjects put their index fingers of each hand on the lower “home”
buttons, which started off each trial. Stimuli consisted of a horizontal stimulus array
comprising five arrowheads. Arrowheads pointed to the right or the left. Subjects
were instructed to respond with the left hand if the central arrowhead pointed to the
left, and with the right hand if the central arrowhead pointed to the right.
Responding meant pushing the upper “response” buttons. They were asked to
respond as fast and accurate as possible and to ignore the flanking arrowheads. Visual
feedback (“correct”, “incorrect” and current points) was presented 1000 ms after the
onset of the stimulus array, and lasted 1500 ms. They gained 1 point for each correct
response and lost 5 points for each incorrect response. Responses were incorrect
when subjects responded prematurely, released the wrong home button, pressed the
wrong response button, or exceeded the maximum response time of 1000 ms.

There were four conditions each containing 30 trials: left congruent (<<<<<),
right congruent (>>>>>), left incongruent ( >><>>), and right incongruent (<<><<).
Home button release time and response button presses were stored for all trials as
well as codes for incorrect responses (wrong button, too early, too late). Performance
measures were decision time and %incorrect, and these were averaged over left and
right hand trials. Decision time (response initiation) was computed as the time
interval between stimulus onset and home button release for congruent and
incongruent trials. Incorrect responses were counted and converted to a performance
score, again for the congruent condition and the incongruent condition, the latter
was taken as a measure of frontal inhibitory functioning.

LRPs were computed for correct trials only. Per trial, the epoch used for data
analysis started 250 ms preceding stimulus array onset, and ended 1000 ms after
onset of the stimulus array. The mean amplitude in the 250 ms preceding the
stimulus array was defined as the baseline. Epochs were discarded from further
analyses if values exceeded 200 pV on the vertical or horizontal EOG channels, or
values exceeded 80 pV on the EEG channels. A three-step subtraction method was
performed to calculate the LRP waveforms. First, we subtracted the time series
recorded from C4 from those recorded over C3 on each trial for the right hand
responses. Second, we subtracted the time series recorded from C4 from those
recorded over C3 on each trial for left hand responses. Third, the two difference
waves for left and right hand responses were subtracted, which resulted in the LRP
waveform. This method is also known as the double subtraction method:

LRP = (C3 - C4)right hand = (€3 = C4)lefi hand

Inclusion criteria for the LRP onset and peak latency was that the LRP waveform
had to be based on at least 30 trials. LRP-peak latency (premotor and mortor response
selection processing) was determined by searching the most negative value in the

General Introduction 11

350-900 ms post stimulus window. LRP-onset (premotor response selection
processes) was calculated by a single-subject based regression procedure with 1 degree
of freedom (Mordkoff and Gianaros, 2000). This method fits a linear regression to
the LRP slope using the individually fixed LRP peak negativity. The intercept with
the x-axis denotes LRP onset.

Extended twin design
A main aspect of the sample used in the present thesis is the inclusion of non-twin
siblings, in addition to the inclusion of monozygotic (MZ) and dizygotic (DZ) twins.
Such an extended twin design is not only optimal for future gene detection (Dolan,
Boomsma and Neale, 1999), but also for the estimation of heritability/environmental
influences. All twins were recruited from the Netherlands Twin Registry (Boomsma,
1998), and most of them had previously participated in one of three studies in which
zygosity was assessed by blood group polymorphisms and DNA typing (Boomsma,
1992; Snieder, 1996; van Beijsterveldt, 1996; Rijsdijk, 1997). Boomsma’s study
included a sample of 160 twin pairs aged between 14 and 21 years at the time of the
study (1985-1992) (129 subjects returned for the present study). Snieder’s study
included 213 twin pairs aged 34 —63 years at the time of the study (1992-1996) (216
subjects returned for the present study). Van Beijsterveldt and Rijsdijk both used the
same sample, which included 213 twin pairs aged 16 in 1993-1994 (96 subjects
returned for the present study). Apart from these three datasets, we approached a
group of 100 twin families (71 families agreed to participate) that did not participate
in any of the above studies.

Twins were sent an invitational letter, and were then approached by phone to
ask for participation. Twins were asked if they had additional siblings and permission
was asked to approach the siblings as well.

120 q
100 _—
80

60

Number of cases

404

204

15 20 25 30 35 40 45 50 55 60 65 70

Age (in years)

Figure 1.1
Age distribution showing two age cohorts (N = 688).



12 Chapter 1

If subjects were willing to participate, an appointment was made, which could be
during the day, but also in evenings or during weekends. One week before the
subjects were expected in the laboratory they were sent additional information on the
study, an informed consent form and details concerning the location of the lab. A
total of 688 family members from 271 extended twin families participated. Figure
1.1 depicts the age distribution of the complete sample showing it actually consisted
of two cohorts: a young adult cohort with a mean of 26.2 (SD 4.19) years of age and
an older adult cohort with a mean around 50.4 (SD 7.51) years of age. Allocation of
a family member to one of the two cohorts (young cohort under 36 years of age,
older cohort above 36 years of age) was based on the age of the twins. There was a
slight overlap in age of the non-twin siblings between the two cohorts.

Tables 1.2a and 1.2b list the complete sample configuration in families (Table
1.2a) and in subjects (Table 1.2b). For example, in the young cohort 20 MZ families
consisting of a complete MZ pair and one additional sibling participated.

Participating family members ranged from one to eight with an average of 2.5
subjects per family. In the young cohort 171 males and 210 females participated, in
the older cohort 135 and 172 respectively.

Table 1.2a
Family configuration (in families) in the sample according to zygosity, age cohort, and number of
additional non-twin siblings.

Number of additional siblings
0 1 2 3 4 6

Young cohort
MZ twin pair 31 20 2 1 - - Total MZ pairs: 54
single twin 1 3 - - - -
DZ twin pair 16 24 7 - - - Total DZ pairs: 47
single twin 1 1 - - -
DOS twin pair 11 12 2 1 - - Total DOS pairs: 26
single twin 2 4 1 - 1 -
no twins - 2 2 - -
Total Young 62 69 15 2 1 - Total additional siblings: 109
Older cohort
MZ twin pair 26 16 4 1 - 1 Total MZ pairs: 48
single twin 2 - - 1 -
DZ twin pair 20 15 1 - - - Total DZ pairs: 36
single twin 3 1 2 - - -
DOS twin pair 11 8 2 - 1 - Total DOS pairs: 22
single twin 2 1 - - - -
no twins = 1 = - - -
Total Older 64 45 9 1 2 1 Total additional siblings: 80

Total 271 126 114 24 3 3 1
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Table 1.2b
Family configuration (in subjects) in the sample according to zygosity, age cobort, and number of

additional non-twin siblings.
~ Number of additional s siblings

0 ! 2 3 4 6

Young cohort
MZ twin pair 62 (0] 8 5 - -
single twin 1 6 - - - -
DZ twin pair 32 72 28 - - =
single twin 1 8 8 - - “
DOS twin pair 22 36 8 5 = -
single twin 2 8 3 5 -
no twins 2 4 - - -
Total Young 120 192 54 10 5 =

Older cohort
MZ twin pair 52 48 16 5 - 8
single twin 2 6 - - 5 -
DZ twin pair 40 45 4 - -
single twin 3 2 6 - - -
DOS twin pair 22 24 8 - 6 -
single twin 2 2 - - - -
no twins - 1 - - - -
Total Older 121 128 34 5 11 8
Total 688 241 320 88 15 16 8

Note for Tables 1.2a and 1.2b: MZ = monozygotic twins, DZ = dizygotic same sex twins,
DOS = dizygotic opposite sex twins.

Exm?q';le: in the young cohort 24 families consisting of a full DZ pair and one additional sibling
partchptzted (72 subjects). In the complete sample 114 families consisting of one additional sibling
and either a complete or an incomplete twin pair participated.

Table 1.3 lists the specific distribution of sex, age, educational level and zygosity
groups within the two cohorts. The Dutch classification system for education level
(Standaard Onderwijs Indeling, 1998) follows the International Standard
Classification of Education (ISCED, 1997). The Dutch standard has 7 categories,
ranging from primary education (category 1) until tertiary education (category 7).
The average SOI educational level was 4.21 (SD 1.05), meaning that on average
subjects received schooling until 16 years of age, which is compatible with the
general Dutch population (CBS, 2000).
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Table 1.3
Descriptives (age, education) of the two cohorts by zygosity and sex
. Age range Education
Subjects 8 (yeargs) Mean age (SD) (SOI categorics)
Young cohort
MZM 50 22.4-33.9 26.0 (3.07) 4.6 (1.14)
MZF 62 22.5-33.9 25.5 (3.42) 4.1 (0.93)
DZM 38 21.8-30.0 26.0 (2.13) 4.5 (0.76)
DZF 62 22.5-33.4 25.8 (2.72) 4.7 (0.92)
DOS 60 18.8-31.8 25.4 (2.87) 4.4 (0.85)
Add. sibs - males 54 13.9 - 42.6 27.3 (6.67) 4.0 (1.02)
Add. sibs - females 55 16.7 -39.3 27.3 (5.85) 4.5 (1.03)
Total young cohort 381 13.9-42.6 26.2 (4.19) 4.4 (0.95)
Older cohort
MZM 48 36.0 - 69.1 49.1 (6.92) 4.3 (1.09)
MZF 53 42.2-67.4 52.5 (7.80) 3.8 (0.96)
DZM 26 42.7 - 64.1 52.4 (5.07) 4.3 (1.37)
DZF 52 42.1-62.7 50.5 (6.21) 3.7 (1.09)
DOS 47 41.6-71.0 49.8 (7.98) 4.2 (1.09)
Add. sibs - males 37 37.0 - 68.4 50.8 (8.48) 4.3 (1.09)
Add. sibs - females 44 29.1-70.9 48.3 (8.50) 3.6 (0.97)
Total older cohort 307 29.1-71.0 50.4 (7.51) 4.0 (1.11)

‘Note: SOI = Dutch standard classification system; Add. sibs = additional non-twin siblings

The subjects in the young cohort had a significantly higher average education
category (mean 4.4; SD 1.03) than subjects in the older cohort (mean 4.0; SD 1.04).
The same was true for males (mean 4.3; SD 1.04) and females (mean 4.1; SD 1.03).
This pattern was also compatible with males/females of different age cohorts in the
general Dutch population (CBS, 2000).

(Genetic variation
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‘Genetic variability explains 70% of the population variation in a certain trait’ is an
often-heard outcome of studies in the field of quantitative genetics. However, it does
not imply that the specific genes that influence the trait have already been identified.
Given the rapid advancements made in molecular biology (Nature Genome Issue,
February 15 2001; Science Genome Issue, February 16, 2001) and the development
of sophisticated statistical genetic methods (e.g. Fulker, ez al., 1999; Zhao, 2000;
Terwilliger and Goring, 2000), the identification of specific genes, even for complex
traits, becomes a realistic goal of quantitative genetic analyses. Knowledge of
transmission of genes, how they affect traits and how they interact with
environmental factors, may help to identify these genes.

Prerequisite to understand phenotypic variance are two fundamental principles:
the law of segregation and the law of independent assortment. The law of segregation
states that for each trait there are two discrete elements of inheritance that separate
during gameto-genesis and recombine randomly at fertilization, such that offspring
receive one element from each parent (Mendel, 1865). The law of independent
assortment states that the elements of inheritance for one character assort
independently of the elements for other characters. Since the discovery of DNA
(Watson and Crick, 1953a, 1953b) it is known that the element of inheritance
consists of a deoxyribonucleic acid (DNA), which has the form of a double helix.
DNA is organized in chromosomes, and each individual has two copies of a
chromosome. Humans have 23 pairs of chromosomes. The unit of inheritance is the
gene, characterized by a specific location on a chromosome. A gene may have
different forms of appearance called alleles. Each individual has two copies, that is
two alleles of a gene. During transmission each offspring receives one allele from each
parent. If a gene exists in only one form (i.e. there is only one allele for this gene)
there is no genotypic variation in this gene and there will not be any phenotypic
variation associated with this gene.

Mendel observed discrete phenotypes such as a yellow or green seed colour and
concluded on the basis of his experiments that discrete units of inheritance must be
responsible for the existence of discrete phenotypes. Although the unit of inheritance
is in fact ‘discrete’, the study of complex traits is not concerned with traits that have
readily discernible phenotypes, but instead concerns traits that show a continuous
range of variation. Fisher (1918) extended Mendel’s single / two locus system to a
multi-locus system and analytically showed how the discrete segregation of alleles can
lead to a continuous range of measured traits by summing over the genetic effects of
all contributing loci, and possibly also including interaction between loci (Fisher,
1918; Philips, 1998).

Continuous, observed variation may be attributed to genetic variation and
environmental variation. Environmental variation results in variation in the
phenotype when different aspects of the environment have differential effects on that
phenotype. Genotypic variation causes phenotypic variation when different alleles of
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a gene differentially affect the phenotype. Human individuals differ from one
another by about one base pair per thousand. Only 1.1% to 1.4% of the total
genome is sequence that codes for protein. Differences within coding regions
ultimately cause phenotypic variation in a trait. Quantifying the effects of DNA
differences, or more specifically, the differential effects of different alleles of the same
gene, is the basis of the biometrical model that underlies quantitative genetic analysis.

Studies in human quantitative genetics, including the chapters of this thesis,
describe the decomposition of observed, phenotypic variance into sources of genetic
origin and sources of environmental origin. These two sources of variance can be
separated using a design that includes subjects of different degrees of genetic
relationship. Resemblance between relatives is a function of the degree to which
phenotypic expression is determined by shared genes, shared environment and
random environmental factors (Lynch and Walsh, 1998).

A popular and widely used design in quantitative genetics is the twin design: the
phenotypic resemblance of a certain trait between identical twins is compared to the
phenotypic resemblance on that trait between fraternal twins. Since identical twins
living at home share 100% of their family environment and 100% of their genes (but
see Martin, Boomsma, and Machin, 1997), any resemblance between them is
attributed to these two sources of resemblance. The extent to which identical twins
do not resemble each other is ascribed to factors that identical twins do not share, the
so-called unique or non-shared environmental factors, which also include
measurement error. Resemblance between fraternal twins is also ascribed to the
sharing of the family environment between fraternal twins (100%), and to the
sharing of genes. However, fraternal twins share on average only 50% of their
segregating genes, so any resemblance between them due to genetic influences will be
lower than for MZ’s. The extent to which fraternal twins do not resemble each other
is due to non-shared environmental factors and to non-shared genetic influences.

Genetic effects at one single locus can be additive (i.e. the effect of one allele is
added to the effect of another allele) or dominant (the two alleles show an interaction
effect), or a combination. The total genetic influences on a trait are the result of the
summed effects at multiple loci, plus the interaction effects between multiple loci
(epistasis; Bateson, 1908, 1909). Depending on the mode of gene action, the
expectation for the phenotypic resemblance between fraternal twins due to genetic
influences will differ. If all contributing loci act additively and there is no interaction
between them, the similarity for genetic effects for fraternal twins is on average 50%.
However, if some loci act in a dominant way the genetic similarity is 25% for
dominant genetic influence and 50% for additive genetic influences. The presence of
dominant gene action thus reduces the expected phenotypic resemblance in fraternal
twins. Epistasis reduces this similarity even further, and to what extent depends on
the number of loci involved and their relative effect on the phenotype. In Table 2.1
the similarities for different types of familial relationships are given in terms of
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additive genetic influences, dominant genetic influences, shared environmental
influences and non-shared environmental influences.

Table 2.1
Similarities for additive genetic influences, dominant genetic influences, shared environmental
influences and non-shared environmental influences, for different familial relationships.

Additive  Dominant Shared Non-shared

genetic genetic environment  environment
MZ twins RT 100% 100% 100% 0%
DZ twins RT ~50% ~25% 100% 0%
Sib-pairs RT ~50% ~25% 100% 0%
MZ twins RA 100% 100% 0% 0%
DZ twins RA ~50% ~25% 0% 0%
Sib-pairs RA ~50% ~25% 0% 0%
Adopted siblings 0% 0% 100% 0%
Parents-children 50% 0% 0% 0%
Grandparents-grandchildren -25% 0% 0% 0%

~ on average; MZ = monozygotic; DZ = dizygotic; RT = reared together ; RA = reared
apart.

Employing a design including for example MZ and DZ twins reared together, allows
decomposition of the phenotypic variance into components of additive genetic
variance, dominant genetic variance or shared environmental variance, and non-
shared environmental variance. Dominant genetic influences and shared
environmental influences cannot be estimated at the same time in a twin design (i.e.
including MZ and DZ twins).

Similarity between two (familiarly related) individuals can be quantified by
covariances or correlations. A first estimate of the proportion of additive genetic
influences of the total variance is given by twice the difference between the MZ and
DZ correlations. The proportional contribution of the dominant genetic influences is
obtained by subtracting four times the DZ correlation from twice the MZ
correlation. An estimate of the proportional contribution of the shared
environmental influences to the phenotypic variation is given by subtracting the MZ
correlation from twice the DZ correlation. The proportional contribution of the
non-shared environmental influences can be obtained by subtracting the MZ
correlation from 1. This intuitively simple principle is described in every textbook on
quantitative genetics and can be understood without knowledge of the relative effects
and location of the actual genes that influence a trait, that is the genotypic effects on
phenotypic means. However, knowledge of the underlying biometrical model
becomes crucial when one wants to move beyond heritability estimates derived from
twin correlations.
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Genotypic effects on phenotypic means

Within a population many different alleles may exist for a gene (e.g. Lackner er 4.,
1991), but for simplicity a gene with only two possible alleles, allele A7 and allele A2,
is considered. By convention, allele A7 has a frequency p, while allele A2 has
frequency ¢, and p + ¢ = 1. With two alleles there are three possible genotypes: A141,
A1A2, and A2A2 with genotypic frequencies p’, 2pg, and 4 respectively. The
genotypic effect on the phenotypic trait (i.e. the genotypic value) of genotype A1A1 ,
is called “2” (which by convention is the increasing effect), the effect of genotype
A1A2 “d’ and the effect of genotype A242 “-a”. If allele A1 is completely dominant
over allele A2, effect 4 equals effect . If the two alleles produce three discernable
phenotypes of the trait, & is unequal to 4. (see Figure 2.1 and Table 2.2).

= a

IL | | |

A2A2 0 AlA2 AlAl

Figure 2.1
Graphical illustration of the genotypic values for a diallelic locus.

Table 2.2

Frequencies and genetic values of three genotypes AIAI, AIA2, A2A2.
Genotype AlAl AlA2 A2A2
Frequency pl 2p 2
Genotypic value a a’q -qzz
Frequency x value pza 2pqd —qza

The genotypic contribution to the population mean of the trait is the sum of the
products of the frequencies and the genotypic values of the three different genotypes
(Falconer and Mackay, 1996):

Mean effect = ap +2pqd-aq
a (p_q) + qud (Equation 2.1)

The contribution of this locus to the population mean consists of two components:
a(p-q), which is the contribution of the homozygotes, and 2pgd, which is the
contribution of the heterozygotes. If there is no dominance, i.e. 4 equals zero, the
second component is zero and the mean is a direct function of the allele frequencies.
If 4 equals a, which is defined as complete dominance, the population mean becomes
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a function of the square of the allele frequencies; substituting d for a gives a(p — ) +
2pqa, which simplifies to a(1 -29).

Complex traits such as cognition, are assumed to be influenced by the effects of
multiple loci. Assuming additive combination effects of all of these loci, the
expectation for the population mean () is the sum of the contributions of the
separate loci, and is formally expressed as (sec Falconer and Mackay, 1996);

u= Za(P —q)+ 22 dpg (Equation 2.2)

To quantify the transmission of genetic effects from parents to offspring, and
ultimately to decompose the observed variance in the offspring generation into
genetic and environmental components, the concepts average effect and breeding value
are needed. Parents transmit alleles to their offspring and not their genotypes.
Therefore, they cannot transmit the values 4, 4, and —a to their offspring directly.

Average effects are a function of genotypic values and allele frequencies within a
population. The average effect is defined as .. the mean deviation from the population
mean of individuals which received that allele from one parent, the allele received from
the other parent having come at random from the population” (Falconer and Mackay,
1996). To calculate the average effects 0; and 0;; of alleles Al and A2 respectively,
the frequency of the Al or A2 alleles in the genotypes of the offspring coming from a
single parent, need to be determined. Again assume a single locus system with two
alleles for simplicity. If there is random mating between gametes carrying the Al
allele and gametes from the population, the frequency with which the Al gamete
unites with a gamete containing Al (producing an A1A1 genotype in the offspring)
equals p, and the frequency with which the gamete containing the Al gamete unites
with a gamete carrying A2 (producing an A1A2 genotype in the offspring) is 4. The
genotypic value of the genotype A1A1 in the offspring is 2 and the genotypic value of
A1A2 in the offspring is 4, as defined earlier. The mean value of the genotypes that
can be produced by a gamete cartying the Al allele equals the sum of the products of
the frequency and the genotypic value. Or in other terms, it is pa + gd. The average
genetic effect of allele A1 (1) equals the deviation of the mean value of all possible
genotypes that can be produced by gametes carrying the Al allele from the
population mean. The population mean has been derived eatlier as a(p-q) + 2pgd
(Equation 2.1). The average effect of allele Al is thus (see Falconer and Mackay,
1996):

o,= pa+ qd — [a(p — q) +2pqd]
= gla+dqg-p)] (Equation 2.3)
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Similarly the average effect of the A2 allele is;

o,= pd-qa—[alp—q)+ 2pgd]
= pla+ d(q-p)] (Equation 2.4)

For a single diallelic locus it is more convenient to express the average effects of
alleles Al and A2 in terms of the average effect of gene' substitution, which is the effect
on the genotypic values of changing randomly chosen Al alleles into A2 alleles. The
average effect of gene substitution (@) can be obtained by calculating the difference of
the average effects of the A1 and A2 alleles (Falconer and Mackay, 1996). Thus,

o=

5]

a/ oMy
@ +d(q-p)] (Equation 2.5)

[

Consequently, o, and o, can be expressed in terms of o; o = gotand 0p= -pa.

The breeding value is the value of an individual derived from the mean value of
its offspring, and it is equal to the sum of the average effects of the alleles it carries.
Thus, the breeding value for an individual with genotype A1Al is 2a, (or 240) , of
individuals with genotype A1A2 it is @, + @, (or (g-p) @) , and of individuals with
genotype A2A2 it is 2a;, (or —2p0y).

As the breeding value is expressed in terms of the average allele effects which are
in turn expressed in terms of deviations from the population mean, the mean
breeding value (that is the sum of the products of the genotypic frequencies and the
breeding values) is by definition zero.

The breeding value is usually referred to as the additive effect of an allele, and the
differences between the genotypic effects (in terms of 4, 4 and —a, for genotypes
AIA1, A1A2, A2A2 respectively) and the breeding values (2q0; (4-2) o, —2p0, for
genotypes A1A1, A1A2, A2A2 respectively ), reflect the dominance deviations. In
other words, the genotypic value consists of the breeding value and the dominance
deviations.

The breeding values are, as stated earlier, expressed in terms of deviations from
the population mean. This can also be done for the dominance deviations and for the
genotypic values. As the dominance deviation is the difference between the genotypic
value and the breeding value, it is convenient to calculate the genotypic value in
terms of deviations from the population mean and then to subtract the breeding

1

‘ Falc)oncr and Mackay (1996) use the term ‘average effect of gene substitution’. Their use of
gene’ equals our use of ‘allele’, and it would be more logical to use the term ‘average effect of
allele substitution’. However, as others have adapted Falconer and Mackay’s use of the term
we choose to adhere to their term. ’
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value from the genotypic value to obtain the dominance deviations in terms of
deviations from the population mean.

For genotype AlAl the genotypic effect was assigned to be #. The population
mean was calculated to be [a(p — ) + 2dpq] (Equation 2.1). The genotypic effect of
genotype A1AL in terms of a deviation from the population mean is thus;

Genotypic effect (A1A1) = - [a(p — q) + 24pq]
= 2q(a— dp) (Equation 2.6)

Similarly, the genotypic effect of genotype A1A2 in terms of a deviation from the
population mean becomes

Genotypic effect (A1A2) = 4 - la(p —q) + 2dpq)
= a(g-p) +d(1-2pq) (Equation 2.7)

And for genotype A2A2;

Genotypic effect (A2A2) = -a-[a(p—q) + 2dpq|
= -2p(a +dg) (Equation 2.8)

When the « in Equations 2.6 to 2.8 is substituted by & - d(g — p), the genotypic
effects can also be written in terms of the average effect of gene substitution: for
Al1A1 this becomes 2q(a — dg), for A1A2 this becomes (7 — p)o + 2pqd, and for
A2A2 —2p(a + dp). Subtracting the breeding values from these terms gives the
dominance deviations in terms of deviations from the population mean.

The above is summarized in Table 2.3

Table 2.3 ) -
Summary of genotypic values, frequencies, breeding values and dominance deviation Jor three

genotypes AIAL AlA2, and A2A2.

Genotype  A1A1 A1A2 A2A2
Genotypic value a d -4
Frequency ? 2pq

? q
Deviation from the population mean 2q(a—dp) alq —p) +d(1-2pq) -2p(a+ dyg)
Deviation from the population mean in B _ ool d
terms of breeding value 2q(0—dg) (q—ploc+2dpq p(0c+ dp)
Breeding value 2q0 (q-po —2p1(x
Dominance deviation  -24'd 2dpq -2p'd
Adapted from Table 7.3 in Falconer and Mackay (1996).
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Decomposition of phenotypic variance
So far the genotypic contributions to the population mean have been discussed, and
effects of the environment on the population mean have been ignored. In reality the
phenotype (P) is a function of genetic (G) and environmental effects (E); P =G +E,
where E refers to the environmental deviations (Falconer and Mackay, 1996). This
equation does not include the term GxE, and thereby assumes no interaction
between the genetic effects and the environmental effects (see section on GxE
interaction and GE-correlation).

The variance of the phenotype, which is defined by G + E, is given by Vp = Vg
+ Vg + 2covgg, Vp represents the variance of the phenotypic value, V( represents the
variance of the genotypic values, Vi represents the variance of the environmental
deviations, and 2covgp represents twice the covariation between G and E, and
reflects the presence of a gene-by-environment (GE)-correlation. As GE-correlation
can only be modelled either in a parent-offspring design (Fulker, 1988) or when the
specific genetic and environmental factors have been measured (see also section on
GxE interaction and GE-correlation), for simplicity it is assumed that Vp = Vg + V.
The total genetic variance (V5) can be obtained by using the standard formula for

the variance :
o’= Zf' (xi .'u)z (Equation 2.9)

where f; denotes the frequency of genotype 7, x; denotes the corresponding mean of

that genotype and g denotes the population mean. The deviation from the
population mean for each genotype of a diallelic locus was calculated earlier (Table
2.3). The expression for the total genetic variance is

Vg = p'[2q(a-dp)]’ + 2pqlalq —p) +
d(1-2pg)]" +q [-2p(a +dg)]*.  (Equation2.10)

As the genetic effect consists of the additive effect and the dominance effect (G = A +
D), the total genetic variance is a function of the additive genetic variance, the
variance of the dominance deviations and twice the covariance between them.

Vg= Va+ Vp+2covap (Equation 2.11)

It can be shown that the covpp equals zero (by summing over the products of the

frequency, the breeding value and the dominance deviations as given in Table 2.3).
Thus V + Vp are calculated separately, and are summed to obtain Vg, giving a
simpler expression for V:
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VG = VA + VD
= 2pqla+dlqg-p)]°  +  (pgd) (Equation 2.12)

which is derived from Equations 2.13 and 2.14 (below).

The genetic variance V is the variance of the breeding values, which are already
expressed in terms of a deviation from the population mean (i.e. the mean of the
breeding values is zero). Thus, squaring these, multiplying them by their
corresponding frequency, and summing over all genotypic categories gives the
contribution of that locus to the ‘additive genetic variance’ (V) of the trait;

Va= #'290)° + 2pqllg—p) o] +4'(-2p®)°
= 2pqa 2 (Equation 2.13)

As & equals [z + d(q — p)], Va can also be expressed in terms of # and 4, as 2pgla +
dlq-p)I’.

The genetic variance Vp is the variance of the dominance deviations.

Vp = P4q'd®) + 2p9(4p’q’d”) + q'@p'd’)
= (ZIan')2 (Equation 2.14)

Combining Equations 2.13 and 2.14 gives Equation 2.12. If the phenotypic value of
the heterozygous genotype lies midway between A1A1 and A2A2 (i.c. the effect of 4
equals zero), the total genetic variance simplifies to 2pqd’. If d is not equal to zero,
the ‘additive’ genetic variance component contains the effect of 4. Even in the
absence of  (i.e. 2 = 0), but in the presence of & , V is greater than zero (except
when p = g). Thus, although V, represents the variance due to the additive
influences, it is not only a function of p, ¢, and 4, but also of 4, as it is derived from
the breeding values, which were shown to be a function of both z and 4.

The consequences are that, except in the rare situation where all contributing
loci are diallelic with p = g and 4 = 0, V4 can never be zero when VT, is greater than
zero. Models that decompose the phenotypic variance into components of Vp and
Vg only, are therefore biologically implausible.

When more than one locus is involved and it is assumed that the effects of these
loci are independent (i.e. no epistasis), the Vg’s of each individual locus may be
summed to obtain the total genetic variances of all loci that influence a trait (Fisher,
1918; Mather, 1949).

In quantitative genetic studies, results are often reported in terms of the
heritability of a trait. The heritability is the proportion of the genetic variance relative
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to the phenotypic variance. There are two different meanings of heritability: when
the total genetic effects on a trait are measured, heritability is expressed as the ratio of
Vg to Vp, or (V5 + Vp) to Vp (broad sense heritability). However, the variation of

the effects expressed in Vpy is not transmitted from parents to offspring and therefore
some authors prefer to report heritability as the ratio of V) to Vp (sometimes termed
‘heredity’, but more often referred to as narrow sense heritability).

To decompose the observed variance into components of V,, Vp, and Vg a

genetically informative design is needed, such as the twin design. By comparing the
observed resemblance in MZ twins and DZ twins, V5, Vp, and V can be separated.

MZ twins are genetically identical and the expectation for their covariance is:
COVpz = Va+Vp (Equation 2.15)

The expectation for DZ twins is less straightforward: as DZ twins share on average
half of their alleles, they share half of the genetic variance that is transmitted from the
parents, i.e. %2 V4. As Vp is not transmitted from parents to offspring it is less
obvious to determine the coefficient of sharing for the dominance deviations. If two
members of a DZ twin pair share both of their alleles at a single locus they will have
the same coefficient for 4. If they share no alleles or just one parental allele they will
have no similarity for the effect of 4. In other words, the probability that two
members of a DZ pair have received the same alleles from both parents is the
coefficient of similarity for d between them. There is a probability of ¥ that two
siblings (or DZ twins) receive the same allele from their father, and there is a
probability of ¥ that they have received the same allele from their mother.

Thus, the probability that they have received the same two ancestral alleles is ¥ x
1 = V4, and the expectation for the covariance in DZ twins is

COVpz= 12V +¥% Vp (Equation 2.16)

GxE interaction and GE-correlation

In the above the absence of genes x environment interaction was assumed. GxE
interaction occurs when the effects of the environment are conditional on an
individual’s genotype, such as when some genotypes are more sensitive to
environment influences than other genotypes. Genetic studies on crops and animal
breeding experiments have shown that GxE interaction is extremely common (see
summary in Lynch and Walsh, 1998. pages 657 - 686). However, in general GxE
interaction accounts for less than 20% of the variance of a trait in the population
(Eaves et al., 1977; Eaves, 1984). In theory (and in practice in animal and crop
breeding experiments) GxE interaction can be measured by studying the same trait in
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two environments. A genetic correlation between the two measurements of the trait
that is less than one indicates the presence of GxE interaction (Falconer, 1952). (The
reverse, however, a genetic correlation equal to one does not need to imply the
absence of GxE interaction; see Lynch and Walsh, 1998). In human quantitative
genetic analyses it is often not possible to control the environmental or genetic
influences, unless the specific genotype and specific environmental factors are
explicitly measured (see Kendler and Eaves, 1986; Dick ez al, 2001; Rose ez al.,
2001). The presence of GxE interaction may be explored by correlating the MZ
intra-pair differences and MZ pair sums (Jinks and Fulker, 1970). Assuming that
MZ twin similarity is purely genetic, a relation between MZ means and standard
deviations suggests the presence of GxE interaction.

GxE interaction is often not included in quantitative genetic models. However,
if the true world does include GxE interaction, assuming its absence may lead to
biased estimates of G and E (Eaves et al., 1977). For example if GxE interaction was
truly gene by non-shared environment interaction, a model without GxE interaction
will result in overestimation of the effects of the non-shared environment. If,
however, GxE interaction was interaction between genes and shared environmental
influences, assuming its absence will result in overestimation of the effect of genes on
the phenotype, as well as in overestimation of the influence of the shared
environmental on the phenotype. The separate detection of these two biased effects
in the presence of genes by shared environmental interaction necessitates the
inclusion of twin pairs reared apart (Jinks and Fulker, 1970; Eaves ez al., 1977).

The absence of a genes - environment correlation was also assumed in the above.
GE-correlation occurs when the genotypic values and environmental values are
correlated. Three different forms of GE-correlation have been described (Plomin,
DeFries and Loehlin, 1977; Scarr and McCartney, 1983). Active GE-correlation is
the situation where subjects of a certain genotype actively select environments that
are correlated with that genotype. Reactive GE-correlation refers to the effects of
reactions from the environment evoked by an individuals’ genotype. The presence of
GE-correlation leads to an increase in the phenotypic variance. It is difficult to
measure GE-correlation, however, as active and reactive GE-correlation necessitate
the direct measurement of these influences (Falconer and Mackay, 1996). Falconer
and Mackay (1996) state that GE-correlation is best regarded as part of the genetic
variance because .. the non-random aspects of the environment are a consequence of
the genotypic value ..”.

Passive GE-correlation refers to the situation where parents transmit both their
genes and an environment (cultural transmission) which both influence a certain trait
(Eaves et al., 1977). Effects of cultural transmission can be measured using a parent-
offspring design (Fulker, 1988).

Assortative mating may also lead to GE-correlation. Assortative mating occurs
when mate selection is based on a certain phenotype (P; which in turn is a function
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of G and E), and tends to increase the resemblance between offspring which leads to
an increase in the additive genetic variation (and therefore in the overall phenotypic
variation) (Lynch and Walsh, 1998). Statistically, it may conceal the presence of
non-additive genetic effects and overestimate the influence of additive genetic factors
(Carey, 2002). Assortative mating is known to exist for intelligence (Vandenberg,
1972). In the present thesis parents were not included in the sample, and the possible
effects of assortative mating were not included in the models.

Path analysis and Structural Equation Modelling

The expectations for the resemblance between MZ twins and DZ twins or sib pairs
reared together (Equations 2.15 and 2.16) can be summarized in a path diagram
(Wright, 1921). For simplicity, Vi reflects the non-shared environment, and does
not include the variance due to the shared environmental influences. As stated earlier,
influences of dominant genetic effects and shared environmental effects are
confounded in the twin design. It was chosen to depict path diagrams including
additive genetic influences (A), dominant genetic influences (D) and non-shared
environmental influences (E). The dominant genetic influences may be substituted
by shared environmental influences in the path diagram by substituting 0.25 (for the
DZ correlation for dominant genetic influences) for 1.00 (for the DZ correlation for
shared environmental influences).

The latent factors A, D, and E have a variance of 1.00. x, > and z represent the
respective path coefficients from A, D, and E to the phenotype P (%, 5, and z are
sometimes denoted by 4,  and e. To avoid confusion with the genotypic values «
and 4, it is chosen to adhere to x, y and z). The path coefficients are standardized
regression coefficients, similar to the factor loadings in factor analysis. The
phenotypic variance (Vp) for the trait (the same for both members of a twin pair)
equals x” + y* + 2 which equals V5 + Vy + V.

Sewall Wright introduced path analysis to genetic analyses (1921, 1934) and -
applying the tracing rules of path analysis - the covariance between DZ twins (and
sib pairs) is traced as 0.50x" + 0.25_;/2, which equals % V, + ¥% Vp (see Equation
2.16). The covariance between MZ twins is traced as x* + y° which equals Va+Vp
(see Equation 2.15). Path analysis is directly related to matrix algebra and to
structural equation modelling, and the latter can be implemented in statistical
software for covariance structure analysis to estimate the variance components from
real data in twin or family designs.

To rewrite the model depicted in Figure 2.2 in terms of matrix algebra we
introduce three matrices X, Y, and Z of dimensions 1 x 1, containing the path
coefficients x, y, and z, respectively. The matrix algebra notation for Vp is XX + YY’
+ ZZ’, where ’ denotes the transpose of the matrix (and corresponds to tracing
forwards through a path, see Neale and Cardon, 1992). The expectation for the MZ
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covariance is XX + YY’ and the expectation for the DZ covariance is 0.5XX" +
0.25YY". Including additional siblings in this design is straightforward: the
expectation for sib pair covariance is also 0.5XX + 0.25YY’ (note: it can be tested
whether the sib pair covariation really equals the DZ covariation: see below).

Phenotype Phenotype Phenotype
Twin 1 Twin 2 Sib 1
z z z
1.00 1.00 1.00
Figure 2.2

Path diagram representing the resemblance between MZ or DZ twins and one additional
sibling, for additive genetic influences (A), di nt genetic influences (D) and non-shared
environmental influences (E).

Multivariate Structural Equation Modelling

The model can also easily be extended to a multivariate model where more than one
measurement per subject is available (Eaves and Gale, 1974; Martin and Eaves,
1977); Figure 2.3 is a path diagram for a bivariate design (two measurements per
subject; four measurement for a pair). The corresponding matrix algebra terms for
the expected variance and MZ or DZ covariances are the same as for the univariate
situation, except that matrices X, Y, and Z are lower triangular and of dimensions 7 x
# (where 7 is the number of variables assessed on a single subject). The subscripts of
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the path coefficients correspond to matrix elements, i.e. x, denotes the matrix
element on the i-th row, j-#4 column of matrix X. The path C(;efﬁcients subscripted
by ,, reflect the variation that both measured phenotypes have in common. For
example, if the path denoted by x,, is not equal to zero, this suggests that there are
some genes that influence both phenotypes.

1.00 /0.50

1.00/0.25

1.00/0.50

Phenqtype 1 Phenotype 2 Phenotype 2 Phenotype 1
Twin 1 Twin 1 Twin 2 Twin 2
Z11 Z1 Z22 Z3 Z21 Z11
1.00 1.00 1.00 1.00
Figure 2.3

I"af]/a diagram representing the resemblance between MZ or DZ twins for additive genetic
influence @),' d ‘ genetic influences (D) and non-shared environmental influences
(E) in a bivariate design.

Thus, multivariate genetic designs allow the decomposition of an observed
correlation between two variables into a genetic and an environmental part. This can
be quantified by calculating the genetic and environmental correlations and the
genetic and environmental contributions to the observed correlation.

In matrix algebra, matrices A (the product of matrix X and its transpose X’), D
(the product of matrix Y and its transpose Y°), and E (the product of matrix Z and its
transpose Z’) can be calculated. Matrices A, D, and E are thus symmetric. This is also
known as a Cholesky factorisation of matrices A, D and E which assures that these
matrices are positive definite. The latter is necessary as matrices A, D and E are
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variance-covariance matrices. They contain the additive genetic, dominance, and
non-shared environmental variances respectively on the diagonals for variables 1 to 7.

The genetic correlation between variables 7 and j (7,;) is derived as the genetic
covariance between variables 7 and j (denoted by element 7/ of matrix A; a;) divided

by the square root of the product of the genetic variances of variables 7 (4;) and j

(¢ ﬂj]‘);

(Equation 2.17)

Analogously, the environmental correlation (1,;) between variables 7 and j is derived

as the environmental covariance between variables 7 and j divided by the square root
of the product of the environmental variances of variables 7 and j ;

¢

Po=m 77—
eij
Jeixe,

The phenotypic correlation 7 is the sum of the product of the genetic correlation and
the square roots of the standardized genetic variances (i.e. the heritabilities) of the
two phenotypes and the product of the environmental correlation and the square
roots of the standardized environmental variances of the two phenotypes.

(Equation 2.18)

aii aji €ii

X |=— + Iy X X
(a; +e;) \(a;+tey) (a; +e;)

environmental contribution
(Equation 2.19)

genetic contribution +

The genetic contribution to the observed correlation between two traits is a function
of the genetic correlation between the two sets of genes that influence the traits and
the correlation between these sets of genes. A large genetic correlation does not imply
a large phenotypic correlation, as the latter is also a function of the heritabilities. If
these are low, the genetic contribution to the observed correlation will also be low.

If the genetic correlation is 1, the two sets of genes are identical. If the genetic
correlation is less than 1, at least some genes are a member of both sets of genes. A
large genetic correlation however, does not imply that the overlapping genes have
effects of similar magnitude on each trait. The overlapping genes may even act
additively for one trait and show dominance for the second trait. A genetic
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correlation less than 1 therefore cannot exclude that all of the genes are overlapping
between the two traits (Carey, 1988). Similar reasoning applies to the environmental
correlation.

Being a true ‘correlation’, genetic correlations do not provide information on
the direction of causation. In fact, genes may influence one trait that in turn
influences the second trait. Or, there may be genes that act in a pleiotropic way, that
is they influence both traits but neither trait influences the other. Genetic
correlations do not distinguish between these situations, but merely provide
information on the nature of the causes of covariation between two traits.

Using the expectations for the variances and MZ / DZ covariance in terms of
algebraic equations a structural equations / matrix algebra interpreter can be used to
estimate the contributions of additive genetic, dominant genetic or shared
environmental influences to the variation. A matrix algebra interpreter such as
LISREL (Jéreskog and Sérbom, 1986) or Mx (Neale, 1997) uses structural equation
modelling optimisation procedures to estimate population parameters from the
observed data. A widely used optimisation procedure is maximum likelihood, where
those parameter estimates are obtained that make the observed data most likely.

Structural equation modelling (SEM) has several advantages over merely
comparing the MZ and DZ correlations (Eaves, 1969; Jinks and Fulker, 1970).
Besides being less influenced by systematic differences in the variances of a trait by
zygosity status, age or sex, SEM allows parameter estimation, while the correlational
method merely allows parameter calculation. SEM thus also allows determination of
confidence intervals and of standard errors of parameter estimates and quantifies how
well the specified model describes the data. SEM also allows specification of (non)-
scalar sex-limitation models, specification of (non)-scalar age-limitation models, and
the inclusion of fixed effects of subpopulation e.g. according to SES or medication.

This is important as heritability is a characteristic of the (sub)population and
may differ across sex or age. As heritability is defined as the ratio of genetic variability
to total variability, it is also dependent on changes in the environmental variation.
For example, if the absolute genetic contribution to the variance remains equal, but
the absolute environmental contribution to the variance decreases (i.e. the
environment may become more homogeneous), the heritability will increase (see for
example Heath ez al., 1985). Across (sub)populations there may be different allele
frequencies (Cavalli-Sforza, Menozzi, Piazza, 1994), different genotypic values, or
different environmental contributions to the variance. Across sexes, ages or ethnicity
there may be different loci that influence the same trait. Four kinds of models for
populations in general and age and sex in particular may be evaluated using SEM: 7)
models including effects on the means as a function of e.g. sex or age; i7) scalar sex or
age limitation models for the genetic or environmental variance or #7) scalar sex or
age limitation models for the relative contributions of genetic or environmental
variance to the phenotypic variance, or iv) non-scalar sex or age limitation models
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The first effect can be tested by including sex and age as a fixed effect on the
observed scores of a trait in the model, and then testing whether these effects are
statistically different from zero. The second effect can be evaluated by testing
whether the elements in matrices A, D, and E are equal across sexes or age cohorts.
The third effect can be evaluated by equating the relative contributions of A, D, and
E to the phenotypic variance across sexes and age cohorts. A difference in the relative
contribution of for example additive genetic influences may exist as a resulc of a
difference in the absolute contribution of these influences, or as a result of a
difference in the absolute contributions of the other variance components. The last
effects can be evaluated by comparing the opposite sex twins’ correlation to the same-
sex twins® correlation (for sex limitation), or by a smart extension of a crossectional
design (Snieder, van Doornen and Boomsma, 1997). The data set used for this thesis
exists of two age cohorts and includes both males and females, allowing all four
effects of age and sex, except the non-scalar age limitation effect, to be evaluated.

SEM and linkage analyses

In addition to the above advantages, SEM can also easily include effects of measured
genes or environmental factors. The effects of single loci may be detected using
association or linkage analyses (Zhu ez al. 1999; Neale er al., 1999; Neale, 2000).

In association analyses the effects of alleles on a trait are tested, and are
incorporated in the model as fixed effects on the means (Zhu et al. 1999; Neale ez al.,
1999; Neale, 2000; Moxley et al., 2002). Linkage analysis depends on the co-
segregation (i.c. a violation of Mendel’s law of independent assortment) of alleles of a
marker and a trait locus (Ott, 1999). Non-parametric linkage analyses can be
conducted using pairs of siblings of DZ twins, that share some regions of the
genome, but not all. Sib-sharing of marker alleles can be quantified in terms of
identical-by-descent (IBD) status for a sib pair, which denotes the number of alleles
that have descended from the same ancestral allele and can be 0, 1, or 2 (Sham,
1998). IBD is distinct from identical-by-state (IBS), which denotes the number of
alleles that two sibs have in common that are physically identical, but that have not
necessarily been inherited from the same parent. MZ twins are by definition IBD 2
on every locus.

Table 2.4
IBD / IBS status from all possible sib pairings from parental mating type A1A2 (father) x A1A2
(mother).

Sib 1
AlAl AlA2 A2A1 A2A2
AlAl 2/2 1/1 1/1 0/0
: AlA2 1/1 242 0/2 1/1
& A2A1 1/1 0/2 2072 1/1

A2A2 0/0 1/1 141 212
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Table 2.4 describes how all possible sib pairings in the offspring are related IBD /
IBS. If a marker is linked to a trait locus, sib pairs of IBD status 2 are expected to
show more phenotypic resemblance than sib pairs of IBD status 1, which in turn
show more phenotypic resemblance than sib pairs of IBD status 0, assuming additive
gene action (Haseman and Elston, 1972).

As IBD status is not always unambiguously known and must be estimated
probabilistically from the specific allele pattern across chromosomes (haplotype) of
two individuals, for each marker across the genome three probabilities per sib pair
can be estimated: the probability that they are IBD status 0 (p,,,,), the probability
that they are IBD status 1 (p,,,), and the probability that they are IBD status 2
(Pur)- The sum of these probabilities equals 1. The proportion of alleles shared IBD
at a particular marker site equals the correlation between the breeding values of that
marker site for sib 1 and sib 2. The probability that a sib pair has IBD status 2 equals
the correlation between the dominance values of that marker site between sib 1 and
sib 2. The breeding values (or dominance deviations) of the marker are a function of
the recombination fraction between the marker and the trait locus and the breeding
values (or dominance deviations) of the trait locus. As the recombination fraction is
unknown, this cannot be incorporated in a model. The path coefficients v and w
(Figure 2.4) and the relative contribution of the factors Am and Dm to the
phenotypic variation are thus a function of the recombination fraction between the
marker and the trait locus and the magnitude of the genetic effects of the trait locus.
Relatively small effects of the factors Am and Dm can thus either reflect a situation
with small effects at the trait locus and a small recombination fraction (close to zero)
or may reflect large effects at the trait locus in combination with a large (close to 0.5)
recombination fraction between the marker and the trait locus.

The proportion of alleles shared IBD is called 77, and the estimate of 7 is
referred to as 7, which can be calculated as (Sham, 1998);

Tt =% Pupr * Prop> (Equﬂﬁm 221

We call the correlation between the dominance values of the marker site between sib

1 and sib 2 &, the estimate of & is referred to as & which can be calculated as

5 = Pur» (Equation 2.22)

This can be incorporated in a path diagram (Figure 2.4).
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1.00 (MZ) / 0.50 (DZ)

1.00 (MZ)/0.25 (DZ)

1.00 (M2) / ft (DZ)

1.00 (M2)/ 8 (DZ)

Phenotype Phenotype
Twin1 Twin2
z z
1.00 1.00

Figure 2.4
Path dzagram representing the resemblance between MZ or DZ twins for background additive

genetic mﬂumce: (A), background d Adi

genetic infl (D), jve genetic
due the marker site (Am), dominant genetic influences due to the marker site (D), and non-
shared environmental influences (E) in a univariate design.

. . P . 2 2 2 2 2
The expectation for the variance is in algebraic terms; x +y + v + w + 2, the
. . . . 2 2 2 2
expectation for the covariance among MZ twins is X + y + ¢ + w , and for the

covariance among DZ twins is % «* + Y y + #4' + 8 ' . Dolan, Boomsma and
Neale (1999) showed that a linkage design including sibship sizes greater than two
was more powerful than designs including sib pairs (or DZ twins) only.

Extended twin design

A final advantage of SEM, most relevant to this thesis, is the easy extension from a
univariate model to multivariate models, and the handling of missing data structures.
The latter enables the relative easy incorporation of data from other family members,
without the need to have the same number of family members available for each
family. The inclusion of non-twin siblings (if available) will have positive effects on
statistical power (see also Chapter three). As some families may consist of a twin pair

|
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and six additional siblings and other families may consist of twins only or twins and
one additional sibling, the correlational method cannot be applied to estimate genetic
and environmental contributions to the variance. Fortunately, such non-rectangular
data structures can be handled with ease using a SEM approach. The presence of
non-twin siblings gives the opportunity to test all sorts of assumptions, such as
whether the covariance between DZ twins equals the covariance between non-twin
siblings (which is often assumed, but can now be tested), whether the means and
variances in twins are similar to the means and variances observed in siblings, or
whether twin-sib covariance is different from sib-sib covariance, across males and
females.

In conclusion, in this thesis, the incorporation of the biometrical model
underlying genetic variation into a SEM approach, allows the use of powerful
extended twin designs in which parameter estimates of heritability and
environmental influences can be evaluated. And ultimately, the specific effects of
genes may be quantified in terms of 4, d, and —a. Recently Fulker e al, 1999
developed a method that allows the simultaneous analysis of linkage and association.
This method has proven to be a most powerful tool in gene detection (e.g. Zhu et al.,
1999; Neale e al, 1999). In Chapter eleven an extension of this model
incorporated within a SEM approach using the extended twin design.
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INTRODUCTION

Recent advances in molecular genetics have made it
possible to partition genetic variance into sources due
to particular genetic loci (quantitative trait loci's;
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The power to detect sources of genetic and environmental variance varies with sample size,
study design, effect size and the statistical significance level chosen. We explored whether the
power of the classical twin study may be increased by adding non-twin siblings to the classical
twin design. Sample sizes to detect genetic and shared environmental variation were compared
for kinships with only twins, kinships consisting of twins and one additional sibling, and kin-
ships with twins and two additional siblings. The effect of adding siblings to the classical twin
design was considered for univariate and bivariate analyses.

For the univariate case, adding one non-twin sibling resulted in a decrease in sample size
needed to detect additive genetic influences in the presence of environmental influences. How-
ever, adding two additional siblings did not decrease the number of subjects as compared to the
classical twin design. The sample size required to detect common environmental factors was
also greatly decreased by adding one non-twin sibling. Adding two non-twin siblings resulted
in a small additional decrease. In models including additive genetic, dominant genetic, and unique
environmental effects, adding one sibling to a twin family decreased the required sample size
to detect dominant genetic influences. Adding two siblings to a twin family resulted in only a
slight additional decrease in sample size.

In the bivariate case a similar pattern of results was found, in addition to the observation
that the overall required sample size, as expected, was lower than in the univariate case. The
decrease in sample size from bivariate testing was more pronounced in a design with one or two
additional siblings, as compared to a design with twins only. It is concluded that a well con-
sidered choice of family design, i.e. including families with twins and one or two additional sib-
lings increases the statistical power to detect sources of variance due to additive and non-additive
genetic influences, and common environment.

KEY WORDS: Sample size; heritability; methodology; sibship size; twin study.
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a trait can not be ascribed to genes because the statiddetect an effect of interest with a power of 80%. The
tical power to detect sources of genetic variation is in- MZ twins to DZ twins ratio was 1 to 1 for all three de-
sufficient (Svikis, Velz & Pickens, 1994; Pickens, signs (thus, the ratio MZ to ‘non MZ sibpairs’, is not
Svikis, McGue, Lykkenget al.,1991). This will pre- 1 to 1 for all designs). It should be noted that we re-
clude further searching for effects of QTL’s on that par- port sample size in subjects and not in twin pairs. The
ticular trait, even though such QTL’s may be present. same number of subjects refers to different numbers
The statistical power of quantitative genetic stud- of twin pairs and a different number of families for all
ies is influenced by the size of the effect (e.g. heri- three designs. We will use the terms ‘highest power’
tability), the sample size, the probability level)( and ‘fewest subjects needed’ to refer to an optimal de-
chosen, and the homogeneity of the sample (Neale andsign to detect sources of phenotypic variance.
Cardon, 1992; Cohen, 1992; Tanaka, 1987). Increasing All analyses were carried out using the statistical
the sample size is the most common way to increase thesoftware package Mx (Neale, 1997). Estimation of pa-
statistical power of a study, but is often limited by re- rameters was obtained by normal theory maximum like-
sources of time and money. Another means to increasdihood. Goodness of fit testing was based on the
statistical power is the use of multivariate testing. In the likelihood ratio tests. First univariate models were con-
context of structural equation modeling the statistical sidered. In order to obtain the sample size needed to
power to detect genetic effects rises as a (non-linear)detect varying levels of additive genetic variance with
function of multivariate testing under the condition that a fixed power level of (+ ) = .80, covariance matri-
the measures are correlated (Schmitz, Cherny, andces were calculated with sources of additive genetic
Fulker, 1998). In the context of partitioned twin analy- variance (\{) accounting for 10% to 90% of the phe-
ses it has been shown that choosing a different (e.g.notypic variance in the presence of sources of common
other than 1 to 1) MZ to DZ ratio influences statistical environmental variance ¢(Yaccounting for 00%, 10%,
power such that an MZ to DZ ratio of 1 to 4 is optimal and 20% of the variance. Remaining variance was at-
for partitioned twin analyses (Nance & Neale, 1989). tributed to unique environmental (E) sources of vari-
In the present paper we focus on increasing the sta-ance (\f). To detect sources of.\éovariance matrices
tistical power of the classical twin study by adding non- were calculated with Vaccounting for 10% to 90% of
twin siblings to MZ and DZ twin pairs. Since non-twin the phenotypic variance in the context of sourcesof V
siblings share on average half of their segregating genesaccounting for 00%, 10%, and 20% of the phenotypic
just like DZ twins, adding non-twin siblings to the clas- variance. In addition, covariance matrices were calcu-
sical twin design may provide an efficient way to in- lated with sources of variation due to A, D (dominant
crease the power to detect sources of genetic and sharegenetic variance) and E. Only the situation in which
environmental variance. Adding two more siblings to a dominance was ‘complete’ (Mo V4 =2 to 1; see ap-
twin kinship provides five additional observed covari- pendix I) was considered. In the ADE-models the total
ances, whereas adding a whole new family consisting ofgenetic variance, i.e. Mand V; together accounted for
two siblings provides only one additional observed co- 30% to 90% of the total phenotypic variance. For all
variance. In the present paper we examine the effects ofkituations, remaining variance was attributed to V
adding non-twin siblings to twin families on the esti- Since non-twin siblings, like DZ twins, share on
mated sample size needed to detect additive genetic (Aaverage half of their genes, expectations for non-twin
variance (\), dominant genetic (D) variance {V and sibling covariances were modeled similarly to expec-
common environmental (C) varianceMvith a power tations for DZ covariances.
of 80% in the context of structural equation modeling. In the ACE-models the expected phenotypic vari-
ance ¢2) of twins and siblings is ¥+ V. + V,, the ex-
pected MZ covariance M+ V., and the expected DZ
and sibling covariance .5+ V.. In ADE-models, the
We calculated covariance matrices for three ex- expected phenotypic variance ig ¥Vq4 + V,, the ex-
perimental designs, which differed in family constitu- pected MZ covariance 3+ Vg, and the expected DZ
tion. Design 1 included only MZ twins and DZ twins. and sibling covariance .5, .25 V.
Design 2 included families with MZ and DZ twins and It is known that the use of a multivariate pheno-
one additional sibling. Design 3 included families with type, as opposed to a univariate phenotype, results in
MZ and DZ twins and two additional siblings. For all a gain of statistical power if the multivariate traits are
three designs we calculated the sample size needed toorrelated (Schmitet al.1998). To find out how much

METHOD
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Trait 2 Trait 1 Trait 1 Trait 2
Twin 1 Twin 2 Sib1 Sib1

€1l din dyg 22

.25
25

Fig. 1. Pathdiagram for the bivariate ADE-model, cholesky decomposition. Example for twins and one additional sibling, no unique enviro
mental correlation (rE). The covariance between trait 1 and trait 2,/®4a + (d;;*d,;) and the correlation between trait 1 and trait 2 is

(ag1*@z1) + (dir*do))/V(0%* 02).

adding siblingsaand using a multivariate phenotype af- estimated as a free parameter because we are interested
fects statistical power we also looked at several bi- in computing the power to detect,Mn ACE-models,
variate designs. We calculated covariance matrices forregardless of the value of,\and vice versa). The same
two traits with a phenotypic correlation of .50. Both reasoning applies to the bivariate calculations.

traits could be influenced by A, C, and E or by A, D, Constraining a certain set of parameters to zero and
and E. Total influences of sources of A, C or D, and E refitting the model provides the non-centrality parame-
were uniform for each trait. The phenotypic correlation ter. From this non-centrality parameter the sample size
between the two traits could be due to additive geneticrequired to reject the false model with a power of 80%
correlation (rA), dominant genetic correlation (rD), and a significance level of .05 can be calculated (Mar-
common environmental correlation (rC), or to unique tin et al.,1978; Hewitt and Heath, 1988) and is conve-
environmental correlation (rE), depending on the spe- niently supplied by Mx.

cific situation that was considered. Figure 1 depicts the
construction of covariance matrices for kinships con-
sisting of twins and one additional sibling for a bi-
variate ADE-model (Cholesky decomposition) in which Univariate Models

rE is absent and all p.henotyplc corrglatloh is due to rA ACE-models

and rD. All latent variables have unit variance.

Power calculations were carried out by fitting the We fitted full univariate models with sources of
known model to the exact (population) covariance ma- variation due to additive genetic (A), common environ-
trices as described in Neale and Cardon (1992). In mod-mental (C) and unique environmental influences (E).
els which contain a parameter which is known to be zero,Dropping either genetic or common environmental
the zero parameter can either be fixed at zero or freedparameters and refitting the model provides the non-cen-
(estimated) while computing the power to detect one of trality parameter. With Mx (Neale, 1997) the cor-
the other non-zero parameters. For example, when treatresponding number of subjects required to detect the
ing the ACE-model in which Ms zero as an AE-model, parameter that was dropped with a power of 80%cand
the power to detect sources of variation due to A is sig- of 5% was calculated for 1 degree of freedom. Results
nificantly higher than when the ACE-model is treated as concerning the estimated sample size (in subjects)
an ACE-model, i.e. with Yestimated as a free param- needed to detect,\h ACE-models for the three designs
eter. In the power calculations the zero-parameter wasare depicted in Figure 2 (and appendix Il). Figure 2a con-

RESULTS
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Fig. 2 a,b,c.Required sample size to detect sources of variance due to additive genetic effects in ACE models for three different family de-
signs with a power of 80%. Desigrn=IMZ and DZ twins only, Design 2 MZ and DZ twins and one additional sibling, Desigr 81Z and
DZ twins and two additional siblings.

cerns low values of M(10%- 20%), Figure 2b concerns Under various values of Mand V,, the power to
intermediate values of M30%-50%), and Figure 2c  detect sources of variation due to C rises substantially
concerns high values of \(60%—-90%) accounting for ~when one sibling is added to the classical twin design;

the total phenotypic variance. All values of &fe re- on average 50.4% fewer subjects are needed as com-
ported three times, i.e. in the context of values obV pared to the classical twin design (design 1). Adding
0%, 10%, and 20%. two siblings decreases sample size even more, but not

As can be seen in Figure 2a, 2b, and 2c, for vari- as dramatically as the decrease from no additional sib-
ous values of Yand V,, design 2 (families consisting lings to one additional sibling.
of MZ and DZ twins and one non-twin sibling) is the Many empirical studies suggest models in which
most optimal design to detect sources of variation duesources of variation due to C are of less importance
to A, i.e. with design 2 fewer subjects are required to than sources of variation due to A (Plomin, DeFries, &
achieve a power of 80% (see appendix IlI). The numberMcClearn, 1990). Therefore, we also calculated the sam-
of subjects needed to detect a fixed value gfsvon ple size required to detect small values gfnthe con-
average 9.3% more in the classical twin design (designtext of higher values of ) Figure 4 depicts the number
1) compared with a design with twins and one additional of subjects needed to detect values @fo¥/10% and
sibling. This can result in 2849 fewer subjects that are 20% in the context of values of,\6f 20% , 30%, 40%
needed with design 2 to detect an additive genetic in-or 50% (Appendix V).
fluence of 10% compared with the classical twin design. As expected, sample size required to deteetith

Including families with twins and two additional a power of 80% decreases as a result of higher values
sibs, islesspowerful than including families with twins  of V. and higher values of ¥ Comparing the sample
and one additional sibling, and also less powerful than size required to detect sources of variation due to A
including families with twins only for the detection of (Figure 2b) with the sample size required to detect
V. adding two siblings at the cost of the total number sources of variation due to C, shows that in the realis-
of MZ twins is disadvantageous, but adding one sib- tic situation where Y> V. sources of variation due to
ling is ideal. C are very difficult to detect. Even if the sample size is

Results for detecting common environmental in- large enough to detect sources of variation due to A, the
fluences are given in Figures 3a, 3b, and 3c, for low, small value of \{ may still go undetected. If for exam-
moderate, and high values of késpectively (see also ple the true model is an ACE-model with ¥50%, V,
Appendix I11). = 20%, and V¥ = 30%, and the total sample size 328
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Fig. 4. Required sample size to detect sources of variance due to common environmental influences in ACE models>wherfeihree
different family designs with a power of 80%.

(just enough for design 1 to detecf ®f 50%, with to be present in designs where siblings are added to the
power of 80%), VY will not be detected and the AE- classical twin design.

model will be proposed as the most parsimonious model.

This results in a biased estimate of (ih this case Y ADE-Models

is estimated to be 70%). We also fitted full univariate models with sources
Adding siblings to the classical twin design de- of variation due to additive genetic (A), dominance (D)
creases the sample size required to detect betmy and unique environmental influences (E). Since a DE-
V. and has the largest effect on the sample size requirednodel is unrealistic we report the sample size required
to detect V (i.e. 50.4% fewer subjects needed fq; V  to detect sources of variation due t@AdD (2 df test)
9.3% fewer subjects needed foy)VTherefore, the bias  and to detect sources of variation due to D (1 df test)
towards overestimating values of, ¥s a result of not  with a power of 80%. Results for detectingand Vj,
detecting \ in situations where y> V,, is less likely or V4 are given in Figures 5a and 5b (and appendix V).
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Under various values of Jand V;, with fixed ratio In conclusion, to optimize the power to detegt V
of V,to Vyis 2 to 1, adding one sibling to a twin family a design with additional siblings, as compared to a de-
decreases the sample size required to detgcAdbing sign with twins only, is preferred.

two siblings decreases sample size even more but less

than the decrease due to adding one sibling. Absolute ef-

fects are slightly higher with increasing values givid Bivariate Models
Vg F.|gure 5{;\ also emphasizes _the very Iarge .sample SIZ€ ~E_Models
that is required to detect dominant genetic influences.

Even the largest possible value of ¥hder complete To detect sources of variance due to additive ge-

dominance with the most optimal design will go unde- netic influence (A), we calculated both the sample size

tected if the sample is smaller than 1776 subjects. required to detect all sources of {f = 3; paths a,
Sample sizes required to detect bothavd \ si- a1, and @, in Figure 1) and the required sample size to

multaneously are considerably smaller as compared todetect the common genetic pathway £df; path a,).
sample sizes required to detect. Vh contrast, how-  We considered the test for the detection of the common
ever, adding siblings does not decrease sample sizgpathway to be a test for the presence of a genetic cor-
needed to detect Mand \j simultaneously. In fact, a relation (rA). The following situations to detect sources
design with one or two siblings requires somewhat of variance due to A were considered: a) The genetic
more subjects to detect,¥{nd \j; with a power of 80%, correlation (rA) is ‘moderate’ and equal to the common
as can be seen in Figure 5b. It should be noted how-environmental correlation (rC) and tioe unique envi-
ever that the number of subjects needed to detgct V ronmental correlation (rE). Variances due to A, C and
and \; at the same time is considerably less than the E (uniform for both traits) are 40%, 10%, and 50% re-

number of subjects needed to detegtovily. This im- spectively of the phenotypic variance. b) rC is absent,

plies that if the sample size is large enough to detectrA is high (.80), and rE is small (.36), variances due

V4 it will also be sufficient to detect Mand V. to A, C and E are 40%, 10%, and 50% respectively.
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Fig. 5 a,b.Required sample size to detect sources of variance due to dominant genetic influences (a) and total genetic (dominant & additive
influences)(b) influences in ADE models, for three different family designs with a power of 80%.
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¢) Variances due to C are absent. rA is .60, rE is .27,is highest in these cases). However, when there are uni-
variances due to A and E are 70% and 30% respec~ariate common environmental influences but no com-
tively. As mentioned before, all parameters were es- mon environmental correlation, the sample size required
timated, as opposed to constraining these parametersto detect variance due to additive genetic influences in-
which werezero in the full model. It should also be creases. Comparing situations a, b, and c leads to the
noted that considering the tests for totgltdtal V,, and conclusion that the power to detect sources of variance
total V; to be 3 df-tests is a conservative approach, as itand covariance due to A (df 3) is highest (and the re-
could be argued these are actually 2 df-tests, or testgjuired sample size is smallest) when there is no uni-
with df’'s somewhere between 2 and 3. Testing, for ex- variate common environmental source of variation.
ample, whether either or both univariate genetic vari- However, if there are common environmental sources
ances equal zero, implies that the genetic covariance iof variation, sources of variance due to A are easier to
zero. If variances due to additive genetic influences for detect when there is also a correlation between these
both traits equal zero, a correlation between thesetwo univariate common environmental sources of vari-
sources of variance is not possible. In other words, if ation, and again a design with one additional sibling is
the sample size required to detect each of the univa-optimal.
riate variances due to additive genetic influences is To detect sources of common environmental
insufficient, a correlation due to additive genetic in- sources of variation, we calculated both the power to
fluences can also not be detected. Therefore, considerdetect all sources of variation due to C £d3) and the
ing the test for the power to detect ‘total \f.e. both power to detect the common pathway €dt), which
univariate variances due to additive genetic influencesis a test to detect the environmental correlation (rC).
and the correlation due to additive genetic influences in We considered situations analogous to the situations in
the bivariate case) a 3 df test will provide an overesti- which power was calculated to detect sources of vari-
mation of the sample size needed for a power of 80%.ation due to A; a) The common environmental corre-
Results of situation a, b, and c for the three different lation is ‘moderate’ and equal to the genetic correlation
kinships, are given in Table I. and to the unique environmental correlation, i.e~rC
As can be seen in Table | the same pattern of re-rA = rE = .50. Uniform univariate variances due to A,
sults is found in the bivariate case as in the univariateC and E are 10%, 40%, and 50% respectively. b) rA is
case; a design with one additional sibling is optimal for absent. rC is high (.80), and rE is small (.36), variances
the detection of Yin ACE-models. In addition, sig- dueto A, C and E are 10%, 40%, and 50% respectively,
nificantly fewer subjects are needed in the bivariate ¢) Variances due to A and rA are absent. rC is .60, rE
case as compared to the univariate case. Depending ois .27, variances due to C and E are 70% and 30% re-
whether the phenotypic correlation is due to rA, rC, or spectively. Again, for all situations the phenotypic cor-
rE, the sample size required to detegiméay decrease relation was .50. Results are given in Table II.
and is lowest in cases where there is no influence of Although the results in the bivariate case resem-
common environmental sources (i.e. statistical power ble those in the univariate case (i.e. a design with two

Table I. Total samplesize (in number of subjects) needed to detect additive genetic influences in full bivariate ACE models unider three d
ferent sibship sizes with power {1p) = .80 anda = .05

V,=40% rA= .50 V. = 40% rA= .80 V.= 70% rA= .60
V. =10% rC=.50 V, = 10% rC=.00 V, = 00% rC=.00
Ve = 50% rE= .50 V, = 50% rE= .36 V, = 30% rE= .27
all V, (df = 3) rA (df = 1) all V, (df = 3) rA (df = 1) all V, (df = 3) rA (df = 1)
design 1 660 2392 782 884 156 270
design 2 564 1917 678 735 147 237
design 3 680 2260 820 876 180 284

Note MZ/DZ ratio = 1/1; design 1= twins only, design 2 twins and one additional sibling, design-3wins and two additional siblings.
‘All V ;' refers to both univariate variances and the genetic correlation.

In order to calculate the total number of families needed, all cells concerning design 1 need to be divided by 2, akemlisgcdesign 2
need to be divided by 3, and all cells concerning design 3 need to be divided by 4.
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Table II. Total samplesize (in number of subjects) needed to detect common environmental influences in full bivariate ACE models under
three different sibship sizes with power<$) = .80 anda = .05

V,=10% rA= .50 V,=10% rA= .00 Vo= 0% rA=.00

V¢ = 40% rC= .50 V, = 40% rC= .80 V, = 70% rC= .60

Ve =50% rE= .50 V, = 50% rE=.36 V, = 30% rE= .27
all V, (df = 3) rC (df=1) all V, (df = 3) rC (df=1) all V, (df = 3) rC (df=1)
design 1 444 1498 518 560 100 156
design 2 213 774 249 279 48 96
design 3 48 760 44 268 16 108

Note see table 1 for definitions.

additional siblings is optimal for the detection of)V  Designs Where Only Sibs of mz Twins are Included
the difference between design 2 and design 3 (i.e.
adding one or two siblings) in the bivariate case is more
substantial. Whereas in the univariate case only a small
additional effect was found, in the bivariate case 4 to
5 times less subjects are needed with two additional
siblings as compared to one additional sibling.

In the previous analyses all families were of the
same structure; consisting of MZ and DZ twins only,
or with one or two additional siblings. For several rea-
sons this may not always be realistic. For illustrative
purposes, we included two other designs in which one
(design 4) or two siblings (design 5) were added to MZ
twin families, but not to DZ families. Analyses were
ADE-Models run for a few ‘standard’ situations of the ACE-models

. ) _and ADE-models for univariate testing only. Results
We calculated covariance matrices for two traits 5, ACE and ADE models are given in Table IV.

that were influenced by A, D, and E in the context of Comparison of the results of designs 4 and 5 and
complete dominance. Sources of variance due to A antihe results of designs 2 and 3 shows that in ACE-mod-
D accounted for 40% and 20% respectively of the total g|5 5 design consisting of MZ twins and one additional
phenotypic variance. We assumed that the raiooV  gipling and DZ twins only (design 4) is optimal for the
V4remained equal over the two traits. This implies that yetection of \,, and performs even better than design 2.
rA =D (see appendix I). Three situations were con- o the detection of Vin ACE-models design 3 and 5
sidered: a) rA=rD =.80,; b) rA=rD =.50; c) rA=rD are both optimal.

= .30. For all three situations the phenotypic correla- In the context of ADE-models, design 3 (MZ/DZ
tion was fixed at .50 by attributing all remaining co- ins with two additional siblings), requires the smallest
variance to rE. We report the total number of individual sample size and is more optimal than design 4 or 5 for
subjects needed to detect sources of togand \; due the detection of sources of variation due to dominance.
to A and D (df=6), rA & rD (df = 2), total D (df=3),
and rD (df=1) for a power of 80%. Results are given
in Table IIl.

Analogous to the univariate case a design with two We demonstrated that with a fixed power of 80%,
additional siblings is optimal for the detection of V a probablity level of 5% and under varying levels of
and a design with twins only is optimal for the detec- heritability and common environmental influences,
tion of V,and V; simultaneously. Comparison with the adding one sibling to the classical twin design signifi-
univariate results shows that in a design with twins cantly decreases the number of subjects that are needed
only, fewer subjects are needed to detect sources ofto detect each of these sources of variation. Adding two
variance due to D as a result from bivariate testing. This siblings to a twin pair yields an additional decrease of
effect, however, is stronger when a design consistingsample size to detect sources of variation due to the
of twins and two additional siblings is used, suggest- common environment but is not optimal for the detec-
ing that in addition to the decrease in sample size as aion of additive genetic influences. If the trait is influ-
result from bivariate testing, adding siblings will de- enced by additive and non-additive genetic factors,
crease the sample size required to detect sources o&dding one sibling to the classical twin design decreases
variance due to D even further. the sample size needed to detect sources of variation

CONCLUSION
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30
.30
80

= 40% rA
V= 20% rD
= 40% rE

Va
Ve

.50
=.50
.50

40% rA
V= 20% rD
40% rE

power (1- ) = .80 anda = .05
Va
Ve

.80
80

.05

40% rA
40% rE

Vg4 =20% rD
Ve =

Table Ill. Total sample size (in subjects) needed to detect additive genetic influences and dominance in bivariate ADE models uidee ufiffie@rent sibship sizes with
Va

all Vg4
(df=3)

rA&rD
(df=2)

all V, + all Vy

D

all Vg4
(df=1)

(df=3)

all V, +all Vg rA&rD

D
(df=1)

all Vg4

(df = 3)

rA&rD

all V, +all Vy

(df=1)

(df = 6)

(df=2)

(df = 6)

(df=2)

(df = 6)

82356
41544
38436

4702
2490
2272

548
681
784

32
39
40

28054
14073
12872

7662
3909

184
228
264

54
60
60

10042
5121

8672

64
78

62
69
72

design 1

4464

design 2

3636

4660

4076

design 3

Note see table 1 for definitions.
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Table IV. Total sample size (in number of subjects) needed to de-

tect additive genetic, dominance and common environmental influ-

ences in univariate ACE-models and ADE-models for designs with
including MZ and DZ twins and siblings added to MZ families
only, a power of (+ B) =.80, and significance level = .05

V,=40% Vc=40% V,=40% V,=40%
Ve=10% V,=10% V4=20%  V4=20%
effect
detected» Va, V. Va+Vy Vg4
design 4 705 338 83 6313
design 5 744 285 84 5313

Note MZ/DZ ratio = 1/1: design 4 Mz twins and one additional
sibling, DZ twins only, design § MZ twins and two additional sib-
lings and DZ twins onl.

due to dominance. Adding two siblings decreases the
number of required subjects somewhat more but the de-
crease is relatively small (compared to the decrease due
to adding one sibling). These effects are more pro-
nounced in the bivariate case than in the univariate
case. An additional benefit of adding siblings is that
these designs, as compared to the classical twin design,
are less likely to result in an overestimation of additive
genetic influences as a result of not detecting small
sources of common environmental influences.

We modeled the sibling covariances under the as-
sumption that age differences in heritability are not im-
portant. A more complex model would take into
account age differences between non-twin siblings. It
is known that for some measures heritability increases
with age as a result of amplification of genetic effects
across ages (e.g. intelligence; Boomsma, 1993),
whereas for other measures heritability estimates may
decrease with age (e.g. problem behaviour; Van der
Valk et al.,1998). Assuming that the same genes op-
erate across the age span, adding siblings who are older
than the twins will increase power when heritability in-
crease with age, and will decrease power when heri-
tability estimates decrease with age. Similarly, adding
parents will increase power to detect genetic factors if
heritability increases with age.

Schork (1993) noted the dramatic improvement in
statistical power resulting from the use of larger sibships
for the detection of QTL effects. In addition, Dolan,
Boomsma and Neale (1999) demonstrated the value of
adding non-twin siblings to two-sibling- (or DZ twin-)
families for the detection of codominant QTL effects.
Our aim was to determine whether the use of an ex-
tended twin design, as needed for the detection of QTL-
effects, would also be useful for the detection of overall
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o i 0
< 0 ©

0%

sources of variance (i.e. A, C, and D). Our calculations
showed that without the need to increase total sample
size, adding one sibling to the classical twin design im-

proves the statistical power by a large extent to detect
sources of variation due to common environmental in-

fluences, additive genetic influences and dominance.
Adding siblings and using a bivariate phenotype results
in gain of statistical power which can not only be as-

cribed to bivariate testing but also to the use of an ex-
tended twin design.

In conclusion, adding at least one sibling to the
classical twin design, as opposed to a design with twins
only, will provide a significant gain in statistical power
to detects sources of variation due to A, C, and D. An
attractive side-effect of a design with additional sib-
lings is that it is also beneficial for the detection of
QTL-effects.

=80%  V,=90%
0% 10%
104 52
105 57
132 72

Va
10% 20%
198 124 60
186 120 63
228 148 80

V, = 70%
20% 0%

10%
324 228 144
396 280 176

360 248 150

=60%
0%

Va

APPENDIX |

10% 20%

Consider a biallelic trait with alleles B and b. Let
a be the effect of genotype BB on the phenotypic mean,
-a the effect of bb, and the effect of Bb on the phe-
notypic mean. Assuming equal allele frequencies of B
and b, the mean genotypic effect on the phenotypic
mean isl/2 d.The total genetic variance?g) equals
12 &+ 1/4 &, =Vva+ Ve

For complete dominance=da. Substituting d for
a in the formulae for the genetic variances, givessV
1/2 & and \! 1/4 &, thus \# =2 V¢

V, = 50%
0%
644 482 328
567 426 294
688 512 356

10% 20%

40%
1192 950 700

1032 813 600
1252 976 716

0%

Va
20%

30%
10%

2406 2026 1588
2079 1707 1320
2520 2048 1572

Va
0%

20%

20%
10%

Now consider éivariate model with latent vari-
ances scaled to unity, (see figure 1) and

5151 4395 3540
6256 5280 4208

5908 5230 4332

Va
0%

e uniform genetic influences over traits, Y=
Vazand Vd1:Vd2

e assumption of uniform d to a ratio over traits
(24)?/(d12)? = (820)%/(d21) = (822)%/(d22)?

o A =ay;* ap/V{(a10)* [(a21)? + [(a22)?} which
simplifies to rA= a,q/aq;

¢ 1D =dy; * dyyV{(d1)** [(d22)? +[(d22)°]} which
simplifies to rD= d,,/d;,

20%

1/1, significance level = .05, power (1- B) = .80, design X twins only, design 2 twins and one additional sibling, desigr3
10%

V,=10%

0%
design 1 24896 23084 20110

This implies that the additive genetic correlation
equals the dominant genetic correlation.

Sample size (in subjects) needed to detect additive genetic influences in full univariate ACE models under varying levai®mfdue to

common environmental sources for three different sibshipsizes.

MZ/DZ ratio
In order to calculate the total number of families needed, all cells from design 1 need to be divided by 2, all cellsgrothriesd to be di-

vided by 3, and all cells from design 3 need to be divided by 4.

twins and two additional siblings.

design 2 22047 19557 16365
design 3 26836 23560 19460

APPENDIX I

Ve -
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APPENDIX V

Posthuma and Boomsma

Samplesize (in subjects) needed to detect additive genetic and dominance influences in ADE-models.

See Appendix Il for definitions

V,=20% V, = 30% V, = 40% V, =50% V, = 60%
Vg =10% V, = 15% V, = 20% V, = 25% V, = 30%
V.& Vg Vq V.& Vg Vg Va&Vy Vg Va&Vy4 Vg Va& Vg Vg
design 1 148 22808 76 11036 42 5958 42 5958 22 3518
design 2 156 11790 84 5631 48 3081 48 3081 27 1950
design 3 148 11328 84 5236 48 2784 48 2784 28 1776
REFERENCES Neale, M. C. (1997)Mx: Statistical modeling3rd edition Box

980126 MCV, Richmond VA 23298.

Boomsma, D. I. Current status and future prospects in twin studies Neale, M. C., & Cardon L. R.(1993)jethodology for Genetic Stud-

of the development of cognitive abilities: Infancy to old age. In:
Bouchard, Thomas J. Jr. (Ed), Propping, Peter @djl. (1993).

ies of Twins and Familie®NATO Asi Series. Series D,Behav-
ioural and Social Sciences, Vol 67.

Twins as a tool of behavioral genetics. Life sciences research Pickens, R. W., Svikis, D. S., McGue, M., Lykken, D.é&t al.

report,53. (pp. 67—82). Chichester, England UK: John Wiley &
Sons.

Boomsma, D. I. & Dolan, C. V. (1998). A comparison of power to
detect a QTL in sib-pair data using multivariate phenotypes,
mean phenotypes, and factor scor@&ehavior Genetics,
28:329-340.

Cohen, J. (1992) A power primé&sychological Bulletin1 12155-159.

Dolan, C. V., Boomsma, D. I., & Neale, M. C. (1999). A note on the
power provided by sibships of size 2, 3, and 4 in genetic co-
variance modeling of a codominant QTlh. press

Fulker, D. W., Cherny, S. S., Cardon, L. R. (1995). Multipoint in-
terval mapping of Quantitative Trait Loci, using sib paks
J Hum Genet56(5):1224-1233

Fulker, D. W., Cherny, S. S., Sham, P. €t,al(1999). Combined
linkage and association. Sib-pair analysis for quantitative traits.
Am J Hum Genet4(1):259-267

Hewitt, J. K., & Heath, A. C. (1988). A note on computing the chi-
square noncentrality parameter for power analyBesavior
Genetics,18:105-108.

Martin, N. G., Eaves, L. J., Kearsey, M. J., and Davies, P. (1978).

The power of the classical twin studyeredity,40:97-116.
Nance, W. E., & Neale, M. C. (1989). Partitioned twin analyses: a
power studyBehavior Genetics19:143-150.

(1991). Heterogeneity in the inheritance of alcoholism: A study
of male and female twinsArchives of General Psychiatry,
48:19-28.

Plomin, R., DeFries, J. C., & McClearn, G. E. (198@havioral Ge-
netics. A primerNew York: Freeman and company.

Schmitz, S. Cherny, S. S., & Fulker, D. W. (1998). Increase in power
through multivariate analyseBehavior Genetic28:357—-364.
Schork, N. J., (1993). Extended multipoint identity-by-descent analy-
sis of human quantitative traits: efficiency, power, and model-

ing considerationsAmerican Journal of Human Genetics,
53:1306-1319.

Svikis, D. S., Velez, M. L., Pickens, R. W. (1994). Genetic aspects
of alcohol use and alcoholism in wome¥icohol Health & Re-
search World18:192-196.

Tanaka, J. S. (1987). How big is big enough?: sample size and good-
ness of fit in structural equation models with laten variables.
Child Development58:134—-146.

van der Valk, J. C., Verhulst, F. C., Neale, M. C., Boomsma, D. I.
(1998). Longitudinal genetic analysis of problem behaviors in
biologically related and unrelated adoptdgshavior Genetics,
28:365-380.

Edited by Norman D. Henderson



T'win-singleton
differences in
intelligence !

" This chapter is published as: Posthuma D, de Geus EJC, Bleichrodt N,
Boomsma DI. (2000). Twin-singleton differences in intelligence? 7win Research,
3:83-87.



Twin Research (2000) 3, 83-87
© 2000 Macmillan Publishers Ltd Al rights reserved 1369-0523/00 $15.00 (@)

www.nature.com/tr

Twin-singleton differences in intelligence?
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The twin method has been criticised for its alleged non-generalisability. When population
parameters of intellectual abilities are estimated from a twin sample, critics point to the twin-
singleton differences in intrauterine and family environments. These differences are suggested to
lead to suboptimal cognitive development in twins. Although previous studies have reported twin-
singleton differences in intelligence, these studies had two major drawbacks: they tested young
twins, and twins were compared with (genetically) unrelated singletons. To test accurately
whether twin-singleton differences in intelligence exist, a group of adult twins and their non-twin
siblings were administered the Dutch WAIS-III. The group was large enough to detect twin-
singleton differences of magnitudes reported in earlier investigations. The data were analysed
using maximum likelihood model fitting. No evidence of differences between adult twins and their
non-twin siblings on cognitive performance was found. It is concluded that twin studies provide
reliable estimates of heritabilities of intellectual abilities which can be generalised to the singleton

population. Twin Research (2000) 3, 83-87.

Keywords: twin study, intelligence, twins, singletons

Introduction

Classic behavioural genetic studies provide statis-
tical estimates of heritabilities that form the first step
in the search for genes for complex behaviour.™* A
large part of these behavioural genetic studies are
based on twin samples. These samples have some-
times been criticised for their alleged non-general-
isability; since twins are ‘special’ they may not be
representative of singletons. Especially in the field of
cognitive abilities twins are generally considered to
be at a disadvantage compared with singletons.>™®

Twins share the womb at the same time and
consequently share prenatal nutrition provided by
the mother’s dietary intake. When preparing for
labour, twins compete for the best position. This
suboptimal intrauterine environment may lead to
prematurity, low birth weight and lower weight-for-
gestational age,” which in turn in several cases have
been associated with low childhood 1Q.5** Apart
from a general suboptimal intrauterine environment
for both twins, it is known that one of the two
foetuses will suffer more from this suboptimal
environment than the other.® It is usually the
second-born twin that experiences the greatest
adverse effects of sharing the womb.**

Beside these adverse effects of sharing the womb
twins may suffer from twin-related stresses in the

Correspondence: D Posthuma, Vrije Universiteit, Department of
Biological Psychology, De Boelelaan 1111, 1081 HV, Amsterdam,
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family environment in which they are reared. A
multiple birth puts stress on a family which may
have a negative effect on the (cognitive) develop-
ment of a twin pair. In some studies it is argued that
especially for monozygotic (MZ) twins, who are very
much alike, limitation of resources and competition
may lead to negative influences for at least one twin
member.®

A relatively small number of studies has been
devoted to detecting twin-singleton differences in
cognition.*®*®> The one study that stands out was
conducted by Record, McKeown and Edwards® who
compared an impressive number of singletons, twins
and even a few triplets. Verbal reasoning scores from
the British eleven-plus examination were gathered
from 48913 singletons, 1082 twin pairs and eleven
triplets. Standard verbal reasoning scores were sig-
nificantly lower for twins (standard verbal 1Q 95.7)
than for singletons (100.1). Triplets performed even
worse (91.6). The authors investigated whether this
4.4standard points difference between twins and
singletons could be attributed to effects of maternal
age, birth weight, gestational age, zygosity and
whether a twin was born first or second. None of
these factors could explain the difference.

Record et al® also investigated whether twins of
whom one had died shortly after birth differed from
singletons; although for these ‘twins’ a slightly lower
score than normal singletons (1.9 points) was found,
this difference was much smaller than the 4.4 points
difference between singletons and twins of which
both members were still alive. Based on this observa-
tion the authors concluded that the difference of
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4.4 points between singletons and twins cannot be
attributed to negative effects of sharing the womb,
but instead must be sought in the environment in
which twins are reared. However, since Record et al®
did not control for any difference in twin families
and singleton families, they could not rule out
selection biases in the sampling of twin and non-
twin families. Such biases may exist because twins
as a group may have a slightly different genetic or
social background than singletons.

Nathan and Guttman™® tried to overcome selection
bias in twin and singleton families by comparing
twins and singletons (aged 8-13years) who were
reared in the same kibbutz. A kibbutz is an lIsraeli
community in which children are collectively
reared. So although the twins and singletons in this
study did not have the same genetic background,
they were accurately matched for family environ-
ment and childrearing practices. In this study dizy-
gotic (DZ) twins performed worse than MZ twins
and singletons. According to the authors, however,
this difference could be totally ascribed to the
relatively few years of schooling of the group of DZ
mothers. Thus, in spite of the attempt to match twins
and singletons this study is also an example of
biased family sampling.

In addition to comparing twins with familially
unrelated singletons, most previous studies have
been conducted using young twins.**%'"*° Because
these studies show that twins recover any deficits in
intellectual performance by 6-8years of age,"®>° the
comparison of twins and singletons at ages below
8years does not provide a good indication of adult
twin-singleton differences. To the best of our knowl-
edge studies comparing the 1Q of adult twins and
genetically related singletons have not yet been
conducted.

In the present study mean scores of adult MZ and
DZ twins on intellectual ability are compared with
the mean scores of their non-twin siblings. Non-twin
siblings make an ideal control group; both genetic
background and early familial environments are
perfectly matched.

Method
Subjects

The subjects were 358 family members from a total of
152twin families who participated in a project
investigating the genetics of adult brain function.
The Dutch version of the Wechsler Adult Intelli-
gence Scale-111 (WAIS-111)** was administered when
the participants visited the laboratory for a com-
bined session of neuropsychological and electro-
encephalographic measurements. All subjects were
recruited from the Netherlands Twin Registry. The

twins had previously participated in one of two
previously conducted studies in which zygosity was
assessed by blood group polymorphisms and DNA
typing.22’23

In total, 98siblings, 101 MZ twins, 153 DZ twins
and 9triplets participated. Since the group of triplets
was small, we discarded the data of the last born of
the triplets and treated the remaining two members
as if they were twins. This left 98siblings and
260twins. The study recruited twin pairs and at
most two of their non-twin siblings. It also included
single twins (co-twin refused participation) and
siblings only (both twins refused). Thus, families
consisted of at least one member and at most four
members. Table 1 shows the number of families with
a particular constitution, eg 27 MZ families consist-
ing of two twin members and no siblings partici-
pated; siblings from nine families participated with-
out the twins. Due to administrative errors five
individual test scores are missing subtest digit
symbol-coding, four individual test scores are miss-
ing subtests block design and digit symbol-free
recall, and one individual test score is missing
subtest digit symbol-pairing and subtest letter-num-
ber sequencing. Results are based on the available
number of subjects per subtest (see Table 3).

Mean age and sex distribution per group are
displayed in Table 2. Of the 98 non-twin siblings, 35
were younger than the twin from the same family,
and 63 were older. Distribution of sex did not differ
in the DZ twins and the siblings. Slightly fewer
female MZ twins than male MZ twins participated.

Table 1 Sample configuration

number of non-
twin siblings

0 1 2

2 twins 27 18 3
1 twin - 4 1
2 twins 32 27 10
1 twin 12 8 1
no twin - 7 2

total non-twin siblings: 64 + 34=098

mz twins total mz twin pairs: 48

dz twins total dz twin pairs: 69

Table 2 Mean age and sex distribution per group

Mean age
Group Male Female Total in years (sd)
mz twins 58 43 101 39.7 (12.63)
dz twins 70 89 159 37.3(11.87)
sibs 46 52 98 37.1(12.02)

sd = standard deviation



Procedure

Eleven subtests of the Dutch WAIS-III were admin-
istered in a fixed order. Subtests included block
design, letter-number sequencing, information,
matrix reasoning, similarities, picture completion,
arithmetic, vocabulary, digit symbol coding, digit
symbol pairing and digit symbol free recall. Age and
sex hormalised scores for the Dutch WAIS-III are not
yet available; raw scores were used in the analyses
throughout. All subjects were paid Dfl.50.- for
participation.

Statistical analyses

As can be seen from Table 1 the data were charac-
terised by the varying number of participating family
members; families consisted of one to four members
which could be any combination of one or two twins
and/or non-twin siblings. This variability in number
of observations per family causes serious computa-
tional problems. In Mx** the handling of such
‘incomplete’ data is implemented by calculating
twice the negative log-likelihood (-LL) of the raw
data for each family, with the following formula:

-LL = —k log (2m) + log |Z] + (% —w)' = (%

- “’i)l
where k (k =1, 2, 3 or 4) denotes the number of
observed variables within a family, 2 (4 X 4) is the
covariance matrix of family members, x; (fori = 1, 2,
3, 4) is the vector of observed scores, y; is the column
vector of the estimated means of the variables, and
IZ] and = are the determinant and inverse of
matrix Z, respectively.

When two models which provide —-2LLs are
nested, subtracting the two —2LLs from each other
provides a A(-2LL) which has a yx° distribution. A
high % against a low gain of degrees of freedom (Adf)
denotes a worse fit of the second, more restrictive
model relative to the first model.

Four univariate nested models were fitted using
this procedure. In the first model all means were
estimated individually. The second model is the
same as the first model with two extra equality
constraints; one on the means of both members of the
MZ twin pairs and another one on the means of both
members of the DZ twin pairs. The third model is the
same as the second model but further constrains the
means of the MZ twin pairs and the DZ twin pairs to
be equal. The fourth is the same as the third model
but with an extra equality constraint on the means of
all twins (mz and dz) and siblings.

Model 2 tests whether the means of first born twins
and second born twins within zygosity groups are
significantly different. The third model serves as a
test of the assumption that the means in MZ twins
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and DZ twins do not differ. Model 4 tests whether the
means of twins and siblings are significantly
different.

For all models the variances of all twin members
and all siblings were constrained equal, and all
covariances of all twin sib pairs, the covariance of
two sibs within one family and the covariance of the
DZ twins were set equal.

Statistical power

We calculated the necessary sample size for each
group (singletons and twins) based on the effect size
as found in Record et al’s study.® A measure of effect
size that is independent of scaling is Cohen’s d,
which is calculated as follows:

d = (ul -u2)o

where ul is the mean of the first group (singletons),
u2 is the mean of the second group (twins) and o is
the common standard deviation.*

Record et al® found a 4.4 standard points differ-
ence between the two groups. The standard devia-
tion of an 1Q score is by definition 15. The effect size
in the Record et al study was thus 0.29, which is
considered a small effect. For a one-tailed test with
a =0.05, 1-p = 0.80, and two related samples, 70
individuals per group (singletons and twins) are
needed to detect an effect of such small magnitude.?®
We had 260 twins and 98 non-twin siblings giving us
the power to detect effect sizes well below 0.29.

Results

The observed means and standard deviations of
WAIS-111 subtests per group are displayed in Table 3.

Table 3 Observed means and standard deviations of WAIS-III
subtests per group

mz twin dz twin sibs
subtest (N=101) (N =159) (N =98)
Block design 26.20(8.96) 25.72(9.28)* 26.25 (8.85)°
LN sequencing 12.21 (3.42) 11.21 (2.61) 11.86 (2.90)°
Information 23.41 (6.32)  23.93(6.00) 24.11 (6.54)
Matrix reasoning 19.36 (3.38) 19.16 (3.44) 19.40 (3.28)
Similarities 26.91 (5.58) 27.17 (5.43) 27.33 (5.58)
Picture completion 20.86 (2.55) 20.72 (2.60) 20.55 (3.18)
Arithmetic 13.86 (3.86) 13.75 (3.89) 14.70 (4.12)
Vocabulary 49.07 (11.60) 48.26 (10.55) 47.83 (13.54)
DS coding 76.09 (15.22) 77.66 (19.52)¢ 78.83 (15.86)°
DS free recall 7.63 (1.20) 7.54 (1.12)° 7.54 (1.27)°
DS pairing 13.25 (4.25) 12.67 (4.19) 12.92 (4.02)°

dbased on 158 observations
*based on 94 observations
fbased on 99 observations
DS = Digit symbol

*based on 157 observations
®hased on 96 observations
‘based on 97 observations
LN = Letter-number
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Table 4 Fit indices for nested sequence of models fitted to raw data of WAIS-111 subtest scores of MZ twins, DZ twins and siblings

2. Means 1st born

twins equal means

3. Means mz twins 4. Means twins equal (4-1) All means

1. All means 2nd born twins, equal means dz means non-twin equal against all
Subtest unequal within zygosity groups twins siblings means unequal

-2LL df -2LL df -2LL df -2LL df x (Adf =7)2
Block design 2451.48 343 2453.90 345 2454.01 346 2459.56 350 8.08 n.s.
Letter-number sequencing 1738.22 346 1739.38 348 174457 349 1750.37 353 12.15 ns.
Information 2194.37 347 2197.44 349 2197.87 349 2205.64 354 11.27 n.s.
Matrix reasoning 1842.22 347 1845.75 349 1845.93 350 1848.00 354 5.78 n.s.
Similarities 2150.00 347 2151.07 349 2151.21 350 2157.71 354 771 n.s.
Incomplete pictures 1681.34 347 1681.81 349 1681.85 350 1687.18 354 5.84 n.s.
Arithmetic 1919.46 347 1920.33 349 1920.44 350 1930.52 354 11.06 n.s.
Vocabulary 2675.27 347 2678.30 349 2678.60 350 2682.41 354 7.14 n.s.
Digit symbol coding 2964.08 342 2965.69 344 2965.99 345 2967.20 349 3.12 ns.
Digit symbol free recall 1082.13 343 1082.29 345 1082.61 346 1092.84 350 10.71 n.s.
Digit symbol pairing 1988.00 346 1990.40 348 1991.25 349 1994.45 353 6.45 n.s.

df = degrees of freedom; —2LL = twice the negative log likelihood; n.s. = not significant: when the increase in X2 is not significant, the
most restrictive model is accepted; 2an increase in x? of more than 14.07 for Adf = 7 is significant at the 0.05 level.

To test whether the above differences in mean scores
indicated true differences, univariate analyses in Mx
using twice the negative log-likelihood were run.
The results for these analyses are presented in
Table 4, from which it can be seen that comparison of
model 4, the most parsimonious model, with
model 1 did not cause a significant worsening of the
fit for any of the WAIS Ill subtests. In other words, for
all subtests a model which estimates all means to be
equal fits better than a model in which all means are
estimated separately. There was no reason to believe
that means of twins and singletons in our sample
differed in 1Q.

We did find, however, that comparison of model 4
(all means equal) with model 3 (separate means for
twins and siblings) showed a significant worsening
of the fit for subtests arithmetic and digit symbol-free
recall, in the sense that on arithmetic singletons
performed slightly better than both MZ and Dz
twins, and on digit symbol-free recall MZ twins
performed slightly better than both DZ twins and
singletons. We also found that MZ twins performed
significantly better than DZ twins on subtest letter-
number sequencing.

Discussion

It has been suggested that twins have an intellectual
disadvantage compared with singletons and that
twin samples are not representative of the normal
population. If true, this might influence general-
isability of heritability estimates obtained in twin
studies, for instance by a restriction of range of 1Q
scores. In the Record et al® study a standard 1Q score
difference of 4.4points was found between twins
and singletons. Our study had enough statistical
power to detect an effect of at least the same
magnitude on each of the individual 1Q subtests. We

found, however, no evidence of a twin-singleton
difference. In fact, means and standard deviations in
our study showed no differences at all between
twins and singletons. In the Record et al® study,
where these differences were found, a priori differ-
ences in social class or genetic background of twin
families and singleton families could never be ruled
out. Since our twins and singletons came from the
same family, social class and genetic background
were perfectly matched across twin families and
singleton families.

Our results are in line with an earlier report by
Kallman®’ who administered the Wechsler Bellevue
Scale to 134twin pairs (aged 60-89years), and
compared the scores of these twins to standardised
scores based on a comparable group of singletons.
Kallman concluded that there was no significant
difference between twins and singletons in measures
of intellectual performance.

Although in our study no evidence was found for
twin-singleton differences in intellectual ability,
one cannot necessarily generalise from this in
respect of personality, lifestyle, disease susceptibil-
ity or mortality rates. However, recent comparisons
of twins and singletons on problem behaviour,?®
mortality rates®® and psychiatric symptoms® have
not suggested twin-singleton differences in these
fields either. All in all, significant disadvantages of
twins in comparison with singletons seem to be
implied rather than observed.
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Summary

Twin studies are important to investigate genetic influ-
ences on variation in human brain morphology in
health and disease. However, the twin method has been
criticized for its alleged non-generalizability due to dif-
ferences in the intrauterine and family environment of
twins, compared with singletons. To test whether twin—
singleton differences complicate interpretation of gen-
etic contributions on variation in brain volume, brains
from 112 pairs of twins and 34 of their siblings with a
mean (standard deviation) age of 30.7 (9.6) years were
scanned using MRI. The influence of birth order, zygos-
ity and twin-sibling differences on brain volume meas-
ures was analysed using maximum-likelihood model
fitting. Variances were homogeneous across birth order,
zygosity and twin-singleton status. Irrespective of zyg-
osity, intracranial volume was smaller in second-born
twins compared with first-born twins and compared
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with siblings. Grey matter volume was smaller in sec-
ond-born twins compared with first-born twins. White
matter was smaller in twins compared with siblings.
Differences in grey and white matter between these
groups were no longer significant after correction for
intracranial volume. Total brain, and lateral and third
ventricle volumes were comparable in twins and single-
tons. In conclusion, second-born twins have a smaller
intracranial volume than their first-born co-twins and
siblings. This suggests aberrant early brain development
in second-born twins, which is consistent with the sub-
optimal pre- and perinatal environment related to birth
order in twins. Since other brain volume measures were
comparable between the groups, twin studies can pro-
vide reliable estimates of heritabilities in brain volume
measures and these can be generalized to the singleton
population.

Keywords: twins; structural equation modelling; MRI; brain; birth order

Abbreviations: DOS = dizygotic opposite-sex twins; DZ = dizygotic; DZF = dizygotic female twins; DZM = dizygotic
male twins; MZ = monozygotic; MZF = monozygotic female twins; MZM = monozygotic male twins; SF = female

sibling; SM = male sibling

Introduction

Twins studies are considered important to investigate genetic
influences on variation in human brain morphology. Several
studies have investigated quantitatively the contribution of
genetic and environmental influences to individual differ-
ences in human brain structure (Bartley et al., 1997; Carmelli
et al., 1998; Lohmann et al., 1999; Le Goualher et al., 2000;
Pennington et al., 2000; Pfefferbaum et al., 2000; Baaré et al.,
2001a). Moreover, twin studies have shown genetic and
environmental influences on the interaction between brain
structure and psychiatric disease (Reveley et al., 1982;
Suddath et al., 1990; Baaré et al., 2001b).

© Oxford University Press 2002

The twin method has sometimes been criticized for its
alleged non-generalizability due to differences in intrauterine
and family environment of twins, compared with singletons.
As foetuses, twins share the womb and prenatal nutrition, and
compete for the best position during labour. The intrauterine
environment may therefore be considered as suboptimal
compared with that of singletons, with the greatest disadvan-
tage for the second born of a (monozygotic) twin pair (Price
et al., 1950). In addition, it has been argued that family
environments in which twins are reared can be suboptimal
compared with those of singletons. Some studies have shown




that physical likeness, limitation of resources and competition
may lead to negative influences on the cognitive development
of at least one twin member (Hay et al., 1983). However, in a
large sample of 3-year-old twins, it was found that they had
similar, or even lower, levels of behavioural and emotional
problems than singletons (Van den Oord et al., 1996).

Evidence for differences between twins and singletons has
been suggested in a few studies for cognitive measures (Hay
et al., 1983; Nathan et al., 1984), raising concerns regarding
generalizations  towards the  singleton  population
(Vandenberg, 1984). However, these studies generally com-
pared twins with genetically unrelated singletons, which
complicates the generalizability of the findings. Recently,
using an extended twin design (Posthuma and Boomsma,
2000; Posthuma et al., 2000a), a study was completed in
which monozygotic and dizygotic twins were compared with
their own siblings on intellectual ability, providing perfectly
matched genetic and familial environments (Posthuma et al.,
2000b). No evidence was found for differences in intellectual
ability between twins and their siblings. This suggests that
twin studies can provide reliable estimates of heritabilities,
which can be generalized to the singleton population, at least
with respect to intellectual abilities. Similarly, comparison of
twins and their non-twin relatives showed no differences in
psychiatric symptoms (Kendler et al., 1995). However, it is
not known whether twin studies provide reliable estimates of
heritabilities of brain structure. Studies examining the relative
contributions of genetic and non-genetic factors to structural
brain volume in health and disease rely on the assumption that
brains of twins are comparable with those of singletons. To
test whether twin—singleton differences complicate interpret-
ation of genetic contributions to variation in brain structure,
brain volume measures from pairs of twins and their siblings
were compared.

Methods
Subjects

A total number of 258 family members from 112 families
participated in the study after written consent was obtained
(Baaré et al., 2001a). They consisted of 33 monozygotic
(MZ) male (MZM), 17 dizygotic (DZ) male (DZM), 21 MZ
female (MZF), 20 DZ female (DZF), 21 DZ opposite-sex
(DOS) twin pairs and 19 male (SM) and 15 female (SF) full
siblings. Twins were recruited from the (healthy) twin sample
of the Department of Psychiatry of the University Medical
Centre Utrecht, The Netherlands, and The Netherlands Twin
Registry (Boomsma, 1998). DNA fingerprinting using either
the polymorphic markers D06S474, D0751804, D07S1870,
D12S811, DI13S119, DI13S126, D13S788, D20S119,
D22S683, DXS1001 and ELN, or DI13S317, VWA,
D74520, D35158, THO1, TPOX, CSF1P0 and D55818
determined zygosity. Except for one twin pair, all twins and
their siblings were reared together. Two twin pairs were born
by Caesarean section delivery. Subjects with severe medical
diseases were excluded. Mental and physical health was
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assessed by means of the Family Interview for Genetic
Studies (Nurnberger et al., 1994) and a medical history
inventory, respectively. Birth weight was traced in 219
subjects (in 96 first-born twins, in 95 second-born twins and
in 28 siblings). It was based on the report of the mother and,
when this was not available, on the subject’s report. Subjects’
consent was obtained according to the declaration of
Helsinki. The Scientific and Ethical Committee of the
University Medical Centre Utrecht, in which the study was
performed, approved the study.

Brain imaging
MRIs were obtained on a 1.5 tesla Philips Gyroscan scanner
at the University Medical Centre Utrecht. For volumetric
analysis, a three-dimensional T,-weighted, coronal FFE
(spoiled gradient echo scan) of the whole head [TE (echo
time) = 4.6 ms, TR (repetition time) = 30 ms, flip angle = 30°,
170-180 contiguous slices; 1 X 1 X 1.2 mm3 voxels], and a
coronal DTSE (dual contrast turbo spin echo) of the whole
brain (TE1 = 14 ms, TE2 = 80 ms, TR = 6350 ms, 120
contiguous slices; 1 X 1 X 1.6 mm3 voxels) were acquired.
Images were coded to ensure blindness for subject
identification, zygosity and family membership. Image vol-
umes were transformed into Talairach space (no scaling) and
corrected for magnetic field inhomogeneities (Maes et al.,
1997; Sled et al., 1998). Volumetric measurements were
obtained using automated segmentation procedures and
included intracranial, whole brain, grey and white matter of
the cerebrum (excluding cerebellum and brainstem), and
lateral and third ventricle volumes. Automatic segmentation
software included histogram analysis algorithms, anatomical
knowledge-based decision rules and series of mathematical
morphological operators to connect all voxels of interest
(Schnack et al., 2001a, b). Intracranial volume was seg-
mented on DTSE scans. Whole brain volume was segmented
on the three-dimensional FFE scans using a binary image of
the intracranial volume as a mask. A plane through the fourth
ventricle and the aqueduct limited the cerebellum. In lateral
ventricle segmentation, automatic decision rules bridged
connections not detectable and prevented ‘leaking’ into
cisterns. The third ventricle was limited by coronal slices
that clearly showed the anterior and posterior commissures;
the upper boundary was a plane through the plexus
choroideus ventriculi tertii in the midsagittal slice perpen-
dicular to this slice. Segmented intracranial, whole brain and
lateral and third ventricle volumes were checked visually and
edited if necessary. The segmentation procedures yielded
highly reliable volume measurements, with inter-rater
intraclass correlations all above 0.96.

Statistical analysis

Structural equation modelling with Mx software (Neale,
1997) was used to estimate the contribution of birth order of
the twins to mean scores of and variance in brain volumes, to
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Table 1 Age and brain volumes in monozygotic (MZ), dizygotic (DZ) twins and their siblings
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DOS 2nd SF

female

DZF 2nd DOS 1st

MZF 2nd DZF Ist

MZF 1st

DOS 2nd SM

male

DZM 2nd DOS 1st

MZM 2nd DZM I1st

MZM 1st*

female

male

15)

(n

n=29)

(n = 33) n=17) m=17) @=9) @®=12) ®=19) @®=21) (=21) @®@=20 (=20 (n=12)

(n = 33)

30.15 28.50 31.78 29.53
(4.90)

30.20
(8.55)

28.50 28.89 33.67 33.67
(11.80)

(11.39)

31.78
(14.75)

30.76 30.75 29.82 29.76

(standard deviation) (9.71)

Mean age in years

(14.75)

(11.38)

(8.55)

(11.80)

(4.79)

(7.04)  (7.06)

(9.69)

Brain volumes, mean (standard deviation) in ml

1376.90
(1157

1245.77
(83.28)

1379.65
(88.14)

1327.74
(118.77)

1339.63
(104.74)

1330.48
(127.83)

1354.37
(108.64)
1183.31

1528.68
(111.15)

1502.56
(99.93)

1486.62
(95.51)

1426.42
(81.85)
1265.28
(77.55)
629.22

1496.98

(72.00)

1515.93
(118.61)

1531.39

Intracranium

o

1211.5

111823
(68.22)
580.96

1211.86
(77.69)
639.68

1178.94
(109.12)
612.72

11.82.15
(115.44)

614.31

1170.66
(124.11)
599.19

1348.06
(92.76)
681.55

1313.96
(97.62)

681.10

1298.87
(97.96)
667.07

1329.87
(66.86)

1330.73
(111.68)

670.41

1339.64
(106.18)

(109.89)
676.17

Total brain

(108.10)
624.42

(110.19)
612.90

663.77

Grey matter

(58.83)
436.14

(55.49)  (54.78)

423.37

(68.76)  (77.48) (59.17)  (53.44)
428.08 415.45

(43.85) (41.15) (44.39)  (73.16) (51.66)
478.68 505.31  426.58

(69.36)
494.85

(64.59)

397.62

422.37

476.36

474.33

506.98

498.81

‘White matter

(53.40)
14.23
(7.03)
0.78

(27.14)
9.72

(42.48)

(57.34)
9.83

(55.94)

(58.64)
13.47
(6.37)
0.68

(49.40)
14.39
(7.09)
0.75

(34.36) (47.15) (53.91) (44.35) (49.04)
13.88
(7.96)
0.69

(55.15)

(53.42)
15.26

9.11)

0.

16.90
(9.18)
0.67

16.10
(6.81)
0.68

11.99
(7.64)
0.59

17.67
(10.29)

0.95

11.78
(5.89)
0.64

12.76
(6.28)
0.70

15.19

Lateral ventricles

(2.56)
0.50

(3.90)
0.56

(7.33)
0.75

79

Third ventricle

(0.28) (0.31) (0.56) 0.41) (0.34) (0.29) (0.28) (0.30) (0.19) (0.26) (0.18) (0.24)

(0.35)

(0.42)

*]st = first born; 2nd = second born.

test the assumption that the mean volumes (and variance) in
MZ twins and DZ twins do not differ, and to test whether the
mean volumes (and variance) of twins and siblings are
significantly different. Models were fitted to the raw data
using maximum-likelihood to estimate parameters.
Hierarchic %2 tests were used to compare the fit of different
models. Twice the difference between the log-likelihood of
two models is distributed asymptotically as 2. The degrees of
freedom for these tests are equal to the difference in
parameters being estimated. Utilizing the principle of parsi-
mony, the most restrictive model is accepted as the best fitting
one in case the difference between a nested and a more
comprehensive model is not significant (Neale and Cardon,
1992).

Four univariate nested models were fitted using this
procedure (Posthuma et al., 2000a). In the first model
(the control model), the variances for brain volumes of all
twin members and all siblings were constrained to be
equal. In addition, all covariances of twin-sibpairs, the
covariance of two sibs within one family and the
covariance of the DZ twins were set to be equal. The
second model (to test birth order effects) is the same as
the first model, with two extra equality constraints; one
on the means of both members of the MZ twin pairs and
another on the means of both members of the DZ twin
pairs. The third model (to test zygosity effects) is the
same as the second model, but further constrains the
means of the MZ twin pairs and the DZ twin pairs to be
equal. The fourth model (to test twin—sibling differences)
is the same as the third model, but with an extra equality
constraint on the means of all twins (MZ and DZ) and
siblings.

Univariate models were fitted on all variables, with the
effects of age and sex corrected for by means of a linear
regression on the observed values of each of the dependent
variables.

Post hoc analyses were done with intracranial volume as a
covariant, when effects for total brain, grey and white matter
or ventricular volumes were found to evaluate the specificity
of the finding. Moreover, in case of a significant finding for
birth order, the influence of birth weight was tested, by adding
birth weight as covariate to the analyses.

Results

Means and standard deviations of brain volume measures are
shown in Table 1. The volume estimates in the control model
are shown in Table 2. The tests for equality of variances
showed no evidence of differences in variance according to
birth order, zygosity or twin—singleton status. In addition, no
differences were found in DZ covariance and sibpair
covariances.

The results for the univariate analyses of birth order,
zygosity and twin—sibling differences on the means of the
brain volume measures using the Mx software are shown in
Table 3.
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Table 2 Brain volume estimates (in ml) under the constraints that variances are equal for all family members (control

model)
Grand mean Grand mean Grand mean Grand mean Grand mean Age effect Male
MZ 1st* MZ 2nd DZ 1st DZ 2nd sibs per year deviation
Intracranium 1380.52 1361.80 1359.04 1328.90 1387.83 -0.57 158.59
Total brain 1263.92 1253.56 1248.11 1228.75 1272.47 -2.18 137.41
Grey matter 711.68 702.87 704.31 690.65 711.05 -2.86 52.02
White matter 397.91 396.07 393.03 384.55 407.25 0.93 69.31
Lateral ventricles 11.65 10.25 11.13 9.14 10.23 0.09 1.22
Third ventricle 0.39 0.34 0.36 0.30 0.40 0.01 0.09
#]st = first born; 2nd = second born.
Table 3 Influence of birth order, zygosity and twin—sibling differences on brain volumes
Model 2* Model 3 Model 4a Model 4b Model 4c
birth order zygosity twin—sibling twin—1st sibling twin—2nd sibling
X2 Adf. %2 Adf. x> Adf. x2 Adf. x? Adf.
Intracranium 11.986 2 3.102 2 - - 2.749 1 9.321 1
Total brain 5.85 2 1.363 1 3.488 1
Grey matter 7.233 2 1.494 2 - - 0.405 1 3.364 1
White matter 1.678 2 0.896 1 4.263 1
Lateral ventricles 4.521 2 0.056 1 0.001 1
Third ventricle 4.996 2 0.481 1 1.475

*An increase in %2 of >3.841 for Ad.f. = 1 is significant at the 0.05 level; an increase in %2 of >5.991 for Ad.f. = 2 is significant at the 0.05
level; %2 values in bold indicate a significant influence of the factor (i.e. the model cannot be accepted); note that when the increase in %2

is not significant, the most restrictive model is accepted.

For intracranial volume, the more restrictive models
revealed a significant difference in means due to birth order
(%2 =11.99, Ad.f. = 2, P < 0.05). The second-born twins had
smaller intracranial volumes than the first-born twins.
Because birth order mattered, separate comparisons for
first-born and second-born twins with siblings were made.
The mean intracranial volume of the first-born twins did not
differ from that of the siblings. However, the mean
intracranial volume of the second-born twins was smaller
than that of the siblings (y? = 9.32, Ad.f. = 1, P < 0.05). For
grey matter volume, the more restrictive models revealed a
significant difference in mean due to birth order (y? = 7.23,
Ad.f. = 2, P < 0.05). The comparisons for first-born and
second-born twins with siblings revealed no significant
differences in mean grey matter volume, although grey
matter volume of the second-born twins was smaller
compared with that of the siblings. For white matter volume,
the more restrictive models revealed a significant difference
(2 =4.26, Ad.f. = 1, P < 0.05). Mean white matter volume in
twins, irrespective of birth order and zygosity, was smaller
than in siblings.

Post hoc analyses revealed that the effects of grey and
white matter in (second-born) twins compared with siblings
were no longer significant after correction for intracranial
volume.

For the total brain, and the lateral and third ventricular
volumes, the more restrictive models caused no significant

differences in 2. This means that the more restrictive models
may all be accepted. Thus, the estimated means of first- and
second-born twins, the estimated means of MZ twins and DZ
twins, and those of twins compared with siblings were not
significantly different with respect to total brain, and lateral
and third ventricular volumes.

There was a significant correlation between birth weight
and intracranial volume (r= 0.23, P < 0.01). Birth weight was
Jlower in second-born twins (mean % standard deviation birth
weight 2455.3 = 569.9 g) compared with first-born twins
(2575.6 * 567.8 g) (x? = 6.404, Ad.f. = 2, P < 0.05). Twins
had a lower birth weight than siblings (3369.1 = 591.2 g)
(3% =59.124, (d.f. = 1, P < 0.0001). When birth weight was
added as covariant in the model, it did not influence the
results, i.e. intracranial volume remained significantly smaller
in the second-born compared with the first-born twins
(x?=11.481, Ad.f. = 2, P < 0.05).

Discussion

This study compared brain morphology between MZ and DZ
twins with their non-twin siblings. No differences in
(co)variances were found according to birth order, zygosity
or twin-singleton status. However, a mean difference was
found for intracranial volume, such that the second-born
twins had a significantly smaller intracranial volume com-
pared with the first-born twins and compared with their
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siblings, whereas the intracranial volume of first-born twins
did not differ from that of the siblings. Moreover, grey matter
volume was smaller in the second-born twins compared with
the siblings, and white matter was smaller in the twins,
irrespective of birth order and zygosity, compared with the
siblings. After correction for intracranial volume, the effects
for grey and white matter were no longer significant. Mean
values of total brain, and lateral and third ventricular volumes
were not influenced by birth order or zygosity, and no
evidence was found for twin—sibling differences.

The finding that, irrespective of zygosity, second-born
twins had a smaller intracranial volume than first-born twins
and their siblings suggests that brain growth is influenced by
non-genetic factors during early brain development. Brain
growth is thought to be the main factor influencing growth of
the neurocranium in the first years of life (O’Rahilly and
Miiller, 1992; Sgouros et al., 1999). No effect of birth order
on head circumference was reported earlier, but that finding
was based on the inclusion of 10 pairs of MZ twins only
(Tramo et al., 1998). Because no effects of zygosity were
found, it is likely that environmental and not genetic factors
resulted in the development of a relatively smaller head in
second-born twins. Nutritional deficiency during the first
trimester of gestation (Hulshoff Pol et al., 2000), and birth
complications (McNeil et al., 2000; for a review, see Frangou
and Murray, 1996), in schizophrenia as well as very preterm
birth (Allin et al., 2001) have all been related to decreased
brain volume. Twin gestations have a significantly higher rate
of complications compared with singleton gestations, par-
ticularly with regard to preterm labour, pregnancy-induced
hypertension and foetal death (Kovacs et al., 1989; Doyle,
1996), and the second-born twin seems to be particularly at
risk. The overall mortality risk of second-born twins has been
reported to be 8% greater than that of first-born twins.
Mortality risks as a result of respiratory distress syndrome,
intrauterine hypoxia and birth asphyxia, and congenital
anomalies were 19-27% higher among second-born twins
than among first-born twins (Fowler et al., 1991). Moreover,
second-born twins were found to have a lower birth weight
compared with first-born twins in a sample of 193 twins
where 55% of the second born twin were male (Daniel et al.,
2000) and in a sample of 2930 Dutch twins (Baal and
Boomsma, 1998). Although, in our study, no direct compari-
son between obstetric complications and brain volume
measures was made, it is likely that pre- and perinatal factors
specific for second-born twins influenced intracranial volume
in these subjects. Correcting for birth weight in the analysis
did not change the finding that second-born twins had a
smaller intracranial volume than the first-born twins. Because
the effects were only found in the second-born twins and not
in the first-born twins, suboptimal family environments that
have been associated with twin rearing (Hay and O’Brien,
1983) are less likely to have influenced intracranial volume.

Twin-sibling differences were found for mean white
matter volumes, with those of twins being smaller than
their siblings, and grey matter volume, which was smaller in

the second-born twins compared with siblings. However,
after correction for intracranial volume, these effects on the
means were no longer significant. This suggests that the
difference in (second-born) twins compared with siblings is
due predominantly to differences in intracranial volume and
occurs early in brain development. Moreover, it implies that
overall volumes of grey and white matter do not develop
differently in twins and singletons.

No differences in mean values of total brain, and lateral and
third ventricular volumes were found secondary to twin—
sibling differences. Although total brain volume was some-
what smaller in twins compared with siblings, this finding did
not reach significance. The comparability of both the
variances and the means of brain volumes across twins and
their siblings suggests that suboptimal pre-, peri- and possibly
postnatal circumstances in twins and siblings do not
differentially influence total brain, and lateral and third
ventricle volumes in twins and singletons. Moreover, it
suggests that twin studies can provide reliable estimates of
heritability of these brain volumes and that these estimates
can be generalized to the singleton population.

Whether the smaller intracranial volume in second-born
twins has consequences for their subsequent cognitive and
behavioural development remains to be determined.
However, it is unlikely that the smaller intracranial volume
in second-born twins implies such consequences. In a study
that included a majority of the twins from this study, no
differences in intelligence measured by the Wechsler Adult
Intelligence Scale and birth order in twins were found
(Posthuma et al., 2000b). Earlier findings suggested that
twins recover from deficits in intellectual performance by 6—8
years of age (Wilson, 1979). Indeed, by the age of 11 years,
no evidence for a relationship between the order of delivery
of twins on their intelligence quotient as measured by a verbal
reasoning task was found (Record et al., 1970). Finally, levels
of behavioural and emotional problems were found to be
similar, or even lower, in 3-year-old twins compared with
singletons (Van den Oord et al., 1996).

Our findings suggest that twin studies can provide reliable
estimates of heritabilities of brain volumes that can be
generalized to the singleton population. Whether twin—sibling
differences occur in particular brain areas such as in limbic,
diencephalic and basal ganglia structures remains to be
established in future studies.
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The hunt for genes influencing behavior may be aided by the study of intermediate phenotypes
for several reasons. First, intermediate phenotypes may be influenced by only a few genes, which
facilitates their detection. Second, many intermediate phenotypes can be measured on a contin-
uous quantitative scale and thus can be assessed in affected and unaffected individuals. Continu-
0us measures increase the statistical power to detect genetic effectsefNdal®94), and allow

studies to be designed to collect data from informative subjects such as extreme concordant or dis-
cordant pairs. Intermediate phenotypes for discrete traits, such as psychiatric disorders, can be neu-
rotransmitter levels, brain function, or structure. In this paper we conduct a multivariate analysis
of data from 111 twin pairs and 34 additional siblings on cerebellar volume, intracranial space,
and body height. The analysis is carried out on the raw data and specifies a model for the mean
and the covariance structure. Results suggest that cerebellar volume and intracranial space vary
with age and sex. Brain volumes tend to decrease slightly with age, and males generally have a
larger brain volume than females. The remaining phenotypic variance of cerebellar volume is
largely genetic (88%). These genetic factors partly overlap with the genetic factors that explain
variance in intracranial space and body height. The applied method is presented as a general ap-
proach for the analysis of intermediate phenotypes in which the effects of correlated variables

on the observed scores are modeled through multivariate analysis.

KEY WORDS: Extended twin study; methodology; structural equation modeling; intermediate phenotype;
MRI.

INTRODUCTION to locate the particular genes that account for these in-

fluences (e.qg., Petriéit al.,1997; Flint, 1999). The ge-

netic influence on observable behavior is the outcome

of a complex interplay between several genes which

each may have unique but small effects on the observed

behavior. Kosslyn and Plomin (2000) suggested that to

increase one’s chances of finding the actual genes in-

fluencing behavior, it might be wiser to look for genes

1 Department of Biological Psychology, Vrije Universiteit Amsterdam, that are I'nked to more basic traits (|.e.,_more directly
Amsterdam, The Netherlands. under the influence of DNA) than behavior. The more

2 Virginia Intsitute of Psychiatric and Behavioral Genetics, Virginia basic traits have become known as intermediate phe-
Commonwealth University, Richmond, Virginia 23284. .

% Department of Psychiatry, University Hospital Utrecht, Utrecht, notypes or endophenotypes (Boomsetaal., 1997;
The Netherlands. Lander, 1988; Kendler, 1999).

4 i i itai . . . .
To whom corresp_onde_nce should be addressed at Vrije Universiteit, Indices of brain function are aIready W|der used
Department of Biological Psychology, van der Boechorststraak 1, . . . .
1081 BT, Amsterdam, The Netherlands. Fe31 20 444 8832. e- &S intermediate phenotypes in the study of behavior.

mail: danielle@psy.vu.nl. Changes in serotonin neurotransmission may affect mood

311

The study of the genetics of human behavior has long
focused on actual observable behavior, such as smok-
ing, alcoholism, or intelligence (e.g., Maatsal.,1999;
Heathet al.,1999; Bouchard and McGue, 1981). Al-
though there is now clear evidence of genetic influ-
ences on these behaviors, it has often proven difficult

0001-8244/00/0700-0311$18.00/0 © 2000 Plenum Publishing Corporation



312 Posthumaet al.

and memory (e.g., Finkt al., 1999), and electrical size means having to deal with the nuisance of having
activity of the brain has been linked to alcoholism, missing data and requires a statistical package which
sensation seeking, and cognition (e.g., Schukit, 1986;efficiently handles variable pedigree sizes.
Rodriguez, 1999; Glass and Riding, 1999; Zuckerman, Intermediate phenotypes are often correlated with
1990). Electroencephalograpli@nda oscillations of other observed variables. For example, age and sex are
the brain have been linked to memory performance (for known to affect cerebellar volume (see, e.g., letifal.,
a review see Klimesch, 1999) and the P300 evoked p0-1999; Razet al., 1998; Passet al.,1997). Also, cere-
tential has been linked to general 1Q (for a concise bellar volume is expected to covary with body height
overview see Detterman, 1994). In the genetics of psy-and intracranial space. These two types of “confounders”
chopathology, another main intermediate phenotype isneed to be addressed differently. In nongenetic designs,
brain structure. Indices of brain structure have been as-it is common practice to regress out the effects of body
sociated with schizophrenia (e.g., Lawrie and Abukmeil, height and intracranial space on brain volumes. How-
1998; McCarleyet al., 1999), mood disorders (e.g., ever, in the hypothetical situation where half of the phe-
Drevetset al.,1997), and dementia (e.g., Kageal., notypic variance in cerebellar volume is due to genetic
1997). Although an obvious intermediate phenotype, factors which are shared with genetic factors that in-
human brain structure and volume have received little fluence both intracranial space and body height, such a
attention from geneticists. The few studies that have regression approach will lead to the conclusion that phe-
reported on the heritability of brain structure in humans notypic variance in cerebellar volume is low. Applying
generally report on very specific structures of the a multivariate approach would correctly show the her-
brain (e.g., Carmelkt al.,1998; Steinmetet al.,1994) itability of cerebellar volume.
or have been conducted on small sample sizes (e.g., In the present paper an approach is illustrated that
Bartleyet al.,1997). Thus, while many studies report deals with these two issues simultaneously: correction
genetic influences on behavior, and a number of stud-for linear effects of age and sex on multivariate observed
ies link behavior to brain structure, there are virtually scores (of cerebellar volume, body height, and intracra-
no studies that report on the genetic or environmentalnial space) in an analysis that allows estimation of
influences on brain structure. genetic and environmental (co-)variation of these mul-
In the light of future investigations of the genetic tivariate phenotypes. This analysis is embedded in an
influences on brain structure or other intermediate phe-extended twin design to maximize the statistical power.
notypes, we illustrate in this paper how Mx (Neale, 1997)
can be used to analyze the genetic and environmental in-
fluences on a particular brain structure: the cerebellum. METHODOLOGY
The cerebellum is one of the larger structures of the brain
and lies posterior to the brain stem. It is thought to be
involved in the coordination of movement and motor
functioning (Ghez, 1991). Since the measurement of Both age and sex are associated with body height,
cerebellar volumes or other structures with magnetic intracranial space, and cerebellar volume. In order to
resonance imaging (MRI) is costly, an approacteisded correct for these effects we employ a linear regression
that minimizes the required number of subjects with- model for a continuous tra (j =1, . . .,m,wherem
out affecting statistical power. A powerful desigrstady is the number of phenotypes) with observed values
the genetic and environmental influences on a meas-y = (y;, . . ., Yo, Wheren is the total number of sub-
ured intermediate phenotype like brain structure is the jects).
extended twin design (Posthuma and Boomsma, 2000). In the subsequent analyses two explanatory vari-
In this design nontwin siblings are added to the classi- ables k; andx,; age and sex, respectively) have causal
cal twin design (as opposed to recruiting more twin fam- effects on the observed individual scores of height, in-
ilies), which yields increased statistical power to detect tracranial space, and cerebellar volume. All variables
genetic and shared environmental influences on a measwere multivariately normal distributed conditional on
ured variable. Extended twin designs, however, pro- the values of age and sex except for body height in ad-
vide data characterized by families of variable size, i.e., ditional siblings. This was totally explained by one
some families may include twins and one nontwin sib- very tall male additional sibling. Inclusion of this in-
ling, while other families may include twins and two dividual did not influence the results presented in this
or three nontwin siblings. Analyzing families of variable paper.

A Linear Regression Model for Causal Effects
on Observed Scores
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The linear regression model for individudl =1, The (non-)shared environmental correlation is cal-
. »h)yandtraitj (1,. . .,m)is culated analogously.
Hij = BO; + Bl age +B2;sex; Handling Variable Pedigree Sizes

Extended twin designs provide data characterized
by families of variable size. Such “incomplete” data
can be analyzed in Mx (Neale, 1997) via full informa-
éion maximum likelihood, which uses the observed
data. To obtain a measure of how well the specified
model for means and covariances fits the observed val-
ues, the raw data option in Mx calculates the negative
log-likelihood (LL) of the raw data foeachpedigree
(Langeet al.,1976), as

wherey; is the expected value of individuiabn vari-
ablej, age is the individual value of the first (age, in
years) explanatory variable, and siexthe individual
value of the second (sex; 0 denotes female, 1 denote
male) explanatory variabl€0; is the intercept (grand
mean) of variablg, B1; is the regression estimate of
age for variableyj, andB2; is the deviation of males on
variableY;.

Trivariate Analysis -LL = -klog(2m) + log| = | + (y;: =)' =Y — W)

Simultaneously with the linear correction for age
and sex, the covariance of cerebellar volume with body
height and intracranial space is modeled, using a trian-
gular decomposition of the (co-)variance matrix of these
traits (Neale and Cardon, 1992). With this decomposi- . : .
tion it is possible to investigate whether the observed co—famlly membersy; (fori=1,. . .,p) is the vector of
variance between traits is due to a common set of genegbserved scoreg, the column vecto_rlof the expected
and/or due to a common set of environmental influences.v"’}Iues of th? variables, and || andx are the deter-
For example, diet habits may influence both body weight minant and inverse of matri, respectively.

and cholesterol levels, yielding a phenotypic correlation _Comb|_n|ng 'Fhe expression of the L for each
caused by a common environmental factor. pedigree with a linear model for the expected scores as

We used a trivariate, triangular decomposition outlined previously gives a new expression for-thk:

model including regression on the observed scores, in
which all latent variances which are part of the vari-

wherek (k=1,. . .,p; p=number of family members
times number of phenotypes) denotes the number of
observed variables within a family (and can vary over
families), Z(pxp) is the expected covariance matrix of

-LL = -klog(2m) + log = | + (y; — BO - B1x%; — B2x2;)’

ance decomposition model have been scaled to unity. Ny — BO - B1xL - B2x2;)
This must be distinguished from the variances of the
definition variables (age and sex) which are part of the Since the families are independent, their joint like-

regression model; these definition variables concern in-lihood is simply the product of their individual likeli-
dividual observed values and therefore have no vari-hoods and the log of the joint likelihood is the sum of
ance N =1 for each individual). the log-likelihoods per family. Thus, summing the
The triangular variance decomposition model can negative likelihoods-LL’s) of all families gives the
easily be redefined as a model in which the common -LL of the model. In Mx the-LL of the model is dou-
pathways are recalculated into correlations by follow- bled because twice the difference between two models
ing the general tracing rules of path analysis (Wright, (2 [~LLui model = (~LL nested moadl) iS—under certain
1934; Neale and Cardon, 1992, Chap. 13) and applyingregularity conditions—asymptotically distributedys
the general formula for calculating a correlation. If the Thus, two nested models (a nested model includes
coefficients from the paths of Al (the first latent addi- fewer parameters and does not introduce new parame-
tive generic factor) to body height (B) and intracranial ters compared to the model under which it is nested),
space (l) are denoted alb and ali, respectively, and thavhich provide-2LL’s, may be subtracted to provide a
coefficient of the path from A2 (the second latent ad- A(-2LL) which has g? distribution. A highx? against
ditive generic factor) to intracranial space is denoted a low gain of degrees of freedohdf) denotes a worse
a2i, the genetic correlation between body height and in-fit of the second, more restrictive model relative to the
tracranial spacer (B, )] is obtained as follows: first model.
An example Mx job that can be used to conduct
ry(B,1) = alb x ali / [alb- ((ali)? + (a2i)?)] the trivariate analysis with a linear correction of age
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and sex on the individual scores in a design with vari- tracranial space (0.194 and 0.229 for males and fe-
able pedigree sizes is available at the Mx website, males, respectively; see Table I) and between body
http://views.vcu.edu/mx/examples.html, in the brain height and cerebellar volume (0.280 and 0.194 for
section. males and females, respectively). In addition, a sub-
stantial correlation of 0.593 for males and 0.575 for fe-
males was observed between intracranial space and
Subjects cerebellar volume.
Twin- and sib-pair correlations, as given in Table II,
suggest that cerebellar volume, as well as body height
€and intracranial space, is largely heritable. The low DZM

Utrecht Medical Centre Twin Sample (86 cases). All ¢qrrejation was due mainly to two DZM pairs with large
subjects underwent physical and psychological screensnapair differences. However, in these two pairs in-

ing to exclude cases of pathology known to affect brain iyiqual scores were in the normal range and there was

structure. _ no indication of environmental confounding, so they
Subjects were 256 family members from a total of \\ore included in the analyses.

111 twin families. In total, 34 siblings (aged 29.6 years;
SD, 4.81 years; 15 female, 19 male), 32 MZ male twin .
pairs (aged 30.34 years; SD, 9.20 years), 17 DZ maleModel Fitting

twin pairs (aged 30.3 years; SD, 7.01 years), 21 MZ When using raw data, the fitZLL) of a model
female twin pairs (aged 34.1 years; SD, 11.68 years),can merely provide information on how well a more
20 DZ female twin pairs (aged 30.6 years; SD, 8.48 parsimonious model fits the data relative to a more gen-
years), and 21 DZ opposite-sex twin pairs (aged 30.3eral model. To gain some insight into the fit of the ACE
years; SD, 12.35 years) participated. Seventy-seven fammodel, which is the basic model for nested models
ilies consisted of a twin pair and 34 families consisted AE/CE and E, we report the?LL of a saturated model.
of a twin pair and one additional sibling. In this saturated model the means are modeled in a
Cerebellar volume and intracranial space were ob- similar way as in the ACE models, while the variance/
tained by 1.5-T MRI as described by Baatel.(2000) covariance structure is not modeled, and all variances
and analyzed according to the method described byand covariances in MZ and DZ twins are estimated.
Staalet al. (2000) and Hulshoff Pagt al. (2000). First, univariate genetic models for height, in-
tracranial space, and cerebellar volume were fitted to
the data correcting for the effects of age and sex on the
RESULTS observed scores. The regression estimates of the linear
regression models for the observed scores of body
height, intracranial space, and cerebellar volume show
Significant correlations (corrected for the effects that height, intracranial space, and cerebellar volume
of age) were observed between body height and in-decrease with age in our sample and are larger in males

Subjects were recruited from The Netherlands Twin
Registry (Boomsma, 1998) (170 cases) and through th

Descriptive Statistics

Table I. Means and Intercorrelations of Cerebellar Volume, Intacranial Space,

and Height
Mean SD Body height Intracranial space

Body height (cm)

Male 181.94 6.66 — —

Female 168.50 6.55 — —
Intracranial space (cth

Male 1504.10 107.01 0.194* —

Female 1340.26 113.09 0.229* —
Cerebellar volume (cf)

Male 146.80 11.17 0.280** 0.593**

Female 133.56 12.15 0.194* 0.575**

* Significant at the 0.05 level.
** Significant at the 0.01 level.
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Table Il. Twin and Sibling Correlations by Zygosity

MZM MZF DzZM DZF DOS TSM TSF TSOS

(32P (21 a7y (209 (21 (15 + 11y (8 + 11y (11+ 12y
Body height 0.78 0.92 0.61 0.64 0.47 0.70 0.31 0.15
Intracranial space 0.90 0.92 0.33 0.70 0.40 0.67 0.62 -0.07
Cerebellar volume 0.85 0.93 -0.06 0.78 0.27 0.66 0.77 -0.12

@ MZM/MZF—monozygotic male/female; DZM/DZF/DOS—dizygotic male/female/opposite sex; TSM/TSF/TSOS—twin-sib pair male/female/
opposite sex.
b Pairs.
¢ Twin-sib correlations are calculated as the mean correlation of all “first” twins with their nontwin sibling and all “sedasdvith their non-
twin sibling. The number of pairs denotes the number of first twins with siblings and the number of second twins withRlibdisgote that
for TSM and TSF, in all families except DOS families, the nontwin sibling provides two correlations: one with the firstdtaimotrer one
with the second twin.

Table Ill. Regression Estimates of the Linear Regression Model on the Means of Body Height, Intracra-
nial Space, and Cerebellar Volume

By
Bo (effect of age; age 2
(grand mean) entered in years) (deviation of males)
Body height (cm) 172.20 -0.11 13.16
Intracranial space (cip 1345.63 -0.33 169.82
Cerebellar volume (cf) 140.94 -0.23 12.70

than in females (Table Ill). This decrease with age may The heritabilities of intracranial space and cerebellum
also reflect a cohort effect in our sample. are also high; estimates for sources of variance due to

From the univariate regression analyses the ex-genetic factors are 65% (40-91%) and 81% (54—-92%),
pected value for an individual can be calculated. For respectively.

example, the expected cerebellar volume Jjcfar a In the multivariate analysis the influence of com-
male subject aged 30 is 140.940.231030) + 12.70 mon environmental factors was, again, not significantly
=146.74 cm. different from zero (dropping C from the ACE model

Simultaneous with the correction for the effects caused an increase+2LL of 4.546 for a gain of 6 df’s).
of age and sex, the remaining phenotypic variance wasThe fit of the multivariate ACE model was reasonable
decomposed into sources of variance due to additivecompared to that of a saturated modei4LL, 138.681;
genetic factors, shared environmental factors, and non-Adf,72).
shared environmental factors. Comparison of the fit of The regression coefficients in the multivariate analy-
the variance decomposition models with the saturatedsis (AE model) are slightly different from the regression
model shows that the ACE model describes the dataweights as estimated in the three univariate analyses. Fig-
reasonably (body height and intracranial space) to wellure 1 shows the unstandardized estimates in the triangu-
(cerebellar volume). The most parsimonious model of lar variance decomposition model. The unique environ-
the variance decomposition models for all three vari- mental correlations between body height entchcranial
ables was a model in which additive genetic influences space and between body height and cerebellar volume
and unique environmental influences contributed to the were nonsignificantly different from zeradf = 2, A-
phenotypic variance, whereas the influence of common2LL = 3.293) and were excluded from the models to
environmental factors was nonsignificant (Table IV). which Table V refers. In Table V the genetic and unique
Table IV includes the estimates and 95% confidence environmental correlations (Table Va) and the standard-
intervals for A, C, and E as found in the full ACE model. ized genetic contributions of body height and intracra-
As expected, the observed variance in body height isnial space to the total variance of cerebellar volume are
highly heritable; 72% (47-92%) of the total variance is given, as well as the unique genetic variance of cerebel-
explained by genetic factors in the full ACE model. lar volume (Table Vb).
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Table IV. Nested Sequence of Univariate ACE Models with Linear Regression of Age and Sex on the Observed Value of Body Height,

Intracranial Space, and Cerebellar Volume Fitted to the Raw Data

Standardized estimates
in best-fitting model

Standardized estimates

in full model
(95% confidence interval)

(95% confidence interval)

CE model AE model

ACE model

Saturated model

df -2LL df -2LL df —2LL df

-2LL

17% (0-41)  11% (7-18)  89% (82-92)  11% (8-18)

72% (47-92)
65% (40-91)

1574.34 250 1601.30 251 1575.69 251
3010.76 3012.83

241

1556.32

Body height
Intracranial

12% (8-19)  89% (12-92)  12% (8-19)

23% (0-47)

251

251

3037.76

250

241

2991.761

space
Cerebellar

7% (0-34) 12% (8-19)  89% (81-92)  12% (8-19)

241 1863.76 250 1895.94 251 1863.94 251 81% (54-92)

1860.22

volume

Posthumaet al.

cerebellar

volume

Fig. 1. Results of multivariate model fitting. The upper half shows
the decomposition of the variance and covariance for body height,
intracranial space, and cerebellar volume. Path coefficients are un-
standardized; standardized estimates are given in Tables Va and b.
The lower half represents the regression weights as estimated in the
multivariate model, which may differ slightly from those estimated

in the univariate analyses.

The genes that account for individual differences in
body height also account to some extent for individual
differences in both intracranial space and cerebellar vol-
ume (genetic correlations are 0.21 and 0.25, respectively).
The genetic correlation of 0.57 between intracranial space
and cerebellar volume indicates that some, but not all, of
the genes that influence intracranial space are also im-
portant for cerebellar volume. Since the proportion of
variance accounted for common environmental influ-
ences for each trait is relatively low, the common envi-
ronmental correlation between intracranial space and
cerebellar volume (0.44) can be misleading: although of
medium size, it explains only a relatively small part of
the total covariance between these two traits.

Six percent of the total variance in cerebellar vol-
ume is accounted for by genetic factors shared with
body height, 24% is accounted for by genes that are
shared with intracranial space, and 58% of the total vari-
ance in cerebellar volume is due to genetic factors that
are unique to cerebellar volume.

DISCUSSION

Direct effects of age and sex on body height, in-
tracranial space, and cerebellar volume were modeled
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Table V

(a) Genetic (lower half) and unique environmental (upper half) correlations with 95% confidence intervals (in parentheses)

Body height Intracranial space Cerebellar volume
Body height — n.s. n.s.
Intracranial space 0.21 — 0.44
(0.06-0.36) (0.21-0.63)
Cerebellar volume 0.25 0.57 —
(0.10-0.40) (0.44-0.67)

(b) Standardized estimates in the multivariate approach of components of the genetic variance of cerebellar volume tfterfaothec
effects of age and sex on the observed values

Genetic variance Genetic variance
due to genes that due to genes that Remaining genetic
Total genetic also influence also influence variance unique to
Cerebellar volume variance body height intracranial space cerebellar volume
Estimate 88% 6% 24% 58%
95% confidence interval 81-92% 1-14% 14-36% 47-69%

simultaneously with a multivariate genetic model for is absolutely necessary for the normal development of
the covariance between family members. For all threethe cerebellum. In addition, Milleat al. (1994) re-
variables a slight decrease with age was found and goorted a reduction in cerebellar volume in mice due to
significant deviation for males, who were taller and had dysfunctioning of theéen-2locus.
larger brain volumes than females. A trivariate genetic Besides being of importance in its own right, a high
analysis was conducted on body height, intracranial heritability of human cerebellar volume in particular
space, and cerebellar volume, to dissect the pattern ofand brain structure in general may be of crucial impor-
covariance among these three variables and to detertance in the study of causes of variation in complex
mine the relative contributions of genetic and environ- behaviors. For example, correlations between brain size
mental influences to the remaining variance of each of and psychometric IQ range between 0.38 and 0.45 [see
these variables. For intracranial space and cerebellarStorfer (1999) for an overview of brain size—IQ rela-
volume, genetic factors accounted for 88% of the phe-tions], depending on which brain structure (i.e., gray
notypic variance. A large part of the genetic factors that matter volume, white matter volume, cerebral volume)
are associated with cerebellar volume also controlledis studied.
intracranial space (24%). Genetic factors that explain Quantitative intermediate phenotypes with high
phenotypic variance in body height, however, accounted heritability are becoming more and more important in
for only a small part of the genetic variation in both in- the field of behavioral genetics (e.g., Flint, 1999; Be-
tracranial space and cerebellar volume. These findingsgleiteret al.,1999; Boomsmat al.,1997). These phe-
suggest that studies using cerebellar volume as an innotypes are more “upstream,” as Kosslyn and Plomin
termediate phenotype will also need to consider the ge-(2000) put it, and it is possible that they are influenced
netic covariance of cerebellar volume with intracranial by a smaller number of genes, which could facilitate
space. detection of these genes. In addition, quantitative in-
The causes of interindividual variation in human termediate phenotypes can also be obtained from non-
brain structure are largely unknown. This study shows affected individuals. Thus, if a strong relationship be-
that at least for one brain structure, cerebellar volume,tween some brain structure and a psychiatric trait exists,
interindividual differences are due largely to genetic such as the association between a reduction in prefrontal
variation between individuals. In mouse studies, several cortex volume and uni- and bipolar depression (Drevets
genes have already been implicated that influence de-et al., 1997), it might be wiser to put a continuous
velopment of the cerebellum. For example, Faataal. index of prefrontal cortex volume in a time-consuming
(1996) showed that in mice, functioning of tRax2 search for genes than to use a measure of uni- or bipolar
locus, which has its counterpart in the hurB&X2locus, depression.
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Although a strong phenotypic relationship between Detterman, D. K. (1994). Intelligence and the brain. In Vernon, P. A.

the brain and the behavior is prerequisite, an equally garig'sTEin'\('j%‘;mpsyChO'ogy of Individual Differences, Acadamic

important requirement for the intermediate phenotype Drevets, W. C., Price, J. L., Simpson, J. R., Todd, R. D., Reich, T.,
to be of use in |inkage studies is that it has a high ge- Vannier, M., and Raichle, M. E. (1997). Subgenual prefrontal cor-

; ; ; ; e tex abnormalities in mood disordeMature386(6627):824—-827.
netic correlation with the behavior. Therefore, the in Favor, J., Sandulache, R., Neuhauser-Klaus, A., Pretsch, W., Chatter-

termediate phenotypes and the target behavior need to  jee, B., Senft, E., Wurst, W., Blanquet, V.., Grimes, P., Sporle, R.,
be analyzed in a multivariate design. Such a design  and Schughart, K. (1996). The mouse Pax2(1Neu) mutation

must allow for the correction of covariates such as age is identical to a human PAX2 mutation in a family with renal-
coloboma syndrome and results in developmental defects of the

and sex. Finally, since intermediate phenotypes require  prain, ear, eye, and kidnefroc. Natl. Acad. Sci. US26;
psychophysiological measurements, they are usually ~ 93(24):13870-13875.

more complex and costly than behavioral measures ob-"k G, Sumner, B., Rosie, R., Wilson, H., and McQueen, J. (1999).
Andl’ogen actions on central serotonin neurotransmission: Rel-

tained from observation, interview, or questionnaires,  evance for mood, mental state and mem@ghav. Brain Res.
which makes it crucial to use an optimal statistical de- 105(1):53-68.

sign. The present study shows that all three requirement{tj‘;’eﬂ' (Dlg\?vg)'ghh:rr?)?”gt'gbassﬁa% nggt'agﬁg‘ ﬁgﬁt{tn?—éoﬁllégg)

for the genetic analyses of intermediate phenotypes (i.e.,  combined linkage and association. Sib-pair analysis for quan-
multivariate genetic analysis, correcting for linear ef- titative traits. Am. J. Hum. Gene64(1):259-267.

; ot Ghez, C. (1991). The cerebellum. In Kandel, E. R., Schwartz, J. H.,
fects on the mean, and optimal statistical power) can be and Jessel, T. H. (edsBrinciples of Neural Sciencard ed..

handled in a single statistical approach using the Mx  appleton & Lange, New York.
statistical package. Glass, A., and Riding, R. J. (1999). EEG differences and cognitive

e ; style.Biol. Psychol51(1):23-41.
An additional advantage of the approach used in Heath, A. C., Madden P. A., Bucholz, K. K., Dinwiddie, S. H.,

this paper is that it can easily be generalized to associ-  sjutske, W. S., Bierut, L. J., Rohrbaugh, J. W., Statham, D. J.,
ation analysis of quantitative trait loci (QTL). Measured Dunne, M. P., Whitfield, J. B., and Martin, N. G. (1999). Genetic

: P differences in alcohol sensitivity and the inheritance of alco-
covariates are not limited to sex and age but can also .-~ risk Psychol. Med29(5):1069—1081.

include polymorphic markers or candidate genes (€.9.,Hulshoff Pol, H. E., Hoek, H. W., Susser, E., Brown, A. S., Dinge-

Nealeet al.,2000) which can be modeled directly (Zhu mans, A., Schnack, H.G., van Haaren, N. E. M., Ramos,

et al., 1999) or more sophisticatedly via within- and L. O. M. P. R, Gispen-de Wied, C. C., and Kahn, R. S. (2000)
. Prenatal exposure to famine and brain morphology in schizo-

between-family effects (Fulket al.,1999; Shanet al., phrenia.Am. J. Psychiatrl57(7):1170-1172.

2000). Kaye, J. A., Swihart, T., Howieson, D., Dame, A., Moore, M. M.,

Karnos, T., Camicioli, R., Ball, M., Oken, B., and Sexton, G.
(1997). Volume loss of the hippocampus and temporal lobe in
healthy elderly persons destined to develop demedxéarology
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letters to the editor

The association between brain volume and
intelligence is of genetic origin

To THE EDITOR—The recent study by
Thompson and colleagues! reported high
heritability of gray-matter volume in sev-
eral cortical regions using voxel-based
MRI techniques. Gray matter substan-
tially correlated with general intelligence,
or ‘g. These findings prompt three major
questions: (i) is the high heritability spe-
cific to gray-matter volume, (ii) is the
correlation with g specific to gray-mat-
ter volume and (iii) is the correlation
between gray-matter volume and g of
genetic or environmental origin?

We addressed the first question in a
large Dutch sample of twins and their sib-
lings (258 Dutch adults from 112 extend-
ed twin families)?. We found high
heritability for total brain gray-matter vol-
ume (Table 1), comparable to the estimate
reported by Thompson and colleagues!.
In addition, we found high heritability for
total brain white-matter volume.

As stated in a commentary3 on the
recent report in Nature Neuroscience!,
high heritability of gray matter implies
that interindividual variation in cell-body
volume is not modified by experience.
Because white matter reflects the degree
of interconnection between different neu-
rons, interindividual variance in white-
matter volume might be expected to be
more under the influence of experience
and less under genetic control. Our
results clearly suggest otherwise. Either
environmental experience barely con-
tributes to interindividual variation in
white-matter volume or, alternatively,

Table 1. Heritability estimates from
multivariate genetic analyses

Heritability
Whole-brain gray matter 0.82
Whole-brain white matter 0.87
General intelligence (g)? 0.86
Working memory? 0.67

AWAIS-IIIR 1Q test.

Details of brain imaging methods and subject
characteristics of the MRI sample (258 subjects
from 112 extended twin families) have been
described previously?, as have detailed
characteristics of the WAIS-IIIR sample (688
subjects from 271 extended twin families)*. The
overlapping dataset consisted of 135 subjects
from 60 extended twin families (24 MZ pairs,
31 DZ pairs and 25 additional siblings).

exposure to relevant environmental expe-
rience is under strong genetic control.

The subjects for whom MRI scans were
available partly overlapped with a sample
of extended twin families from a large
study on cognition. In the latter study, we
found a heritability of g of 0.86, which is
consistent with previous reports®. We have
now confirmed a correlation between
gray-matter volume and g (0.25; p < 0.05)
and, in addition, have found a significant
correlation between white-matter volume
and g (0.24; p < 0.05). Thus, regarding the
first two questions, we conclude that
white-matter volume is also highly herita-
ble and that g is related to the volumes of
both gray and white matter.

In twin samples of sufficient size, the
correlation between brain volume and g
can be decomposed into genetic and
environmental components®. Such
analysis is based on the comparison of
cross-trait/cross-twin correlations for
monozygotic (MZ) and dizygotic (DZ)
twins (or sibling pairs). If the correla-
tion between brain volume of a twin and
g in the co-twin is larger in MZ than in
DZ twins, this indicates that the genes
influencing brain volume partly overlap

with the genes that influence g. The
extent of the overlap is reflected by the
magnitude of the genetic correlation.
When the cross-trait/cross-twin corre-
lations are similar for MZ and DZ twins,
this suggests that environmental factors
contribute to the observed phenotypic
correlation between brain volume and g.
Given a heritability of 0.85 for brain vol-
ume?, a heritability of 0.80 for g (ref. 5)
and a correlation between brain volume
and gof 0.40 (ref. 7), at least 17 MZ and
17 DZ pairs are needed to detect a genet-
ic correlation with 80% power (and 0. =
0.05) that explains the observed corre-
lation.

In 24 MZ pairs, 31 DZ pairs and 25
additional siblings, we decomposed the
correlation between brain volumes and g
into genetic and environmental compo-
nents by using structural equation model-
ing for a multivariate genetic design (gray
matter, white matter and g) 8. This showed
that the correlation between gray-matter
volume and g was due completely to genet-
ic factors and not to environmental factors.
We obtained the same result for the corre-
lation between white-matter volume and
& Thus, the answer to the third question is

Table 2. Observed (phenotypic) correlations, cross-trait/cross-twin
correlations, genetic correlations and environmental correlations

Observed
Whole-brain gray matter—g 0.25*
Whole-brain gray matter—
Working memory 0.29*
Whole-brain white matter-g 0.24*
Whole-brain white matter—
Working memory 0.29*

Correlation
MZ cross-trait/ DZ cross-trait/  Genetic
cross-twin cross-twin
0.26* 0.14 0.29*
0.32* 0.20* 0.38*
0.22* 0.19 0.24*
0.27* 0.19 0.35*

*Significantly different from zero at the o = 0.05 level.

MZ, monozygotic twins; DZ, dizygotic twins, including sibling pairs. The cross-trait/cross-twin correla-
tions in MZ pairs showed evidence for a genetic mediation between brain volumes and g (and its
working-memory component); the cross-trait/cross-twin correlation for MZ pairs was as high as the
correlation between brain volume and g (or working memory) within the same person. In other
words, the |Q of MZ twins was predicted equally well from the size of the brain of their co-twins as
from the size of their own brain. All analyses were carried out using maximum likelihood estimation
implemented in Mx software'!. Mx is especially suited to handle incomplete data structures, as is

the case when not all variables have been measured in all subjects. Effects of sex and age have been
regressed out on the observed scores. Observed correlations and cross-trait/cross-twin correlations
were estimated from a saturated model in which the (co-) variances are not decomposed, whereas the
genetic and environmental correlations were estimated from a multivariate genetic design in which the
(co-) variances are decomposed into genetic and environmental components. The ‘genetic correlation’
reflects the correlation between the set of genes that influences brain volume and the set of genes that
influences intelligence. The 'genetic contribution to the observed correlation’ can be derived as the
product of the genetic correlation and the square roots of the heritabilities of the two phenotypes.
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that the correlation between brain volumes
and gis, as anticipated®, mediated entirely
by genetic factors (Table 2).

As our measure of g consisted of the IQ
score on the WAIS-IIIR IQ test, we were
also interested in whether a particular
dimension of g correlated more highly
with gray- and white-matter volume than
any other dimension. The four standard
WAIS-ITIR dimensions are Verbal Com-
prehension, Perceptual Organization, Pro-
cessing Speed, and Working Memory. We
found that the Working Memory dimen-
sion had the highest phenotypic and high-
est genetic correlation with brain volumes.
This is perhaps not surprising, because
working memory is considered a major
component of g (ref. 9). Also, working
memory is often ‘localized” in the frontal
lobes!?, which provides further conver-
gence between our findings and those of
Thompson and colleagues!.

Establishing that the correlation
between brain volumes and g is mediated

by common genetic factors is only the first
step in unveiling the relation between
them. The next step will be to identify
specific genes that influence both brain
volume and g.
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Genetic Correlations Between

Brain Volumes and the WAIS-III
Dimensions of Verbal Comprehension,
Working Memory, Perceptual Organization,

and Processing Speed
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V\/e recently showed that the correlation of gray and white
matter volume with full scale 1Q and the Working Memory
dimension are completely mediated by common genetic factors
(Posthuma et al., 2002). Here we examine whether the other
WAIS 11l dimensions (Verbal Comprehension, Perceptual
Organization, Processing Speed) are also related to gray and
white matter volume, and whether any of the dimensions are
related to cerebellar volume. Two overlapping samples provided
135 subjects from 60 extended twin families for whom both
MRI scans and WAIS 1l data were available. All three brain
volumes are related to Working Memory capacity (r = 0.27).
This phenotypic correlation is completely due to a common
underlying genetic factor. Processing Speed was genetically
related to white matter volume (r, = 0.39). Perceptual
Organization was both genetically (r; = 0.39) and environmen-
tally (r,= -0.71) related to cerebellar volume. Verbal
Comprehension was not related to any of the three brain
volumes. It is concluded that brain volumes are genetically
related to intelligence which suggests that genes that influence
brain volume may also be important for intelligence. It is also
noted however, that the direction of causation (i.e., do genes
influence brain volume which in turn influences intelligence,
or alternatively, do genes influence intelligence which in turn
influences brain volume), or the presence or absence of pleio-
tropy has not been resolved yet.

Two independent studies recently quantified the contribu-
tion of genetic and environmental factors to interindividual
differences in brain volumes (Baaré et al., 2001; Thompson
et al., 2001). Baaré et al. (2001) used magnetic resonance
imaging (MRI) to measure intracranial space, total brain
volume, total white matter volume, total gray matter
volume, and lateral ventricle volume in 258 subjects
belonging to 112 (extended) twin families. They reported
very high heritabilities for all volumes (ranging from 80 to
90%) except ventricular volume (no genetic influences).
Thompson et al. (2001) used voxel based MRI techniques
on 10 MZ twin pairs and 10 DZ twin pairs and reported
high heritability of gray matter volume in several cortical
regions. Results from previous studies also suggested that

genetic factors are much more important than environmen-
tal factors for inter-individual differences in brain volumes
(Bartley et al., 1997; Carmelli et al., 1998; Carmelli et al.,
2002; Pennington et al., 2000; Reveley et al., 1984).

Since the second half of the 19th century positive corre-
lations between head size (as measured with a measuring
tape around the head) and psychometric intelligence have
been observed. Correlations generally range around 0.20
(Jensen, 1994; Posthuma et al., 2001a), but can be as high
as 0.44 (van Valen, 1974). MRI provides a more accurate
measure of the size of the brain, as head size includes both
brain volume and thickness of the skull. Several studies
have correlated MRI-brain volumes with measures of intel-
ligence, and, on average, brain volume as measured with
MRI and IQ correlate around 0.40 (e.g., Andreasen et al.,
1993; Egan et al., 1994; Raz et al., 1993; Storfer, 1999;
Wickett et al., 2000; Willerman et al., 1992).

Three multivariate genetic studies of brain volume and
intelligence have investigated the nature of the correlation
between brain volume and intelligence (Pennington et al.,
2000; Thompson et al., 2001; Wickett et al., 1997), but
did not have the optimal design (Pennington et al., 2000;
Wickett et al., 1997) or enough statistical power
(Thompson et al., 2001) to decompose the observed corre-
lation into genetic and environmental components. Using
a dataset consisting of 24 MZ pairs, 31 DZ pairs, and
25 additional siblings (135 individuals from 60 families) for
whom both data on brain volume and intelligence were
available, we recently showed that the correlations between
gray or white matter volume to full scale IQ (WAIS III) and
its Working Memory dimension are completely mediated
by an underlying set of genes that influences both brain
volumes and IQ (Posthuma et al., 2002).
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Using the same sample of 135 individuals from 60 fam-
ilies we now investigate whether three different brain
volumes (total white matter of the cerebrum, total gray
matter of the cerebrum, total volume of the cerebellum) are
differentially correlated to each of the other standard WAIS
III dimensions: Verbal Comprehension, Perceptual
Organization, and Processing Speed. We expect to find dif-
ferential correlations between each of the three brain
volumes and each of the four WAIS III dimensions. For
example, the WAIS III dimension Processing Speed is an
index of the speed of central nervous system processing
(WAIS 111, 1997), and is therefore expected to be related
strongest to white matter volume, as white matter reflects
the degree of interconnectiveness between neuronal cells.

The three brain volumes were obtained by using
MR imaging in a large Dutch sample (258 Dutch adults
from 112 extended twin families) of twins and their sib-
lings (Baaré et al., 2001). Using structural equation
modelling on the combined MRI and WAIS III datasets,
we will test whether the correlation between these brain
volumes and WAIS III dimensions is genetically or envi-
ronmentally mediated.

Methodology

Subjects — WAIS Ill Sample

Six hundred eighty-eight family members from 271
extended twin families participated in an ongoing study on
the genetics of adult brain function (Posthuma et al.,
2001a, 2001b; Posthuma, 2002; Wright et al., 2001) until
December 2000. All participants were obtained from the
Netherlands Twin Registry (Boomsma, 1998). Zygosity was
determined by DNA fingerprinting. The complete sample
consisted of two age cohorts: a young adult cohort with a
mean of 26.2 years of age (SD = 4.19) and an older adult
cohort with a mean around 50.4 years of age (SD = 7.51).
Participating families consisted of one to eight siblings
(including twins). On average 2.5 subjects per family par-
ticipated. In the young cohort 171 males and 210 females
participated, in the older cohort 135 and 172 respectively.
The young cohort included 54 MZ pairs, 73 DZ pairs, 18
single twins and 109 additional siblings. The older cohort
included 48 MZ pairs, 58 DZ pairs, 15 single twins, and
80 additional siblings (for a detailed description of the
sample characteristics see Posthuma et al., 2001b). The
study was approved by the scientific and ethical committee
of the Vrije Universiteit Amsterdam. Subjects were paid

NLG 50 (23 EUROS) for participation.

Subjects — MRI sample

The MRI sample was obtained from a large study on the
genetics of brain volumes (Baaré et al., 2001; Posthuma
et al., 2000). For this second dataset, subjects were recruited
from the (healthy) twin sample of the department of
Psychiatry of the University Medical Center Utrecht, the
Netherlands, and from the Netherlands Twin Registry. One
hundred and twelve pairs of twins (112 families), 33 MZ
male (MZM), 17 DZ male (DZM), 21 MZ female (MZF),
20 DZ female (DZF), and 21 DZ opposite-sex (DOS), and
19 male (SM) and 15 female (SF) full siblings participated in
the study. Zygosity was determined by DNA fingerprinting,.

Subjects were required not to have any severe medical dis-
eases. Mental and physical health was assessed by means of
the Family Interview for Genetic Studies (Nurnberger
et al., 1994), and a medical history inventory, respectively.
All subjects gave written informed consent to participate in
the study after full explanation of the study aims and proce-
dures. The study was approved by the scientific and ethical
committee of the University Medical Center Utrecht.
Subjects were paid NLG 75 (34 EUROS) for participation.

Overlap Between the Two Samples

The combined dataset consisted of 808 subjects from 322
families. For 135 subjects from 60 families data on both IQ
and MRI-scans were available. This “overlapping” dataset
consisted of 16 families from which MZ twins (without
additional non-twin siblings) participated, 8 families from
which the MZ twins and one additional sibling partici-
pated, 21 families from which the DZ twins (without
additional non-twin siblings) participated, 10 families from
which the DZ twins and one additional sibling partici-
pated, two families from which one twin and one non-twin
sibling participated, and three families from which only
one member participated. In other words, the overlapping
dataset consisted of 24 MZ twins and 69 DZ twins/sib
pairs. The mean age in the overlapping dataset was 29.2
(8D = 7.34). There were 57 females and 78 males.

To obtain the most accurate estimates of means and
variances of IQ scores and brain volumes, the combined
dataset of 808 subjects was used in the analyses, as opposed
to using only the subset with data on both MRI and
WAISIII scores. In Mx (Neale, 1997) such incomplete
datasets can be handled easily (see also Statistical Analyses).

The average time between the MRI scans and the
IQ measurements was 13 weeks, ranging from —1.5 years
(IQ measurement before MRI scans) to + 3.3 years
(MRI scan before IQ measurement). Age at time of IQ
measurement was included as an effect on the IQ scores
while age at time of the MRI scans was included as an
effect on brain volumes.

Intelligence Testing

Psychometric IQ was measured with the Dutch adaptation
of the WAIS III (WAIS-III, 1997). As we previously
showed (Posthuma et al., 2001b) that our IQ sample is rep-
resentative of the Dutch population and the present sample
size exceeds the WAIS III standardization sample, we report
unstandardized raw IQ scores, and explicitly model the
effects of sex and age in the multivariate analysis. Individual
scores for each subtest except digit-symbol substitution
were calculated by weighting the observed score by
the maximum possible score on that subtest times 100
(i.e., percentage correct on each subtest). For digit-symbol
substitution the number of correct items per 60 seconds
was calculated. Nine subtests were used to calculate the
four dimensions according to the WAIS III guidelines
(1997); Verbal Comprehension (VC; the mean percentage
correct of subtests information, similarities, and vocabu-
lary), Working Memory (WM; the mean percentage correct
of subtests arithmetic and letter-number sequencing),
Perceptual Organization (PO; the mean percentage correct
of subtests block design, matrix reasoning, and picture
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completion), and Processing Speed (PS; the number of
correct items per 60 seconds of subtest digit-symbol substi-
tution). The validity of these four dimensions was recently
confirmed by a reanalysis of the WAIS manual data by
Deary (2001).

MR Image Acquisition and Processing

MR images were obtained on a 1.5 Tesla Philips Gyroscan
scanner at the University Medical Center Utrecht. For vol-
umetric analysis a three dimensional (3D) T1 — weighted,
coronal, spoiled gradient echo scan (FFE) of the whole
head (TE = 4.6 ms, TR = 30 ms, flip angle = 30° 170-180
contiguous slices; 1 X 1 X 1.2 mm? voxels), and a coronal
dual contrast turbo spin echo (DTSE) of the whole brain
(TE1 = 14 ms, TE2 = 80 ms, TR = 6350 ms, 120 contigu-
ous slices; 1 X 1 X 1.6 mm? voxels) were acquired.

Images were coded to ensure blindness for subject iden-
tification, zygosity and family membership. Image volumes
were transformed into Talairach space (no scaling)
(Talairach & Tournoux, 1988) and corrected for magnetic
field inhomogeneities. Volumetric measurements were
obtained using automated segmentation procedures and
included intracranial, whole brain, gray and white matter
of the cerebrum (excluding cerebellum and brain stem),
and lateral and third ventricle volumes (Schnack et al.,
2001a; Schnack et al., 2001b). Automatic segmentation
software included histogram analysis algorithms, anatomi-
cal knowledge based decision rules and series of
mathematical morphological operators to connect all voxels
of interest. Intracranial volume was segmented on DTSE
scans. Cerebral gray and white matter volumes were
obtained after cerebellar and brain stem tissue was
removed. The segmentation procedures yielded highly reli-
able volume measurements with inter-rater intraclass
correlations all above 0.96.

The present study included gray matter volume of the
cerebrum, white matter volume of the cerebrum and cere-
bellar volume. Cerebellar volume was not separated into
white and gray matter volumes as the location of the cere-
bellum complicates the reliable separation of cerebellar
white and gray matter volume (i.e., at the edges of the coil
artefacts will influence this separate detection). However,
the detection of total cerebellar volume does not suffer
from these artefacts and can be reliably measured.

Statistical Analyses
As the sample consisted of unbalanced pedigrees and had
some missing data, models were fitted to the raw data
instead of covariance matrices. This was accomplished by
using the rectangular data file option in Mx (Neale, 1997).
We previously determined whether interindividual vari-
ation in each of the four WAIS III dimensions could be
explained by additive genetic influences (A), dominance
genetic influences (D), shared environmental influences
(C), or non-shared environmental influences (E). We found
that shared environmental influences on each of these
dimensions were non-significantly different from zero, and
that all four dimensions were highly heritable (ranging
from 66% to 83%) (Posthuma et al., 2001a), in line with
estimates from previous studies (Bouchard & McGue,
1981; McClearn et al., 1997). Heritability estimates did

not differ across males and females, but cohort differences
existed for Working Memory. In the young cohort the
genetic variation was mainly due to dominance genetic
variation whereas in the older cohort the genetic variation
was additive. The broad heritability estimates of the
Working Memory dimension, however, were homogeneous
across cohorts.

For the MRI measures as well as for the IQ measures
shared environmental influences were non-significantly dif-
ferent from zero (Baaré et al., 2001; Posthuma et al., 2000;
Posthuma et al., 2001a) and a model that decomposed the
variance in genetic variance (A) and non-shared environmen-
tal variance (E) fitted well for all brain volumes and WAIS III
dimensions. Therefore, the (co-)variances in the multivariate
genetic models were decomposed into two possible latent
sources of variance: genetic variance (A), and non-shared
environmental variance (E). The latter also includes all
sources of variance due to measurement error. For DZ twin
pairs (and sibpairs) similarity of addixtive genetic influences
was set at 50%, and no similarity in non-shared environmen-
tal influences. For MZ twin pairs, similarity of additive
genetic variance was set at 100% and similarity in non-
shared environmental influences was fixed at zero.

Using Structural Equation Modelling to Decompose

the (co-)variance into Genetic and Environmental Components
Decomposition of the variances and covariances into genetic
(A) and environmental (E) components was obtained using
structural equation modelling with maximum likelihood esti-
mation. Environmental factors incorporate those factors
in the environment that are not shared by siblings. Let matri-
ces A and E be symmetric and of dimensions 7 X 7 (for seven
variables; total gray matter, total white matter, cerebellar
volume, Verbal Comprehension, Working Memory,
Perceptual Organization, and Processing Speed). Matrix A
denotes the genetic component while matrix E denotes the
environmental component. The diagonal elements of matrix
A denote the genetic variances of each of the seven variables.
For example, element #,, is the genetic variation in gray
matter volume. The off-diagonal elements of matrix A repre-
sent the genetic covariance between variables. Analogously,
the diagonal elements of matrix E denote the environmental
variances of the seven variables, and the off-diagonal elements
denote the covariances due to environmental influences.

As matrices A and E are covariance matrices, they are
restricted to be positive definite. This is accomplished
by calculating matrix A and E as the product of a triangular
matrix and its transpose. Thus, matrix A is calculated as
X X X’, where X is triangular and of dimensions 7 X 7 (for
seven variables). Analogously, matrix E is Z X Z’. This is
also known as a Cholesky factorization of matrices A and E.

The decomposition of variances and covariances into
genetic and environmental components necessitates the use
of a genetically informative design, such as the twin design.
The correlation between the genetic component that influ-
ences the phenotype of one twin and the genetic component
that influences the phenotype of the co-twin is 1 for MZ
twins and 0.5 for DZ twins/sibling pairs. The correlation
between the environmental component that influences the
phenotype of one twin and the environmental component
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that influences the phenotype of the co-twin is zero for
both MZ and DZ twins/sibling pairs.
The variance is formally represented as

A+E=XXX +ZXxZ.

The covariance is formally represented as

A=XxX for MZ twins,

05XA=05XXxX for DZ twins.

The genetic correlation between variables 7 and j (ﬂij) is
derived as the genetic covariance (ﬂi/.) between variables 7
and j divided by the square root of the product of the
genetic variances of variables 7 (z,) and j (ﬂl/.):

_ 2

V.= ——
&7
Va Xa
b3 j]

Analogously, the environmental correlation (rﬂ.]. ) between
variables 7 and j is derived as the environmental covariance
between variables 7 and j divided by the square root of the
product of the environmental variances of variables 7 and j:
e,
4

ro=—-%
if
Ve Xe
i 7 G

The phenotypic correlation (7) is the sum of the product of
the genetic correlation and the square roots of the genetic
variances of the two phenotypes and the product of the
environmental correlation and the square roots of the envi-
ronmental variances of the two phenotypes. Or, in other
words, the phenotypic correlation is composed of a genetic
contribution and an environmental contribution.

\/ - \/ -
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Results

Descriptives

Means, and standard deviations of the WAIS III scores
clearly show that males generally have a higher score on the
WAIS III dimensions, except on Processing Speed, where
females are faster than males (Table 1a). These effects are
evident in both the young and the older cohort. Subjects in
the older cohort generally have a lower score on all four
WAIS III dimensions (see Table 1a).

The MRI-data set was not divided in two age cohorts as
the median of age was 28.6 years and 83% of the sample
were younger than 36. Thus, for brain volumes, age (at
time of MRI-scan) was included as a linear effect on the
mean volumes. A sex difference in brain volume is evident
in each of the three total volumes; males generally have
larger volumes than females (see Tablelb).

Table 2 presents the phenotypic correlations on the
variables adjusted for the effects of sex, age or cohort.

The Working Memory dimension of the WAIS III con-
sistently and significantly correlated to all three brain
volumes. The Verbal Comprehension dimension did not
correlate significantly with any of the brain volumes.
Perceptual Organization correlated significantly with gray
matter volume and cerebellar volume, but not with white
matter volume. Processing speed correlates significantly
with white matter volume, and the correlation with gray
matter volume was almost significant (p = 0.07).

A seven-variate Cholesky decomposition of gray matter
volume, white matter volume, cerebellar volume, Verbal
Comprehension, Working Memory, Perceptual Organization,
and Processing Speed was conducted to estimate the contri-
butions of genetic factors and non-shared environmental

Table 1a
Descriptives of WAIS 11l Dimensions

Age vVC WM PO PS

Young Females

Mean 26.0 63.6 62.2 79.9 44.0

N 210 210 210 210 208

SD 40 1.2 13.0 11.0 6.7
Young Males

Mean 26.3 67.5 66.1 83.9 394

N m 17 m m 168

SD 4.4 12.6 13.2 9.4 6.4
Older Females

Mean 50.5 58.1 54.2 66.1 35.7

N 172 172 172 172 172

SD 1.7 13.2 13.5 12.2 8.4
Older Males

Mean 50.3 65.0 64.0 69.8 35.3

N 135 135 135 135 135

SD 1.3 13.0 12.4 12.7 6.3

Note: VC = verbal comprehension; WM = working memory; PO = perceptual organization; PS = processing speed. N = number of subjects; SD = standard deviation.
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Table 1b
Descriptives of Brain Volumes

Age GMV (in cm?) WMV (in cm?) CBV (in cm?)

Females

Mean 31.7 612.4 422.9 133.6

N 118 118 118 118

SD 10.2 63.0 51.9 12.2
Males

Mean 30.6 668.2 493.8 147.0

N 140 140 140 140

SD 9.0 60.1 50.1 11.2

Note: GMV = gray matter volume; WMV = white matter volume; CBV = cerebellar volume. N= number of subjects; SD = standard deviation.

]
Table 2

Pearson Correlations Between Gray Matter Volume, White Matter
Volume, CerebellarVolume, Verbal Comprehension, Working Memory,
Perceptual Organizationand Processing Speed. Individual Scores on
Each Variable Are Adjusted for the Effects of Sex, Age and Cohort

GMV WMV CBv VC WM PO
WMV 0.59**
CBv 0.47**  0.49*
VC 0.06 0.01 0.03
WM 0.27**  0.28**  0.27**  0.54**
PO 0.20* 0.08 0.18* 0.49**  0.51**
PS 0.16 025 01N 0.28**  0.40%*  0.34*

Note: Intra-domain correlations Printed in normal text, Inter-domain correlations are
printed in bold.
* significant at the 0.05 level; ** significant at the 0.01 level. (N = 258 for brain
volumes, N = 135 for inter—domain correlations; N =688 for WAIS IIl dimensions).

factors to the phenotypic correlations. Analyses included
simultaneous correction for the effects of sex, age or cohort
on the individual scores. Table 3a lists the genetic (below
diagonal) and environmental correlations from the full AE-
Cholesky model, Table 3b gives the heritabilities of each
variable — these are not thoroughly discussed as they have
been discussed previously (Posthuma et al., 2001a;
Posthuma et al., 2000; Baaré et al., 2001). As an illustra-
tion, Figure 1 shows MRI scans of four individuals
belonging to an MZ and a DZ twin pair. Table 4 provides
the path coefficients as estimated.

All inter-domain environmental correlations are statisti-
cally non-significantly different from zero (as judged from the
95% Cls) and do not contribute to the observed correlation,
except for the environmental correlation (-0.71) between
Cerebellar volume and Perceptual Organization. The con-
tribution of environmental factors to the phenotypic
correlation is V0.13 X —=0.71 X V' 0.32 = —0.14, whereas
the contribution of genetic factors to the phenotypic corre-
lation is V087 % 0.35 X V0,68 = 0.27. Thus the maximum
likelihood estimate of the phenotypic correlation is —0.14 +
0.27 =0.13.

Table 3a

Genetic (Below Diagonal)and Environmental (Above Diagonal) Correlationsand 95% Confidence Intervals (in Brackets)

from the AE Full Cholesky Model

GMV WMV CBV Ve WM PO PS
GMV 0.00 0.08 -0.14 -0.13 0.19 0.00
(-0.24-0.25) (-0.17-0.32) (-0.43-0.18) (~0.38 -0.15) (~0.10-0.46) (-0.27-0.28)

WMV 0.69 0.35 0.07 0.03 -0.22 -0.17

(0.58-0.79) (0.10-0.56) (~0.35-0.49) (~0.30-0.38) (~0.50-0.18) (~0.50-0.19)
CBV 0.49 0.47 -0.23 -0.05 -0.M 0.26

(0.35-0.62) (0.33-0.59) (-0.58-0.22) (-0.34-0.29) (~0.84—0.35) (0.09-0.54)
Ve 0.15 0.05 0.03 0.19 0.11 0.09

(~0.09-0.37) (-0.18-0.28) (~0.19-0.24) (0.01-0.36) (-0.07-0.29) (0.09-0.27)
WM 0.40 033 0.30 0.66 0.12 0.04

(0.14-0.61) (0.08-0.55) (0.07-0.51) (0.57-0.76) (~0.05-0.29) (-0.12-0.22)
PO 0.10 0.01 0.35 0.61 0.72 0.04

(-0.17-0.36) (-0.24-0.28) (0.11-0.57) (0.51-0.70) (0.60-0.82) (-0.13-0.22)
PS 0.25 0.39 0.09 0.35 0.62 0.51

(~0.02-0.50) (0.12-0.63) (-0.15-0.31) (0.23-0.47) (0.49-0.74) (0.37-0.64)

Note: Intra-domain correlations in normal text inter-domain correlations in bold.
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Table 3b

Maximum Likelihood Estimates of Heritabilities of Brain Volumes and

WAIS Il Dimensions.

Heritability

Whole brain gray matter volume

Whole brain white matter volume

Cerebellarvolume

Verbal Comprehension

Working Memory

Perceptual Organization

Processing Speed

0.82
0.87
0.87
0.84
0.65
0.68
0.63

The observed correlation between perceptual
Organization and Gray matter volume consisted of a
genetic contribution (0.07) and an environmental contri-
bution (0.05), both did not reach significance. The other
inter-domain phenotypic correlations were all completely
explained by an underlying common genetic factor.

Verbal Comprehension is not genetically associated
with any of the three brain volumes, whereas Working
Memory is genetically associated with all three brain
volumes. Processing Speed is genetically related with
white matter volume, but not with gray matter volume or

cerebellar volume.

MZ twins

DZ twins

Figure 1

MR images of the brains of a same sex monozygotic twin pair (MZ twins, upper row) and a same sex dizygotic twin pair (DZ twins, lower row).

Table 4

Unstandardized Genetic and Non-shared Environmental Path Coefficients.

GMV WMV CBV Ve WM PO PS

Unstandardized Genetic Path Coefficients.

GMV 47.93

WMV 31.55 33.18

CBV 5.21 1.86 8.98

Ve 1.63 -0.78 -0.44 10.96

WM 419 0.86 1.1 6.60 6.97

PO 0.91 -0.75 3.38 5.65 3.66 5.11

PS 1.36 1.64 -0.58 1.84 2.44 1.55 3.58
Unstandardized Non-shared Environmental Path Coefficients.

GMV 22.54

WMV 0.04 17.94

CBV 0.31 1.42 3.76

Ve 0.7 0.35 -1.28 4.66

WM -1.01 0.20 —-0.40 1.23 7.58

PO 1.19 -1.42 —4.36 -0.19 0.78 414

PS 0.01 -0.71 1.43 0.85 0.15 1.53 3.37
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Discussion

Phenotypic correlations between gray and white matter
volume, and cerebellar volume on the one hand, and the
four WAIS III dimensions (Verbal Comprehension,
Working Memory, Perceptual Organization, and Processing
Speed) on the other hand, indicated that part of the inter-
individual variance in IQ dimensions is shared with
interindividual variance in brain volumes. The most consis-
tent correlation was found between brain volume and
Working Memory, which is generally considered a central
part of intelligence (Kyllonen & Chrystal, 1990). Gray and
white matter and cerebellar volume relate equally strong to
Working Memory. The correlations between Working
Memory and all three brain volumes were completely
mediated by a common underlying genetic factor.
Seventeen per cent of the genetic variation in Working
Memory can be accounted for by genes influencing these
three brain volumes.

Intriguingly, the Verbal Comprehension dimension,
which was the most heritable of all four WAIS III dimen-
sions, did not correlate to any of the three brain volumes.
Results from lesion and neuroimaging studies indicate that
left temporal and frontocortical regions predominantly influ-
ence tasks that tap verbal comprehension. Thompson et al.
(2001) reported the highest heritabilities (ranging from
95-100%) for gray matter density in these /inguistic regions.
They specifically reported a higher heritability in the left tem-
poral parietal region — comprising Wernicke’s regions
thought to be involved in language processing — than in the
right linguistic region (Thompson et al., 2001). For the
present study broad volumes were available, as opposed to
voxel based data. We therefore choose not to incorporate
hemispheric effects, also because we previously demonstrated
the high correlation (> .9) between left-right broad volumet-
ric measurements and the absence of differential heritabilities
for the two hemispheres (Baaré et al., 2001). In the present
study, the absence of a (genetic) association of Verbal
Comprehension with global volumes of white and gray
matter does not preclude the existence of a genetic association
with more localized volumes of the brain, such as Wernicke’s
area or the dorsolateral prefrontal areas (Brodmann areas 9
and 46; Rajkowska & Goldman-Rakic, 1995).

Processing Speed was genetically related to white matter
volume. White matter volume includes all myelinated
axons in the cerebrum. Thickness of the myelin sheath
is related to nerve conduction velocity and therefore its
relation to Processing Speed seems intuitively appealing.
We previously showed that genetic variation in perceprual
speed as indexed by inspection time accounted for only
10% of the genetic variance in Verbal IQ but for 22% of
the genetic variance in Performance IQ (Posthuma et al.,
2001b). As perceptual speed is likely to depend on axonal
myelination, it can be hypothesized that part of the genes
that influence IQ are common to the genes that influence
myelination of axons by oligodendrocytes. A candidate
gene known to be involved in myelination is the Plp gene
(Boison & Stoffel, 1994; Griffiths et al., 1995, Ikenaka
& Kagawa, 1995; Lemke, 1993). Other genes implicated to
be important for myelination from knock out mouse

studies are the ¢gr-gene (Stoffel and Bosio, 1997), the MAG
gene (Fujita et al., 1998, Sheikh et al., 1999; Bartsch, 1996
for a review), and the tn-r gene (Weber et al., 1999).

Part of the genes responsible for cerebellar volume are
also responsible for Perceptual Organizational ability, as
reflected by the genetic correlation between these two mea-
sures. Although traditionally the cerebellum has been
viewed as a neural substrate mainly involved in motor
control (e.g., Ito, 1984), the presence of a correlation
between cerebellar volume and components of intelligence
has been reported since the 1980s (e.g., Leiner et al., 1986,
1993). Functional neuroimaging studies have shown that
the cerebellum is involved in both motor and non-motor
cognitive operations, such as working memory (Klingberg
et al., 1996), complex problem solving (Kim et al., 1994),
attentional activation (Allen et al., 1997), and semantic
association (Petersen et al., 1989; Martin et al., 1995).
The involvement of the cerebellum in higher cognitive
functions may not be surprising from a biophysiological
point of view, as the human cerebellum contains more
neurons than the remainder of the brain combined
(Williams & Herrup, 1988), and has axonal connections
with all major subdivisons of the central nervous system.

The genetic association of cerebellar volume with both
Perceptual Organization and Working Memory is indica-
tive of its general role in cognition. Recently, Airey et al.
(2001) reported linkage of five quantitative trait loci for
cerebellar size in mice, and proposed a set of candidate
genes lying within the linkage regions. For example, the
Pax2 gene on chromosome 19 plays a critical role in early
development of the cerebellum. Human homologous chro-
mosomal regions of the five QTLs in mice as reported
by Airey et al. (2001), are 1q23-43, 10q11-23, 9q13-q24,
11q12-q13, 10q23-qter, 16q12-22. These regions may also
contain candidate genes for cognition.

The recent advances in morphometric/imaging tech-
niques will enable future research to investigate function-
volume relations on a voxel based manner (e.g., Ashburner
& Friston, 2000; Hulshoff Pol et al., 2001). This may
eventually lead to a detailed map of the human brain as it
relates to specific cognitive abilities. The present study has
made a first step in this direction by determining that the
long-known relation between brain size and intelligence,
even if using relatively unrefined measures such as total
gray matter, total white matter, or total cerebellar volume,
is of genetic origin.

Some caution in interpretation of a “genetic association”
must be taken: determining that the association between
different brain volumes and WAIS III-IQ dimensions is of
genetic origin, as opposed to being of environmental origin,
does not resolve the direction of causation between these
two domains of measures. Four scenarios may underlie the
established genetic association: 1) pleiotropy — there is a
set of genes that influences both brain volumes and scores
on the WAIS III dimensions; 2) unidirectional causation —
there is a set of genes that influences variation in brain
volumes and this variation in turn leads to variation in
WAIS III dimension scores; 3) reversed unidirectional cau-
sation — there is a set of genes that influences variation in
WAIS III dimension scores and this variation in turn leads
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to variation in brain volumes; 4) reciprocal causation —
a combination of scenarios 2 and 3.

Which of these four scenarios is most plausible has not
been resolved yet, we merely established that the association
follows a genetic pathway. Future studies will need to
resolve the direction of causation to understand the plastic-
ity of the brain and its role in cognition.
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Are Smarter Brains Running Faster? Heritability of Alpha
Peak Frequency, 1Q, and Their Interrelation

D. Posthumal® M. C. Neale? D. |. Boomsmal and E. J. C. de Geus

It has often been proposed that faster central nervous system (CNS) processing amounts to a
smarter brain. One way to index speed of CNS processing is through the assessment of brain
oscillations via electroencephalogram (EEG) recordings. The dominant frequency (peak fre-
quency) with which neuronal feedback loops in an adult human brain oscillate in a relaxed state
is around 10 cycles/sec, but large individual differences exist in peak frequencies. Earlier stud-
ies have found high peak frequencies to be associated with higher intelligence. In the present
study, data from 271 extended twin families (688 participants) were collected as part of a large,
ongoing project on the genetics of adult brain function and cognition. 1Q was assessed with the
Dutch version of the Wechsler Adult Intelligence Scale (WAIS-IIIR), from which four dimen-
sions were calculated (verbal comprehension, working memory, perceptual organization, and
processing speed). Individual peak frequencies were picked according to the method described

by Klimesch (1999) and averaged 9.9 I%D(1.01). Structural equation modeling indicated that
both peak frequency and the dimensions of IQ were highly heritable (range, 66% to 83%). A
large part of the genetic variance in alpha peak frequency as well as in working memory and
processing speed was due to nonadditive factors. There was no evidence of a genetic correla-
tion between alpha peak frequency and any of the four WAIS dimensions: Smarter brains do not
seem to run faster.

KEY WORDS: Neural speed; intelligence; twin study; electroencephalogram (EEG).

INTRODUCTION chronized synaptic activity of large populations of

The idea that faster central nervous system (CNS) pro-N€urons (Steriadet al.,1990). The dominant frequency
cessing may amount to a smarter brain has been pro(peak frequency) of this rhythmic activity in a relaxed
state in adults is around 10 Hz, but large differences exist

posed in earlier studies (e.g., Vernon, 1987) and has>™“ "~ ! _
recently been supported by studies reporting positive !N Individual peak frequencies (Lykken al., 1974; van
Beijsterveldt and Boomsma, 1994; Klimesch, 1999;

relations between inspection time and IQ (Lucianhal., i :
Osakaet al.,1999). Previous studies have attempted to

2001; Posthumat al., 2001). An alternative way to . ; :
index speed of CNS processing is through the assessielate peak frequency to intelligence, arguing that a faster

ment of brain oscillations via electroencephalogram oscillating brain reflects rapid information processing,

(EEG) recordings. Rhythmic activity measured with which in turn is associated with highgrintelligence (e.qg.,
EEG scalp recordings derives from the summed syn- Y°9€l and Broverman, 1964; Anokhin and Vogel, 1996;

Osakaet al., 1999), but this theory has long been de-
- bated (e.g., Ellingson, 1966; Ellingson and Lathrop,
1 Department of Biological Psychology, Vrije Universiteit, Amster- 1973; Vogel and Broverman, 1964).

dam, The Netherlands. . .
2 Department of Psychiatry, Virginia Institute for Psychiatric and Be- In the past decade, experimental evidence has

havioral Genetics, Richmond, VA, USA. increased our understanding of the underlying physio-

% To whom correspondence should be addressed. Vrije Universiteit, logical mechanisms responsible for brain oscillations
Department of Biological Psychology, van der Boechorststraat 1, . . . ’
1081 BT, Amsterdam, The Netherlands. TeB1 20 444 gg14,  Particularly in the alpha frequency range (Steriade

Fax: +31 20 444 8832. e-mail: danielle@psy.vu.nl etal.,1990; Lopes da Silva, 1991). Generally, the alpha
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rhythm, as measured from the scalp, is defined to rangequency then is expected to be associated with high 1Q.
between 8 to 13 Hz, occurs during wakefulness, andOnly very few studies, however, have related alpha peak
can be measured particularly over the occipital cortex. frequency successfully to measures of 1Q. Anokhin and
It appears when the eyes are closed and disappear¥ogel (1996) reported a correlation of 0.35 between
when the eyes are opened (Berger, 1929). Alpha waveslpha peak frequency and verbal abilities, but thus far
have been shown to be generated in thalamocorticalthis result has not been replicated (e.g., Jausovec and
feedback loops of excitatory and inhibitory nerve cells Jausovec, 2000). Also, no large study has provided a her-
(Steriadeet al.,1990; Lopes da Silva, 1991). In the vi- itability estimate for alpha peak frequency (only a few
sual cortex, the alpha rhythm can also be generated bysmall studies have appeared that reported twin correla-
cortico-cortical networks involving layer V pyramidal tions, e.g., Christiaet al., 1996). Although it has been
neurons (Lopes da Silva and Storm van Leeuwen 1977;speculated that the relation between alpha peak fre-
Steriadeet al., 1990). The specific alpha peak fre- quency and IQ is due to a genetic basis (e.g., Vogel,
guency of an individual is determined by the intrinsic 2000), to our knowledge there have been no multivari-
membrane properties of the thalamic neurons project-ate genetic studies reporting on the genetic correlation
ing to the cortex (Steriadet al., 1990). of alpha peak frequency with measures of Q.

Lebedev (1990, 1994) has proposed a functional In the present study, we investigated whether and
role for the human alpha rhythm in stating that “cycli- to what extent individual differences in alpha peak fre-
cal oscillations in an alpha rhythm determine the capac-quency can be attributed to genetic or environmental
ity and speed of working memory. The higher the fre- factors. In addition, the possible association between
guency the greater the capacity and the speed ofalpha peak frequency and each of the four dimensions
memory” (Lebedev, 1994). In addition, Klimesch (1997) of the WAIS-IIIR is decomposed into genetic and en-
has argued that thalamo-cortical feedback loops oscil-vironmental components. An extended twin design (i.e.,
lating within the alpha frequency range allow searching including families consisting of twins and additional
and identification of encoded information. He specu- siblings) is used to maximize statistical power to de-
lated that faster oscillating feedback loops would cor- tect genetic and environmental influences (Posthuma
respond to faster access to encoded information. Theseand Boomsma, 2000).
theories are supported by the results of some recent stud-
ies; Klimesch (1997) found that the alpha peak fre-
guency of good working memory performers lies about METHODS
1 Hz higher than that of poor working memory per-
formers. A study by Lehtovirtat al. (1996), compar-
ing Alzheimer’s patients with controls, found that alpha Subjects were recruited from the Netherlands Twin
peak frequency of Alzheimer’s patients was significantly Registry (Boomsma, 1998) as part of a large ongoing
lower than that of controls. This was explained in terms project on the genetics of cognition and adult brain
of cognitive slowing due to cholinergic deficits charac- function (Posthumat al., 2001; Wrightet al., 2001).
teristic of Alzheimer’s disease. It is also known that Adult twins and their non-twin siblings were asked to
peak frequency tends to decrease with normal agingparticipate in a 4.5-hour testing protocol. In one-half
(Kopruneret al.,1984). In summary, a theoretical neuro- of the protocol, psychometric intelligence, inspection
physiological framework as well as empirical evidence time, and reaction times were assessed; in the other half
support the existence of a link between peak alpha fre-EEG activity was measured. The EEG registration in-
guency and (working) memory processes. Because work-cluded two noncognitive tasks that were analyzed for
ing memory is a central component of intelligence the present paper: 3 min resting EEG with eyes closed
(Daneman and Merikle, 1996; Engi¢ al., 1999; Kyl- (EC) and 3 min resting EEG with eyes open (EO). The
lonen and Christal, 1990; Necka, 1992), it seems rea-order of the two halves of the protocol was randomized
sonable to expect that alpha peak frequency is importantacross family members.
to intelligence. A total of 688 family members from 271 extended

Metaphorically, the peak frequency of thalamo- twin families participated in the study until December
cortical alpha activity can be hypothesized to determine 2000. The complete sample consists of two age cohorts:
the speed of encoding (and accessing) of information justa young adult cohort with a mean age of 26.2 yeas (
like the processor speed of a microprocessor is deter<4.19) and an older adult cohort with a mean age of 50.4
mined by its basic clock cycle. High alpha peak fre- years 8D 7.51). Participating families consisted of one

Subjects
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to eight siblings (including twins). On average, 2.5 sub- picture completiojy and Processing Speed (PSPD; the
jects per family participated. In the young cohort, 171 number of correct items per 60 seconds of sullig#t
males and 210 females participated, in the older cohortsymbol substitution The validity of these four dimen-
135 and 172, respectively. The young cohort included sions was recently confirmed by a re-analysis of the
54 MZ pairs, 73 DZ pairs, 18 single twins, and 109 ad- WAIS manual data by Deary (2001).
ditional siblings. The older cohort included 48 MZ pairs,
58 DZ pairs, 15 single twins, and 80 additional siblings
(for a detailed description of the sample characteristics
see Posthumat al.,2001). The EEG was recorded with 19 Ag/AgCl electrodes
mounted in an electrocap. Signal registration was con-
ducted using an AD amplifier developed by Twente
Medical Systems (Enschede, The Netherlands). Signals
IQ was measured with the Dutch adaptation of the were continuously represented online on a Nec multi-
WAISII-R (WAIS-III, 1997). Dutch standardization sync 17-in. computer screen using POLY 5.0 software
norms for this version are currently being finalized, so (POLY, 1999) and stored for offline processing. Stan-
it is not yet possible to report standard IQ scores. In-dard 10-20 positions were F7, F3, F1, Fz, F2, F4, F8,
dividual scores for each subtest, except digit-symbol T7, C3, Cz, C4, T8, T7, P3, Pz, P4, T8, O1, and O2
substitution, were calculated by weighting the observed (Jasper, 1958). Software-linked earlobes (Al and A2)
score by the maximum possible score on that subtestserved as a reference. The vertical electrooculogram
times 100 (i.e., percentage correct on each subtest). FO(EOG) was recorded bipolarly between two Ag/AgCl
digit-symbol substitution the number of correct items electrodes placed on the outer right canthus and 1 cm
per 60 sec was calculated. Nine subtests were adminabove the eyebrow of the right eye. The horizontal EOG
istered. Subtesnformation measures general knowl- was recorded bipolarly between two Ag/AgCl electrodes
edge and information gathered from daily life. In sub- affixed 1 cm left from the left eye and 1 cm right from
testsimilarities, the subject is asked to describe in the right eye. An Ag/AgCl electrode placed on the fore-
which aspect two verbally presented concepts are sim-head was used as a ground electrode. Impedances of all
ilar. In subtesvocabulary,the subject is asked to ver- EEG electrodes were kept below 8)Kimpedances of
bally describe the meaning of a specified term. Subtestthe EOG electrodes below 10k The EEG was am-
arithmeticrequires the subject to solve arithmetic ques- plified (0.05-30 Hz), digitized at 250 Hz and stored for
tions within a certain time limit without paper and pen- offline processing. Dynamic regression analysis in the
cil. In subtestetter-number sequencinthe subjectis  frequency domain (Brillinger, 1975) was used to mini-
asked to repeat a random sequence of up to eight nummize eye artifacts, especially rolling of the eyes in the
bers and letters and to put them in numerical andeyes closed (EC) condition. During the EEG measure-
alphabetical order. In subtdsiiock designthe subject ments, the subjects were seated in a comfortable re-
needs to copy within a certain time limit a red and white clining chair in a dimly-lit, sound-attenuated, electri-
pattern using red and white blocks. Subteatrix rea- cally shielded room. A computer screen was placed
soningrequires the subject to decide which of five al- 80 cm in front of them. Subjects were instructed to close
ternatives is most reasonably the missing part from atheir eyes, relax, and minimize movement during the
logical sequence. In subtgstture completionthe sub- 3-min EEG recording of the EC task. During the 3-min
ject needs to state which essential part has been omitrecording of the eyes open (EO) task subjects were
ted from a given picture. Idigit-symbol substitution, instructed to fixate on the dot presented at the center of
the subject needs to replace numbers with specifiedthe computer screen and to avoid blinking.
symbols as quickly and accurately as possible.
According to the WAIS guidelines (1997), the
following four dimensions were calculated: Verbal
Comprehension (VC; the mean percentage correct of
subtestsanformation, similarities,and vocabulary, Alpha peak picking is usually conducted on EEG
Working Memory (WM; the mean percentage correct recording of an EC condition by finding the maximum
of subtestsarithmeticand letter-number sequencihg power within a certain frequency range. It is sometimes
Perceptual Organization (PORG; the mean percentageargued, however, that the “real” alpha peak occurs at
correct of subtestslock design, matrix reasoningnd that frequency which is most depressed by opening of

EEG Administration

Intelligence Testing

Determination of Individual Alpha Peak
Frequency (IAF)
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the eyes (e.g., Klimesch, 1999). In the present paper,The saturated models included a linear regression effect
the latter criterium was used to obtain accurate local- of age within each cohort and a deviation for males
ization of the individual alpha peak frequency. from the females within each cohort. The significance
A power density spectrum was calculated by using of these effects on the means were estimated in the satu-
a Fast Fourier Transform applied to 4-sec epochs ofrated models. In addition, it was tested whether there
the 3-min recordings of each condition. This yielded was evidence for: (1) heterogeneity of variances across
44 epochs (epoch 45 was not used for computationalMZ twin pairs, DZ twin pairs, and siblings, across
reasons) and a 0.25 Hz resolution in the power spectramales and females, and across cohorts; (2) hetero-
Because the occipital-parietal alpha rhythm can best begeneity of correlations across MZM pairs and MZF
detected at occipital leads (depressed by opening of thepairs, and across DZM pairs, DZF pairs, DOS pairs,
eyes; Berger, 1929), O1 and O2 were chosen to calcu-and sib-sib male/female pairings; (3) heterogeneity of
late the power density spectra and the individual alphaDZ correlations and sib-sib correlations; (4) differences
peak frequencies (IAF). In the first 100 subjects, cor- in means between MZ twin pairs, DZ twin pairs, and
relation of alpha peak frequency between O1 and O2siblings; and (5) differences in means between age
was found to be very near to 1, so one of the two cohorts. The resulting most parsimonious saturated
occipital leads (0O2) will be reported on only. model is the model against which the bivariate vari-
The peak frequency in the EC condition was ance decomposition models are tested.
determined as the highest peak in a window of 7 to In the bivariate variance decomposition models, the
14 Hz in the EC power spectrum, irrespective of the observed variance was decomposed in three of four pos-
shape of the spectrum. Visual inspection was conductedsible latent sources of variance: additive genetic (A),
for peak frequencies occurring at the boundaries of theshared environment (C) or non-additive (D), and non-
search window. Final localization of the correct IAF shared environment (E) following Neale and Cardon
was based on an automated comparison between th¢1992). For DZ twin pairs (and sib pairs if the saturated
peak frequency, as determined in the EC condition andmodels indicated no difference in correlation between
the frequency at which alpha power was most depressedZ twin pairs and sib pairs), similarity in shared envi-
by opening of the eyes (i.e., finding the peak frequency ronmental influences was fixed at 100%, similarity of
in the spectrum obtained by subtracting the EO spec-additive genetic influences at 50%, similarity of non-
trum from the EC spectrum). If these two methods of additive genetic influences at 25%, and no similarity in
peak detection yielded an identical peak frequency, thisnonshared environmental influences. For MZ twin pairs,
was taken as the IAF. similarities of additive genetic, nonadditive genetic, and
If the two methods yielded different peak fre- shared environmental influences were fixed at 100% and
guencies (which occurred in 21% of the sample), the no similarity in nonshared environmental influences.
spectra were visually inspected in order to determine
the real alpha peak frequency. For example, in CaSeSZES LTS
where the EC spectra showed two peaks of approxi-
mately the same magnitude, that peak was taken at Of the complete sample of 688 subjects, 27 took the
which alpha depression was highest. IQ test at home and did not participate in the EEG mea-
Spectra with very low power (i.e., below 1.5 surement session. Data from 12 subjects contained too
wV/Hz) and spectra with less than 44 epochs were re-many recording errors to be included in the peak pick-
moved from further analysis. ing procedure. In 18 cases, the IAF could not be picked
due to very low-voltage power spectra. This left 631 sub-
jects with an IAF. The mean IAF of the complete sam-
ple was 9.9 HzD1.01). Subjects with 1Q test data, but
Because the sample consisted of unbalanced pediwithout an IAF, were still included in the analyses.
grees and had some missing data, models were fitted
to the raw data '”Ste?"d of covariance matrlces_. This WaSsaturated Model Fitting Results and Descriptives
accomplished by using the rectangular data file option
in Mx (Neale, 1997). Four bivariate saturated models The saturated model fitting procedures indicated
of IAF with each of the four WAIS dimensions were that for the individual alpha peak frequency and the four
fitted in order to determine the fit of the four more WAIS dimensions: (1) the variances were homogenous
restrictive bivariate variance decomposition models. across sexes and across zygosities; (2) the MZF and

Statistical Analysis
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MZM correlations were homogenous; (3) the DZM, whereas for a male of average age (50.39 years) in the
DZF, and DOS correlations were homogenous; andolder cohort the expected score is 51:8%22.50 —
(4) the DZ correlations and sib pair correlations were 0.28 * 50.39+ 5.92 = 65.70.
homogenous. In addition, no differences in means were The phenotypic correlation between IAF and each
found between MZ twins, DZ twins, and sibs. However, of the four WAIS dimensions is calculated simultane-
the total variances and twin correlations across age co-ously with modeling the effects of age and sex on the
horts were found to be statistically significant. observed scores. The correlations between IAF and
Table | shows the estimates of descriptive statis- each of the four WAIS dimensions were homogeneous
tics in the most parsimonious saturated model, includ- over sex and ranged from0.04 to 0.15. With one ex-
ing significant effects on the means. ception, none of the phenotypic correlations was sta-
Males score higher than females in both age cohortstistically significant. The correlation of 0.15 between
on all four WAIS dimensions except for Processing IAF and Working Memory in the older cohort was sig-
Speed. In contrast, males have a slower IAF, comparedificant at anx of .05 (Ax? = 4.96,Adf = 1,p = .026),
with females, in both the young and the older cohort. but was not significant at the Bonferroni corrected
Please note that for IAF, the grand mean (10.03) repre-of .006, correcting for multiple testing. The correla-
sents the female mean (because no significant effects ofions were not dropped from the variance decomposi-
age cohort and age within cohorts were found); the gen-tion models, however, because a significant genetic cor-
eral mean, including females and males, was 9.9 Hz agelation and a significant environmental correlation
previously stated. acting in opposing ways may result in a phenotypic cor-
All significant regression effects of age within the relation that is not different from zero.
older cohort are negative, indicating that IAF and 1Q The pattern of MZ and DZ correlations as esti-
scores decrease with age. In the young cohort, only themated by maximum likelihood (ML) from the most par-
effect of age on Verbal Comprehension was statisti- simonious saturated model (Table II) suggests mainly
cally significant. The positive sign indicated an in- genetic influences on IAF and the four WAIS dimen-
creasing score with age within the younger cohort. sions. For IAF and Processing Speed in both cohorts,
The scores on the four WAIS dimensions in the Working Memory in the young cohort, and Perceptual
older cohort are lower than the scores in the young co-Organization in the older cohort, the MZ correlation is
hort. From Table | it can be computed, for example, more than twice as high as the DZ correlation, sug-
that for a male of average age (i.e., 26.18 years) in thegesting nonadditive genetic influences. ADE models
young cohort the expected score for Verbal Compre- were fitted for these variables. For all other variables,
hension is 51.39% 0.47 * 26.18+ 3.86 = 67.55, ACE models were fitted.

Table I. Estimates of Descriptive Statistics of Individual Alpha Peak Frequency (IAF) and the Four WAIS Dimensions From the Final
Saturated Model

Effects on the mean

Correlation (IAF-1Q)

Deviation Regression Regression Deviation Deviation of
Young Older Grand of older weight of age weight of age of males in males in
cohort cohort mean cohort in young cohort in older cohort young cohort older cohort
IAF — — 10.03 0 0 0 -0.18 —0.03
VC 0.06 -0.04 51.39 +22.5 +0.47 -0.28 +3.86 +5.92
WM —0.04 0.15* 62.71 0 0 —-0.15 +3.21 +8.56
PSPD 0.02 0.04 44.17 +10.26 0 —0.38 —4.69 0
PORG —0.03 0.08 79.74 +12.07 0 —0.50 +4.03 +3.63

IAF = Individual alpha peak frequency.
VC = Verbal comprehension.

WM = Working memory.

PSPD= Processing speed.

PORG = Perceptual organization.
*Statistically significant at the 0.05 level.
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Table Il. MZ and DZ Correlations as Estimated by Maximum Likelihood From the Saturated Model
in Two Different Age Cohort (see Table | for abbreviations)

N pairs* IAF vC WM PSPD PORG
Young MZ 54 (47) 0.73 0.84 0.70 0.62 0.69
Cohort DZ/sib pairs 283 (253)  0.26 0.46 0.16 0.24 0.34
Older MZ 48 (44) 0.83 0.82 0.67 0.70 0.69
Cohort DZ/sib pairs 242 (192)  0.17 0.45 0.34 0.23 0.25

*Number of pairs for IAF in brackets; sibpairs included all possible sib pairings within a family.
Italic: Variables for which an ADE model instead of an ACE model is fitted.

Variance Decomposition Model Fitting Results could not be dropped from the model without signifi-
and Descriptives cantly worsening the fit. The variance due to nonaddi-
tive genetic influences in Working Memory in the
young cohort was large (71%). Estimates of the genetic
and nonshared environmental variance components of
Processing Speed were homogeneous across cohorts.
Thirty-two percent of the total variance was due to ad-
ditive genetic influences, 34% to nonadditive genetic
influences, and 34% to nonshared environmental in-
model using the likelihood ratig’ test. Results are pre- fluences. Alsp, for Perpeptual Qrgani-zation and Verbal
Comprehension, no difference in variance components

sented in Table Ill. Equality of variances due to A, D, estimates was found between cohorts: 68% and 83%,
C, or E across cohorts was also tested and showed ng

differences in A, D or C, and E estimates for Verbal respectively, was due to additive genetic influences,

0, 0, H i
Comprehension, Processing Speed, and Perceptual Or"Emd 32% and 17%, respectively, to nonshared envi

L ronmental influences.
ganization across cohorts. . .
. L . All common pathways from the bivariate variance
Estimates from the full bivariate variance decom-

- . . . . decomposition models could be dropped, except the
position models are given in Table IV. Estimates in the )
. ) . - common nonshared environmental factor between IAF
most parsimonious variance decomposition models are

. . and Verbal Comprehension in the young cohort and the
given in Table V. .
. . . . . common nonshared environmental factor between IAF
The observed phenotypic variance in IAF is mainly

: . . . : and Working Memory in both cohorts. The corre-
due to genetic variance. The genetic variance is de-

) " . : . sponding nonshared environmental correlation was 0.31
composed into additive genetic variance (39%) and vari- and the correspondina phenotvpic correlation 0.07 for
ance due to nonadditive generic influences (32%) in the P gp yp X

IAF and Verbal Comprehension. For IAF and Working
young cohort. In the older cohort, only a very small part . .
. . X " . . Memory, the nonshared environmental correlation was
of the variance is ascribed to additive genetic variance o ;5 ihe corresponding bhenotvoic correlation was
(<1%) and the main genetic variance is due to nonad- ;' P gp yp

ditive genetic variance (83%). Because models includ- 0.05 in the young cohort and 0.04 in the older cohort.

. - C N : . In conclusion, although a high heritability for IAF
ing nonadditive generic influences but excluding addi- . . .
. . . . . . and all four WAIS dimensions was found, no genetic
tive genetic influences are biologically implausible

(Falconer and Mackay, 1996), the additive variance correlation between IAF and any of the four measures

component is always retained in the model. emerged.
For the WAIS dimensions, except for Working

Memory in the young cohort and Processing Speed in
the both cohorts, a model which included an additive Because it is known that head size and alpha peak
genetic component and a nonshared environmentalfrequency tend to correlate negatively (Nuretzl.,
component best fit the data. For Working Memory in 1978), whereas head size and 1Q correlate positively
the young cohort and Processing Speed in the both co{e.g., Jensen, 1994), we conducielchoctests in SPSS
horts, however, the nonadditive genetic componentto determine whether mediating effects of head size

Bivariate variance decomposition models of IAF
and each of the four WAIS dimensions were fitted in
order to determine the nature of the possible covari-
ance between IAF and 1Q. The statistical significance
of the estimates in the full bivariate variance decom-
position models was established by fitting nested mod-
els and comparing the fit statistic to the preceding

Post-hoc Investigation
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Table IVa. Variance Decomposition Estimates (95% CI) in the Full Bivariate Models

%A %D %C %E

Young IAF 40 (0-74) 31 (1-78) — 28 (18-42)
vC 74 (56-87) — 9 (0-26) 17 (12-23)
WM 11 (0-57) 59 (11-78) — 30 (21-45)
PSPD 33 (2-65) 33 (1-66) — 35 (26-46)
PORG 69 (34-79) — 0 (0-26) 31 (21-46)

Older IAF 1 (0-54) 82 (28-89) — 17 (11-28)
vC 74 (56-87) — 9 (0-26) 17 (12-23)
WM 67 (28-78) — 0 (0-27) 33 (22-51)
PSPD 33 (2-65) 33 (1-66) — 35 (26-46)
PORG 37 (6-76) 32 (0-77) — 31 (20-50)

may have blurred a positive relation between IAF and of the WAIS dimensions was observed after correction
IQ. Head circumference was measured with a measur-for head size, although for the older males the correla-
ing tape. In the complete sample, the correlation be-tions of IAF and verbal comprehension and IAF with
tween IAF and head size wa®.12 = 0.003). This working memory were almost significant (0.17 with
negative correlation was mainly due to a negative cor-p = 0.063 and 0.16 witlp = 0.081, respectively).
relation between IAF and head size in females from the In conclusion, mediating effects of head size did not
young cohort £0.17,p = 0.016). explain the absence of a relation between IAF and 1Q.
The correlations in the complete sample between
head size and each of the four WAIS dimensions were
all significant < 0.001), except for Processing Speed. DISCUSSION
For Perceptual Organization, Verbal Comprehension, The present study, which includes a large repre-
and Working Memory the correlations were 0.15, 0.20, sentative sample of healthy Dutch adults, is the first
and 0.23, respectively. large study to report heritability estimates of alpha peak
When, in the complete sample, the correlation be- frequency. It is also the first study to investigate the
tween IAF and each of the four WAIS dimensions was genetic and/or environmental correlation between alpha
corrected for the effects of head size (in addition for peak frequency and 1Q. No significant correlation be-
correcting for the effects of age), still no correlation tween alpha peak frequency and IQ at either the ge-
between IAF and any of the WAIS-dimensions was netic, environmental, or phenotypic level was found,
found. Also, when the dataset was divided into the four with the exception of a small correlation of peak fre-
groups of young females, young males, older females,quency with Working Memory and Verbal Compre-
and older males, no correlation between IAF and any hension in the older cohort. These correlations were

Table IVb. Estimates (95% CI) of Genetic and Environmental Correlations in the Full Bivariate Models

A correlation with IAF D correlation with 1AF E correlation with 1AF

Young IAF — — —

VC 0.05 (—-1.00-1.00) — 0.30 (0.04-0.51)

WM —1.00 (~1.00-1.00) 0.25{0.95-1.00) 0.18+40.10-0.43)

PSPD —0.98 (~1.00-0.24) 0.8340.28-1.00) 0.0940.16-0.33)

PORG —0.08 (—1.00-1.00) — 0.03€0.21-0.27)
Older IAF — — —

VC 0.05 (~1.00-1.00) — 0.080.20-0.35)

WM 1.00 (0.22-1.00) — 0.12<0.18-0.40)

PSPD 1.00 £0.84-1.00) —0.29 (-1.00-0.61) 0.100.93-0.39)

PORG 1.00 {1.00-1.00) —0.33 (-1.00-1.00) 0.06+0.23-0.35)
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Table V. Estimates (95% CI) in the Most Parsimonious Bivariate Variance Decomposition Models

%A %D %E E correlation with IAF
Young IAF 39 (0-74) 32 (1-80) 29 (18-44) —
VC 83 (78-87) — 17 (12-22) 0.31 (0.04-0.50)
WM 0 (0-53) 71 (16-80) 29 (20-43) 0.17 (0.01-0.33)
PSPD 32 (1-69) 34 (1-72) 34 (26-46) —
PORG 68 (57-76) — 32 (24-43) —
Older IAF 0 (0-62) 83 (28-89) 17 (11-28) —
VC 83 (78-87) — 17 (12-22) —
WM 67 (50-78) — 33 (22-50) 0.17 (0.01-0.33)
PSPD 32 (1-69) 34 (1-72) 34 (26-46) —
PORG 68 (57-76) — 32 (24-43) —

Note: In Tables IVa and IVb, estimates for IAF are taken from the bivariate model IAF with VC, which
was representative of all four bivariate models. This causes slightly different parameter estimates for IAF
in Table IVb compared with Table IVa.

completely mediated by a common nonshared envi- significant correlation of 0.35 between alpha peak and
ronmental factor. Because they did not survive the Bon-verbal abilities, as measured by the Amthauer’s Intel-
ferroni correction for multiple testing, however, these ligence Structure Test and Horn’s Leistungsprifsystem
correlations should be regarded with caution. test, was reported, suggesting that alpha peak frequency
The absence of a genetic correlation between alphamay correlate with very specific mental abilities and
peak frequency and any of the four WAIS dimensions may not be related to general IQ. Klimesch (1997), who
in this study suggests that genetic differences amongrepeatedly linked high alpha peak frequency to good
individuals in the speed with which the thalamo-corti- memory performance, used several tests other than the
cal feedback loops within the brain oscillate do not con- WAIS to tap both working memory and memory: a
tribute to differences among individuals in IQ. This re- Sternberg test, a verbal recognition test, an experi-
sult is at odds with findings in previous studies. Studies mental learning test, and an incidental learning test.
in subjects with mental retardation (see Ellingson, A possible explanation for the absence of a corre-
1966; Vogel and Broverman, 1964 for a review of the lation between alpha peak frequency and scores on the
early studies) or Alzheimer’s disease (Lehtovétal., WAIS-dimensions could be that neural spged se
1996; Klimesch, 1997) most clearly show that when the does not play a prominent role in general 1Q. Rather,
brain is not functioning optimally, both alpha peak and the degree of connectivity between areas or the total
IQ are depressed. In addition, however, a significant gray and white matter (brain volume) may be of greater
link between alpha peak frequency and IQ has beenimportance. In other words, efficient interconnectivity
found in populations with a normal IQ range (e.g., of the brain could result in high processing speed with-
Klimeschet al.,1996; Klimesch, 1999; Koprunet al., out the need of fast oscillating thalamo-cortical feed-
1984; Lebedev, 1994; Osakéaal.,1999; Anokhin and back loops. Studies relating coherence (a measure of
Vogel, 1996). Compared with these previous studies, connectivity of the brain) to IQ have indeed reported a
our study differs mainly in the operationalization of IQ; relation between efficient connectivity and measures of
in the present study, the correlation between alpha peakintelligence (e.g., Jausovec and Jausovec, 2000;
frequency and WAIS dimensions was investigated. Anokhin et al., 1999).

Most previous studies did not use the WAIS to mea- Alpha peak frequency was shown to be highly her-
sure 1Q (e.g., Klimeschkt al., 1996; Klimesch, 1997, itable: In the young adult cohort, 71% of the total vari-
1999; Lehtovirtaet al., 1996; Kdpruneret al., 1984; ance could be ascribed to genetic variance; in the older

Lebedev, 1994; Osalat al.,1999). Anokhin and Vogel  cohort this was 83%. These estimates of heritability are
(1996) did use a measure similar to the WAIS to tap among the largest heritabilities reported for a quantita-
general 1Q, spatial 1Q, and arithmetic abilities and tive trait (Plomin and DeFries, 1990). A large part of the

found no significant correlation with any of these and genetic variance was estimated to be caused by non-
alpha peak frequency. However, in the same study, aadditive genetic variance; 32% in the young cohort and
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83% in the older cohort. Nonadditive genetic variation be obtained by calculating (2 MZ-correlation minus
can be either dominance variation or epistatic variation 4 X DZ-correlation)x 100).
or both. Dominance variation of a trait refers to the vari- Although the magnitude of the nonadditive genetic
ation due to the interaction effect of the two alleles that influences on alpha peak frequency is likely to be over-
define the genotype at a locus. Dominance is distinct estimated, other studies support our results in suggest-
from the interaction that may occur between genotypesing the presence of nonadditive genetic effects in at
at separate loci (i.e., epistasis). However, these sourceteast some loci. Lykkeet al. (1982) reported an MZ
of variance are confounded in the classical twin study correlation of 0.81 and a DZ correlation-60.15. Al-
(i.e., including only MZ twin pairs and DZ twin pairs/sib  though Lykkenet al. (1982) did not test the departure
pairs) as in most non-experimental genetic studies. from the additive model nor estimate the proportion of
A large estimate of nonadditive influences and a nonadditive influences, their results were explained in
near-zero estimate of additive genetic influences wasterms of dominance, epistasis, and gene-environment
found for alpha peak frequency in the older cohort. interactions. Christiart al. (1996) did estimate the in-
However, the confidence intervals around the estimatesfluence of both dominance variance and variance due
of nonadditive genetic variance and additive genetic to epistasis. They found no evidence of additive genetic
variance are very broad and highly overlapping, indi- variance on alpha peak frequency, but the dominance
cating the difficulty in the separate detection of these variance and the epistatic variance were estimated at
two influences. The real additive variation and real 21% and 18%, respectively.
dominance variation could be anywhere between 1% An alternative explanation for MZ correlations to
and 74%, or 1% and 80%, respectively. In the classicbe more than two-fold the DZ correlation is a specific
twin design, estimates of nonadditive genetic influences MZ environment (Wyatt, 1993). Because the twin cor-
and additive genetic influences are highly negatively relations on EEG parameters for MZs reared together
correlated 0.9), resulting in stable broad heritability and MZs reared apart are similar (van Beijsterveldt and
estimates, but large fluctuations in the estimates of Boomsma, 1994), this specific MZ environment can
these two influences (Eaves, 1972). Including subjectsonly reasonably be sought in a more similar prenatal
of many different genetic relationships (e.g., MZ twin environment for MZs compared with DZs. It is known
pairs. DZ twin pairs, half siblings, parent-offspring) that a dysfunctional prenatal environment may result
will increase the reliability to separate additive from in dysfunctional neuropsychological functioning, as
nonadditive genetic influences. measured by EEG (Scher, 1997a, 1997b). When, for
An alternative explanation for the large estimate example, MZs are exposed to a specific prenatal envi-
of nonadditive genetic influences may be that the ob- ronment that causes them to have more similar alpha
served DZ correlation was slightly lower than the true peak frequencies later in life, the MZ correlation will
DZ correlation. This bias may occur when twins are be inflated compared with the DZ correlation and will
sampled from a truncated distribution, which may lead falsely result in an estimation of nonadditive genetic
to a slightly misrepresented sample. Martin and Wil- influences (Christiaret al., 1975). However, such an
son (1982) showed that this selection reduces the cor-effect will also be present in different mean alpha peak
relation between twin pairs and has a proportionally frequencies. In the present study, no mean differences
larger effect on lower correlations as compared to were found between MZs, DZs and sibs. In addition,
higher correlations. This, in turn, may easily result in when MZs are under the influence of an additional
the estimation of huge nonadditive genetic effects andsource of variance (i.e., their specific prenatal envi-
zero additive genetieffects. For example, when the true ronment) the result will be a greater total variance for
MZ correlation is 0.8 and the true DZ correlation is 0.3, MZ twin pairs compared with DZ twin pairs and sibs.
the corresponding true percentages of the total variationAgain, we found no evidence for a difference in vari-
explained by additive and nonadditigenetic inflences ance as a function of zygosity. The nonadditive genetic
are 40% and 40%, respectively. However, if the observedinfluences in alpha peak frequency thus appear to be
correlations are 0.8 for MZs and 0.2 for DZs, the per- genuine nonadditive genetic influences.
centage of observed variation explained by additive ge- While addressing its primary question, this study
neticinfluences is estimated to be zero and the percent-uncovered a number of noteworthy findings on the ge-
age of variation explained by nonadditive influences is netic architecture of the IQ dimensions. As expected,
estimated to be 80% (the percentage of variation ex-differences among individuals in the four WAIS di-
plained by nonadditivgeneticinfluences can quickly  mensions could be attributed to genetic factors and non-
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shared environmental factors, but not to shared envi-offspring show a regression to the population mean; i.e.,
ronmental factors. The absence of shared environmen-the children of parents who are of lower-than-average
tal influences on specific cognitive abilities measures in IQ tend to be of average IQ as well as the children of
adults is consistent with reports from other studies parents of higher-than-average 1Q. If the IQ of children
(Plomin et al., 1994a, 1994b). On average 70% of of blood-related parents tends to be lower than that of
the total interindividual variance was accounted for by children from unrelated parents, then there is evidence
additive genetic factors for Verbal Comprehension in of recessive alleles influencing low 1Q. This is exactly
both cohorts, Perceptual Organization in both cohorts, what was observed in an Israeli study by Bashi (1977);
and Working memory in the older cohort. For Percep- controlling for socioeconomic status, children born to
tual Organization in the older cohort, the full variance biologically related parents were of lower 1Q than chil-
decomposition model estimated a moderate amount ofdren born to unrelated parents. In fact, children born to
nonadditive genetic variance that did not reach signifi- double first cousins showed a larger adverse effect than
cance. However, for Processing Speed in both cohortschildren born to first cousins. Another study by See-
and Working Memory in the young cohort, the non- manova (1971) found that the 1Q of 161 children born
additive genetic variance was significantly different from from incestuous relationships was severely depressed.
zero and explained 34% and 71% of the total variance,In contrast, the 1Q of 95 children born to the same moth-
respectively. ers but from a different relationship was completely nor-

The presence of nonadditive genetic variance in mal. These findings clearly suggest the existence of re-
specific cognitive abilities or IQ in general is not often cessive alleles decreasing 1Q and, more generally, of
explicitly tested for, presumably because only very large nonadditive genetic variation in 1Q.
samples have enough statistical power to detect it (Mar- In conclusion, this study, which included 688
tin et al., 1978). The large amount of variance due to healthy Dutch adult family members, showed that both
nonadditive genetic sources in combination with the use alpha peak frequency and specific cognitive abilities, as
of an extended twin design (Posthuma and Boomsma,measured with the WAIS, were highly heritable. Possi-
2000) gave enough power to detect nonadditive geneticbly as a consequence of the large sample size and the
variance in the present study, although the detection wagpower added by the extended twin design, significant ev-
not very accurate as indexed by the broad confidence inidence was obtained for nonadditive genetic influences
tervals. As discussed earlier, very large sample sizes anan 1Q and on alpha peak frequency. No association be-
information from many different genetic relationships tween alpha peak frequency and WAIS-IQ at either the
between subjects are needed to separate additive genetigenetic, environmental, or phenotypic level was found.
influences from nonadditive genetic influences reliably.
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cognitive abilities in the present study complies with ACKNOWLEDGMENTS

the early work of Jinks and Fulker (1970), who reana- The financial support of the Universitair Stimuler-
lyzed the 1Q data of Burt and Howard (1956) and con- ings Fonds (grant number 96/22), and the Human Fron-
cluded that “. .. dominant gene action for IQ almost tiers Science Program (grant number rg0154/1998-B), is

certainly exists.” Reported MZ and DZ correlations greatly appreciated. The Netherlands Organization for
from some recent 1Q studies also suggest the influencescientific Research (NWO, travel fund R 56-454), and
of nonadditive genetic variance. For example, Plomin the Simons Stichting (traveling fund) provided travel

et al. (1994b) reported an MZ correlation of 0.60 and grants to facilitate collaboration with Prof. Dr. Neale.

a DZ correlation of 0.08 for the WAIS digit span sub-

test in the SATSA sample of 67-year-old subjects. In

addition, for several other subtests the reported MZ andREFERENCES

DZ.correIatlons were Sques_t!Ve of non?‘ddltlye genetic Anokhin, A. P., and Vogel, F. (1996). EEG alpha rhythm frequency

variance. However, nonadditive genetic variance was and intelligence in normal adultitelligence23:1-14.

not included in the analyses. Anokhin, A. P., Lutzenberger, W., and Birbaumer, N. (1999). Spa-

« tiotemporal organization of brain dynamics and intelligence: an
Fulker and Eysean (1979) noted that for *. .. many EEG study in adolescentst. J. PsychophysioB3(3):259-273.

genes influencing 1Q there is a marked degree of domi-Basar, E., Basar-Eroglu, C., Karakas, S., and Schurmann, M. (2000).
nance.” Evidence from human inbreeding studies, they Brzamh OSCII”atIOHS in perception and memoiynt. J. Psy-

. . chophysiol.35:95-124.
argued' Clearly md'(.:ate the presence- of recessive aIIeIe%ashi, J. (1977). Effects of inbreeding on cognitive performance.
for low 1Q and dominant alleles for high 1Q. Normally, Nature31:266(5601):440-442.



578

Posthuma, Neale, Boomsma, and de Geus

Berger, H. (1929). Ueber das Elektrenkephalogramm des Menschen.Lehtovirta, M., Partanen, J., Kononen, M., Soininen, H., Helisalmi,

Archiv. fur Psychiatrie Nervenkrankhed7:527-570.

Boomsma, D. I. (1990). Twin registers in Europe: an Overviemn
Res.1(1):34-51.

Brillinger, D. (1975). Time series: Data analysis and theory. London:
Holt, Rinehart and Winston.

Burt, C., and Howard, M. (1956). The multifactorial theory of inher-
itance and its application to intelligend#r. J. Statist. Psychol.
9:95-131.

Christian, J. C., Feinleib, M., and Norton, Jr., J. A. (1975). Statistical
analysis of genetic variance in twirfgn. J. Hum. Gene27:807.
Christian, J. C., Morzorati, S., Norton, Jr., J. A., Williams, C. J.,
O’Connor, S., and Li, T. K. (1996). Genetic analysis of the rest-
ing electroencephalographic power spectrum in human twins.

Psychophysiolog®3:584-591.

Daneman, M., and Merikle, P. M. (1996). Working memory and lan-
guage comprehension: A meta-analy§isychonom. Bull. Rev.
3(4):422-433.

Deary, 1. J. (2001). Human intelligence differences: A recent history.
Trends Cogn. Scb:127-130.

Eaves, L. J. (1972). Computer simulation of sample size and exper-

imental design in human psychogenetiddsychol Bull.
77:144-152.

Ellingson, R. J. (1966). Relationship between EEG and test intelli-
gence: A commentaryesych. Bull.65:91-98.

Ellingson, R.J., and Lathrop, G.H. (1973). Intelligence and
frequency of the alpha rhythmAm. J. Ment. Defic.78:
334-338.

Engle, R. W., Tuholski, S. W., Laughlin, J. E., and Conway, A. R.
(1999). Working memory, short-term memory, and general fluid
intelligence: A latent-variable approach.Exp. Psychol. Gen.
128309-331.

Falconer, D. S., and Mackay, T. F. C. (199)roduction to quan-
titative geneticg4th ed.), , Longan Group Ltd., Essex, UK.

Fulker, D. W., and Eysenck, H. J. (1979). Nature and nurture: Hered-

ity. In Eysenck, H. J. (ed.)fhe structure and measurement of
intelligence.Berlin, Springer-Verlag, pp. .

Jasper, H. (1958). Report of the committee on methods of clinical
examination in electroencephalograpiBtectroencephalogr.
Clin. Neurophysiol10:370-375.

S., Mannermaa, A., Ryynanen, M., Hartikainen, P., and Riekki-
nen, P. (1996). Spectral analysis of EEG in Alzheimer’s disease:
Relation to apolipoprotein E polymorphisfdeurobiol. Aging
17:523-526.

Lopes da Silva, F. H. (1991). Neural mechanisms underlying brain
waves: From neural membranes to networlsectro-
encephalogr. Clin. Neurophysiof9:81-93.

Lopes da Silva, F. H., and Storm van Leeuwen, W. (1977). The cor-
tical source of alpha rhythnNeurosc. Lett6:237-241.

Luciano, M., Smith, G. A., Wright, M. J., Geffen, G. M., Geffen, L. B.,
and Martin, N. M. (in press). On the heritability of inspection time
and its covariance with 1Q: A twin studintelligence.

Lykken, D. T., Tellegen, A., and lacono, W. G. (1982). EEG spec-
tra in twins: Evidence for a neglected mechanism of genetic de-
termination.Physiol. Psychol10:60—65.

Lykken, D. T., Tellegen, A., and Thorkelson, K. (1974). Genetic
determination of EEG frequency spectrBiol. Psychol.
1:245-259.

Martin, N. G., Eaves, L. J., Kearsay, M. J., and Davies, P. (1978).
The power of the classical twin studyeredity40:97-116.

Martin, N. G., and Wilson, S. R. (1982). Bias in the estimation
of heritability from truncated samples of twinBeh. Gen.
12(4):467-472.

Neale, M. C. (1997)Mx: Statistical modeling(3rd ed.), Box 980126
MCV, Richmond, VA 23298.

Neale, M. C., and Cardon, L. R. (199ethodology for genetic
studies of twins and familie§vol. 67) NATO Asi Series. Se-
ries D, Behavioural and Social Sciences, Dordrecht, The Nether-
lands.

Necka, E. (1992). Cognitive analysis of intelligence: The signifi-
cance of working memory processéXrson. Individ. Diff.
13(9):1031-1046.

Nunez, P. L., Reid, L., and Bickford, R. G. (1978). The relationship
of head size to alpha frequency with implications to a brain wave
model.Electroencephalogr. Clin. Neurophysidi4:344-352.

Osaka, M., Osaka, N., Koyama, S., Okusa, T., and Kakigi, R. (1999).
Individual differences in working memory and the peak alpha
frequency shift on magnetoencephalogramain Res. Cogn.
Brain. Rev.25:365—-368.

Jausovec, N., and Jausovec, K. (2000). Differences in resting EEGPlomin, R., Chipuer, H. M., and Neiderhiser, J. M. (1994a). Behav-

related to ability Brain Topogr.12:229-240.

Jensen, A. R. (1994). Psychometric g related to differences in head

size.Person. Indiv. Diff17:597-606.

Jinks, J. L., and Fulker, D. W. (1970). Comparison of the biometri-
cal genetical, MAVA, and classical approaches to the analysis
of human behaviosychol Bull.73:311-349.

Klimesch, W. (1997). EEG-alpha rhythms and memory processes.
Int. J. PsychophysioRk6:319-340.

Klimesch, W. (1999). EEG alpha and theta oscillations reflect cog-
nitive and memory performance: a review and analygiain
Res. Cog. Brain Res. Re29(2—-3):169-195.

Klimesch, W., Doppelmayr, M., Schimke, H., and Pachinger, T.
(1996). Alpha frequency, reaction time, and the speed of pro-
cessing informationJ. Clin. Neurophysiol13:511-518.

Kopruner, V., Pfurtscheller, G., and Auer, L. M. (1984). Quantita-
tive EEG in normals and in patients with cerebral ischemia.
Prog. Brain Res62:29-50.

Kyllonen, P. C., and Christal, R. E. (1990). Reasoning ability is
(little more than) working-memory capacityiditelligence
14:389-433.

Lebedev, A. N. (1990). Cyclical neural codes of human memory and
some quantitative regularities in experimental psychology. In
Psychophysical explorations of mental structurégissler,

H. G. (ed.), Toronto, Hogrefe & Huber, pp. 303-310.

Lebedev, A. N. (1994). The neurophysiological parameters of human

memory.Neurosci. Behav. Physia4:254-259.

ioral genetic evidence for the importance of nonshared envi-
ronment. In Hetherington, E. M., Reiss, Bt,al. (eds.),Sepa-
rate social worlds of siblings: The impact of nonshared
environment on developmentHillsdale, NJ, Erlbaum,
pp. 1-31.

Plomin, R., Pedersen, N. L., Lichtenstein, P., and McClearn, G. E.
(1994b). Variability and stability in cognitive abilities are largely
genetic later in lifeBehav. Gen24(3):207-215.

Plomin, R., DeFries, J. C., and McClearn, G. E. (198@havioral
Genetics: A primerNew York: Freeman.

POLY, Physiological Analysis Packad&999). Inspector Research
Systems BV, Version 5.0. Amsterdam, The Netherlands.

Posthuma, D., and Boomsma, D. |. (2000). A note on the statistical
power in extended twin desigrBehav. Gen30:147-158.

Posthuma, D., Boomsma, D. I., and de Geus, E. J. C. (2001). Per-
ceptual speed and 1Q are associated through common genetic
factors.Behav. Gen31: 593-602.

Scher, M. S. (1997a). Neurophysiological assessment of brain func-
tion and maturation: Il. A measure of brain dysmaturity in
healthy preterm neonateBediatr. Neurol.16:287-295.

Scher, M. S. (1997b). Neurophysiological assessment of brain func-
tion and maturation: I. A measure of brain adaptation in high
risk infants.Pediatr. Neurol.16:191-198.

Seemanova, E. (1971). A study of children of incestuous matings.
Hum. Hered21:108-128.

Steriade, M., and Llinas, R. R. (1988). The functional states of the



Alpha Peak and 1Q 579

thalamus and the associated neural interpRiyysiol. Rev. Vogel, W., Broverman, D. M. (1964). Relationship between EEG and
68:649-742. test intelligence: a critical reviewsychol Bull.,62:132-144.
Steriade, M., Gloor, P, Llinas, R. R., Lopes da Silva, F. H., and Mesu- WAIS-IIl Manual. (1997) (Dutch version). Lisse: Swets and
lam, M. M. (1990). Basic mechanisms of cerebral rhythmic Zeitlinger.
activities.Electroencephalogr. Clin. Neurophysigie:481-508. Wright, M. J., Boomsma, D. |, De Geus, E. J. C., Posthuma, D., Van
van Beijsterveldt, C. E., and Boomsma, D. I. (1994). Genetics of the Baal, G.C. M., Luciano, M., Hansell, N.K., Ando, J.,
human electroencephalogram (EEG) and event-related brain Hasegawa, T., Hiraishi, K., Ono, Y., Miyake, A., Smith, G. A.,
potentials (ERPs): A reviewdum. Genet94:319-330. Geffen, G. A., Geffen, L. B., and Martin, N. G. (2001). Genet-
Vernon, P. A. (1987)Speed of information-processing and intelli- ics of cognition: Outline of collaborative twin studjwin Res.
genceVernon, P. A. (ed.), Norwood, NJ: Ablex. 4:48-56.
Vogel, F. (2000)Genetics and the electroencephalograBerlin, Wyatt, W. J. (1993). Identical twins, emergenesis, and environments.

Germany, Springer-Verlag, p. 117. Am. Psychol48:1294-1295.



Perceptual speed and
intelligence’

" This chapter is published as: Posthuma D, Geus EJC de, Boomsma DI. (2001).
Perceptual speed and IQ are associated through common genetic factors.
Behavior Genetics, 31(6), 593-602.



Behavior Genetics, Vol. 31, No. 6, November 2001 (© 2001)

Perceptual Speed and 1Q Are Associated Through Common
Genetic Factors

D. Posthumal?E. J. C. de Geus, and D. |. Boomsma

Individual differences in inspection time explain about 20% of 1Q test variance. To determine
whether the association between inspection time and 1Q is mediated by common genes or by a
common environmental factor, inspection time and 1Q were assessed in an extended twin de-
sign. Data from 688 participants from 271 families were collected as part of a large ongoing
project on the genetics of adult brain function and cognition. The sample consisted of a young
adult cohort (mean age 26.2 years) and an older adult cohort (mean age 50.4 years). 1Q was as-
sessed with the Dutch version of the WAIS-3R. Inspection time was measured in the so-called
IT-paradigm, in which a subject is asked to decide which leg difltfigure is longest at vary-

ing display times of thél-figure. The number of correct inspections per second (i.e., the reci-
procal of inspection time) was used to index perceptual speed. For Verbal IQ and Performance
1Q, heritabilities were 85% and 69%, respectively. For perceptual speed, 46% of the total vari-
ance was explained by genetic variance. No differences in heritability estimates across age co-
horts or sexes were found. Across the whole sample, a significant phenotypic correlation was
found between perceptual speed and Verbal 1Q (0.19) and between perceptual speed and Per-
formance 1Q (0.27). These correlations were entirely due to a common genetic factor that ac-
counted for 10% of the genetic variance in verbal 1Q and for 22% of the genetic variance in per-
formance 1Q. This factor is hypothesized to reflect the influence of genetic factors that determine
axonal myelination in the central nervous system.

KEY WORDS: Neural speed; information processing; intelligence; extended twin design; inspection time.

INTRODUCTION quickly; all that is required is an accurate response. Dis-
play time of thdI-figure is varied in order to determine
the display time at which a predefined percentage (e.g.,
80%) of the subjects’ answers is correct. The manipula-
tion of display time (also called SOA; stimulus onset
aersynchrony) is usually implemented by using a backward
masking method, i.e., covering the stimulus withl-a
figure of which both legs are equally long. This reduces
after-image of the stimulus on the computer screen,
which otherwise would have allowed subjects to gain
time beyond the actual display time of the stimulus. The
use of different masking methods or no mask at all may
blur inspection time-1Q correlations, because smarter
! Department of Biological Psychology, Vrije Universiteit Amster- people may benefit more from after-image artifacts. A
dam, The Netherlands. prerequisite for obtaining a reliable inspection time-1Q
2To whom corresponde_znce should be addressed. Vrije Universiteit, ggsociation is the use of a good mask (Knibb, 1992).
Department of Biological Psychology, van der Boechorststraat 1, A meta-analysis conducted by Kranzler and Jensen

1081 BT, Amsterdam, The Netherlands. Tel31 20 444 8814. e ) - /
Fax: +31 20 444 8832. e-mail: danielle@psy.vu.nl (1989) indicated that inspection time and 1Q correlate

In 1996, Deary and Stough stated that “inspection time
is, to date, the only single information processing index
that accounts for approximately 20% of intelligence-test
variance.” Inspection time is defined as the minimum dis-
play time a subject needs to make an accurate perceptu
discrimination on an obvious stimulus, and is often
thought to reflect speed of apprehension or perceptual
speed (Kranzler and Jensen, 1989). Visual inspection
time is usually measured in the so-callégharadigm in

which subjects are asked to decide which leg ofithe

figure is longest. There is no need to make this decision
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around—0.50: The less time a person needs to make '™
an accurate decision on an obvious stimulus, the higher
his or her 1Q. Inspection time correlates somewhat T —
higher with performance 1Q+0.54) than with verbal -
IQ (—0.40) and correlations seem constant over age £0 9 —
(Kranzler and Jensen, 1989). It is attractive to hypoth-
esize that inspection time indexes the speed of percep-
tual processing, or even central nervous (CNS) system
processing in general, hence explaining its association
with 1Q. In fact, the primary idea behind studies in-
vestigating the correlation between inspection time and o

Mumied of caied
3

ia 1

IQ has been that a faster brain should result in a smarter _rr
brain. If this idea holds true, then unravelling the de- ]
terminants of interindividual variance in inspection N R L AR

time in adult humans may also cast light on factors that
determine interindividual differences in 1Q.

In the present paper, we investigate which factors ~ Fig- 1. Age distribution N = 688) showing two cohorts.
(genetic or environmental) contribute most to inter-

individual variability in inspection time and which fac- Table | lists the complete sample configuration.
tors mediate the observed correlation between inspec—,:Or example, in the young cohort, 20 MZ families con-

tion time and 1Q. An extended twin design (i.e., gisting of a complete MZ pair and one additional sib-
including families consisting of twins and additional |ing participated. Participating family members ranged
siblings) is used to maximize statistical power to de- fom 1 to 8, with an average of 2.5 subjects per family.
tect genetic and environmental influences (Posthuma|, ihe young cohort, 171 males and 210 females par-
and Boomsma, 2000). ticipated, in the older cohort 135 and 172, respectively.
Table Il lists the specific distribution of sex, age,
educational level, and zygosity groups within the two
cohorts.
Subjects The Dutch classification system for education
level (Standaard Onderwijs Indeling [SOI], 1998) fol-
lows the International Standard Classification of Edu-
cation (ISCED, 1997). The Dutch standard has seven
categories, ranging from primary education (category 1)
through tertiary education (category 7). The average
SOl educational level was 4.23[1.05), meaning that
on average subjects received schooling until 16 years
of age, which is compatible with the general Dutch
population (CBS, 2000). The subjects in the young
cohort had a significantly higher average education
category (mean 4.45D 1.03) than subjects in the
older cohort (mean 4.GD 1.04). The same was true
for males (mean 4.5D1.04) and females (mean 4.1,

. SD1.03). This pattern was also compatible with males
For example, in the young cohort age may not have aNYand females of different ages in the general Dutch

ﬁgleg;;t;;l;g?nl% :vvi?ﬁfas in the older cohort a grad—POpulation (CBS, 2000).
ge seems reasonable to expect.

It was decided, therefore, to include cohort-status in the

analyses. Allocation of a family member to one of the Task and Variables

two cohorts (young cohort under 36 years of age, olderI spection Time

cohort above 36 years of age) was based on the age ofn P

the twins. There was a slight overlap in age of the non- A Parameter Estimation by Sequential Testing

twin siblings between the two cohorts. (PEST) procedure (Findlay, 1978; Pentland, 1980) was

e {aT]

METHOD

Subjects were recruited from The Netherlands
Twin Registry (Boomsma, 1998) and participated in a
large and as yet ongoing project on the genetics of cog-
nition and adult brain function.

Analyses are based on the 688 family members
from a total of 271 extended twin families that had en-
tered the study by December 2000. Fig. 1 depicts the
age distribution of the complete sample showing it ac-
tually consisted of two cohorts: a young adult cohort
with a mean of 26.23D4.19) years of age and an older
adult cohort with a mean of 50.807.51) years of age.
We did not want to rule out possible differential age ef-
fects on 1Q or inspection time for the two age cohorts.
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Table I. Family Configuration in the Sample According to Zygosity, Cohort, and Number of Additional Non-Twin Siblings

Additional siblings

0 1 2 3 4 6

fams Ss fams Sss fams S fams ss fams ss fams ss

Young cohort

MZ twin pair 31 62 20 60 2 8 1 5 — — — —  Total MZ pairs: 54
single twin 1 1 3 6 — — — — — — — —

DZ twin pair 16 32 24 72 7 28 — — — — — —  Total DZ pairs: 47
single twin 1 1 4 8 1 3 — — — — — —

DOS twin pair 11 22 12 36 2 8 1 5 — — — — Total DOS pairs: 26
single twin 2 2 4 8 1 3 — — 1 5 — —
no twins — 2 2 2 4 — — — — — —
Total Young 62 120 69 192 15 54 2 10 1 5 — —  Total additional

siblings: 109
Older cohort

MZ twin pair 26 52 16 48 4 16 1 5 — — 1 8  Total MZ pairs: 48
single twin 2 2 3 6 — — — — 1 5 — —

DZ twin pair 20 40 15 45 1 4 — — — — — —  Total DZ pairs: 36
single twin 3 3 1 2 2 6 — — — — — —

DOS twin pair 11 22 8 24 2 8 — — 1 6 — —  Total DOS pairs: 22
single twin 2 2 1 2 — — — — — — — —
no twins — — 1 1 — — — — — — — —
Total Older 64 121 45 128 9 34 1 5 2 11 1 8  Total additional
siblings: 80

Total 126 241 114 320 24 88 3 15 3 16 1 8

Note: Fams= number of families, sss number of subjects, MZ monozygotic twins, DZ= dizygotic same sex times, DOS dizygotic op-
posite sex twins. Example: In the young cohort, 24 families consisting of a full DZ pair and one additional sibling pdr{itiatjects).
In the complete sample, 114 families consisting of one additional sibling and either a complete or an incomplete twiicipaitepart

Table II. Descriptives of the Two Cohorts by Zygosity and Sex

Mean age (SD) Education
Ss Age range (yrs) (yrs) (SOI* categories)
Young cohort
MZM 50 22.4-33.9 26.0 (3.07) 4.6 (1.14)
MZF 62 22.5-33.9 255 (3.42) 4.1 (0.93)
DzZM 38 21.8-30.0 26.0 (2.13) 4.5 (0.76)
DZF 62 22.5-33.4 25.8 (2.72) 4.7 (0.92)
DOS 60 18.8-31.8 25.4 (2.87) 4.4 (0.85)
Add. siblings-males 54 13.9-42.6 27.3 (6.67) 4.0 (1.02)
Add. siblings-females 55 16.7-39.3 27.3 (5.85) 4.5 (1.03)
Total 381 13.9-42.6 26.2 (4.19) 4.4 (0.95)
Older cohort
MZM 48 36.0-69.1 49.1 (6.92) 4.3 (1.09)
MZF 53 42.2-67.4 52.5 (7.8) 3.8 (0.96)
DzZM 26 42.7-64.1 52.4 (5.07) 4.3 (1.37)
DZF 52 42.1-62.7 50.5 (6.21) 3.7 (1.09)
DOS 47 41.6-71.0 49.8 (7.98) 4.2 (1.09)
Add. siblings-males 37 37.0-68.4 50.8 (8.48) 4.3 (1.09)
Add. siblings-females 44 29.1-70.9 48.3 (8.50) 3.6 (0.97)
Total 307 29.1-71.0 50.4 (7.51) 4.0 (1.11)

*SOI = Dutch standard classification system;=ssiumber of subjects.
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incorporated into &l-paradigm following the descrip-
tion in Lucianoet al. (2001). Briefly, the PEST proce-

dure uses a staircase method in which stimulus dura-

tion is altered based on the subjects’ response. If
correct answer is given, stimulus duration time of the
next trial is decreased; if an incorrect answer is given,
stimulus duration of the next trial is increased. The
amount of increase or decrease is dependent on th
number of previous reversals of increase/decrease
Thus, after many reversals, increases and decreases

subsequent trials become smaller and the PEST proce

dure converges on the subjects’ inspection time. The
task ends when the PEST estimate has become suffi
ciently stable or as soon as the maximum number of
trials is presented.

For each subject, a cumulative normal function
(mean= 0) was fittedpost hocto the stimulus dura-
tion times. TheSD of this curve is the SOA at which

a

e
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Intelligence Testing

IQ was measured with the Dutch adaptation of the
WAIS-3R (WAIS-III, 1997). Standardization norms for
this version are currently being determined and at this
point it is not possible to report standard 1Q scores. Per-
formance 1Q was calculated as the mean of three sub-
tests (picture completion, block design, matrix reason-
ing) and verbal 1Q was based on the mean score on four
subtests (information, similarities, vocabulary, arith-

on

metic).

Statistical Analysis

Because the sample consisted of unbalanced pedi-
grees and had some missing data, models were fitted
to the raw data rather than covariance matrices. This
was accomplished by using the rectangular data file op-
tion in Mx (Neale, 1997). Saturated models were fitted

84% accuracy (corrected for guessing) is achieved (asin order to determine the fit of the variance components

described in detail in Lucianet al. 2001). The recip-
rocal of theSD X 1000 can be interpreted as the num-
ber of inspections per second resulting in a correct
judgement (Smith, 2000). This measure was used
throughout this paper and will be referred topas-
ceptual speedn contrast to inspection time itself, the

models. The saturated models included modeling a lin-
ear regression effect of age within each cohort and a
deviation for males within each cohort. The signifi-

cance of these effects of the means were estimated in
the saturated models and the following assumptions of
the (extended) twin method were tested: (1) hetero-

number of correct inspections per second or perceptualgeneity of variances across MZ twins, DZ twins, and

speed is expected to correlate positively with 1Q, i.e.,

siblings, across males and females, and across cohorts;

a high value on perceptual speed means that more cor{2) heterogeneity of correlations across MZM twins and
rect perceptions per time unit are made and refers to aMZF twins, and across DZM twins, DZF twins, DOS

fast inspection time.
To ensure accurate SOAs, a dynamic backward

mask (Evans and Nettelbeck, 1993) was used (Fig. 2).

All instructions were given on a computer screen and
the importance of accuracy over reaction time was
stressed in the instruction.

Fig. 2. Il-paradigm with backward masking; theis briefly pre-
sented and covered with the mask. The amount of increase/decreas
of stimulus duration in each trial is dependent on whether or not the
subject answered correctly or incorrectly in the previous trials (see
text also).

twins, and sib-sib male/female pairings; (3) hetero-
geneity of DZ correlations and sib-sib correlations;
(4) differences in means between MZ twins, DZ twins,
and siblings; and (5) differences in means between co-
horts. The resulting most parsimonious saturated model
is the model against which the variance components
models are tested.

In the variance components models, the observed
variance was decomposed in three of four possible latent
sources of variance: additive genetic (A), non-additive
genetic (D), shared environment (C), and non-shared
environment (E) following Neale and Cardon (1992).
For DZ twins (and sib pairs if the saturated models in-
dicated no difference in correlation between DZ pairs
and sib pairs) similarity in shared environmental in-
fluences was fixed at 100%, similarity of additive ge-
netic influences at 50%, similarity of non-additive ge-
netic influences at 25%, and no similarity in non-shared
environmental influences. For MZ twins similarities of

Qdditive genetic, non-additive genetic and shared en-

vironmental influences were fixed at 100% and no sim-
ilarity in non-shared environmental influences.
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Results of the old cohort is positive, this does not correspond
Twenty seven subjects of the total 688 subjects to a higher mean in the oldgr cohort compared with the
took an IQ test at home and did not have data on theyoung cohort. This can easily be demonstrated by cal-
) . . . : culating the expected scores for a female aged 26.2 years
computerized inspection time task. Ten subjects who /, :
came to the laboratory were unable to perform the in- (i.e., the average age in the young.cohort) and a female
aged 50.4 years (the average age in the old cohort). For

secton me sk e 0@ e of e o oMY (152 e ol he cxpcted e 1 5o
P - Nsp is 22.70+ (0.22 * 26.2)= 28.46, whereas for the 50.4-

jects were discarded from the analyses because the X .
had an unusual long inspection time (2000 ms), WhichﬁegrSOsld_f%ng;ei ?gg);ptz%te?%verbal 'Q score Is 22.70

raised the suspicion that they did not perform the task The phenotypic correlations between the three

as intended. This left 688 subjects with 1Q data of
measures were homogeneous over cohorts, sex, and zy-
whom 641 also had data on perceptual speed. . .
gosity. The correlation between perceptual speed and

Verbal 1Q was 0.19, between perceptual speed and Per-
formance IQ was 0.27, and the correlation between Ver-

The saturated model fitting procedures indicated bal 1Q and Performance IQ was 0.49. These were all
that for perceptual speed, Verbal IQ and Performancestatistically significant at the 0.01 level.
1Q (1) the variances were homogenous across sexes and  Twin and sibling correlations were also homoge-
across zygosity; (2) the MZF and MZM correlations neous over cohorts and sexes, and there was no differ-
were homogenous; (3) the DZM, DZF, and DOS cor- ence between DZ correlations and sib-correlations. The
relations were homogenous, and the DZ correlationsMZ and DZ correlations (and 95% CI) for perceptual
and sibpair correlations were homogenous; (4) no dif- speed were 0.48 (0.31 0.60) and 0.20 (0.16 0.31),
ferences in means were found between MZs, DZs andrespectively, for Verbal I1Q 0.84 (0.790.88) and 0.47
sibs; and (5) the variances and twin correlations across(0.37 — 0.55), respectively, and for Performance 1Q
cohorts were homogenous. 0.69 (0.58- 0.77) and 0.32 (0.22 0.42), respectively.

Table 11l shows the significant effects on the means The overall pattern of correlations indicates additive
in the most parsimonious trivariate saturated model. Malesgenetic influences and perhaps some common envi-
performed better on all three measures in both the youngronmental influences.
and the old cohort, except for perceptual speed, where
males and females scored equally well. The difference in,,_ . .

. Variance Components Modelling

means between males and females was larger in the older
cohort compared with the young cohort. In the young co- The minus two log likelihoods (-2LLs) of the
hort, there was no effect of age on perceptual speed anahested trivariate variance components models were
Performance 1Q. On Verbal IQ every year would raise the compared to the -2LLs of the final saturated model by
score with 0.22 points, i.e., being 25 years of age addsway of likelihood ratio test. In this way, a measure of
0.22 * 25= 5.5 to the grand mean. In the old cohort, for goodness of fit of the variance components models was
all three measures a higher age decreases the score. obtained.

The grand means were equal for both cohorts ex- The full trivariate ACE model fitted reasonably
cept on Verbal 1Q. Although the sign of the deviation well with a chi-square of 0.78 compared with the sat-

Saturated Model Fitting Results and Descriptives

Table Ill. Grand means, Standard Deviations (SD), and Effects on the Means of Perceptual Speed, Verbal I1Q, and Performance 1Q
(as estimated with ML in the final saturated trivariate model)

Regression Deviation
Deviation weight of age Regression of males Deviation
Grand of older in young weight of age in young of males
mean SD cohort cohort in older cohort cohort in older cohort
Perceptual Speed 14.16 4.67 — — -0.05 — 1.70
Verbal 1Q 22.70 5.41 6.55 0.22 -0.07 1.00 2.89

Performance 1Q 23.63 3.63 — — -0.09 1.10 1.46
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urated model and the same amount of degrees of free15% (11-20), and 31% (23—-40) for perceptual speed,
dom. However, shared environmental influences could verbal 1Q, and performance 1Q.
be dropped from the model without significantly wors- The genetic correlation between perceptual speed
ening the fit of the modelygs = 2.82). For the same  and Verbal IQ was 0.31 (0.18—0.44). Or in other words,
reason, all common non-shared environmental factors10% of the genetic variance in Verbal 1Q is explained
could be dropped from the modgP{ = 3.22). In con- by genetic factors that are shared with perceptual speed.
trast, the common genetic factors could not be droppedThe genetic correlation between perceptual speed and
from the model without significantly worsening the fit. Performance IQ was 0.47 (0.33-0.61), indicating that
Dropping the common genetic factor for perceptual 22% of the genetic variance in performance 1Q was ex-
speed and Verbal 1Q resulted iryaof 11.06 with one plained by genetic factors shared with perceptual speed.
degree of freedom, for the common genetic factor be- Not surprisingly, a high genetic correlation was
tween perceptual speed and Performance IQxthe also observed between Verbal IQ and Performance IQ;
with one degree of freedom was 18.18, and for the 0.65 (0.56—0.72), corresponding to 28% of the genetic
common genetic factor between verbal 1Q time and variance in Performance IQ that is shared with genetic
performance IQ thg? with one degree of freedom was factors important to Verbal IQ. This also means that
31.62. 50% of the genetic variance in Performance IQ is
Thus, a trivariate model that included additive ge- unique to Performance IQ, and thus unshared with either
netic influences and non-shared environmental influ- perceptual speed or Verbal IQ.
ences, and that allowed all phenotypic correlation be-
tween the three measures to be explained by commo
additive genetic factors fitted the data best. Fig. 3 iIIus—rbISCUSSION
trates this model and the standardized path coefficients. In a large sample of 688 individuals, the pheno-
As can also be calculated from Fig. 3 (see Neale typic correlation between the number of correct in-
and Cardon, 1992), the percentage of variation ex-spections per second and Verbal 1Q was 0.19 and be-
plained by additive genetic factors for perceptual speed,tween the number of correct inspections per second and
Verbal 1Q, and Performance 1Q was 46% (95% CI Performance IQ was 0.27. The magnitudes of these cor-
33-58), 85% (80-89) and 69% (60-77), respectively. relations are lower than the current consensus (e.g.,
The remaining variation explained by non-shared Nettelbeck, 1987; Kranzler and Jensen, 1989) that sets
unigue environmental influences was 54% (42—67), the correlation between inspection time and 1Q around
—0.50 (the difference in sign simply reflects the re-
verse scaling of the number of correct inspections per
second in comparison to inspection time). A possible
source of difference is the use of different strategies by
our subjects that may blur inspection time-IQ correla-
tions (Knibb, 1992). This is not likely because a back-
ward masking procedure was used to prevent the use
of strategy. Furthermore, it has been shown that if
strategies are used, the inspection time-IQ relation
tends to be lower rather than higher than when no
Perceptual Verbal IQ Performance strategies are used (Deary and Stough, 1996).

Speed 1Q It remains unclear why the inspection time-IQ re-
lation in our sample is below the estimate derived from
the meta-analysis (Kranzler and Jensen, 1989). It should
be pointed out that the uncorrected correlations in this
meta-analysis were very comparable to ours (around
—0.30). Only when an attempt was made to correct for
artifact effects inherent in pooling over studies for
conducting a meta-analysis the corrected inspection
Fig. 3. Standardized estimates (95% CI) in best-fitting trivariate time—IQ correlations came into the0.50 range. Two
model. Reported values are estimated simultaneously with effects of SOurces of evidence suggest that the lower estimates for
age and sex on the observed scores. phenotypic inspection time—IQ correlation may be more
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correct. First, the number of subjects in this study (688) sual evoked potentials over the occipital cortex that
is larger than the total number of subjects used in theoccur around 60 msec (Celesia, 1993).
meta-analysisn = 88 for PIQ,n = 218 for VIQ, and The interest in inspection time in intelligence re-
n = 633 for total 1Q). Second, our results are consis- search is driven mainly by the notion that it indexes a
tent with findings from another recent large study, which basic process in brain function, like perceptual, or even

included 390 twin pairs aged 16 years (Luciahal., general information processing speed (Jensen, 1993;
2001). In this study, a phenotypic correlation between Eysenck, 1995), although this notion has been debated
inspection time and 1Q of0.36 was found. (Stankov and Roberts, 1997). If differences in inspec-

Variance components analysis suggested moder-tion time reflect perceptual speed, then Fig. 4 reveals
ate genetic influences on perceptual speed as indexedhat a major source for genetic influences are the con-
by inspection time; 46% of the interindividual variance duction velocity in the optic nerve to the thalamic LGN
was explained by genetic variance and 54% was ex- and the projection of LGN neurons to the primary cor-
plained by non-shared environmental sources of vari- tex, and on to extrastriate areas. Optic nerve conduc-
ance including measurement error. Shared environ- tion velocity and conduction velocity from LGN neu-
mental sources of variance did not significantly rons to higher areas depend on the fibre diameter of the
contribute to the interindividual variance. This pattern axons, the number and form of ion channels in the axon
was uniform over two age cohorts and over both sexes. membrane, and the quality (thickness and stability) of
The influence of genetic variation on interindividual the myelin sheath generated by the oligodendrocytes
variation in IQ was much higher; 85% and 69% for (Kandelet al.,1991). We hypothesize that part of the
Performance IQ and Verbal IQ, respectively, with the common genetic factors underlying 1Q and inspection
estimates uniform over cohorts and sexes. The ob- time are factors that determine myelination of axons by
served correlation between our measure of perceptualoligodendrocytes. Results from aging studies have in-
speed and the two IQ measures was mediated com-dicated that, with aging, white matter (which is mainly
pletely by the sharing of underlying genetic factors; composed of myelinated axons) density tends to de-
10% of the genetic variance in Verbal IQ was explained crease, whereas gray matter (cell bodies) density re-
by genetic factors shared with perceptual speed. mains stable (Courchesm al., 2000). This suggests
Twenty-two percent of the genetic variance in perfor- that aging does not result in neuronal apoptosis but in-
mance |Q was explained by genetic factors shared with stead goes along with a reduction in myelin, either by
perceptual speed. These results are similar to the re-thinning of myelin sheaths or axonal degeneration. This
sults obtained by Lucianet al. (2001) in a sample of  will influence axonal conduction velocity and may ex-
16-year-old twins. plain the reduction in inspection time in the older co-

Although no structural biological theories exist hort compared with the young cohort in this study.
which specifically address inspection time, the exist- Several genes that influence CNS axonal myeli-
ing biological model for visual processing based on the nation have been implicated from animal models, some
monkey brain holds strong clues to the possible sourceof which are known to cause dysmyelination in humans
of genetic influences on perceptual speed/inspectionas well. ThePIp gene (Xg22.3), for example, codes for
time. Fig. 4 briefly explains this model. two membrane proteins important for myelination. Dis-

A recent meta-analysis on the latencies of re- ruption of expression of thelp gene in mice causes a
sponses evoked by visual stimuli in the monkey, mostly disruption in the assembly of the myeline sheath, which
obtained by intracranial electrophysiological record- leads to a profound reduction in conduction velocity of
ings, showed that earliest responses in the lateral genicCNS axons (Boison and Stoffel, 1994; Griffitbsal.,
ulate nucleus of the thalamus occurred at 28 to 31 msec1995, Ikenaka and Kagawa, 1995; Lemke, 1993). The
earliest responses in the primary and extrastriate visualinfluence of thePlp gene is specific to CNS axonal
cortices at 35 (V1), 54 (V2), and 61 (V4) msec, and myelination because it does not affect peripheral con-
earliest responses in the posterior part of the inferior duction velocity nor give rise to gross behavioral anom-
temporal cortex (TE1) at 57 msec (Lamme and Roelf- alies (Boison and Stoffel, 1994). Although the exact
sema, 2000). Presumably, activation of V2 and inferior role of thePlp gene in the CNS remains poorly defined
temporal cortex is minimally required when discrimi- (Knapp, 1996; Griffithset al., 1998), mutations in the
nating a simple two-dimensional object such asllhe same gene in humans are known to result in Pelizaeus-
figure. These latencies of the early visual pathways in Merzbacher disease (PMD) (e.g., Andersbal.,1999;
monkeys compare quite reasonably to the earliest vi- Griffths et al., 1995; Woodward and Malcolm, 1999).
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Fig. 4. The visual pathway in monkeys. Visual information processing-starts with the absorption of light by the visual pigmentfan the
toreceptors of the retina. This stimulates cGMP (cyclic nucleotid® 8yclic gunosine monophosphate) phosphodiesterase, which reduces the
amount of cytoplasmic cGMP and closes the cGMP gated channels, changing the ionic current across the membrane. Treadmnttue, |
hyperpolarization of the photoreceptor membrane and results in the reduction of glutamate in the synaptic cleft betwempfircaockin-
terneuron. The interneuron then transduces the electrical signal by way of graded potentials, eventually triggering ateatibmnpthe
ganglion cell. The axons of the ganglions cells leave the retina at the optic disc, where they become myelinated by aligedemttdorm
the optic nerve (Tessier-Lavigne, 1991). That oligodendrocytes are a source of optic nerve myelination contrasts witipb#ral perves
where myelin is always generated by Schwann cells; this makes the optic nerve a good model for central nervous system\ainditgtio
Most detailed anatomical information exists on the monkey brain (Katdel, 1991; Salin and Bullier, 1995). Information from both eyes
is conducted through neurons in the optic tract to the lateral geniculate nucleus (LGN) of the thalamus. Retinal infosmatawelal to the
pretectal area of the midbrain for the control of pupillary constriction, to the superior colliculus (SC), the pulvinar {®vémtrol of (sac-
cadic) eye movements, and to the cerebellum to control movement in response to visual input. The lateral geniculate jaottetss|pyer
4 of the primary visual cortex (V1) that projects on to V2 and higher visual association cortices (V4, MT), eventuallytdeadira aware-
ness. From the retina to the LGN and from the LGN to the area V1, parallel pathways (magno-, parvo-, and koniocelluladiffexesfe
kinds of information that are recombined in areas V1 and V2. After recombination, two pathways emerge: a dorsal, magnd-gathinaie
to the posterior parietal cortex involved with space and movement, and a ventral, parvo-dominated pathway concerned wiémtifigact
tion and perception to the inferior temporal cortex.

PMD is a hypomyelination disease which, in its mildest availability of glutamate—factors that may well be
form, may lead to optic atrophy and dementia. Other under genetic control. Most important, the efficiency
genes implicated to be important for myelination in of synaptic neurotransmission in the LGN and striate
knock out mouse studies are ttgt gene(Stoffel and neurons is a major determinant of visual processing
Bosio, 1997), thtMAG gene (Fujiteet al., 1998, Sheikh speed. Given the staggering amount of protein interac-
et al.,1999; Bartsch, 1996, for a review), and ther tions involved in neurotransmission, it is easy to envi-
gene (Webeet al., 1999). sion how synaptic transmission could introduce genetic
Obviously, as is apparent from Fig. 4, aspects of variance in inspection time (and 1Q). In fact, a sodium
visual processing other than conduction velocity de- channel isoform was recently identified that influenced
termine inspection time as well. Speed of receptor po- both axonal conduction velocity as well as synaptic re-
tential generation in the photoreceptors and its trans-sponses (Caldwekt al., 2000). Finally, although in-
duction to ganglion cells depends on the availability of spection time seems to depend largely on the “fast feed-
cGMP, the number of cGMP gated channels, and theforward sweep of visual information processing,” we
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cannot rule out effects of horizontal connections within applications, and related fielddiedermeyer, E. and Lopes da

; i _ Silva, F. (eds.), Baltimore, Williams and Wilkins, pp. 911-936.
the visual layers, e.g., within V1, or of recurrent pro Courchesne, E., Chisum, H. J., Townsend, J., Cowles, A., Coving-

cessing from hierarchically higher visual areas (Lamme ton, J., Egaas, B., Harwood, M., Hinds, S., and Press, G. A.
and Roelfsema, 2000), which brings in a number of pos- (2000). Normal brain development and aging: Quantitative
sible additional genetic factors analysis at in vivo MR imaging in healthy volunteeRadiol-
' ) 0gy 216:672—682.
In summary, we found that the correlations be- peary, . J., and Stough, C. (1996). Intelligence and inspection time:
tween perceptual speed and Verbal IQ and between per-  Achievements, prospects, and problems. Psycholog51:

; 599-608.
ceptual speed and Performance IQ were emlrely due toDetterman, D. K. (1994). Intelligence and the brainThe neuro-

a common genetic factor that accounted for 10% of the  psychology of individual difference. A. Vernon (ed.), Lodon,
genetic variance in Verbal IQ and for 22% of the ge- Acadamic Press, pp.

netic variance in Performance Q. We conclude that Evans, G., and Nettelbeck, T. (1993). Inspection time: A'flash.mask
to reduce apparent movement effed®ers. Indiv. Diff.15:

perceptual speed as indexed by inspection time can be g1-94.
used as an intermediate phenotype in linkage and asEysenck, H. J. (1995). Can we study intelligence using the experi-

- . . . . : mental methodMtelligence20(3):217-228.
sociation studies aimed at detectlng genetic loci that Findlay, J. M. (1978). Estimates on probability functions: A more

determine interindividual variance in intelligence. virulent PEST Percep. Psychophy£3:181-185.
Genes related to CNS axonal conduction Velocity con- Flint, J. (1999). The genetic basis of cognitiBrain 1222015-2031.

; ; ; ; Fujita, N., Kemper, A., Dupree, J., Nakayasu, H., Bartsch, U.,
stitute good candidate genes for intelligence. Schachner, M., Maeda, N., Suzuki, K.. and Popko, B. (1998).
The cytoplasmic domain of the large myelin-associated glyco-

protein isoform is needed for proper CNS but not peripheral
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Abstract

Psychometric IQ (WAIS-III), onset and peak latency of the lateralized readiness potential
(LRP), decision time, and accuracy were assessed during an Eriksen Flanker task in a young
(149 families) and in an older (122 families) cohort of twins and their siblings. Stimulus-
response incongruency effects were found on all measures of processing speed and accuracy.
The effects on the percentages of wrong button presses and too slow (> 1000 ms) responses
were larger in the older than in the younger age cohort. Significant heritability was found for
processing speed (33—48%), accuracy (41%), and stimulus-response incongruency effects (3—
32%). Verbal and performance IQ correlated significantly with stimulus-response incon-
gruency effects on accuracy (—0.22 to —0.39), and this correlation was completely mediated
by an underlying set of common genes. It is concluded that measures of the ability to perform
well under conditions of stimulus-response incongruency are viable endophenotypes of
cognitive ability. © 2002 Elsevier Science B.V. All rights reserved.

Keywords: Intelligence; Endophenotype; Lateralized readiness potential (LRP); Heritability; Genetic
correlation

1. Introduction

The presence of genetic influences on cognitive ability is well established (e.g.
Bouchard and McGue, 1981; Plomin et al., 2001). Little is known, however, about
the pathways that lie between genes and cognitive ability. Two strategies may be
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employed to identify these pathways. The first, bottom-up strategy starts with the
sequence of known genes, identifies the gene product, establishes the function of the
gene product at the cellular level, its possible role in neuronal networks and
ultimately its effects on cognition. A second, top-down strategy focuses on individual
variability in cognitive ability. It consecutively traces individual differences in
cognitive ability back to differences in brain function, to the neurophysiological
substrates determining brain function, to the cellular pathways underlying this
neurophysiology, to the proteins involved in these cellular pathways, and finally to
the genes coding for these proteins.

In the top-down strategy, cognitive psychophysiological experimentation plays a
crucial role by indexing the first important element in this approach; individual
differences in brain function. Measures of brain function that correlate with
cognitive ability through shared genetic factors are called “endophenotypes” (de
Geus and Boomsma, 2002). A rapidly increasing number of potential endopheno-
types have already been tested for crucial properties of heritability and (genetic)
covariation with cognitive ability (for a review see Posthuma et al., 2002). A specific
class of these endophenotypes came from the theoretical framework of the neural
speed theory of intelligence (Eysenck, 1986; Vernon, 1987, 1993). Within this
framework, many studies have looked at the heritability of reaction times and their
correlation with measures of intelligence (e.g. Baker et al., 1991; Ho et al., 1988;
Finkel and Pedersen, 2000; Luciano et al., 2001; Neubauer and Knorr, 1997; Rijsdijk
et al., 1998). Reaction times are moderately to highly heritable (40—-80%) and
correlate around —0.20 to —0.40 with measures of intelligence. This association is
largely (70—-100%) explained by common underlying genetic factors that influence
both reaction times and intelligence.

Reaction time in a typical choice reaction time task reflects the final outcome of a
multi-stage process of stimulus detection, stimulus evaluation, response selection,
response activation, and response initiation. Processing speed of each of these stages
can be indexed separately, and tested for heritable individual differences and their
relevance to intelligence. For instance, we previously showed that 46% of the
individual differences in the speed of early stimulus detection (as measured by
inspection time), can be ascribed to genetic differences among subjects (Posthuma et
al., 2001b). Moreover, the correlation between this early step and 1Q was shown to
be completely mediated through a common genetic pathway (Posthuma et al.,
2001b). Besides early stimulus detection and reaction times, a number of studies have
looked at P3 latency as a measure of the speed of stimulus evaluation. van
Beijsterveldt and van Baal (2002) reported a “meta’-heritability across these studies
of 51%. Also, a number of studies have reported correlations of P3 latencies with 1Q,
although not systematically (for a review see Wright et al., 2002). To date there have
been virtually no investigations of individual differences in the speed of other stages
of information processing.

A potential measure of another aspect of processing speed is the lateralized
readiness potential (LRP). The LRP is mathematically derived from the Bereitschaft-
spotential or Readiness Potential (RP; Kornhuber and Deecke 1965). The onset of
the LRP is considered to reflect the output of the response selection stage (Coles,
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1989; Eimer, 1998) and its peak latency is thought to additionally reflect central
motor processes that take place after response selection has taken place, i.e. response
activation (Falkenstein et al., 1994). Actual response initiation can be measured by
EMG onset or alternatively as the release of a home button (decision time). In this
paper, we examined the heritability of the latency of (pre-) motor selective response
activation using the onset and peak latency of the LRP. The heritability of the speed
of response initiation was examined using decision time. Since large individual
differences in speed—accuracy trade off may exist, even under standardized
instructions, we also assess the heritability of accuracy. To test their viability as
endophenotypes of cognitive ability, we examined the phenotypic and genetic
correlation of processing speed and accuracy with psychometric 1Q.

The LRP was obtained during an Eriksen flanker task (Eriksen and Eriksen,
1974). We tested processing speed during the performance of the congruent trials
because these are comparable to the two-choice reaction time tasks used in many
studies testing the neural speed of intelligence hypothesis. In addition, the Eriksen
flanker task can be used to specifically test the effects of stimulus-response
incongruency. Stimulus-response incongruency in this task generally induces slowing
and loss of accuracy (Botvinick et al., 1999; Cohen et al., 1992; Kramer et al., 1994).
This may reflect impairment of selective attentional control over the local inhibitory
circuits in the perceptual or premotor cortices (Cohen et al., 1992; Servan-Schreiber,
1990; Spencer and Coles, 1999) or of top-down inhibitory control of frontal
executive areas (e.g. Kramer et al., 1994; West, 1996). The concepts of selective
attention as well as inhibitory control are included in almost all theories of higher
cognitive function (Anderson and Spellman, 1995; Baddeley, 1986; Dempster, 1991,
1992; Fuster, 1997 West, 1996). Therefore, we examined the heritability of stimulus-
response incongruency effects and explored their phenotypic and genetic correlation
to 1Q.

All assessments were made in a large sample of twin pairs and their singleton
siblings. Twin families had been recruited from two separate age cohorts: 149
families with a mean age of 26 (SD 4.2) and 122 families with a mean age of 50 (SD
7.5). A randomly drawn sample of one subject per family was used to explore the
effects of age and sex on stimulus-response incongruency effects on the onset and
peak latency of the LRP, decision time and the number of too slow and incorrect
responses. Structural equation modelling on the complete sample of genetically
related subjects (twins and additional siblings) was used to examine whether
individual differences in processing speed during trials with congruent stimulus-
response mapping are influenced by genetic factors. Following this, the heritability
was tested for stimulus-response incongruency effects using the contrast between
stimulus-response congruent and stimulus-response incongruent trials. For all
Eriksen flanker task derived measures we then computed the phenotypic correlation
with psychometric 1Q. In the main multivariate analyses, these phenotypic
correlations were decomposed into a genetic and environmental part to test (1)
whether common underlying genetic or environmental factors influence processing
speed, accuracy and intelligence and (2) whether common underlying genetic or
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environmental factors influence stimulus-response incongruency effects and intelli-
gence.

2. Methodology
2.1. Subjects

Subjects were recruited from the Netherlands Twin Register (Boomsma, 1998) as
part of a large ongoing project on the genetics of cognition and adult brain function
(Posthuma et al., 2001a,b; Wright et al., 2001). Adult twins and their non-twin
siblings were asked to participate in a testing protocol lasting 4.5 hrs. In one half of
the protocol, psychometric intelligence, inspection time and decision time were
assessed, in the other half electroencephalographic activity (EEG) was measured.
The EEG registration consisted of a resting EEG measurement (Posthuma et al.,
2001a), an oddball task (van Beijsterveldt et al., 2001), a spatiovisual working
memory task (Hansell et al., 2001) and the Flanker task (Eriksen and Eriksen, 1974).
The order of these tasks within the EEG session was fixed. The order of the two
halves of the protocol was randomized across family members. In the present paper
only data from the IQ test and from the Eriksen Flanker Task are reported.

Six hundred and eighty-eight family members from 271 extended twin families had
participated in the study by December 2000. Participating families consisted of one
to eight siblings (including twins). On average 2.5 subjects per family participated. In
a young adult cohort 171 males and 210 females participated, in an older cohort this
was 135 males and 172 females. The young cohort included 54 MZ pairs, 73 DZ
pairs, 18 single twins and 109 additional siblings. The older cohort included 48 MZ
pairs, 58 DZ pairs, 15 single twins, and 80 additional siblings.

2.2. Intelligence testing

1Q was measured with the Dutch version of the Wechsler Adult Intelligence Scale
(WAIS-III, 1997). Standardization norms for this version are currently being
determined and at this point we can report unstandardized raw IQ scores only.
All analyses, however, will explicitly model effects of sex and age on the raw IQ
scores. Performance 1Q was calculated as the mean score of three subtests (picture
completion, block design, matrix reasoning) and verbal 1Q was based on the mean
score on four subtests (information, similarities, vocabulary, arithmetic).

2.3. Flanker task procedure

Subjects were in a supine position facing a monitor at 80 cm distance, in a dimly lit
sound attenuated, and electrically shielded chamber. Two boxes with an upper and a
lower button were placed left and right in front of the subject. A single randomized
sequence of 120 trials was generated and used for all subjects. A trial was started
when the subject simultaneously pressed the left and right lower buttons. Subjects
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always used the index fingers. The trials started with a tone (1 KHz, 100 ms) and a
simultaneously presented fixation dot in the centre of the monitor. After 1000 ms,
the stimulus array was presented for 100 ms (see Fig. 1). Stimuli consisted of a
horizontal stimulus array comprising five arrowheads. Left and right arrowheads
occurred with equal probability. Likewise, the flanking arrowheads were as often
congruent as incongruent with the target arrow. This resulted in four conditions each
containing 30 trials: left congruent ( < < < < <), right congruent (> > > > >),
left incongruent (> > < > >), and right incongruent (< < > < <).

Subjects were instructed to respond with the left hand if the central arrowhead
pointed to the left, and with the right hand if the central arrowhead pointed to the
right. Responding meant releasing the lower “home” button and pushing the upper
“response’ buttons. They were asked to respond as fast and accurately as possible
and to ignore the flanking arrowheads. Visual feedback (“right”, “wrong” or “too
slow”’, and total current points) was presented 1000 ms after the onset of the stimulus
array, and lasted 1500 ms. They gained 1 point for each correct response and lost 5
points for wrong button presses or too-slow responses. Wrong button presses
incorporated all premature responses, wrong home button releases, and wrong
response button presses. Responses were too slow when they exceeded the maximum
response time of 1000 ms. Trials were separated by an inter trial interval of 1500 ms
after which the next trial started as soon as both home buttons had been pressed.

Home button release time and time of response button pressing were stored for all
trials as well as the number of too-slow responses (> 1000 ms) and wrong button
presses. Performance measures were decision time, the number of incorrect and the
number of too-slow responses. These measures were all averaged over left and right
hand trials. Decision time was computed as the time interval between stimulus onset
and home button release. Too-slow responses and wrong button presses were
counted and converted to a percentage, because in a small number of subjects, timing
information on a few of the 120 trials was lost. Before recording, all subjects received
30 practice trials.

congruent ‘
0

correct
+ 1 pnts

. correct
incongruent

+ 1 pnts
duration (ms) 100 | 50 ]
time (ms) 1000 2000
Tone Response Signal Feedback

Fig. 1. Temporal structure of the LRP task.
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2.4. EEG recording and LRP computation

The EEG was recorded with 19 Ag/AgCl electrodes mounted in an electrocap.
Signal registration was conducted using an AD amplifier developed by Twente
Medical Systems (Enschede, The Netherlands). Signals were continuously repre-
sented online on a Nec multisync 17" computer screen using POLY 5.0 software
(POLY, 1999) and stored for offline processing. Standard 10—20 positions were F7,
F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, Ol, and O2 (Jasper, 1958).
Additionally F1 and F2 were placed halfway between F3 and Fz, and between Fz
and F4, respectively. Positions C3 and C4 are located above the right and left motor
cortices, respectively, and are used in this analysis.

Software-linked carlobes (Al and A2) served as reference. The vertical electro-
oculogram (EOG) was recorded bipolarly between two Ag/AgCl electrodes, affixed 1
cm below the right eye and 1 cm above the eyebrow of the right eye. The horizontal
EOG was recorded bipolarly between two Ag/AgCl electrodes affixed 1 cm left from
the left eye and 1 cm right from the right eye. An Ag/AgCl electrode placed on the
forehead was used as a ground electrode. Impedances of all EEG electrodes were
kept below 3 kQ, and impedances of the EOG electrodes were kept below 10 kQ. The
EEG was amplified (0.05-30 Hz), digitized at 250 Hz and stored for offline
processing.

LRPs were computed for correct trials only. Per trial, the epoch used for data
analysis started 250 ms preceding stimulus array onset, and ended 1000 ms after
onset of the stimulus array. The mean amplitude in the 250 ms preceding the
stimulus array was defined as the baseline. Epochs were discarded from further
analyses if values exceeded 200 puV on the vertical or horizontal EOG channels, or
values exceeded 80 uV on the EEG channels. A three step subtraction method
was performed to calculate the LRP waveforms. First, we subtracted the time
series recorded from C4 from those recorded over C3 on each trial for the right
hand responses. Second, we subtracted the time series recorded from C4 from
those recorded over C3 on each trial for left hand responses. Third, the
two difference waves for left and right hand responses were subtracted, which
resulted in the LRP waveform. This method is also known as the double subtraction
method:

LRP = (C3— C4)rigmhand —(C3 = C4)yeihand

Peak latency of the LRP was determined by searching the most negative value in
the 350-900 ms post stimulus window. Onset of the LRP was calculated by a single-
subject based regression procedure with one degree of freedom (Mordkoff and
Gianaros, 2000). This method fits a linear regression to the LRP slope using the
individually fixed LRP peak negativity. The intercept with the x-axis denotes LRP
onset.
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2.5. Statistical procedure

2.5.1. Effects of SEX and AGE COHORT on stimulus-response incongruency effects

As the total sample existed of genetically related subjects, a subset of unrelated
subjects was obtained by randomly drawing one subject from each family. On this
subset of genetically unrelated subjects, effects of sex and age cohort and their
interactions with condition were tested using a repeated measurements MANOVA
(GLM, SPSSwin v10.0, 1999). The within subjects factor was CONDITION
(congruent, incongruent), and between subjects factors were SEX (female, male)
and AGE COHORT (younger, older). Stimulus-response incongruency effects and
modulation by age and sex are reflected in the CONDITION main effects, and the
AGE COHORT x CONDITION and SEX x CONDITION interaction effects,
respectively.

2.5.2. Phenotypic correlation of 1Q with processing speed, accuracy and stimulus-
response incongruency effects

In the subset of genetically unrelated subjects, Pearson correlations of verbal 1Q
and performance 1Q with the onset and peak latency of the LRP, decision time,
percentage too-slow responses or wrong button presses were calculated using SPSS
10.0. As the percentages of too-slow responses and wrong button presses were highly
skewed both a log-transformation and a transformation to an ordinal scale were
used. The transformation to the ordinal scale was done by regrouping the data into
four categories: 0-5% slow, 5-10%, 10—15%, and more than 15%. Polyserial
correlations with I1Q were calculated using the software package PRELIS (version
2.12a; Joreskog and Soérbom, 1996). The log-transformed and the ordinally
transformed variables gave highly similar results. Only correlations obtained using
the log-transform of the percentages too-slow responses and wrong button presses
will be presented.

2.5.3. Estimating heritability of processing speed, accuracy, and stimulus-response
incongruency effects

To estimate heritability of the processing speed we used onset and peak latency of
the LRP and decision time in the congruent condition. To estimate heritability of
accuracy we used the percentages too-slow responses or wrong button presses in the
congruent condition. However, the data from the congruent condition were analyzed
in a single analysis with the data from the incongruent condition to allow us to
simultaneously estimate the heritability of the stimulus-response incongruency
effects on speed and accuracy by using a linear combination of the two scores (+
I x incongruent+ —1 x congruent) in the path model. The percentages of too-slow
responses or wrong button presses had to be log transformed to obtain normality, so
here a linear combination of the log-transformed variables in the congruent and
incongruent condition would not work. Stimulus-response incongruency effects on
accuracy, therefore, were obtained from a separate analysis on the log transform of
the contrast between the two conditions.
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Heritability was derived from structural equation modelling that estimates sources
of (co-) variance in the observed measures due to additive genetic variation (A) or
due to shared (C) and non-shared environmental (E) variation (Neale and Cardon,
1992). MZ twins share 100% of their genes, while DZ twins share on average 50% of
their genes, as do singleton sibling pairs. Shared environment is per definition 100%
shared by the twins of both MZ and DZ pairs, and will consist mainly of the family
environment. Thus, the expectation for the covariance between two members of an
MZ twin pair is A 4+ C. The expectation for the covariance between two members of a
DZ twin pair or between singleton sibling pairs is 1/2A +C. Non-shared environ-
mental factors incorporate those factors in the environment that are not shared by
siblings. The expectation for the variance is A+C+E.

Our extended twin design (i.e. consisting of twins and additional siblings) provides
data characterized by families of variable size. Such ‘incomplete’ data can be
analyzed in Mx (Neale, 1997) via full information maximum likelihood, which uses
the observed data, and provides parameter estimates that make the observed data
most likely. In order to obtain a measure of how well the specified model for means
and covariances fits the observed values, the raw data option in Mx calculates the
negative Log-Likelihood (—LL) of the raw data for each pedigree (Lange et al.,
1976), as:

—LL = —k log(2n) + logl] + (v, — ) ™', — 0,

where k (k=1, ..., p; p is the number of family members times the number of
phenotypes) denotes the number of observed variables within a family (and can vary
over families), X is the expected covariance matrix of family members with
dimension p by p, y; (for i=1,...p) is the vector of observed scores, u is the
column vector of the mean expected values of the variables for that pedigree, and |Z|
and £ —1 are the determinant and inverse of matrix X, respectively.

Since the families are independent, their joint likelihood is the product of their
individual likelihoods and the log of the joint likelihood is the sum of the log
likelihoods per family. Thus, summing the negative likelihoods (—LLs) of all
families gives the —LL of the model. In Mx the —LL of the model is doubled
because twice the difference between two models (2{ —LL full model —(—LL nested
model)}) is—under certain regularity conditions—asymptotically distributed as y>.
Thus, two nested models (a nested model includes fewer parameters and does not
introduce new parameters compared to the model under which it is nested) which
provide —2LLs, may be subtracted to provide a A(—2LL) which has a »°
distribution. A high y° against a low gain of degrees of freedom (Adf) denotes a
worse fit of the second, more restrictive model relative to the first model.

When the model is written in terms of matrix algebra, generalization from the
univariate case to a multivariate case becomes straightforward. Let matrices A, C
and E be of dimensions n x n, where n denotes the number of variables measured on
each subject. Matrix A denotes the genetic component, matrix C denotes the shared
environmental component, while matrix E denotes the non-shared environmental
component. The diagonal elements of matrix A denote the genetic variances of the
three variables. For example, element a;; is the genetic variation in the first variable.
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The off-diagonal elements of matrix A represent the genetic covariance between
variables. Analogously, the diagonal elements of matrices C and E denote the shared
and non-shared environmental variances of the three variables, and the off-diagonal
elements denote the covariances due to shared and non-shared environmental
influences.

As matrices A, C, and E are covariance matrices, they are restricted to be positive
definite. This is accomplished by calculating matrices A, C, and E as the product of a
triangular matrix and its transpose. Thus, matrix A is calculated as XxX’, where X is
triangular and of dimensions 3 x 3 (for three variables). Analogously, matrix C is Yx
Y’, and matrix E is ZxZ/'. This is also known as a Cholesky factorization of matrices
A, C and E.

2.5.4. Decomposition of phenotypic correlations with IQ into environmental and
genetic correlation

A multivariate decomposition of covariances into genetic and environmental
components was used for each measure that showed a significant phenotypic
correlation with verbal or performance 1Q. The decomposition of covariances into
genetic and environmental components necessitates the use of a genetically
informative design, such as the twin design. The variance is formally represented as

A+CH+E=XxX+YxY+ZxZ'.
The covariance is formally represented as

A+ C=XxX+Y x Y’ for MZ twins,

0.5xA+C=05xXxX+Y xY for DZtwins.
The genetic correlation between variables i and j (r,;) is derived as the genetic
covariance (a;) between variables i and j divided by the square root of the product
of the genetic variances of variables i (a;) and j (a;);

ajj

Vi X a;

Veij =

Analogously, the shared (r.;) and non-shared (r,;) environmental correlation
between variables i and j are derived as the respective environmental covariances
between variables i and j divided by the square root of the product of the respective
environmental variances of variables i and j. The phenotypic correlation () is the
sum of the product of the genetic correlation and the square roots of the genetic
variances of the two phenotypes and the product of the environmental correlation
and the square roots of the environmental variances of the two phenotypes.
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r = genetic contribution + shared environmental contribution

+ non-shared environmental contribution.

3. Results

3.1. Effects of SEX and AGE COHORT on stimulus-response incongruency effects

Psychometric 1Q scores were available for 688 subjects (271 families). Table 1
shows age and IQ for the random selection of unrelated individuals, one from each
of these families. Analyses of sex and age cohort effects on verbal and performance
1Q for this sample have been described elsewhere (Posthuma et al., 2001b). Briefly, it
was found that males generally had higher 1Q scores than females and younger
subjects had higher 1Q scores than older subjects.

Seventy eight subjects did not perform the Eriksen flanker task. For the remaining
610 subjects (250 families) data on the average decision time over correct trials and
the percentage of trials with too-slow responses or wrong button presses are shown

Table 1
Age and IQ in the randomly selected group of unrelated subjects
Age Verbal 1Q Performance 1Q

Young females N 74 74 74
Mean 26.02 28.24 23.64
Sd 3.78 5.03 3.51

Young males N 75 75 75
Mean 25.96 29.23 24.34
Sd 4.41 4.83 3.14

Older females N 63 63 63
Mean 51.11 26.04 19.40
Sd 7.46 6.22 3.89

Older males N 59 59 59
Mean 50.59 29.33 20.62

Sd 7.36 5.07 4.05




Table 2
Decision time, percentage wrong button presses and percentage responses ‘too slow’ in the randomly selected group of unrelated subjects
Decision time (ms) Percentage wrong button presses Percentage ‘too slow’
Congruent Incongruent Congruent Incongruent Congruent Incongruent
Young females N 68 68 68 68 68 68
Mean 456.99 552.66 0.20 3.31 2.52 8.52
Sd 39.47 41.89 0.68 8.83 3.20 8.89
Young males N 69 69 69 69 69 69
Mean 467.34 562.91 0.23 2.05 3.07 9.00
Sd 36.27 40.27 1.01 5.75 4.81 9.47
Older females N 59 59 59 59 59 59
Mean 499.66 586.08 2.38 6.78 8.50 22.12
Sd 44.93 51.22 5.47 11.46 8.10 18.68
Older males N 54 54 54 54 54 54
Mean 497.60 589.26 0.74 5.94 7.26 17.71
Sd 46.92 53.38 2.44 11.50 8.60 16.50
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in Table 2. The expected effects of CONDITION were found for the percentage too-
slow (F(1, 246) = 188.98, P < 0.0001), percentage wrong button presses (F(1, 246) =
44.27, P <0.0001), and decision time (F(1,246) =1872.92, P <0.0001): stimulus-
response incongruency resulted in a prolonged decision time (+92.33 ms), more
wrong button presses (3.63%) and more too-slow (9.00%) responses. No main or
interaction effects were found involving SEX.

Significant effects of AGE COHORT were found for the percentage too-slow
(F(1, 246) =46.67, P <0.0001), percentage wrong button presses (F(1, 246) = 12.68,
P <0.0001), and decision time (F(1, 246) =40.84, P <0.0001). Older subjects made
more responses that were ‘too-slow’ (+8.12%), made more wrong button presses (+
2.51), and had prolonged decision times (+33.17 ms) as compared to younger
subjects. In addition, AGE COHORT significantly interacted with CONDITION
for the percentage too slow (F(1, 246) =21.49, P <0.0001) responses and wrong
button presses (F(1, 246) =4.56, P < 0.05). Stimulus-response incongruency led to a
larger percentage wrong button presses responses in the older cohort (4.80%) than in
the younger cohort (2.47%). Likewise, it affected the percentage too-slow responses
more in the older cohort (12.03%) than in the younger cohort (5.96%). In contrast,
the AGE COHORT x CONDITION interaction failed to reach significance for
decision time (F(1, 246) =2.38, P =0.12). Because the number of too-slow responses
was higher in the older cohort, particularly during the incongruent condition, the
lack of an interaction effect on decision time may have reflected the exclusion of the
correct but slow trials. To explore this, we plot histograms of the reaction time
(decision time+movement time) from all correct trials in the congruent and
incongruent conditions for the two age cohorts in Fig. 2. In the incongruent
condition of the older cohort it is evident that a number of correct trials are missing
from the distribution because we classified reaction times above 1000 ms as too-slow.
However, extrapolating from the normal curve this missing tail accounts for only
about 3—5% of the responses. In reality, 20% of the trials were coded too slow. This
means that 15-17% of the too-slow responses were not simply “correct but slow”,
but must have been drawn from another distribution.

Two further measures of processing speed were derived from the LRP: onset and
peak latency. We found that a number of subjects did not show a waveform
resembling a readiness potential, which made computation of the LRP problematic.
We then decided to select only subjects with a minimum of 30 correct trials (for the
congruent as well as the incongruent condition) who had unambiguous LRP traces,
even if this meant compromising statistical power of the genetic analyses in terms of
lowered sample sizes.

A reliable onset of the LRP was available for 376 subjects in the congruent
condition and 361 subjects in the incongruent condition. Peak latency of the LRP
was available for 407 subjects in the congruent condition and 376 subjects in the
incongruent condition. Fig. 3 shows the grand averages of the LRP waveforms in the
congruent and incongruent conditions for the remaining participants in both age
cohorts. The figure nicely demonstrates the stimulus-response incongruency effects
on the onset and peak latency of the LRP. The positive dip before the onset of the
negative shift in the incongruent condition reflects activation of the wrong response.
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Fig. 2. Distribution of the single trial reaction times (decision time+movement time). Reaction time was
recorded in correct trials only; trials with reaction times over 1000 ms were coded too slow.

The analyses of the effects of SEX and AGE COHORT were again performed on
the subset of genetically unrelated subjects. LRP latencies of these subjects are
shown in Table 3. For the onset (F(1, 175) = 666.16, P < 0.0001) and peak latency of
the LRP (F(1, 184) =450.32, P <0.0001) significant effects of CONDITION were
found. The presence of incompatible flankers resulted in a prolonged onset (+115.86
ms) and prolonged peak latency (+96.96 ms). The main effect of AGE COHORT
was significant for the onset (F(1, 175)=6.07, P <0.05) and peak latency of the
LRP (F(1, 184) =16.77, P <0.0001) and indicated that the onset (+13.55 ms) and
the peak latency of the LRP (+32.60 ms) were slower in the older compared to the
young cohort. There were no main effects of SEX, and no interactions of SEX with
either AGE COHORT or CONDITION.
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Fig. 3. Grand averages of the LRP.
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3.2. Genetic analyses of processing speed and accuracy

The distribution of percentage wrong button presses and percentage too-slow
responses was highly skewed. In view of the comparable effects of stimulus-response

Table 3

Onset and peak latency of the LRP in the randomly selected group of unrelated subjects

Onset (ms) Peak latency (ms)
Congruent Incongruent Congruent Incongruent
Young females N 50 50 55 55
Mean 186.96 301.04 347.75 441.93
Sd 49.61 52.39 62.04 56.01
Young males N 57 57 60 60
Mean 194.63 322.84 359.00 452.20
Sd 39.55 45.94 65.83 53.47
Older females N 35 35 36 36
Mean  214.46 312.43 386.33 487.00
Sd 51.93 49.48 41.73 56.18
Older males N 37 37 37 37
Mean  204.81 318.97 379.08 478.86
Sd 42.38 39.84 82.28 69.02
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incongruency effects and aging on both type of incorrect responses, we collapsed
them into a single percentage for the genetic analyses. This percentage was still
highly skewed, and analyses were run using both a threshold model and a log
transform. The ordinal transformation and log-transformation gave highly similar
results (data not shown) and below we report only on the log-transform of the
percentage incorrect response. Maximum likelihood estimates of the twin correla-
tions are given in Table 4. Virtually all MZ correlations are higher than DZ twin
correlations. This suggests the presence of genetic influences on the variance in onset
and peak latency of the LRP, decision time, percentage incorrect responses, and
verbal and performance 1Q.

Decomposing the variance in IQ measures by structural equation modelling into
genetic, shared and non-shared environmental components confirmed our previous
finding (see Posthuma et al., 2001b) that verbal and performance IQ are highly
heritable (85 and 69%, respectively). No evidence was found for shared environ-
mental influences. Although the final sample size for the LRP measures is
significantly larger than any previous study on the LRP, and more than sufficient
to estimate age and sex effects on the mean, it is still critically small for the separate
detection of genetic influences and shared environmental influences (see e.g.
Posthuma and Boomsma, 2000). We choose, therefore, to decompose the variance
in genetic variance (A) and non-shared environmental variance (E; including
measurement error) and not to include shared environmental variance in the model.
Thus, although the factor A is modelled as additive genetic influences, it should be
kept in mind that this factor may also contain shared environmental influences.
Table 5 shows the fit statistics of the full AE model and the best reduced variance
decomposition models in which different models were allowed for the young and
older cohort in each of the two conditions.

The congruent condition was used to assess heritability of processing speed and
accuracy. Under the most parsimonious models, genetic influences explained 43% of
interindividual differences in the onset of the LRP in the young cohort and 46% of
interindividual differences in the peak latency of the LRP in the older cohort (see
Table 6). Genetic influences explained 33% of the variance in decision time in the
young and 48% of the variance in the older cohort. In the older cohort, 41% of the
variance in accuracy derived from genetic influences. No genetic influences on the
percentage incorrect responses in the young cohort could be detected. This may not
be surprising as in the young cohort very few incorrect responses were given in the
congruent condition, keeping the interindividual variance very low.

3.3. Genetic analyses of the effects of stimulus-response incongruency

The contrast between the congruent and incongruent conditions was used to assess
heritability of the effects of stimulus-response incongruency on processing speed and
accuracy. Table 7 shows that individual differences in the effects of stimulus-
response incongruency on onset and peak latency of the LRP were not due to genetic
differences, with the exception of the onset of the LRP in the young cohort.
However, individual differences in the effects of stimulus-response incongruency on



Table 4
Twin correlations

Onset Peak latency Decision time Percentage incorrect 1Q

Congruent Incongruent  Congruent Incongruent  Congruent Incongruent  Congruent Incongruent  VIQ PIQ
Young cohort
MZ 0.69 (16) 0.15 (18) 0.04 (23) 0.73 (20) 0.56 (46) 0.49 (46) —0.24 (46) 0.30 (46) 0.84 (54) 0.70 (54)
DZ 0.24 (117)  —0.02 (119)  0.21 (136) 0.03 (129) 0.06 (241) 0.35 (239) 0.07 (241)  0.26 (241) 0.47 (283)  0.31 (283)
Older cohort
Mz 0.35 (16) 0.44 (13) 0.41 (18) 0.16 (14) 0.50 (45) 0.33 (45) 0.39 (45) 0.38 (45) 0.84 (48) 0.70 (48)
DZ —0.32 (68) 0.09 (54) 0.29 (81) 0.48 (47) 0.24 (185) 0.22 (183) 0.23 (185)  0.30 (185) 0.47 (242)  0.31 (242)

MZ = monozygotic twins; DZ = dizygotic twin and twin-sibling pairs. VIQ, PIQ = verbal and performance IQ. Between brackets: number of pairs.

CL1
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Table 5
Fit statistics of the full AE and the best (reduced) variance decomposition models (bold)
—2LL df 7 Adf P
ONSET
Full AE-model 7852.73 721
E-model, AE-model for congruents in young cohort 7857.34 726 4.62 5 0.47
PEAK LATENCY
Full AE-model 8577.71 767
E-model in young cohort, AE-model in older cohort 8579.36 770 1.65 3 0.65
DECISION TIME
Full AE-model 12393.12 1200
% INCORRECT
Full AE-model 12322.22 1201
AE-model, E-model for congruents in young cohort 12323.94 1202 1.72 1 0.19

All models are bivariate models that include the congruent and incongruent conditions and a linear
combination of these two conditions to derive estimates for the stimulus-response incongruency effects.

Table 6
Percentage of the variance in processing speed and accuracy explained by additive genetic variation (A)
and non-shared environmental variation (E)

YOUNG COHORT OLDER COHORT

A E A E
ONSET
Full AE-model 48 (7-76) 52 (24-93) 3 (0-28) 97 (72-100)
E-model, AE-model for congruents in young cohort 43 (3-73) 57 (27-97) - 100
PEAK LATENCY
Full AE-model 2 (0-23) 98 (77-100) 46 (20—66) 54 (34—-80)
E-model in young cohort, AE-model in older cohort - 100 46 (20-66) 54 (34-80)
DECISION TIME
Full AE-model 33 (10-54) 67 (46-90) 48 (25-66) 52 (34-75)
% INCORRECT
Full AE-model 3(0-23) 97 (77-100) 41 (20-58) 59 (42-80)
AE-model, E-model for congruents in young cohort - 100 41 (20-58) 59 (42-80)

decision time and on the percentage incorrect responses (including too slow) were
under significant genetic control. Under the most parsimonious models, genetic
influences explained 25% of interindividual differences in decision time in the young
cohort and 32% in the older cohort. Genetic influences explained 23% of the variance
in percentage incorrect in the young and 29% in the older cohort.
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Table 7
Percentage of the variance in stimulus-response incongruency effects on processing speed and accuracy
explained by additive genetic (A) and non-shared environmental variation (E)

YOUNG COHORT OLDER COHORT

A E A E
ONSET
Full AE-model 15 (0-49) 85 (51-100) 10 (0—45) 90 (55-100)
E-model, AE-model for congruents in young cohort 26 2-47) 74 (53-98) - 100
PEAK LATENCY
Full AE-model 6 (0-28) 94 (72-100) 3 (0-35) 97 (65-100)
E-model in young cohort, AE-model in older cohort - 100 3 (0-35) 97 (65-100)
DECISION TIME
Full AE-model 25 (6-44) 75 (56-94) 32 (3-69) 68 (31-97)
% INCORRECT
Full AE-model 23 (6-40) 77 (60-94) 29 (5-12) 71 (48-95)

3.4. Phenotypic correlations with verbal 1Q and performance 1Q

The phenotypic correlations (by age cohort) of onset and peak latency of the LRP
and decision time with verbal and performance IQ are shown in Table 8. These
correlations do not show a meaningful pattern for the young cohort, but suggest a
significant relation between processing speed and IQ in the older cohort. However, in
contrast to our expectation, this IQ/processing speed correlation was not reflected in
the onset and peak latency of the LRP.

Table 9 shows the pattern of correlations of stimulus-response incongruency
effects with verbal and performance 1Q. Significant correlation was found with 1Q
for the effects on accuracy. Incongruency effects on the number of too slow and the
number of wrong button presses were significantly larger in the subjects with lower
1Q scores.

3.5. Decomposition of the phenotypic correlations into genetic and environmental
correlations

Only the significant phenotypic correlations in Tables 8 and 9 were selected for
decomposition into genetic and environmental components. The results of this
decomposition are depicted in Table 10. The correlation of verbal and performance
IQ with decision time in the older cohort was completely explained by an underlying
set of genes. Dropping the environmental contributions to verbal 1Q/decision time
and performance 1Q/decision time correlations did not cause a significant worsening
of the fit of the model (VIQ z?=0.02, P=0.88; PIQ x}=0.001, P=0.98). The
correlation of verbal and performance IQ with percentage incorrect in the congruent
condition in the older cohort was also completely explained by an underlying set of



Table 8
Phenotypic correlation of verbal (VIQ) and performance (PIQ) with processing speed and accuracy

Onset Peak latency Decision time Wrong button presses ‘Too slow’ Total incorrect
Young VIQ 0.01 0.10 0.06 0.11 —0.04 —0.01
Cohort PIQ —0.02 0.04 0.09 0.00 —0.14 —0.13
Older VIQ 0.13 0.06 —0.21* —0.07 —0.25" —0.23*
Cohort PIQ 0.03 —0.16 —0.25" —0.07 —0.24™ —0.23%

* Significant at the 0.05 level.
** Significant at the 0.01 level.
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Table 9
Phenotypic correlation of verbal (VIQ) and performance 1Q (PIQ) with stimulus-response incongruency effects

Onset Peak latency Decision time Wrong button presses ‘Too slow’ Total incorrect
Young VIQ  —0.07 —0.24" 0.01 —0.11 —0.24™ —0.22""
Cohort PIQ 0.08 —0.10 —0.18* —0.33" —0.29™ —0.39"
Older VIQ 0.01 —0.13 0.14 —0.28" —0.29™ —0.36™
Cohort PIQ  —0.06 —0.04 0.11 —0.29" —0.32" —0.39"

* Significant at the 0.05 level.
** Significant at the 0.01 level.
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Table 10
Genetic correlation and genetic contribution to the significant phenotypic correlations with verbal (VIQ)
and performance 1Q (PIQ)

VIQ PIQ
Genetic correlation Genetic con-  Genetic correlation Genetic con-
tribution® (%) tribution® (%)
Decision time —0.20 (—0.41 to —0.001) 100 —0.34 (—0.56 to —0.12) 100
(older)
Percentage incor- —0.51 (—0.70 to —0.31) 100 —0.52 (—0.73 to —0.30) 100
rect (older)
Incongruency ef- —0.44 (—0.79 to —0.20) 100 —0.68 (—1.00 to —0.43) 100
fects on the per-
centage incorrect
(young)
Incongruency ef- —0.37 (—0.89 to —0.12) 100 —0.48 (—0.93 to —0.21) 100

fects on the per-
centage incorrect
(older)

% Genetic contribution = percentage of the phenotypic correlation explained by a genetic correlation.

genes. Dropping the environmental contributions from the model did not cause a
significant worsening of the fit (VIQ y3 =0.37, P=0.54; PIQ 3 =0.01, P =0.94).

The correlation of verbal and performance 1Q with stimulus-response incon-
gruency effects on the percentage incorrect responses in both cohorts was completely
explained by an underlying set of genes. Dropping the environmental contributions
to these correlations for both cohorts did not cause a significant worsening of the fit
of the model (VIQ;y3 =1.20, P =0.55; PIQ:y3 =2.80, P =0.25).

4. Discussion

This study examined the genetic contribution to interindividual variance in the
speed of selective response activation, decision time and accuracy in the congruent
condition of the Eriksen Flanker task. It also examined the genetic contribution to
slowing and loss of accuracy induced by stimulus-response incongruency. It was
specifically tested whether processing speed, accuracy and stimulus-response
incongruency effects were genetically correlated with 1Q. These analyses required a
large sample of genetically related subjects, in our case twins and their singleton
siblings. This large sample provided us with the opportunity to evaluate effects of
age and sex on these measures for which most previous samples using the Flanker
task had only low statistical power. Below, we review these age and sex effects and
follow this with a discussion of phenotypic and genetic correlations with 1Q.

As expected, the presence of incongruent flankers led to a significant increase in
the onset (115.86 ms) and peak latency of the LRP (96.96 ms) and in decision time
(92.33 ms), which is in line with previous findings on this task (e.g. Eriksen and
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Eriksen, 1974; Botvinick et al., 1999; Casey, et al., 2000; Gratton et al., 1988; Kopp
et al., 1996; Kramer et al., 1994). No evidence of sex differences was found on the
performance of the Eriksen flanker task throughout. For age, the expected effects
were found on all measures of processing speed. Subjects from the older age cohort
(mean age 50) had an onset of the LRP that was on average 13.55 ms delayed
compared to subjects in the younger age cohort (mean age 26). The peak latency of
the LRP was delayed by an average of 32.60 ms in the older age cohort, and decision
times were prolonged by 33.17 ms. At first sight, this cognitive slowing did not seem
amplified by stimulus-response incongruency, since no evidence was found for an
interaction of age-cohort and condition on decision time. This is consistent with
findings from a previous study that looked at decision time during an Eriksen
flanker task and compared means across a cohort of 32 young (mean age 20.6)
subjects and a cohort of 30 older subjects (mean age 67.8) subjects (Kramer et al.,
1994). They found significant differences in mean decision time between the two
cohorts (i.e. the older subjects had a longer decision time) and significant
prolongation of decision time in the incongruent condition compared to the
congruent condition in both cohorts, but no interaction effects.

It should be noted, however, that our measures of processing speed were all
computed over trials in which a correct response had to be given within 1000 ms.
Slower trials were coded as ‘too slow’” and no mean decision time was recorded for
these trials; instead the ‘too slow’ feedback was given instantaneously. This stern
criterion was chosen to make sure that the subjects would remain motivated to
respond as fast as possible. Fig. 2 suggests that at least part of the potentially correct
trials in the incongruent condition in the older cohort fell in the ‘too slow’ category,
which meant they were not used to compute average decision time, onset and peak
latency of the LRP. We found a significantly larger stimulus-response incongruency
effect on the percentage responses too slow in the older cohort: the presence of
incongruent flanking stimuli induced 12.03% more too-slow responses than the
congruent condition. This figure was only half (5.96%) in the young cohort. These
findings do allow for possible amplification of cognitive slowing by stimulus-
response incongruency in the older cohort. The failure of the age cohort by condition
interaction on decision time to reach significance may have been due to removing
these “correct but slow responses just after 1000 ms”’. However, three observations
suggest that a substantial part of the too-slow responses were qualitatively different
from such correct but slow responses. First, unless the distribution in Fig. 2 is
extremely skewed to the right, only a few percent of the correct trials are missing—
far less than the actual percentage of too-slow responses found. Secondly, in 74% of
the too-slow responses the home button was never released. This means that even the
decision time was larger than 1000 ms, almost double of what it is in the correct
trials. In these trials subjects literally ‘did not lift a finger’. Thirdly, the number of
wrong button presses also showed evidence of stronger stimulus-response incon-
gruency effects in the older than in the younger cohort. Stimulus-response
incongruency, therefore, seems to do more harm than response slowing alone. A
fair summary of our findings is that older subjects experience more interference by



D. Posthuma et al. | Biological Psychology 61 (2002) 157182 179

incongruent flankers than younger subjects when they have to respond correctly
within a fixed time frame.

The source of individual differences in the interference induced by stimulus-
response incongruency is still unresolved. Larger interference may derive from
impairments in local inhibitory connections in the motor or perceptual system
(Cohen et al., 1992; Servan-Schreiber, 1990; Spencer and Coles, 1999) or from
impairments in top-down inhibitory control signals generated by a supervisory
attentional system (Kramer et al., 1994; West, 1996) or a conflict monitoring system
(Botvinick et al., 2001).

Localisation of these impairments in cognitive control in the brain is still
unresolved although the frontal cortex seems to play an important role (Botvinick
et al., 1999; Dempster, 1991; Fuster, 1997; Hazeltine et al., 2000; MacDonald et al.,
2000; Smith and Jonides, 1999; Ullsperger and von Cramon, 2001). For our purposes
it suffices that processes of inhibitory control and attentional selection are highly
plausible source of individual differences in cognitive ability. Although cognitive
ability (or IQ) in itself is highly heritable, it is likely to be influenced by a number of
genes of small effect. These genes are more easily uncovered by focussing on
elementary aspects of cognition, such as processing speed or resistance to
interference. The main goal of our study was to test Flanker task derived behavioural
and electrophysiological measures of processing speed and resistance to interference
as viable “endophenotypes” of cognitive ability. This endophenotype approach
requires that the Flanker-task derived measures must be heritable and show evidence
of genetic correlation to intelligence (de Geus and Boomsma, 2002).

Using the complete dataset of genetically related subjects, it was found that genetic
effects accounted for over 40% of the variance in LRP-onset (young cohort) and
LRP-peak amplitude (older cohort) in the congruent condition. Neither parameters,
however, were systematically associated with verbal and performance 1Q, and no
genetic correlation could be found. This contrasted with our expectation that the
more intelligent subjects would be fastest in their selective response activation. This
expectation derived from the theoretical framework of the neural speed theory of
intelligence (Eysenck, 1986; Vernon, 1987, 1993). Within this framework, previous
studies have systematically found reaction time to be a heritable trait that is both
genetically and phenotypically correlated with measures of intelligence (e.g. Baker et
al., 1991; Finkel and Pedersen, 2000; Ho et al., 1988; Neubauer and Knorr, 1997;
Rijsdijk et al., 1998; Luciano et al., 2001). In an earlier report on these same subjects
we found that the speed of early stimulus detection (as measured by inspection time)
was significantly correlated with IQ through a common genetic pathway (Posthuma
et al.,, 2001b). We now extend these findings by showing a similar pattern for
decision time in the older cohort, where a significant genetic correlation was found of
decision time with verbal (—0.20) and performance 1Q (—0.34).

It is unclear why the onset or peak latency of the LRP did not show the expected
(genetic) correlation with IQ that we did find in these same subjects with the other
processing speed measures (inspection time and decision time), and that others found
with total reaction time (Finkel and Pedersen, 2000; Luciano et al., 2001). A first
explanation is that the largest source of individual differences relevant to 1Q may
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simply be in the early perceptual stage of a response, in the stage between selective
response activation and the actual response execution, or even in movement
execution itself. A second more humble explanation may be the difference in the
reliability of the methodologies to assess the various parameters. Reaction times can
be recorded with a high level of fidelity, whereas the ERPs, almost by their nature,
are highly noisy. Error variance is further increased by the use of a difference score,
i.e. the subtraction of left and right EEG signals. Although LRP data are highly
useful to compare groups, they may be less suitable to a pure individual differences
design. Interestingly, the latency of another ERP, the P3 latency, also showed no
evidence of a genetic correlation with 1Q in a group of adolescent twins in who 1Q
and reaction time did derive from common genetic factors (Wright et al., 2002).
Aware of the potential problems in the reliability of the LRP, we rigidly selected only
those traces in which a clear readiness potential was visible, and used only subjects in
which we could average 30 of such traces. As a consequence of this selection of
highly reliable LRP traces, a substantial number of subjects were lost, eroding the
power to detect low but reliable correlation with 1Q.

In addition to processing speed, we also examined the effects of stimulus-response
incongruency as a possible genetic correlate of 1Q. Effects of stimulus-response
incongruency on the LRP-derived measures did not classify as useful endopheno-
types of verbal or performance IQ, and neither did the effects on decision time. In
contrast, the effects of incongruent flankers on the percentage of incorrect responses
were heritable in both age cohorts and correlated at a genetic level with psychometric
IQ. In other words, the genetic factor underlying these stimulus-response incon-
gruency effects also explained part of the variance in verbal and performance 1Q. We
conclude that the ability to perform correctly on a speeded choice reaction time task
under conditions of response conflict is a viable endophenotype of cognitive ability.
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Combined Linkage and Association Tests in Mx

D. Posthuma,'? E. J. C. de Geus,! D. I. Boomsma,! and M. C. Neale?

Statistical methods aimed at the detection of genes for quantitative traits suffer from two prob-
lems: (i) when a linkage approach is employed, relatively large sample sizes are usually required;
and (ii) when an association approach is employed, effects of population stratification may blur
genuine locus—trait associations. The variance components method proposed by Fulker et al.
(1999) addressed both these problems; it is statistically powerful because it involves a combined
analysis of linkage and association and can include information from multiplex families, which
reduces the overall amount of necessary individual genotypes. In addition, it includes an explicit
test for the presence of spurious association. After a brief illustration of the various ways in
which population stratification may affect locus—trait associations, the implementation in Mx
(Neale, 1997) of the method as proposed by Fulker ez al. (1999) is discussed and illustrated. In
addition, an extension to this method is proposed that allows the use of (variable) sibship sizes
greater than two, the estimation of additive and dominance association effects, and the use of
multiple alleles. These extensions can be implemented when parental genotypes are available
or unavailable.

KEY WORDS: QTL; population stratification; structural equation modeling; variance components

modeling; quantitative trait.

INTRODUCTION

Statistical methods aimed at the detection of quantita-
tive trait loci (QTLs) have primarily focused on detect-
ing linkage between a QTL (or a marker in linkage
disequilibrium with the QTL) and a trait (e.g., Almasy
and Blangero, 1998; Amos, 1994; Boomsma and Dolan,
1998; Eaves et al., 1996; Fulker and Cardon, 1994;
Fulker and Cherny, 1996; Goldgar, 1990; Haseman and
Elston, 1972; Schork, 1993). Recently, however, atten-
tion has shifted toward methods designed to detect
associations between QTLs and traits (e.g., Abecasis
et al., 2000; Fulker et al., 1999; Lesch et al., 1996;
Plomin et al., 2001). Under certain conditions, testing
for association can be more powerful than testing for
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linkage (Risch, 2000; Risch and Merikangas, 1996;
Sham et al., 2000), even without assuming that one of
the typed markers is the actual trait locus (Long and
Langley, 1999).

A widely used design to test for an association be-
tween a locus and a trait is the case-control design. This
design, however, is sensitive to the effects of popula-
tion stratification that may confound genuine locus—
trait associations (Hamer and Sirota, 2000). Spurious
associations may arise in a population that is a mix of
two or more genetically distinct subpopulations. Any
trait that is more frequent in one of the subpopulations
compared to the other subpopulation(s) (e.g., because
of cultural differences or assortative mating) will show
a statistical association with any allele that has a dif-
ferent frequency across those two populations (e.g., as
a result of different ancestors or genetic drift). This as-
sociation is called spurious because within each popu-
lation the allele is unrelated to variation in the trait. In
practice, more than two populations may have com-
bined and it will not be obvious from the combined
populations whether or not the sample is stratified and
in what way.

0001-8244/04/0300-0179/0 © 2004 Plenum Publishing Corporation
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Population stratification is often considered the
culprit for nonreplication of previously found associa-
tions (Cardon and Bell, 2001; Ioannidis et al., 2001;
Plomin and Caspi, 1999; Risch, 2000; Sullivan et al.,
2001). However, what is frequently overlooked is that
population stratification is as likely to obscure genuine
associations as it is to falsely introduce them. The first
aim of this paper is to illustrate these opposing impacts
of population stratification on association under vari-
ous admixtures of subpopulations with different trait
means and different allele frequencies.

To control for the confounding effects of popula-
tion stratification, family-based tests have been devel-
oped in which locus—trait associations are compared
across genetically related individuals. Because these in-
dividuals stem from the same stratum, locus—trait asso-
ciations observed within genetically related individuals
are genuine. Most available family-based tests for as-
sociation have been developed for binary traits, such
as the Haplotype Relative Risk test (HRR, Falk and
Rubinstein, 1987; Terwilliger and Ott, 1992) and the
Transmission Disequilibrium Test (TDT, Spielman
et al., 1993). Under the assumption of random ascer-
tainment, a clinical binary diagnosis such as “depressed”
or “not depressed” or “hypertensive” vs. “normoten-
sive,” however, is less powerful for gene finding than a
continuous trait such as the score on a depression scale
or blood pressure (Boomsma et al., 2000; Van den Oord,
1999). For this reason the TDT has recently been ex-
tended to the analysis of quantitative traits (q-TDT;
Allison, 1997; Rabinowitz, 1997). The TDT is based on
the comparison of transmitted alleles from the parents
to affected offspring with nontransmitted alleles. In its
original form the TDT has some drawbacks: (i) it re-
quires parental genotypes that complicates its applica-
tion to late-onset diseases; (ii) two homozygous parents
are noninformative, resulting in a decrease of the avail-
able sample size; and (iii) no more than one affected
child per family can be included because siblings are
not genetically independent. Recently, extensions of the
TDT have been developed that deal with some of its
original drawbacks (reviewed in Zhao, 2000).

Fulker et al. (1999) proposed a variance compo-
nents sib-pair analysis for mapping QTL. This method
is based on the modeling of allelic effects on the trait
values as a test for association and simultaneous mod-
eling of the sibship covariance structure as a test for
linkage (Fulker et al., 1999). By partitioning the asso-
ciation effects into a between family component and a
within family component, spurious associations can
be separated from genuine associations. The between
family effects reflect both the genuine and the possible
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spurious association between locus alleles and a trait
(or allelic association between locus alleles and trait
locus alleles). The within family effects reflect only the
genuine association.

When simultaneously modeling linkage (using
identity by descent (IBD) information at positions
across the genome) and association (using the alleles
from candidate genes/markers) lying within the region
that shows linkage), evidence for linkage in a genomic
region is expected to decrease; by modeling the allelic
effects on the trait values, the residual variance will
show less evidence for linkage. If the evidence for link-
age does not completely decrease in the presence of a
significant genuine association effect of a marker
within the linkage region, this could imply that the link-
age derives from some other gene within that genomic
region, that not all relevant alleles of that locus have
been genotyped, or that (part of) the observed linkage
may have been artefactual (i.e., because of marker
genotype errors) (Abecasis et al., 2000, 2001; Cardon
and Abecasis, 2000; McKenzie et al., 2001).

The second aim of this paper is to present an im-
plementation of the combined linkage and association
test, including the test for the presence of spurious as-
sociations. Although we will present this implementa-
tion in the context of using Mx software (Neale, 1997),
the general algebraic formulas can also be implemented
in other genetic software, such as MERLIN (Abecasis
et al., 2002) or SOLAR (Almasy and Blangero, 1998).
Mx (Neale, 1997) is a matrix algebra interpreter that
uses numerical optimization to obtain parameter esti-
mates by maximum likelihood. Its flexibility allows the
relative simple implementation of extensions to multi-
ple (marker) alleles, dominance as well as additive as-
sociation effects, and variable sibship sizes. In addition,
either parental genotypes or sibling genotypes can be
used to derive the coefficients used for the decompo-
sition of the association into spurious and genuine
effects. These extensions will also be discussed in
algebraic terms and implemented in an example Mx
script.

Effects of Population Stratification
on Statistical Association

We start with a brief definition of some terms used
in this paper and will mostly adhere to the definitions
given by Terwilliger and Goring (2000). Linkage
between a marker and a trait locus refers to the non-
independent segregation of the marker and the trait
locus, implying that the recombination fraction between
them is less than 0.5. Linkage between a locus and a
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trait is related to this and denotes that pairs of geneti-
cally related individuals that share two locus alleles
IBD are phenotypically more alike than pairs of ge-
netically related individuals that share none of their al-
leles on the locus IBD. The locus may either be the trait
locus itself or be a marker linked to the trait locus (i.e.,
a recombination fraction between the marker and the
trait locus of less than 0.5); it is in linkage disequilib-
rium (LD), but not necessarily in disequilibrium with
the trait locus, LD or allelic association refers to the
situation in which certain alleles of a marker are pref-
erentially cosegregated with certain alleles of a trait
locus. LD may occur because two loci are in tight link-
age but can also occur as a result of population strati-
fication or when certain allele combinations at different
loci confer enhanced reproductive fitness. In the latter
two cases we speak of disequilibrium. Association be-
tween a locus and a trait refers to the apparent allelic
effects of a locus on trait values. This locus may either
be the trait locus itself (i.e., the actual gene) or be a
marker in LD with the trait locus.

When several populations have combined, spuri-
ous association between a locus and a trait may arise.
The size and direction of this association depend on the
combination of allele frequencies and trait means in
the subpopulations. Different trait means for the same
genotypic category across subpopulations will gener-
ally result in a difference of the overall means across
subpopulations, which is why a difference in overall
trait means across subpopulations is generally given as
a prerequisite for spurious association to occur. Yet, it
should be kept in mind that the crucial events leading
to spurious associations between alleles at a locus and
a trait are a difference in allele frequencies at that locus
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and a difference in the trait means for a given genotype
across subpopulations.

Consider two subpopulations A and B that combine
to form the mixed population M. Let subpopulation A
have a trait mean w4 of 105 and subpopulation B
a trait mean pp of 100. Consider a diallelic locus with
alleles E and e and frequencies p and g, respectively,
where ¢ = 1 — p. Let p in subpopulation A (p4) be 0.9
and p in subpopulation B (pp) be 0.5. This locus con-
tributes neither to L4 nor to wp; in other words, within
each subpopulation there is no association between the
locus and the trait. Let ., and p,, denote the trait mean
and the frequency of allele E, respectively, in the mixed
population (M). Let P, H, and Q denote the genotypic
frequencies of the three possible genotypes EE, Ee, and
ee, respectively. As subpopulations A and B are in
Hardy-Weinberg equilibrium (HWE), P, H, and Q
may be calculated from the allele frequencies of each
subpopulation

Po = pi. Ha=2paqa. Q4 = q;
and
Pp = p%, Hp =2ppqp,and Op = 61123

(see also Table I).

As the locus is not related to the phenotypic trait
values, the three genotypic categories have equal means
within subpopulations. Across subpopulations, how-
ever, the trait means are different for individuals that
have similar genotypes. Assuming equal population
sizes for subpopulations A and B, mixing the subpop-
ulations creates population M, where the genotypic
frequencies Py, Hy, and Q) are derived from the geno-
typic frequencies of the two subpopulations A and B

Table I. Formulas and Hypothetical Situation Illustrating the Effects of Population Stratification in the Absence of a Genuine Association

Population Allele Genotypic Trait means (pg) for given
mean frequencies frequencies genotype
W p(E) q(e) P(EE) H(Ee) QO(ee) EE Ee ee
A 105.00 0.9 0.1 0.81 0.18 0.01 105.00 105.00 105.00
B 100.00 0.5 0.5 0.25 0.50 0.25 100.00 100.00 100.00
M 102.50 0.7 0.3 0.53 0.34 0.13 103.82 101.32 100.19

Note: Following Falconer and Mackay (1996) p denotes the frequency of allele E, ¢ = 1 — p and denotes the frequency of allele e. P, H, and
Q denote the genotypic frequencies of genotypes EE, Ee, and ee, respectively. P, H, Q, p, and ¢ in the mixed population are derived from the

T

T

genotypic frequencies in the subpopulations. Py is derived as Y P, x n;/ > n;, where n is the total sample size of subpopulation #, and

=1
T

=1

T T T
t=1,...,T. Analogously, Hy is derived as Y H; x n;/ Y_ n;, and Qy is derived as Y Q; x n;/ Y_ n,. The allele frequencies p and ¢ in the
t=1 r=1

t=1

t=1

combined population M are derived as py = Py + %HM and gy = Om + %HM respectively.
Two subpopulations A and B of equal size, differ both in trait means (per genotype) and in allele frequencies of a diallelic locus. Within
each population no locus-trait association exists, whereas in the mixed population M a spurious locus-trait association is clearly evident.
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(Table I). As is shown in Table I, Py, Hy, and Qy
are 0.53, 0.34, and 0.13, respectively. The allele fre-
quencies are calculated following the rules of the
biometrical model (Falconer and Mackay, 1996):
pu = Py —I—%HM and gy = Oy + % H);. Note that
population M is no longer in HWE.

The trait means for each genotype in population
M are a function of the trait means and frequencies of
each genotype in subpopulations A and B. Assuming
equal population sizes, the trait mean of individuals
with genotype g in population M is calculated as
follows (g um):

Gga X pgatGep X g p
Gg,A + Gg,B

(1)

We. M =

where G, 4 refers to the frequency of genotype g in
population A, G, p refers to the frequency of genotype
g in population B, u, 4 refers to the trait mean for geno-
type g in population A, and ., p refers to the trait mean
for genotype g in population B.

For the example given in Table I, this results in
different trait means for each of the three genotypic
categories in population M, reflecting a spurious sta-
tistical association between the locus and the trait.
Figure 1 presents this effect graphically.

In the biometrical model, which is drawn in Fig-
ure 2, a denotes the (additive) effect of genotype EE
on the trait, —a denotes the (additive) effect of geno-
type ee on the trait, and d denotes the dominance de-
viation for the heterozygous genotype Ee. In association
analysis we aim to quantify a and d. In the situation de-
scribed in Table I and Figure 1, both a and d are O for
subpopulations A and B. From the values given in the

L
.=
‘ | T0L1e
Garorgs — | EE En [ =3 Ee [0 EE = o0
Frepercy — | ©81 Rl 3 =F 5 CED | 033 (=& Mot ] [ |
Popilrion & Sopidron H TEThEned popeiminn B

Fig. 1. Graphical representation of the effects of population strati-
fication. Two populations A and B differ both in overall trait means
(and trait means per genotype) and in allele frequencies of a diallelic
locus. Within each population no locus—trait association exists,
whereas in the mixed population a spurious locus—trait association
is clearly evident. Specifics concerning this situation are given in
Table I. Genotypes and their frequencies are given on the x-axis,
whereas the trait means per genotype are scaled on the y-axis.
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Fig. 2. Biometric model for a diallelic trait with alleles E and e. Let
a be the effect of genotype EE on the trait mean, —a the effect of ee,
and d the dominance deviation of the heterozygous genotype Ee.

last three cells from Table I, however, the estimated a
and d in the mixed population M would be obtained as
(103.82 — 100.19)/2 = 1.82 and 101.32 — (103.82 +
100.19)/2 = —0.69, respectively.

For the example given in Table I and represented
in Figure 1 we used extreme allele frequency differ-
ences (Ap = pa — pp = 0.4) between the two sub-
populations and a mean difference of 5 scale points.
Figure 3a plots the effects of varying allele frequency
differences between populations A and B for four Aps
(pa — g = 10,5, =5, or —10) on the estimated value
of a in the mixed population, in the absence of a gen-
uine association (i.e., a = 0 in subpopulations A and
B). In Figure 3b the effect on the calculated value of d
in the mixed population is plotted for the same situa-
tions and a d of 0 in subpopulations A and B. The al-
lele frequency pp is constant at 0.5, whereas the allele
frequency py is varied in steps of 0.01 from 0.99 to
0.01. The mean pp is constant at 100, whereas 4 is
110, 105, 95, or 90.

As becomes evident from Figures 3a and b, pop-
ulation stratification will result in spurious associations
between a locus and a trait. As the genuine a and d
values were 0, the estimated a and d values in the mixed
population are always biased (except when Ap = 0),
and may result both in positive effects of a and d, as
well as in negative values of a and d. The bias in esti-
mation of d becomes relatively small when the differ-
ence in allele frequency between subpopulations A and
B is small to moderate (between —0.3 and 0.3).

Using the same situations as described above, yet
assuming a value of +2 for ¢ in subpopulations A and
B, shows that in the presence of a genuine association
the estimated value of a in the mixed population may
be overestimated, underestimated, or of reversed sign.

As the genuine dominance deviation was fixed at
0, the calculated dominance deviation from the mixed
population is always biased (except when Ap =0 or
when the genotypic means are equal across popula-
tions) and is similar to the effects seen in Figure 3b.
Our purpose is to clarify the different ways in which
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Fig. 3. a, Effect of population stratification on the calculated value
of a in the absence of a genuine locus—trait association (¢ = 0; d = 0)
for varying levels of allele frequency differences. The mixed popu-
lation exists of populations A and B with constant g (100) whereas
w4 is varied from 110, 105, 95, and 90. Allele frequency pp is con-
stant at 0.5. Allele frequency p4 is varied with steps of 0.01 from
0.99 to 0.01. b, Effect of population stratification on the calculated
value of d in the absence of a genuine locus—trait association (a = 0;
d = 0) for varying levels of allele frequency differences. The mixed
population exists of populations A and B with constant pwpg(100),
whereas 4 is varied from 110, 105, 95, and 90. Allele frequency
pp is constant at 0.5. Allele frequency p4 is varied with steps of
0.01 from 0.99 to 0.01.

population stratification may affect genetic effects in
general; thus we chose not to discuss situations in
which a genuine dominance deviation is present.

Implementing the Test for Combined
Linkage and Association in Mx

Modeling Spurious and Genuine Association

When allelic effects are estimated from genetically
related subjects, effects of population stratification
can be controlled for. The method proposed by Fulker
et al., 1999 uses the within family genetic effects on the
trait value as an estimate of the genuine association. The
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between family genetic effects on the trait value include
both the genuine and the possible spurious association.
When the between family genetic effects and the within
family genetic effects are unequal, a spurious association
is said to exist, which may either be in the same direc-
tion (between genetic effects > within genetic effects) or
in the opposite direction (between genetic effects <
within genetic effects) compared to the genuine associ-
ation. Thus, equating the between effects and the within
effects serves as a test of the presence (and direction) of
spurious associations between a locus and a trait in the
data set. This test can be conducted on DNA markers as
well as candidate genes.

Estimation of the between genetic effects is based
on defining the contribution of each family or sibship
to the population mean in terms of genetic effects. Thus,
for each sibship the genetic mean needs to be calcu-
lated. Estimation of the within genetic effects is based
on defining each individual’s genetic deviation from the
genetic mean of his sibship. The genetic family/sibship
mean can be calculated using the sibling genotypes (if
parental genotypes are unavailable) or using the parental
genotypes (if available). In this section the implemen-
tation in Mx (Neale, 1997) of the combined linkage and
association method for these two situations (parental
genotypes unavailable and parental genotypes avail-
able) as can be applied to real data, is discussed.

Parental Genotypes Unavailable

In Table II the coefficients for the within (genuine)
and between (possibly spurious and genuine) additive
and dominance effects are derived for a diallelic locus
using sibpairs. The general expression for the means,
following Fulker et al. (1999) yet including both addi-
tive effects and dominance, for the observed score in
sib j from the i family (y;) is:

Vi = B+ apAp + awAyy +dp Dy +dyDyij+e;  (2)

where w denotes the overall trait mean (equal for all in-
dividuals), Ap; is the derived coefficient (e.g., %, or —%,
1, etc.) for the between families additive genetic effect
for the i family, as calculated in the fifth column of
Table II. A,,; denotes the coefficient by which the
within families additive genetic effects need to be mul-
tiplied for sib j from the i family as derived in the last
two columns of Table II. Dy; is the coefficient by which
the between families dominant genetic effect needs to
be multiplied for the i family, as calculated in the fifth
column of Table II. D,,; denotes the coefficient as de-
rived for the within families dominant genetic effects
for sib j from the i family (see last two columns
of Table II). Parameters a, and a,, are the estimated
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additive between and within effects; parameters dj, and d,, are the estimated dominance between and within effects,
and e;; denotes that part of the grand mean that is not explained by the genotypic effects.

For a diallelic locus, derivation of the additive between and within coefficients and the dominance between
and within coefficients is straightforward and can be taken from Table II (e.g., %, or —%, 1, etc.). For a locus with
more than two alleles, however, this becomes a daunting task. We therefore chose to have the necessary coefficients
calculated by the program instead of specifying them in a matrix (e.g., Neale, 2000; Neale et al., 1999).

Let matrices A and C be vectors of dimensions 1 x n, where n = 2, ..., n for the number of alleles at the locus.
Let matrices D and F be subdiagonal matrices of dimensions n x n. Matrix A contains the estimated combined spu-
rious and genuine (i.e., between) additive allelic effects. Matrix C contains the estimated genuine additive (i.e.,
within) allelic effects. Matrix D contains the estimated spurious and genuine (i.e., between) dominance deviations
for the heterozygous genotypes, and matrix F contains the estimated genuine (i.e., within) dominance deviations.
Let matrix I be a vector containing one’s of dimension 1 x n. In the Mx script language this is written (see also
Appendices I and II for full Mx script example; anything after ! on the same line is not read by the Mx program
and can be used for additional remarks):

#define n 5 'number of alleles = 5; the letter n will be substituted
by the number 5, except when n occurs as part of a word

Begin matrices; I!start declaration of matrices

A Full 1 n free 'will contain additive allelic effects WITHIN

C Full 1 n free 'will contain additive allelic effects BETWEEN

D Sdiag n n free !will contain dominance deviations within

F Sdiag n n free !lwill contain dominance deviations between

I Unit 1 n lunit vector to multiply allelic effects [1 1 1 1 1]
End matrices; lend declaration of matrices

With these matrices, two symmetric matrices of dimensions n x n, one for the between (i.e., the sum of the
spurious and genuine effects) and one for the within (i.e., the genuine effects) estimates, are calculated that con-
tain the genotypic effects of the homozygous genotypes on the diagonal and the genotypic effects of the hetero-
zygous genotypes on the off-diagonals.

Begin algebra;

K = (A'@I) + (AQI') ; lcalculates linear combinations of the allelic effects

L =D + D' ; !dominance deviations below and above diagonal

W =X + L ; lcreates one full n x n matrix containing the WITHIN
lgenotypic effects

M = (C'@I) + (CceIr') ; lcalculates linear combinations of the allelic effects

N = F + F' ; !dominance deviations below and above diagonal

B =M+ N ; lcreates one full n x n matrix containing the BETWEEN

lgenotypic effects

End algebra;

The symbol @ denotes the Kronecker product (®) in Mx and results in the multiplication of each element of
the first matrix by the second matrix. For a locus with five alleles, matrix W is a symmetric matrix of dimension
n x n containing the following estimated effects for a locus with five alleles (n = 5):

ay,1 + ay,1
Ay, 1 + ay.2 + dw,12 Ay,2 + ay,2
Wiawitawstdein ava2taws+des aws+aws
Ay +aps+dyis apr+aps+dyoa anst+anst+dess apstana
Ay, 1 + Ay,5 + dw, 15 Qw2 + Ay,s + dw,25 aw,3 + Ay,s + dw,35 Ay, 4 + Ay,s + dw,45 Ay,s + Ay,s

where a,, 1., refers to the genuine additive allelic effects of the alleles labeled 1...n, and d,, 12, refers to the
genuine dominance deviation of the heterozygous genotypes labeled 12. .. nn. Note that with this notation a,, 1. ay.»
refers to allelic effects, whereas a,, refers to genotypic effects. Similarly, matrix B will be symmetric, of dimen-
sion n x n and will contain the analogous estimated genuine and spurious additive and dominance genotypic effects
(subscripted D).
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We now proceed to the calculation of the sibship genetic means and each individual’s deviation from the sib-
ship’s genetic mean. For sibships of size two, each individual’s deviation from the sibship genetic mean can eas-
ily be deducted by precalculating half the difference between the genetic effects of each sib (as is done in Table II).
For sibship sizes larger than two, the within component is no longer simply “half the difference,” but instead is
mathematically represented by the deviation of sib j from the i’" sibship mean. The individual genotypes should
be in the datafile (which is the “raw” datafile and not a variance/covariance matrix). These are selected from the
list of input variables to be used and will be specified in a matrix. They need to be treated differently from vari-
ables that are to be analyzed (the phenotype). The definition wvariable function in Mx can be used to sep-
arate variables that are used as covariates (such as sex, age, and allelic effects) from the dependent variables.

G2: datagroup

Select phenol pheno2 pheno3 alsl a2sl als2 a2s2 als3 a2s3 ISelect all variables to
'be used or analysed

Definition_variables alsl a2sl als2 a2s2 als3 a2s3 !define which variables

'need to be treated as a
lcovariate
Begin matrices ; Ibegin declaration of matrices for group 2
K Full 1 4 Fixed IWill contain first and second allele of sibl
L Full 1 4 Fixed IWill contain first and second allele of sib2
M Full 1 4 Fixed IWill contain first and second allele of sib3
End matrices ; lend declaration of matrices for group 2
Specify K alsl a2sl alsl a2sl lput alleles of sib 1 into vector
Specify L als2 a2s2 als2 a2s2 lput alleles of sib 2 into vector
Specify M als3 a2s3 als3 a2s3 lput alleles of sib 3 into vector
For each individual, two alleles need to be present in the data file. The alleles should be coded as 1,2, 3, ..., n.

For each sibship, different elements need to be taken from matrices B and W to calculate the family genetic mean
and each individual’s deviation from that mean. The definition variables that have now been put into matrices (K, L,
and M) that contain numbers that correspond to the specific alleles from the respective individual. For example, if
the first sib has genotype 11, the second sib has genotype 34, and the third sib has genotype 13 at a marker locus,
matrix K contains [1 1 1 1], matrix L contains [3 4 3 4], and matrix M contains [1 3 1 3].

Matrices K, L, and M can now be used to select the relevant cells from matrices B and W:

!For sibships of size 3 for a univariate trait
Begin matrices

B Computed n n = Bl Ispurious and genuine genotypic effects,
Iprecalculated in previous Mx group

W Computed n n = W1 lgenuine genotypic effects

S Full 1 1 Fixed !to contain sibshipsize (3)

G Full 1 1 Free !grand mean, to be estimated

!dimensions 1 x number of variables
End matrices

Matrix S 3 !sibship size = 3
Begin Algebra;
V = (\part(B,K) + \part(B,L) + \part(B,M) ) % S ;

!sib genetic mean: between effects (spurious and genuine)

D = (\part(W,K) + \part(W,L) + \part(w,M) ) % S ;
lused for individual’s deviation from sib mean: within effects (genuine)
End Algebra;
Means G + V + (\part(w,K)-D) | G + V + (\part(wW,L)-D) | G + V + (\part(w,M)-D) ;

Imeans model: grand mean + sib genetic mean effects + individual’s deviation
!from sib genetic mean, for three sibs

The \part statement in Mx allows one to select a rectangular submatrix from a larger matrix. For exam-
ple, \part(B,K) tells Mx to select from matrix B the part specified in matrix K. Matrix K should always be of
dimension 1 x 4 (start row, start column, end row, end column) and specifies the elements of matrix B where the
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Table II. Partitioning of Additive and Dominance Genotypic Effects into Between and Within Components for a Diallelic Locus with Alleles E and e in Sib-pairs

Partitioned genotypic effects
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relevant submatrix (which can also be a single element)
starts and ends. Because matrix K contains the alleles
of an individual, the submatrix is selected conditional
on that individual’s genotype.

In our example, in which the first sib is of geno-
type 11, the second sib has genotype 34, and the third
sib has genotype 13, the mean of the estimates in cells
(denoted by row and column) 11, 34, and 13 from ma-
trix B is calculated as the sibship genetic mean (repre-
senting the between family effects of that sibship, in
matrix V). Similarly, for the first sib the within family
effect is calculated by subtracting the estimate in cell
11 from matrix W from the mean of the parameters in
cells 11, 34, and 13 from matrix W (i.e., (\part
(W,X)-D)).

Because of linear dependency between the allelic
effects, two constraint groups (one for the within ef-
fects and one for the between effects) are needed in
which the sum of all the allelic effects is constrained
to be 0 (see Appendices I and II).

Abecasis et al. (2000) showed that calculation of
the sibship genetic mean based on both parental geno-
types is less error prone than calculation of the sibship
genetic mean based on available sibling genotypes. For
sibship sizes of four and above the two methods are
equally powerful and error rates are closer to nominal
significance rates. The above method can be used when
genotype information from both parents is unavailable.

Parental Genotypes Available

When both parental genotypes are available, the
expected mean additive genotypic value of the off-
spring (ap;) equals the midparental genotypic value

ay = ZiF TG 3)
2
where G; r is the additive genotypic value of the father
in family 7, and G; y is the additive genotypic value of
the mother in family i.

When dominance effects are also considered, the
midparental genotypic value is no longer an estimate
of the expected offspring mean, because parents and
offspring are uncorrelated in terms of dominance ef-
fects. The genotypes of the parents, however, do pro-
vide information on the expected dominance effects in
the offspring. For example, when one parent is of geno-
type EE, with a corresponding genotypic value of a,
and the other parent is of genotype ee, with a corre-
sponding value of —a, the midparental genetic value
will be 0. However, all of their offspring will be of
genotype Ee, with a corresponding genetic value of d.
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For each type of parental mating we therefore need
to calculate all possible genotypes in the offspring
and their probability, given the parental mating type.
The mean value in terms of a and d of the possible
genotypes in the offspring weighted by their probabil-
ity gives the expected offspring (i.e., sibling) genetic
mean. In Table III the coefficients for additive and
dominance between and within effects are derived, con-
ditional on the parental genotypes.

Extending this to a multiallele locus quickly be-
comes a large undertaking, and it is more convenient to
use a program such as Mx that can calculate the neces-
sary coefficients (Aj;, Ay, Dpi, and D) by which the
effects (ap, ay, dp, and d,,) need to be multiplied condi-
tional on the parental genotypes. For a given parental
mating type, the possible genotypes of offspring and their
probabilities may be calculated in Mx by using the
parental alleles to select elements from the matrices that
contain the between and within effects (matrices B and
W). Whereas in the previous section both alleles that
were used to select from matrices B and W were from
the same person (i.e., one sib), we now pair paternal and
maternal alleles to obtain all possible genotypes of the
offspring. The maximum number of genotypic categories
in the offspring from one mating type is four (i.e., when
both parents are heterozygous and have four different
alleles). We thus specify in Mx the following matrices:
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resulting from the QTL, or a marker in LD with the
QTL (o). The variance-covariance matrix for the i’
family, €2, is then given by
{q,2.+a§+aj+cr§ if j =k @
o q? + ‘Fr,jko'f + Eijkadz if j #k
where T is the estimated proportion of alleles shared
IBD between sibs j and k for the i'" family, and Z; is
the probability of complete IBD sharing between sibs
j and k for the i"" family. The estimated proportion of
alleles shared IBD between sibs j and k () is based
on the probabilities that sibs j and k share O, one, or
two alleles IBD (P(IBD:O)» PaBD=1)> P(IBD=2), I'e€SpecC-
tively) that can be obtained from genetic software such
as Genehunter (Kruglyak et al., 1996). The formula to
obtain i for the i family is given by

ik = 0 X pasp=0), + 0.5 X pasp=1),, + 1 X pasp=2),,
(5)

The probability of complete IBD sharing between
sibs j and k for the i family simply equals pIBD2;;:

Zijk = PaBD=2),, (6)
Tests

The test for spurious association consists of the
joint test that matrix A equals matrix C (from the first

Specify N alpl alp2 alpl alp2
Specify O alpl a2p2 alpl a2p2
Specify X a2pl alp2 a2pl alp2
Specify Y a2pl a2p2 a2pl a2p2

Ifirst allele parent one first allele parent two
Ifirst allele parent one second allele parent two
Isecond allele parent one first allele parent two
Isecond allele parent one second allele parent two

These are used to select relevant submatrices from
matrix B and W to calculate the genetic offspring (i.e.,
sibship) mean and each offspring’s individual devia-
tion from that mean (see Appendix II for the full Mx
script). The additive and dominance coefficients can be
calculated in Mx in this manner for an arbitrary num-
ber of alleles and an arbitrary number of offspring.

Modeling Linkage

Implementation of the linkage component in the
variance components model is straightforward and can
be done by using the “pi-hat” () approach, in which
the covariance resulting from the marker or trait locus
for a sibpair is modeled as a function of the IBD status
of that sibpair. Generally, for sibships, the phenotypic
variance is decomposed in familial variance (q?), vari-
ance resulting from nonshared environmental influ-
ences (03), additive variance from the QTL or marker
in LD with the QTL (0,12), and dominance variance

group in our example script), and that matrix D equals
matrix F (from the first group in our example script).
If the parameters in these matrices cannot be con-
strained to be equal, there is evidence of spurious as-
sociation. The conservative test for the presence of a
genuine association is to test whether matrices A and
D are significantly different from 0.

The test for the presence of dominance effects can
be conducted by comparing the minus two loglikeli-
hoods (—2LL’s) from the full model and a model with-
out the subdiagonal matrices D and F from the first
group in the example Mx script that contain the devia-
tions of the heterozygous genotypes from the mid value
of the two corresponding homozygous genotypes. This
can be done conservatively only for the presence of
the genuine dominance effects (i.e., dropping matrix D)
or for the presence of both the genuine and spurious
dominance effects (dropping matrices D and F).

Three models may be evaluated to test whether
linkage is present and whether the linkage component
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Table III. Partitioning of Additive and Dominance Genotypic Effects into Between and Within Components for a Diallelic Locus with Alleles E and e Conditional

on Parental Genotypes
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can be partly or completely explained by the associa-
tion: (i) a model with a linkage component only; (ii) a
model with both linkage and association; (iii) a model
with the association component only. If the linkage
component is reduced in model (ii) as compared to
model (i), but still significant, this may indicate that
within the linkage region another gene, besides the gene
used for the association component, is also influencing
the trait, that not all relevant alleles of that locus have
been genotyped, or that LD between the marker and the
trait locus is incomplete. If the linkage component
disappears when modeled simultaneously with associ-
ation, it indicates that the linkage is completely ex-
plained by the association effects of the tested locus or
by the effects of another locus that is in complete LD
with the tested locus.

Practical Considerations

The implementation in Mx of the analysis as pro-
posed by Fulker et al. (1999) is flexible in terms of the
number of alleles it can incorporate, variable sibship
sizes, the inclusion of both additive and dominance ef-
fects and can be used both when parental genotypes are
available or unavailable. Theoretically, it may include
loci with an unlimited number of alleles. With an in-
creasing number of alleles, however, the chance in-
creases that not all possible genotypes are present in
the sample. This should be explored beforehand, and
the corresponding elements in matrices A, C, D, and F
containing the allelic effects and dominance deviations
should be fixed to prevent nonidentification. For ex-
ample when alleles labelled 3 and 4 do not exist in a
heterozygous genotype, the dominance deviation for
genotype “3,4” cannot be estimated. Element 3,4 from
matrices D and F needs to be constrained at 0. If, on
the other hand, two alleles only occur in a heterozy-
gote, the additive effects cannot be distinguished from
the dominance deviation and either one cannot be es-
timated. Related to this, it is also possible to group cer-
tain alleles as if they were one allele (or different alleles
with the same effect) and to contrast the effect of one
allele against the effects of all other alleles. This can
be implemented in Mx by using constraints on the
corresponding matrix elements containing the allelic
effects. If alleles that differ in size are used (e.g., vari-
able number tandem repeats [VNTRs], a linear regres-
sion of allele size may be incorporated into the model
(see for example Zhu et al., 1999).

Sibship size may vary across families. In this case
one may use the variable length datafile option
in Mx and use sibship size (specified in Matrix S from
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the second Mx group in the example script) as a
definition wvariable, which is read from the
datafile and varies across families. The simultaneous
implementation of an arbitrary number of alleles, for
an arbitrary sibship size, using parental genotypes or
sibling genotypes, and decomposing both the additive
effect and the dominance deviations into genuine and
spurious effects is unique to Mx.

CONCLUSION

We have illustrated the effects of population strat-
ification on quantitative traits and have shown that in the
absence of a genuine association, population stratifica-
tion may result in a spurious association between any
trait that differs in mean between subpopulations and any
locus that differs in allele frequency between subpopu-
lations. This situation is illustrated by the well-known
“chopsticks gene” example as described by Hamer and
Sirota (2000). As was also mentioned by Witte et al.
(1999; for binary traits), population stratification may
not only result in overestimation of allele effects on
quantitative traits, but also in an underestimation. More
specifically, in the presence of a genuine association
population, stratification may result in: (i) an overesti-
mation of the genuine association effects, (ii) an under-
estimation of the genuine association effects, or (iii) a
reversal or incorrect direction of allelic effects.

Genuine association effects will be overestimated
because of the effects of population stratification when
within the subpopulations’ higher trait values are asso-
ciated with a higher frequency of the increaser allele
and lower trait values are associated with a lower in-
creaser allele frequency. Or, in other words, a positive
Ap(pa — pp) isrelated to a positive Ap(ps — ), and
a negative Ap to a negative A (see also Figure 4). In
this case we may speak of concordant pairing of allele
frequency and trait value. In practice, such a situation
may exist, for example, as a result of assortative mat-
ing within subpopulations that differ in trait means and
allele frequencies. Differences in trait means and allele
frequencies may exist as a result of historical or cultural
differences or as a result of natural selection. For ex-
ample, when in one population high trait values increase
reproductive fitness, the frequency of the increaser al-
lele for that trait and the overall trait mean may increase
in that population. In the other population, in which high
trait values are irrelevant for reproductive fitness, the
increaser allele frequency and the overall trait mean
remain the same. Assortative mating within subpopu-
lations ensures that eventually concordant pairing be-
tween increaser allele and trait value will exist, and
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Fig. 4. Effect of population stratification on the calculated value of
a in the presence of a genuine locus—trait association (a = +2;d = 0)
for varying levels of allele frequency differences. The mixed popu-
lation exists of populations A and B with constant wp (100), whereas
pa is varied from 110, 105, 95, and 90. Allele frequency pp is
constant at 0.5. Allele frequency p4 is varied with steps of 0.01 from
0.99 to 0.01.

neglecting the stratified nature of the complete sample
will lead to an overestimation of genetic effects.

In the presence of a genuine association, underes-
timation of the additive genetic effects will occur when,
within subpopulations, relatively higher trait values
tend to go together with a lower frequency of the in-
creaser allele, or vice versa (either a positive Ap and
a negative A, or a negative Ap and a positive Ap).
In this case we may speak of discordant pairing of al-
lele frequency and trait value. This situation may be
understood by considering that the overall mean of a
subpopulation may also influenced by other (non-)
genetic factors. For example, it is well known from
mouse model systems, that the same allele at the same
locus may cause a major disease in one mouse strain,
but no phenotype in a strain with a different genetic
background (e.g., Linder, 2001; Liu et al., 2001;
Montagutelli et al., 2000). The same has been reported
for effects on gene expression in different environ-
mental backgrounds (Cabib et al., 2000; Crabbe et al.,
1999). Put differently, in one strain the presence of the
particular allele leads to crossing a certain threshold
value above which a disease will evolve, whereas in
the other strain, because of a different genetic or envi-
ronmental background, this threshold is not reached.
The frequency of the disease-predisposing allele may
therefore rise in the population with the genetic or en-
vironmental background that prevents the individuals
within that population from reaching a threshold. In
humans, the presence of different genetic (or environ-
mental) backgrounds that derive from mixed ethnicity
may cause the allele frequency of the increaser allele
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of a subpopulation with a relatively low trait mean to
be higher than the allele frequency of the increaser al-
lele in a population with a higher overall trait mean.

Non-Mendelian traits are likely to be influenced
by multiple (risk) factors of which the presence differs
across subpopulations; thus discordant pairing may
realistically hide genuine allele—trait associations when
the effects of population stratification are neglected.
When the difference in trait means between subpopu-
lations and the difference in increaser allele frequen-
cies becomes extreme in the presence of discordant
pairing, the genuine allelic effects will appear reversed
in sign as a result of population stratification. This sug-
gests that in the mixed population individuals who are
homozygous for the increaser alleles (EE) have a lower
trait value than individuals who are homozygous for
the decreaser allele (ee), whereas in the subpopulations
the opposite is true. This statistical effect is known as
Simpson’s paradox (Simpson, 1951; Yule, 1900) and
refers to the reversal of the direction of an association
when data from several groups are combined to form a
single group. Its importance to gene hunting studies
may well have been illustrated by the numerous asso-
ciation studies for schizophrenia, in which the same al-
lele of the same locus has both been associated with
increased and decreased risk for schizophrenia (Baron,
2001; Bray and Owen, 2001).

Family-based tests of association explicitly model
the consequences of population stratification, by look-
ing at allelic effects within genetically related subjects.
In the method proposed by Fulker et al. (1999) spuri-
ous association is defined as the difference between the
allelic effects as estimated from the comparison of un-
related subjects (between effects) and the allelic effects
as estimated from the comparison of genetically related
subjects (within effects). This method, which was orig-
inally proposed to include sibpairs, diallelic markers,
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and additive effects, has now explicitly been extended
to include variable sibship sizes, multiallele markers,
and dominance deviations, using the parental genotypes
(if available) or the sibling genotypes.

It is known that the use of multivariate phenotypes
may provide more statistical power than univariate
phenotypes (e.g., Allison et al., 1998; Boomsma and
Dolan, 1998). The method as implemented in Mx can
easily be extended to multivariate phenotypes. One can
then model the association as an effect on the factor
mean of multivariate measurements. In this case it may
be assumed that the allelic association effects on the
multivariate measurements are all proportionally re-
lated. Covariance among the traits resulting from the as-
sociation will lead to a decrease in the estimated amount
of covariance because of the linkage component.

With the rapidly increasing availability of large
amounts of genomic data, the detection of linkage and/or
association between a marker (and all the linked loci
surrounding the marker that are in LD with it) and a trait
becomes a realistic tool in the hunt for genes for com-
plex traits. Combining linkage analysis and association
analysis has already proved to be a powerful tool in gene
finding (e.g., Neale et al., 1999; Trembath et al., 1997,
Zhu et al., 1999; see Beekman et al., 2003 for a practi-
cal implementation of the method described in the
present paper). Particularly when fine mapping is a goal
of interest this method is invaluable, because the effect
of linkage will be reduced when estimated in the pres-
ence of association, thereby providing information
on the specific region where the QTL is expected to
reside (Cardon and Abecasis, 2000). An explicit test for
population stratification is crucial to rule out spurious
associations. The Fulker er al. (1999) method has
all these advantages and, as was shown in the present
paper, can easily be conducted in a statistical package
such as Mx.

APPENDIX I: PARENTAL GENOTYPES UNAVAILABLE

Mx scripts can also be downloaded from the Mx homepage or from the Mx Scripts' Library:

http://www.vcu.edu/mx
http://www.psy.vu.nl/mxbib

IMx script for the conduction of the combined linkage and association method

ltesting for spurious association

lextended to sibships>2, additive and dominance association, multiple alleles

lusing sibling genotypes to calculate the mean genotypic value within a sibship

#define n 5 'number of alleles is 5
#define nvar 1 lunivariate
#define nsibs 3 !sibshipsize = 3

#ngroups 4 lone precalculation group,

Gl: calculation group between and within effects

one data group, two constraint groups
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Data Calc

Begin matrices; Istart declaration of matrices

A Full 1 n free !will contain additive allelic effects within

C Full 1 n free lwill contain additive allelic effects between

D Sdiag n n free !will contain dominance deviations within

F Sdiag n n free !lwill contain dominance deviations between

I Unit 1 n lunit vector to multiply allelic effects [1 1 1 1 1]
End matrices; lend declaration of matrices

Begin algebra;

K = (A'@QI) + (AeI') ;
L =D + D' ;
W =K + L ;
M = (C'@I) + (ce1r') ;
N =D + D' ;
B =M+ N ;
End algebra ;
st .2 all
end

G2: datagroup: sibship size three
Data NInput=12
Missing =-99.00
Rectangular File=myfile.dat
Labels phl ph2 ph3 alsl a2sl als2 a2s2 als3 a2s3 pil2 pil3 pi23 z12 z13 z23
Select phl ph2 ph3 alsl a2sl als2 a2s2 als3 a2s3 pil2 pil3d pi23 z12 z13 z23;
!selects 3 phenotypes; one for each sib
Iselects 6 allele variables, alsl is allel #1 from sib #1
!selects pi's and z's
Definition_variables
alsl a2sl als2 a2s2 als3 a2s3 pil2 pil3 pi23 z12 z13 z23;
!declare the allele variables and the pIBD=2 as definition variables
Begin Matrices;

F Lower nvar nvar Free ! familial wvariance
Q Lower nvar nvar Free ! QTL additive variance
R Lower nvar nvar Free ! QTL dominance variance
E Lower nvar nvar Free ! non-shared environmental variance
B Computed n n = Bl ! spurious and genuine genotypic effects
W Computed n n = W1 ! genuine genotypic effects
I Ident nsibs nsibs Fix !
P Sym nsibs nsibs Fix ! To contain pi-hats
7Z Sym nsibs snibs Fix ! To contain pIBD2's
T Stand nsibs nsibs Fix
K Full 1 4 Fix ! First and second allele of sibl
L Full 1 4 Fix ! First and second allele of sib2
M Full 1 4 Fix ! First and second allele of sib3
S Full 1 1 Fix ! to contain nsibs
G Full 1 nvar Free ! grand mean
End Matrices;
Matrix S 3 ! sibship size 3
Matrix K 1 1 1 1
Matrix L, 1 1 1 1
Matrix M 1 1 1 1
Matrix P
0
10
110
Matrix 27
0
10
110
Specify K alsl a2sl alsl a2sl lgenotype sibl to be used for \part
Specify L als2 a2s2 als2 a2s2 lgenotype sib2 to be used for \part
Specify M als3 a2s3 als3 a2s3 lgenotype sib3 to be used for \part
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Specify P 1

pil2 1

pil3 pi23 1
Specify Z 1

z12 1
z13 z23 1

Specify T .5 ! when familial variance is modeled as
.5 .5 ! add gen variance

Begin Algebra;

V = (\part(B,K) + \part(B,L) + \part(B,M) ) % S | npw
D = (\part(W,K) + \part(w,L) + \part(wW,M) ) % S ; !used for deviation: W

End Algebra;

Means G + V + (\part(w,K)-D) | G + V + (\part(wW,L)-D) | G + V + (\part(w,M)-D);

Covariance TQ@Q(F*F') + PQ(Q*Q') + Z@(R*R') + IQ@(E*E') ;
End

Constrain sum allelic effects = 0
Constraint ni=1
Begin Matrices;
A full 1 n = Al
O zero 1 1
End Matrices;
Begin algebra;
B = \sum(A) ;
End Algebra;

Constraint O = B ;
end
Constrain sum allelic effects = 0

Constraint ni=1
Begin Matrices;
C full 1 n = C1
O zero 1 1
End Matrices;
Begin algebra;
B = \sum(C) ;
End Algebra;
Constraint O = B ;
option multiple issat
end

save full.mxs

ltest for spurious association W=B

Specify 1 A 101 102 103 104 105

Specify 1 C 101 102 103 104 205 !first 4 equal to within; last unequal but because
lof second constrain 205 will be equal to 105

Specify 1 D 801 802 803 804 805 806 807 808 809 810

Specify 1 F 801 802 803 804 805 806 807 808 809 810

end

!|Drop dominance: non-conservative test (i.e. genuine and spurious)
Specify 1 D 801 802 803 804 805 806 807 808 809 810

Specify 1 F 801 802 803 804 805 806 807 808 809 810

Drop @0 801 802 803 804 805 806 807 808 809 810

end

!Drop all allelic effects: non-conservative test (i.e. genuine and spurious)
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Specify 1 A 101 102 103 104 105

Specify 1 C 101 102 103 104 205

Specify 1 D 801 802 803 804 805 806 807 808 809 810

Specify 1 F 801 802 803 804 805 806 807 808 809 810

Drop @O0 101 102 103 104 105 801 802 803 804 805 806 807 808 809 810
end

get full mxs

!drop QTL linkage effect while keeping association effects in the model
Drop Q 2 1 1 !QTL additive variance

Drop R 2 1 1 !QTL dominance variance

end

APPENDIX II: PARENTAL GENOTYPES AVAILABLE

IMx script for the conduction of the combined linkage and association method
ltesting for spurious association

lextended to sibships>2, additive and dominance association, multiple alleles
lusing parental genotypes to calculate the mean genotypic value within a sibship

#define n 5 'number of alleles is 5

#define nvar 1 lunivariate

#define nsibs 3 !sibshipsize = 3

#ngroups 4 lone precalculation group, one data group, two constraint groups

Gl: calculation group between and within effects

Data Calc
Begin matrices; !start declaration of matrices
A Full 1 n free 'will contain additive allelic effects within
C Full 1 n free lwill contain additive allelic effects between
D Sdiag n n free 'will contain dominance deviations within
F Sdiag n n free 'lwill contain dominance deviations between
I Unit 1 n lunit vector to multiply allelic effects [1 1 1 1 1]
End matrices; lend declaration of matrices

Begin algebra;

K = (A'@I)+(ARTI") ;
L =D + D' ;
W =K + L ;
M = (C'@I)+(CeIl') ;
N =F + F' ;
B =M+ N ;
End algebra ;
st .2 all

end

G2: datagroup: sibship size three
Data NInput=12
Missing =-99.00
Rectangular File=myfile.dat
Labels phl ph2 ph3 alpl a2pl alp2 a2p2 alsl a2sl als2 a2s2 als3 a2s3 pil2 pil3
pi23 z12 z13 z23
Select phl ph2 ph3 alpl a2pl alp2 a2p2 alsl a2sl als2 a2s2 als3 a2s3 pil2 pil3
pi23 z12 z13 z23;
Iselects 3 phenotypes; one for each sib
Iselects 6 allele variables for sib, alsl is allel #1 from sib #1
!selects 4 allele variables for parents alpl is allel #1 parent #1
Iselects pi’s and z'’'s
Definition_variables
alpl a2pl alp2 a2p2 alsl a2sl als2 a2s2 als3 a2s3 pil2 pil3 pi23 z12 z13 z23;
!declare the allele variables and the pIBD=2 as definition variables



194

Begin Matrices;
F Lower nvar nvar Free

Q Lower nvar nvar Free
R Lower nvar nvar Free
E Lower nvar nvar Free
B Computed n n = Bl

W Computed n n = Wl

I Ident nsibs nsibs Fix
P Sym nsibs nsibs Fix

7 Sym nsibs snibs Fix

T Stand nsibs nsibs Fix
K Full 1 4 Fix

L Full 1 4 Fix

M Full 1 4 Fix

N Full 1 4 Fix

O Full 1 4 Fix

X Full 1 4 Fix

Y Full 1 4 Fix

S Full 1 1 Fix

G Full 1 nvar Free

End Matrices;
Matrix S 4

Matrix K 1 1 1 1
Matrix L 1 1 1 1
Matrix M 1 1 1 1
Matrix N 1 1 1 1
Matrix O 1 1 1 1
Matrix X 1 1 1 1
Matrix v 1 1 1 1
Matrix P

0

10

110
Matrix 2

0

10

110
Specify K alsl a2sl alsl a2sl
Specify L als2 a2s2 als2 a2s2
Specify M als3 a2s3 als3 a2s3
Specify N alpl alp2 alpl alp2
Specify O alpl a2p2 alpl a2p2
Specify X a2pl alp2 a2pl alp2
Specify Y a2pl a2p2 a2pl a2p2
Specify P 1

pil2 1

pil3 pi23 1
Specify Z 1

z12 1

z13 z23 1
Specify T .5

.5 .5

Begin Algebra;
V = (\part (B,N)
D = (\part(wW,N)
End Algebra;

+ \part (B,0)
+ \part (w,0)

Means G + V + (\part(w,K)-D) |

Covariance T@(F*F') + P@(Q*Q"')

End
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tfamilial wvariance

IQTL additive variance

IQTL dominance variance

Inon-shared environmental variance
!spurious and genuine genotypic effects
lgenuine genotypic effects

ITo multiply E

ITo contain pi-hats and to multiply Q
!To contain pIBD2’'s and to multiply R
ITo multiply F

IFirst and second allele of sibl
IFirst and second allele of sib2
IFirst and second allele of sib3
falpl alp2

talpl a2p2

la2pl alp2

la2pl a2p2

'to contain 4: maximum of 4 possible
lgenetically different offspring
!'grand mean

lgenotype sibl
lgenotype sib2
lgenotype sib3
Iparental alleles
Iparental alleles
!parental alleles
Iparental alleles

! when familial variance 1is modeled as
! add gen variance

+ \part(B,X) + \part(B,Y)) % S ; !Between effects

+ \part (W,X) + \part(w,Y)) % S ; !for wWithin effects
G + V + (\part(w,L)-D) | G + V + (\part(w,M)-D);

+ Z@(R*R') + IQ@(E*E') ;



Combined Linkage and Association Tests in Mx

Constrain sum allelic effects = 0
Constraint ni=1
Begin Matrices;
A full 1 n = Al
O zero 1 1
End Matrices;
Begin algebra;
B = \sum(ad) ;
End Algebra;

Constraint O = B ;
end
Constrain sum allelic effects = 0

Constraint ni=1
Begin Matrices;
Cc full 1 n = C1
O zero 1 1
End Matrices;
Begin algebra;
B = \Sum(C) ;
End Algebra;

Constraint O = B ;
end
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This final Chapter summarizes and discusses the results that have been described in
Chapters 3 to 11 in the light of existing literature. It is divided in three main
sections: the extended twin design, cognitive ability and its endophenotypes, and
follow-up research.

The extended twin design

Results from this thesis

This thesis comprises the first large study that employed a twin design with
additional non-twin siblings. Effects of adding one or two non-twin siblings to a
twin pair on the sample size required to detect additive genetic influences, non-
additive genetic influences and shared environmental with a power of 80%, was
investigated in Chapter 2. A summary of the results is given in Table 12.1.

Table 12.1

Indication of the effects of adding one or two non-twin siblings to a twin pair on sample size
required to detect additive genetic influences (A), non-additive genetic influences (D) or shared
environmental influences (C), with a power of 80%.

Estimating A Estimating D Estimating C
Adding one Slight decrease in Large decrease in Large decrease in
additional sibling sample size sample size sample size
Adding two Slight increase in Large decrease in Large decrease in
additional siblings sample size sample size sample size

Compared to a design in which only MZ and DZ twins are included, adding one
additional sibling leads to an average decrease of 9% (depending on the magnitude of
the genetic influences) in sample size needed to detect additive genetic influences
(with a power of 80% and alpha level of 0.05). The impact on the detection of
shared environmental influences is even larger: on average 50% of the sample size is
needed when one sibling is added to the classical twin design. For most complex
traits it is found that genetic influences are of greater importance than shared
environmental influences (Plomin ez al, 2000; Lynch and Walsh, 1996). Small
contributions of shared environmental factors may easily go undetected in the
classical twin design, which leads to an overestimation of the contribution of genetic
factors to the overall variance of a trait. With the same sample size, but with a
different design, namely the extended twin design, small contributions of shared
environmental factors are less likely to go undetected. Thus, adding an additional
sibling to a twin pair enhances the power to decompose familial influences on
complex traits into genetic and shared environmental components. In the light of
future QTL studies an extended twin design is also desirable as large sibship sizes are
known to greatly enhance the power to detect QTL influences on a trait (Dolan,
Boomsma and Neale, 1999).

Besides having a positive effect on statistical power, extended twin designs allow
the evaluation of certain assumptions made in twin studies. Heritability estimates
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derived from twin samples are sometimes criticized for their non-generalizability to
the general (non-twin) population. A sub optimal intrauterine environment may
have adverse effects later in life (Barker, 1998; Philips ez al. 2000; Hack ez al., 2002).
As twins share a womb at the same time, they generally experience a less optimal
intrauterine environment than singletons. This is also reflected in lower birth weights
in twins and lower birth weights-for-gestational-age in twins as compared to
singletons. Studies comparing intellectual abilities of twins and singletons have found
that during childhood, twins score significantly less on IQ tests than singletons (e.g.
Record et al., 1970). Previous studies, however, compared twins and singletons raised
in different families. As was outlined in chapters 3 and 4 this may not be an optimal
comparison as twin families and non-twin families may not be perfectly matched.
The extended twin design provides an optimal matched singleton to the twins: the
non-twin sibling. Non-twin siblings are raised in the same home as the twins; they
even shared the same womb, although not at the same time. I found that at adult
age, twins and singletons do not differ in mean scores on an IQ test. In Chapters 8
and 9 I also explicitly tested whether the covariance (and correlation) in non-twin
sibling pairs differs from the covariance (and correlation) in DZ twins, since this —
rather than the mean- is the basis of all heritability estimates. No differences in (co)
variance structures of twins and singletons were found. Heritability estimates for IQ
derived from twin studies can thus be generalized to the general population.

Using the same optimally matched twin-singleton design no twin-singleton
differences in means and variances of intracranial volume, total brain volume, grey
matter volume, white matter volume, lateral ventricular volume and third ventricle
volume were found, implying that heritability estimates for brain volumes derived
from twin studies can be generalized to the general population. We did find that
second born twins have a smaller intracranial volume than their first-born co-twins
(and siblings), reflecting the less optimal intrauterine environment for second born
twins as compared to first born twins. This difference in intracranial volume,
however, did not correspond to a difference in intellectual ability later in life.

Chapters 6 to 10 do not explicitly discuss the generalizability of estimates derived
from twin samples. However, they all incorporate tests for homogeneity of (co-)
variances across twins and their non-twin siblings. A summary of these tests is given

in Table 12.2.
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Table 12.2

Tested homogeneity in means, variances and covariances across twins and non-twin siblings

TWIN-SIBLING COMPARISON

Mean Variance ~ Covariances
Block design ok ok* ok*
Letter-number sequencing ok ok* ok*
Information ok ok* ok*
Matrix reasoning ok ok* ok*
Similarities ok ok* ok*
Picture completion ok ok* ok*
Arithmetic twins < non-twin ok* ok*
E sibling
= Vocabulary ok ok* ok*
% Digit symbol coding ok ok* ok*
E Digit symbol free recall DZ/non—tvIJIi; siblings < ok* ok*
= Digit symbol pairing ok* ok ok
% WAISIR Full Scale IQ ole* ok ok
O WAIS-IIIR Verbal IQ ok* ok ok
© WAIS-IIR Performance IQ ok ok ok
WAIS-ITIR Verbal ok* ok ok
Comprehension
WAIS-ITIR Working Memory ok* ok ok
WAIS-IIIR Perceptual ok* ok ok
Organization
‘WAIS-ITIR Processing Speed ok* ok ok
Intracranial volume 2" born twin < non- ok ok
- twin sibling
7. S White matter volume ok ok ok
5 3 Grey matter volume ok ok ok
m O Lateral ventricular volume ok ok ok
> Third ventricle volume ok ok ok
Cerebellar volume ok* ok ok
Alpha Peak Frequency ok* ok ok
Perceptual speed ok* ok ok
a Speed of premotor selective ok* ok ok
@ response activation
& Speed of motor selective ok* ok ok
response activation
Decision time ok* ok ok
Speed of premotor response ok* ok ok
activation with stimulus-
% response incongruency
£ Speed of motor response ok* ok ok
= activation & SR incongruency
T Decision time & SR ok* ok ok
Z  incongruency
Flanker Task Performance & ok* ok ok
SR incongruency

* not reported on in this thesis. SR = stimulus-response
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Cognitive ability and its endophenotypes
Results from this thesis

Biological, neurophysiological, electrophysiological and behavioural indices of the
pathways that connect genes and cognitive ability are called endophenotypes of
cognitive ability. A summary of the heritability of cognitive ability and its
anatomical, electrophysiological and behavioural indices as investigated in this thesis
is given in Table 12.3.

Table 12.3
Overview of heritability estimates across two age cohorts of cognitive ability and

neurophysiological indices, as investigated in this thesis.

Young Middle aged

MEASURE Dutch adults  Dutch adults
(26 yrs) (50 yrs)
Heritability ~ Heritability
WAIS-ITIR Full Scale IQ 0.86 0.86
WAIS-IIIR Verbal IQ 0.85 0.85
E E WAIS-IIIR Performance IQ 0.69 0.69
Z E WAIS-IIIR Verbal Comprehension 0.83 0.83
82 WAIS-IIR Working Memory 0.71 0.67
S WAIS-IIIR Perceptual Organization 0.68 0.68
WAIS-IIIR Processing Speed 0.66 0.66
iy Intracranial volume 0.89 -
4 E White matter volume 0.87 -
é 8 Grey matter volume 0.82 -
> Cerebellar volume 0.89 -
Alpha Peak Frequency 0.71 0.83
A Perceptual speed 0.46 0.46
o) Speed of premotor selective response activation 0.62 0.00
7] Speed of motor selective response activation 0.39 0.39
Decision time 0.43 0.43
Speed of premotor response activation 0.00 0.00
Z with stimulus-response incongruency
g Speed of motor response activation 0.00 0.45
= with stimulus-response incongruency
T Decision time with stimulus-response incongruency 0.48 0.48
Z Flanker Task Performance (incorrect responses) 0.54 0.41

with stimulus-response incongruency

*assessed in the sample (aged 30) of dr. Baaré, which partly overlaps with the young adult
age cohort.



180 Chapter 12

The first goal of this thesis was to investigate the heritability of cognitive ability in
young and middle aged Dutch adults. Heritability estimates were similar for both age
cohorts and were very high. The highest heritability was found for Full scale IQ
(86%) and somewhat lower (66-83%) for the dimensions of cognitive ability. These
heritability estimates of cognitive ability are among the highest reported for cognitive
ability (Bouchard and McGue, 1981).

Combining these results with studies on cognitive ability in Dutch children and
adolescents nicely shows the increasing heritability of cognitive ability with increasing
age (see Figure 12.1).

50 yr

26 yr

i W Additive genetic
8yr
[ Shared environment
16 yr
Age
12y

0 Non-shared environment

10yr

7yr

Syr

Percentage explained of the total variance in 1Q
Data provided by Dutch Twin Registry

Figure 12.1:

Decomposition of the variance in Full Scale 1Q into additive genetic variance, shared
environmental variance, and non-shared environmental variance, at different ages in the Dutch
population. Significance of additive genetic influences is .03 ar age 5; of shared environmental
influences it is .06 at age 7, .09 at age 10 and .08 at age 12.

A second goal of this thesis was to gain more insight in the biological pathways
connecting genes and cognitive ability. The heritability of several endophenotypes
has been investigated (Table 12.3) as well as their relation with cognitive ability
(Table 12.4). Investigated endophenotypes were brain volumes, alpha peak
frequency, perceptual speed, speed of premotor and motor response selection,
decision time, and inhibitory control.

5
|
|
|
\
|
|
|
|
|
i
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Table 12.4
Phenotypic correlation between cognitive ability and biological indices, and the percentage of the
correlation explained by common genetic factors (homogeneous across both age cohorts, unless

specified otherwise).
FSIQ VIQ PIQ VC WM PO PS
White matter volume 0.24 - - ns 028 ns 025
o 100% 100% 100%
m
zZs Grey matter volume 0.25 - - ns 027 0.20 ns
582 100% 100% 100%
mo
> Cerebellar volume = = - ns 027 0.18 ns
100% 66%
Alpha Peak Frequency - - - ns  ns ns ns
Perceptual speed - 0.19 027 - - - -
100% 100%
8 Speed of premotor response - ns ns - - - -
E activation
w
Speed of motor response - ns - - - - -
activation 0.54!
Decision time - ns 0143 - - - -
Speed of premotor response - ns ns - - - -
activation & SR incongruency
% Speed of motor response - - - - - - -
g activation & SR incongruency 0.35% 0.41!
E Decision time & SR - ns ns - - - -
% incongruency
™ Number of incorrect responses = =035 035 -~ & 3 =
& SR incongruency 100% 100%

Lonly for older females

2 only for young males

3 only for older males

FSIQ = Full Scale IQ; VIQ = verbal IQ; PIQ = performance 1Q; VC = verbal
comprehension; WM = working memory; PO = perceptual organization; PS = processing
speed; SR = stimulus-response; ns = not significantly different from zero.

Note: Endophenotypes were cither analysed in a multivariate design including Full scale IQ,
in a multivariate design including verbal and performance IQ, or in a multivariate design
including the four WAIS-IIIR dimensions.
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Integrating our results with the recent literature’

Brain size

An obvious source of individual differences in cognitive abilities is the size of the
brain. Since the second half of the 19" century positive relations between head size
and intelligence have been observed. Correlations generally range around 0.20
(Jensen, 1994; Posthuma e a/., 2001b), but have been reported as high as 0.44 (van
Valen, 1974). Head size is usually measured with a measuring tape as circumference
of the head. A more accurate measure of the size of the brain can be obtained
through Magnetic Resonance Imaging (MRI).

Willerman ez al. (1991) correlated brain size as measured through MRI with IQ
(measured with the revised Wechsler Adult Intelligence Scale, WAIS-R) in a sample
of 40 unrelated subjects. They found a correlation of 0.51, which was higher in men
(0.65) than in women (0.35). In a follow-up study, Willerman et al (1992)
suggested that, in men, a relatively larger left hemisphere better predicted verbal IQ
than it predicted performance IQ, whereas in women the opposite was true. Since
then, several studies have provided confirmative evidence that brain volume and 1Q
correlate around 0.40 (e.g. Egan at al. 1994; Andreasen ez al., 1993; Raz ez al., 1993;
Storfer, 1999; Wickett ez al., 2000)

In a large MRI study including 112 twin pairs and 34 additional siblings the
heritability of volumes of several brain structures was investigated (Baaré ez al.,
2001). Heritability estimates for intracranial volume, total brain volume, grey matter
volume, and white matter volume were all between 80-90%. Genetic
intercorrelations between these measures were all very high indicating that a largely
overlapping set of genes is responsible for individual differences in each of these
measures.

Two early multivariate genetic studies have been conducted to investigate
whether the relation between IQ and brain volumes is mediated through a common
genetic pathway or through a common environmental pathway. The first study,
often cited although only published as an abstract so far (Wickett ez 4/., 1997), was
based on MRI and IQ data from 68 adult males from 34 sibships, and compared
within-family correlations with between-family correlations of brain volume and IQ.
A within-family correlation of 0.24 and a between-family correlation of 0.50 were
reported, suggesting that some, but not all, of the phenotypic correlation between
brain volume and IQ is due to a common underlying set of genes.

The second study (Pennington ez al., 2000), specifically addressed the relation of
reading disorder with brain volume, but also included measures of IQ (WISC and
WAIS3-R scores). In this study both a reading disorder sample (25 MZ, 23 DZ) and
a healthy sample (9 MZ, 9 DZ) were included. The MZ and DZ correlations in the

See Appendix IX for a summary of the multivariate genetic studies investigating the association
between putative endophenotypes and cognitive ability discussed in this chapter.
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reading disorder sample and the healthy sample were comparable and suggested high
heritability of brain volume (90%), which is in line with the larger study on
heritability of brain volumes of Baaré ¢z /. (2001). Phenotypic correlations between
cerebral brain volume and IQ were 0.31 in the healthy sample and 0.42 in the
reading disorder sample. The genetic correlation, as calculated from the cross-twin
correlations, was 0.48 in the combined sample. This indicates that about half of the
genetic influence on either cerebral brain volume or IQ is due to genetic factors
influencing both. Put differently, 80% of the phenotypic correlation is explained by
genetic mediation.

In a recent study by Thompson et al. (2002), voxel based MRI techniques were
used on a dataset of 10 MZ twins and 10 DZ twins. They reported high heritability
of grey matter volume in several cortical regions (80-90%), specifically for the
frontal, parieto-occipital and linguistic regions. In addition they reported a
correlation between the size of these regions and cognition, and suggested that,
although their study did not have the statistical power to estimate the relative
contributions of genetic and environmental correlations, this correlation was likely
to be mediated by an underlying set of genes.

In Chapter 7a of this thesis (Posthuma ez al., 2002) it was determined that the
observed correlation between brain volume and intelligence is completely mediated
by an underlying set of common genes. In a data set of 24 MZ pairs, 31 DZ pairs,
and 25 additional siblings a correlation of 0.25 (0.24) between cerebral grey (white)
matter volume and Full Scale IQ was found and a correlation of 0.29 between the
Working Memory dimension of the WAISIII-R and grey or white matter volume.
Results from multivariate genetic modelling showed that these correlations were
completely determined by a genetic correlation between the genes that influence
brain volume and the genes that influence IQ. In Chapter 7b we included cerebellar
volume in the analyses as well as all four dimensions of the WAISIIR. It was found
that cerebellar volume was related to Working Memory (0.27) and Perceptual
Organization (0.18). One hundred percent of the correlation between cerebellar
volume and Working Memory was explained by common genetic factors, while 66%
of the correlation between cerebellar volume and Perceptual Organization was
explained by common genetic factors.

Alpha peak frequency

Electroencephalographic (EEG) recording is a non-invasive technique to measure
electrical activity of the brain. EEG activity can be analysed according to the
frequency spectrum that is obtained when a Fourier transformation is performed on
an EEG time-series. Generally five frequencies are distinguished in the EEG power
spectrum: delta (0.5-4 cycles per second), theta (4-8 cycles per second), alpha (8-13
cycles per second), beta (13-30 cycles per second), and gamma (> 30 cycles per
second). In the past decade the underlying biological mechanisms of the different
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frequencies, especially the alpha and beta rhythms, are well understood and have
been described in the literature (Steriade ez al., 1990; Lopes da Silva, 1991).

The dominant frequency in an adult human EEG spectrum lies in the alpha
range around 10 cycles per second. The alpha peak frequency has been related to
cognitive abilities in general and to (working) memory in particular. Lebedev (1990,
1994) proposed a functional role for the human alpha peak frequency in stating that
‘cyclical oscillations in an alpha rhythm determine the capacity and speed of working
memory. The higher the frequency the greater the capacity and the speed of
memory’. In addition, Klimesch (1997) argued that thalamo-cortical feedback loops
oscillating within the alpha frequency range allow searching and identification of
encoded information. He speculated that faster oscillating feedback loops would
correspond to faster access to encoded information. These theories are supported by
the results of some recent studies; Klimesch (1997) found that the alpha peak
frequency of good working memory performers lies about 1 Hz. higher than that of
bad working memory performers. Anokhin and Vogel (1996) reported a correlation
of 0.35 between alpha peak frequency and verbal abilities. In addition it is found that
within the same subject alpha peak frequencies increase with increasing cognitive
load of the task in which they are measured (Klimesch, 1999).

Results from a few small twin studies have suggested that alpha peak frequency is
influenced by genetic factors (Christian ez 2/.,1996), and it has also been speculated
that its relation with IQ is due to a genetic basis (e.g. Vogel, 2000, page 117). In
only one multivariate genetic study, however, the nature of the relation between
alpha peak frequency and cognitive abilities is formally investigated. Including 102
MZ pairs and 525 DZ/sib pairs from two age cohorts (mean ages 26 and 50 years).

Chapter 8 of this thesis reports on a study from which it was concluded that that
alpha peak frequency is highly heritable (Posthuma ez /. (2001b). In young adults
(mean age 26 years) heritability was estimated at 71%, and in older adults (aged 50
years) heritability was somewhat higher at 83%. Heritabilities for the WAIS-3R
dimensions ranged from 66 to 83%. Surprisingly, no correlation was found between
alpha peak frequency and IQ (WAIS-IIIR), thereby dismissing alpha peak frequency
as a valuable electrophysiological substrate of cognitive ability as measured with the
WAIS-IIIR.

Inspection Time

Inspection time is a measure of central nervous system processing and is defined as
the minimum display time a subject needs for making an accurate perceptual
discrimination on an obvious stimulus. It is distinct from reaction time since there is
no need to make the discrimination quickly all that is required is an accurate
response. Visual inspection time can easily be measured in a computerized version of
the IT-paradigm in which subjects are asked to decide which leg of the TI-figure is
longest. Visual inspection time is generally thought to reflect speed of apprehension
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or perceptual speed. A meta-analysis conducted by Kranzler and Jensen (1989)
including virtually all scudies until 1989 investigating the relation between inspection
time and intelligence indicated that inspection time and IQ correlate around —0.50:
the less time a person needs to make an accurate decision on an obvious stimulus, the
higher his score on an IQ test. The overall consensus on the relation between
inspection time and IQ is given by Deary and Stough (1996): “inspection time
accounts for approximately 20% of intelligence-test variance”.

Recently two large twin studies have investigated whether the relation berween
inspection time and IQ is mediated by shared genetic factors or by shared
environmental factors (Luciano et al., 2001a; Posthuma et al., 2001; Chapter 9 of
this thesis). These two studies were also the first to report on the heritability of
inspection time per se. Using 184 monozygotic (MZ) pairs and 206 dizygotic (DZ)
pairs aged 16, Luciano et al. (2001a) reported a heritability estimate of inspection
time of 36% and of IQ-measures between 73-81%. In chapter 9 (Posthuma ez al.
2001a) we reported a slightly higher heritability estimate of inspection time (46%)
and similar heritability estimates of IQ measures (WAIS-IIIR) ranging from 69-85%.
The latter sample consisted of 102 MZ pairs and 525 DZ/sib pairs belonging to
two age cohorts (mean ages 26 and 50).

Luciano et al. (2001a) reported a correlation between inspection time and
performance IQ of -0.35 and between inspection time and verbal IQ of -0.26. In this
thesis slightly lower correlations were reported; -0.27 and -0.19 respectively
(Posthuma ez al., 2001a). Both studies unanimously found that the phenotypic
correlations between inspection time and performance IQ/verbal IQ were completely
mediated by common genetic factors. This meant that in the study by Luciano ez 4/.
(2001a) the genetic correlation between inspection time and performance IQ was -
0.65 and between inspection time and verbal IQ was -0.47 . In our own study
(Posthuma et 4l., 2001) the genetic correlations were -0.47 and -0.31 respectively.
Thus, the genes shared with inspection time are, across studies, estimated to explain
between 10 and 42% of the total genetic variance in IQ.

Speed of premotor and motor response selection activation

Speed of premotor and motor response selection activation can be measured with the
lateralized readiness potential (LRP). The LRP is mathematically derived from the
readiness potential (RP, Kornhuber and Deecke 1965), an evoked potential that can
be observed in an EEG registration. The LRP onset is considered to reflect the
output of the response selection stage (Coles, 1989; Eimer, 1998) and to be closely
time-related to central decision processes. The time of maximal LRP amplitude, LRP
peak latency, is thought to additionally reflect central motor processes that take place
after response selection has taken place (Falkenstein ez al, 1994). The LRP can be
calculated from the EEG registration during the execution of any task that requires
the selection of either right or left hand responses.
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In a dataset of 102 MZ pairs and 525 DZ/sib pairs from two age cohorts (mean
ages 26 and 50 years), we determined LRP onset and peak latencies (see Chapter 10
of this thesis and Posthuma ez 4/, (2002b). An inconsistent pattern of heritabilities
(ranging from 0 — 62%) was found, and no correlations between these and IQ as
measured with the WAIS-TITR.

Reaction times

Galton (1883) was the first one to propose that reaction time is correlated with
general intelligence and may be used as a measure of it. His observations and the
results of empirical studies afterwards led to the general belief in the speed of
processing theory of intelligence; the faster the accomplishment of basic cognitive
operations the more intelligent a person will be (Eysenck, 1986; Vernon, 1987).
Since then reaction times have consistently been negatively related to intelligence
(e.g. Vernon, 1987; Deary et al., 2001), i.e. a shorter reaction time corresponds to a
higher IQ. Correlations with IQ generally range between —0.20 and —0.40, but can
be as high as —0.60 (Fry and Hale, 1996). Increasing the information processing load
of a task results in prolonged reaction times within in the same subject (Hick, 1952;
Eriksen and Eriksen, 1974) and decreases performance. Higher correlations between
reaction times and IQ, therefore, are more likely to be found when more complex
reaction time tasks are used, although this effect is not unequivocally confirmed in
empirical studies (Mackintosh, 1986).

Results from twin studies suggest heritabilities for reaction time of the same
magnitude as those for IQ. McGue and Bouchard (1989) observed heritabilities of
54 and 58% for basic and spatial speed factors in a sample of MZ (N=49) and DZ
(N=25) twins reared apart. For a general speed factor based on eight complex
reaction time tests Vernon (1989) found a heritability of 49% in 50 MZ and 52 DZ
twins. In the same study it was also found that reaction time tests requiring more
complex mental operations show higher heritabilities. A bivariate analysis of these
data with IQ in 50 MZ and 32-SS DZ pairs (15 to 57 years) was reported by Baker
et al. (1991). Phenotypic correlations of Verbal and Performance 1Q with general
speed were both -0.59 and were entirely mediated by genetic factors. Genetic
correlations were estimated at -0.92 and -1.00. This is in line with results from an
earlier study in which phenotypic correlations between reaction time (measured as
the total number of correct responses on a timed task) and IQ ranged between 0.37
and 0.42, from which 70-100% was attributed to genetic factors influencing both
reaction time and IQ (Ho ez al., 1988).

More recently, Rijsdijk ez /. (1998) conducted a multivariate genetic analysis on
reaction time data and IQ data, using 213 twin pairs measured at ages 16 and 18.
Heritabilities were reported for age 16 of 58%, 57%, and 58% for simple reaction
time, choice reaction time and IQ (RAVEN) respectively. Phenotypic correlations of
simple reaction time and choice reaction time with IQ were —0.21 and -0.22
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respectively and were completely mediated by common genetic factors. Virtually the
same picture was shown at age 18 where the same reaction time battery was
correlated with IQ as measured with the WAIS.

Finkel and Pedersen (2000) investigated the underlying covariance structure of
measures of speed and measures of cognition in a sample of 292 reared together and
reared apart MZ and DZ twins (aged 40-84). Speed was measured by oral versions of
the Digit Symbol and Picture Identification subtests of the WAIS. A cognitive factor
was constructed based on several standard IQ tests. The phenotypic correlation
between the speed factor and the cognitive factor was 0.66, of which 61% was due
to correlated genetic factors between the two. Also, they reported that 70% of the
genetic variance in the cognitive factor was shared with the speed factor.

Neubauer et a/. (2000) reported heritability estimates of reaction time data and
IQ (RAVEN) ranging from 11-61% and 39-81% respectively. Phenotypic
correlations between reaction time data and IQ (RAVEN) data were between —0.08
to —0.50, where higher correlations with IQ were found for more complex reaction
time tasks. Common genetic influences on reaction time and IQ accounted for 65%
of the observed phenotypic correlation.

Evidence for a genetic mediation between reaction time and IQ also emerges
from a recent large twin study by Luciano ez a/. (2001b). Using reaction time data
from a two-choice reaction time (2CRT) task, a four-choice reaction time task
(4CRT), an eight-choice reaction time task (3CRT) and IQ data from 166 MZ pairs
and 190 DZ pairs Luciano et a/. (2001b) report high heritabilities for reaction times
(CRT: 52%, 4CRT: 59%, 8CRT: 70%) and IQ (81%), and moderately high
phenotypic (-0.32 to —0.55. The genetic contributions to the observed correlations
were all 100% (i.e. were as high as the observed correlations; from —0.32 to —0.49)
except for the 4CRT where the genetic contribution covered 89% of the observed
correlation. In other words, common genetic influences explained at least 89% of the
observed phenotypic correlation between reaction times and IQ.

In Chapter 10 of this thesis the heritability of reaction time (as indexed by
decision time) was investigated in a large sample of twins and siblings (see also
Posthuma et al., 2002b). To be comparable to reaction times measures used in
previous studies, reaction times are best studied in the congruent condition of the
Eriksen Flanker Task that was described earlier. The heritability of reaction time was
moderate (43%), but no correlation with cognitive ability was found on the
phenotypic, genetic or environmental level.

In summary, non-genetic studies have shown a consistent and stable relation
between reaction time and IQ; interindividual variance in reaction time seems to
explain at most 30% of IQ test variance. Results from previous genetic studies, have
suggested that between 65 and 100% of this covariance is explained by a common
underlying genetic mechanism. Results from our own, relatively large, study show no
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evidence of a covariance between reaction time and IQ, possibly because accuracy
may have been stressed more than speed.

Indices of components of working memory

Working memory is considered a central component of cognitive functioning (e.g.
Kyllonen and Chrystal, 1990; Baddely, 1986). Some behavioural measures of
working memory functioning have already been investigated in a multivariate genetic
design simultaneously with a measure of IQ. For instance, Ando ez 4l., (2001) used a
spatial and verbal working memory task which were revised versions of the working
memory tasks developed by Shah and Miyake (1996). These two tasks generate
performance scores on four conditions: spatial storage (Ss), spatial executive (Se),
verbal storage (Vs) and verbal executive (Ve). IQ was assessed with the Kyodai NX15
Japanese intelligence scale, form which two components were calculated: Verbal
cognitive ability (VCA) and Spatial cognitive ability (SCA). Their data set consisted
of 143 MZ’s and 93 DZ’s aged 16 — 29 years. The working memory performance
measures were all moderately heritable (Ss 45%; Se 49%; Vs 48%; Ve 43%) and
heritability of IQ was slightly higher (VCA: 65%; SCA 65%). VCA correlated
around 0.30 to the working memory measures, whereas SCA correlated around 0.40
to the working memory measures. Genetic contributions predominantly (>85%)
explained the observed correlation between IQ and working memory performance.

Luciano et al. (2001) determined the heritability and relation with IQ of
accuracy on a delayed response task. This task has been adapted from animal research
and is widely used as an index for working memory (Goldman-Rakic, 1996).
Accuracy on this task was moderately heritable (48%), correlated around 0.20 with
1Q, and 100% of this correlation was explained by common genetic factors. Similar
results were recently obtained by Wright er al, (2002) after this dataset had been
extended by many newly added twin pairs.

In Chapter 10 we reported on the heritability of latency of response selection,
reaction times and performance on the incongruent condition of the Flanker task.
This task requires a left or right hand response depending on the stimulus. The
stimulus can either be congruent with the response or incongruent with the response.
Stimulus-response incongruency slows response times and LRP latencies and
increases the number of incorrect responses. (Turken and Swick, 1999: Botvinick ez
al., 1999; Awh and Gehring, 1999). Latencies and performance in the incongruent
condition are often thought to reflect inhibition ability which is one of the major
function of the frontal executive component of working memory (Baddeley, 1996).
Latencies in the incongruent condition showed no or low heritability, whereas
decision time was moderately heritable (48%). LRP latencies and decision time in
the incongruent condition did not correlate with cognitive ability. However,
performance on the incongruent trials was moderately heritable (54% in young

e e e e

Discussion 189

adults aged 26; 41% in older adults aged 50) and correlated well to IQ (around 0.30
—0.40). This correlation was completely explained by common genetic factors.

Follow up research

Endophenotypes of cognitive ability

Summarizing the above it can be stated that genetic variability in brain volume,
perceptual speed and frontal inhibitory control is related to genetic variability in
cognitive ability.

Insight into the pathways between genes and cognitive ability is not only
important in understanding individual differences in normal cognitive functioning,
but may also provide clues into the underlying mechanisms of impaired cognitive
ability. Diverging conditions as reading disorder, schizophrenia, ADHD, depression,
alcoholism, and dementia all share significant deficits in cognitive ability (Willcutt ez
al., 2001; Harvey 2001; Bray and Owen, 2001; Austin, Mitchell and Goodwin,
2001: Braver, Barch, Cohen, 1999; Goldman-Rakic, 1999).

Another important advantage of identifying pathways between genes and
cognitive ability is that they may aid in the detection of the actual genes or
quantitative trait loci (QTL’s) that influence cognitive ability. Although cognitive
ability shows very high heritability, it is still a complex trait, likely to be influenced
by a number of QTL’s (Plomin and Crabbe, 2000). Its high heritability may reflect
the summed genetic effects of a number of QTL’s which each exert only small
effects (in the order of explaining less than 2% of the total variance in cognitive
ability). Biological substrates that are genetically correlated with cognitive ability each
explain part of the variance in cognitive ability (10-20%), and may thus each mediate
the influence of a small subset of the genes that influence cognitive ability. These
subsets of genes will explain a large part of the variance in the biological substrate or
endophenotype and a relatively smaller part of the genetic variance in cognitive
ability (De Geus and Boomsma, 2002). Including these endophenotypes in studies
aimed at the detection of genes that influences cognitive ability may therefore
enhance the chances of detecting these genes (Boomsma et al., 1997; de Geus &
Boomsma, 2001; Leboyer, 1998).

Especially when a genetic correlation between the genes that influence the
endophenotype and cognitive ability reflects an underlying causality from
endophenotype to cognitive ability, (as opposed to reflecting pleiotropic effects of
genes), QTL effects on endophenotypes will be greater than effects of these QTLs on
cognitive ability, as the latter are a function of the QTL effects on the
endophenotype and the effect of the endophenotype on cognitive ability. As stated in
Chapter 2, genetic correlations do not provide information on causal relations.
Direction of causation, however, can be assessed using longitudinal designs, but also
with cross-sectional twin designs, provided the two traits show different heritabilities,
and provided the validity and reliability of the measurements are known (Heath ez
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al., 1993; Neale et al., 1994; Duffy and Martin, 1994). For example, perceptual
speed showed moderate heritability while cognitive ability was highly heritable.
Direction of causation between these measures has not been resolved yet. Combining
the datasets on perceptual speed and cognitive ability from the Australian researchers
(Luciano et al., 2001) and ourselves (Posthuma ez al., 2001) will provide an excellent
opportunity to resolve the direction of causation between perceptual speed and
cognitive ability.

Candidate genes for cognitive ability

Results from human linkage and associations studies for IQ have not yet identified
“genes for 1Q”, although results from the IQ-QTL project (Plomin ez al., 1994,
1995; Daniels ez al., 1998) have initially provided some evidence for the association
of cognitive ability with the alcohol dehygrenase 5 marker (ADHS), nerve growth
factor beta polypeptide marker (NGFB), dystrophia myotonica marker (DM) (Petrill
et al., 1996), insulin-like growth factor-2 receptor marker (IGF2R) (Chorney et 4l.,
1998), and markers D452943, MSX1 and D4S1607 on chromosome 4 (Fisher et a/.,
1999). Recently, however, Plomin er al, 2001, conducted a genome scan for
cognitive ability, using 1842 markers across the genome. They employed an
extremely conservative approach (i.e. a five stage design with three samples) to guard
against false positives and false negatives. Such a conservative approach seems
necessary given the large number of tests that are employed and the problems in
replicating QTL association studies (Cardon and Bell, 2001). Using these criteria,
Plomin et 4l., (2001) could not replicate any of the previously found QTL
associations, and did not detect new QTL associations.

An alternative approach for screening the genome for possible QTL's is to pre-
select candidate genes (de Geus ez 4/, 2001). The results from this thesis suggest that
genes important for cerebral grey matter volume, cerebral white matter volume,
cerebellar volume, perceptual speed and frontal inhibition may also be important
genes for cognitive ability. The genetic connection between brain volumes, neural
speed and cognitive ability fits very well in the myelination hypothesis as formulated
by Miller (1994). According to this hypothesis, generally, the relation between speed
and intelligence can be explained if part of the interindividual variance in cognitive
ability can be ascribed to interindividual variance in the degree of myelination of
cortico-cortical connections. If true, this could explain why more intelligent brains
show faster nerve conduction, faster reaction times and faster inspection times. And,
all other things equal, thicker myelin sheaths will result in larger brain volume, thus
explaining the positive relation between brain size and IQ (Miller, 1994).

Although it is unlikely that the myelination hypothesis explains all observed
anatomical, behavioural and neurophysiological relations with cognitive functioning
(e.g. it does not directly explain the link with frontal inhibition), it may provide
theoretical guidance in the choice of candidate genes for cognition. As also became
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evident from Chapters 7 and 9, genes important for myelination and development of
the brain may also be of importance for cognitive ability. Candidate genes important
for myelination as mentioned in those Chapters were the Plp gene (Boison and
Stoffel, 1994; Griffiths et al, 1995, Tkenaka and Kagawa, 1995; Lemke, 1993), the
cgt-gene (Stoffel and Bosio, 1997), the MAG gene (Fujita ez al., 1998, Sheikh er al.,
1999), and the #-r gene (Weber ez al., 1999).

An important new finding in this thesis was that human cerebellar volume is
highly heritable and that its relation to cognitive ability is mainly mediated through a
common genetic pathway. Some genes known to be important for cerebellar
development derived from mouse studies were reported in Chapters 6 and 7; the
Pax2 locus and the En-2 locus. Favor et al. (1996) showed that in mice, functioning
of the Pax2 locus, which has its counterpart in the human PAX2 locus, is absolutely
necessary for the normal development of the cerebellum. Millen ez al (1994)
reported a reduction in cerebellar volume in mice due to dysfunctioning of the En-2
locus.

More recently Airey, Lu, and Williams (2001) conducted a full genome screen
for cerebellar size in mice and reported linkage with five QTL’s. They proposed a set
of candidate genes lying within the linkage regions, which also confirmed the role of
the Pax2 gene in cerebellar development. Human homologous chromosomal regions
of the five QTL’s in mice as reported by Airey, Lu, and Williams (2001), are 1¢23-
43, 10q11-23, 9q13-q24, 11q12-q13, 10q23-qter, 16q12-22.

Genes that may be important for frontal inhibitory control cannot be directly
derived from genes investigated with the help of animal models, as there are no
animal behavioural models of frontal inhibition. The COMT gene (Lachman ez 4/.,
1996) has repeatedly been linked to frontal executive functioning in humans (Egan ez
al., 2001; Weinberger et al., 2001 for a review), which encompasses frontal
inhibition functioning. This gene has also been associated with increased risk of
schizophrenia (see Weinberger ef al., 2001) which is characterized by impaired
executive functioning.

Morley and Montgomery (2001) extensively reviewed the existing (human and
animal) literature for candidate genes for human cognition. They indexed published
results from Drosophila melanogaster, mice and human studies in four phenotypic
categorties: memory, learning, cognition, and mental retardation. Over 150 candidate
genes were derived that may all influence aspects of human cognition. Morley and
Montgomery (2001) selected 36 candidate genes for which the literature review
provided strongest evidence. Most of these candidate genes are associated with
aspects of memory or learning. Very promising candidate genes are the N-methyl-D-
aspartate (NMDA) receptor genes NMDAI, NMDA2A, NMDA2B. NMDA
receptors are widely distributed in the brain and play a major role in long term
potentiation (LTP) (Bear and Malenka, 1994), which is thought to be a cellular
substrate of memory (Miller and Mayford, 1999; Eichenbaum and Harris, 2000).
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Several studies have shown that mice lacking NMDA induced LTP show substantial
learning deficits and spatial memory impairments (Tsien, Huerta en Tonegawa,
1996; McHugh et al, 1996). Alternatively, Tang ez al, (1999) showed that
overexpression of NMDA2B in the forebrains of transgenic mice results in a superior
ability in learning and memory.

Other studies have recently identified genes or found evidence for linkage for
human abilities related to IQ: speech and dyslexia. Lai ez 4/., (2001) found that a
point mutation in a coding region within the FOXP2 gene on chromosome 7 is
related to severe disruption of speech and language. In fact, Lai ez al (2001)
suggested that this mutation is causally related to development of the neural substrate
that underlies language and speech. The FOXP2 gene may also be related to aspects
of IQ, or at least reveal genetic pathways important for e.g. verbal abilities.

In summary, candidate genes may be selected using an endophenotype approach,
using animal models, or may be derived from human studies on traits related to
cognitive ability. Whatever candidate genes are selected, they need to be analysed
using optimal statistical methods. In Chapter 11 an existing powerful method for the
simultaneous analysis of linkage and association (Fulker ez a/., 1999) was extended to
include variable sibship sizes, estimates of spurious and non-spurious dominance
effects, and situation where parental genotypes are unavailable. This method also
allows fine mapping, as the effect of linkage will be reduced when estimated in the
presence of association, thereby providing information on the distance between the
marker and the QTL (Cardon and Abecasis, 2000). An explicit test for the effects of
population stratification is also incorporated in this method, thereby allowing to
distinguish spurious allele effects from genuine allele effects. In Chapter 11 the
translation of this method from the theoretical level to the practical implementation
in structural equation modelling software was discussed.

With our current armament of behavioural and biological indices of cognitive
ability, obtained in a dataset optimal for linkage and association analyses, we are well
equipped to start searching for genes for cognition.
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GENETISCHE VARIATIE EN COGNITIEVE VAARDIGHEDEN

De twee voornaamste doelen van het onderzoek waarop dit proefschrift is gebaseerd
waren: het kwantificeren van de erfelijkheid van cognitieve vaardigheden in een
Nederlands jong volwassen en ouder volwassen leeftijdscohort en het verkrijgen van
meer inzicht in de individuele verschillen in hersenfunctie en structuur die
cognitieve vaardigheden onderliggen.

Om deze beide doelen optimaal te verwezenlijken is gebruik gemaakt van een
zogenaamd extended twin design, oftewel het uitgebreide tweelingen design. In dit
design zijn de deelnemers tweelingen of broers en zussen van tweelingen. Een
dergelijk onderzoeksdesign is statistisch zeer krachtig (zie Hoofdstuk 3) en biedt de
mogelijkheid om een aantal aannames van het klassieke tweelingenmodel te
onderzoeken. Eén van die aannames is dat tweelingen niet systematisch verschillen
van ‘eenlingen’. Er wordt wel cens gezegd dat deze aanname onterecht is en dat
tweelingpopulaties niet geheel representatief zijn voor de normale, niet-tweeling
populatie. Het is bekend dat slechte omstandigheden in de baarmoeder negatieve
effecten op latere leeftijd kunnen hebben (Barker, 1998). Tweelingen zitten altijd
samen in de baarmoeder en zouden daarom gemiddeld genomen in slechtere
baarmoederlijke omstandigheden verkeren dan eenlingen. Tweelingen hebben
bijvoorbeeld ook vaker een lager geboortegewicht dan cenlingen, zelfs wanneer wordt
gecorrigeerd voor de gestatietijd. Het verschil in gewicht met eenlingen wordt echter
meestal snel weer ingelopen. Niettemin, wanneer deze verschillen niet worden
ingelopen en tweelingen systematisch verschillen van eenlingen zouden
erfelijkheidsschattingen gebaseerd op tweelingpopulaties, niet zonder meer gelden
voor de ‘normale’ populatie.

In een aantal buitenlandse studies is het IQ van tweelingen vergeleken met het
IQ van eenlingen. In deze studies werd gevonden dat tweelingen een significant lager
IQ hebben dan eenlingen (zie bijvoorbeeld Record er al., 1970). Echter, in deze
cerdere studies werden tweelingen vergeleken met eenlingen uit een ander gezin.
Zoals werd beargumenteerd in de hoofdstukken 4 en 5 is dit geen optimale
vergelijking; naast het verschil tweeling-eenling zijn er nog meer factoren die de
verschillen in IQ zouden kunnen verklaren. De situatie van gezinnen waar een
tweeling voorkomt kan in meerdere opzichten anders zijn dan die van gezinnen met
alleen eenlingen. Pas wanneer tweelingen en cenlingen uit hetzelfde gezin met elkaar
worden vergeleken kan worden onderzocht of het ‘“zijn van een tweeling’ invloed
heeft op een eigenschap als IQ.

Het extended twin design is een optimaal design om tweelingen en cenlingen te
vergelijken. De gewone broers en zussen groeien op in hetzelfde gezin als de tweeling
en hebben zelfs in dezelfde baarmoeder gezeten (al is het niet op hetzelfde tijdstip).
In de huidige studie deden 688 mensen mee die allemaal deel waren van een gezin
met daarin een tweeling. Deze 688 mensen kwamen uit 271 gezinnen, waarvan 149
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gezinnen behoorden tot het ‘jong volwassenen cohort’ (gemiddeld 26.2 jaar) en 122
gezinnen tot het ‘ouder volwassen cohort’ (gemiddeld 50.4 jaar). Met zo’n grote
dataset kunnen zelfs zeer kleine verschillen in IQ-scores tussen tweelingen en
eenlingen worden aangetoond. De volwassen tweelingen en hun volwassen broers en
zussen in de huidige studie verschilden niet in gemiddeld IQ. Bovendien werd
expliciet getest of er verschillen waren in de overeenkomst tussen IQ scores voor DZ
tweelingparen en paren van gewone broers of zussen. Ook dit was niet het geval. Ook
was er geen sprake van een verschil in spreiding van de IQ scores voor tweelingen of
gewone broers of zussen. We kunnen dus concluderen dat erfelijkheidsschattingen
van IQ die worden gedaan op grond van tweelingpopulaties representatief zijn voor
de gehele populatie.

Het extended twin design bleek ook in statistische zin een optimaal design te zijn
voor het schatten van de bijdrage van erfelijke en omgevingsfactoren aan individuele
verschillen. Ook het onderscheid tussen additieve genetische effecten en dominant
genetische effecten bleek beter te maken.

Na het vaststellen van de statistische en inhoudelijke voordelen van het extended
twin design werd onderzocht in welke mate individuele verschillen in cognitieve
vaardigheden kunnen worden toegeschreven aan verschillen op genetisch niveau.
Cognitieve vaardigheden werden gemeten door middel van de score op de nieuwste

versie van de Nederlandse vertaling van de WAISIIIR (WATISIIL, 2000).
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Figuur 1:
Percentage verklaarde variantie in 1Q.
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De erfelijkheid van de Totale IQ-score in Nederlandse jonge volwassenen en
oudere volwassenen was zeer hoog. Voor de jonge volwassenen werd 88% van de
verschillen tussen mensen in IQ score verklaard door verschillen op genetisch niveau.
Bij de oudere volwassenen was dat 85%.

De erfelijkheidsschattingen uit de huidige studie kunnen we combineren met
erfelijkheidsschattingen voor cognitieve vaardigheden in Nederlandse jonge kinderen
en tieners uit voorgaand onderzoek in het Nederlandse Tweeling register. Wanneer
we dit doen ontstaat een mooi beeld van een toename van de invloeden van
genetische factoren en een afname van de invloed van omgevingsfactoren met de
leeftijd (zie Figuur 1).

Tevens werd de erfelijkheid van een aantal andere eigenschappen, die mogelijk
samenhangen met de IQ-score, onderzocht. De onderzochte eigenschappen kunnen
worden onderverdeeld in twee domeinen, waarvan vooraf werd verwacht dat ze
mogelijk gerelateerd zijn aan cognitieve vaardigheden. De domeinen zijn Snelheid en

Werkgeheugen/Aandacht.

Snelheid werd ondermeer in kaart gebracht met de Alfa Piek Frequentie
(Hoofdstuk 8). De Alfa Piek Frequentie is de dominante frequentie van de
electroencefalografische (EEG) activiteit die te zien is tijdens een rust situatie waarbij
de ogen gesloten zijn. Het is tevens de frequentie die het meest afneemt wanneer de
ogen geopend worden. Bij de meeste mensen lige deze frequentie rond de 10 Herz,
maar hierin bestaan grote individuele verschillen.

De Alfa Piek Frequentie wordt wel vergeleken met de kloksnelheid van een
computer processor. Een hogere kloksnelheid zou er dan voor zorgen dat er meer
eenheden kunnen worden opgenomen in het geheugen. In Figuur 2 is te zien dat de
twee mensen van een eeneiig tweeling paar een vrijwel identiek frequentie spectrum
(en Alfa Pick Frequentie) hebben, terwijl de leden van een twee-eiig tweelingpaar veel
minder op elkaar lijken.

A

2 8 10 14 18 22 2 6 10 14 18 22

Frequentie § YR —— Frequentie

———Als 2de geboren

Figuur 2:
Links het EEG frequentie spectrum van een eenciig tweelingpaar, rechts het EEG
frequentie spectrum van een twee-eiig tweelingpaar.

Dutch Summary 197

Een dergelijk patroon is indicatief voor een hoge erfelijkheid, omdat eeneiige
tweelingen genetisch identiek zijn en twee-eiige tweelingen gemiddeld voor 50% in
genetisch opzicht op elkaar lijken. Uit de huidige studie bleck dan ook dat de Alfa
Pick Frequentie zeer erfelijk is (71% in het jong volwassen cohort en 83% in het
oudere volwassen cohort). In onze studie vonden we echter geen enkel verband
tussen de Alfa Piek Frequentie en de IQ-score. De hoge erfelijkheid van zowel de
Alfa Piek Frequentie als de totale IQ-score, maar tegelijkertijd de afwezigheid van een
verband tussen beide, impliceren dat verschillende genen van belang zijn voor Alfa
Piek Frequentie en 1Q.

Een andere, gedragsmatige maat, waarmee Snelbeid werd gemeten was de
inspectietijd (Hoofdstuk 9). Dit is de tijd die iemand nodig heeft om een simpele
beslissing te nemen. In de huidige studie werd dit gemeten door middel van een -
paradigma waarbij besloten moest worden welke poot van de m-figuur het langst was.
De aanbiedingstijd van de T was variabel. Inspectietijd bleek redelijk erfelijk te zijn
(46% voor beide leeftijdsgroepen) en bleek tevens een relatie met IQ te hebben. Het
belangrijkste was echter dat deze relatie geheel toe te schrijven was aan erfelijke
factoren. Er zijn dus genen die zowel inspectietijd als IQ beinvloeden.

Voor het domein Werkgeheugen/Inhibitie werd de Eriksen Flanker Taak gebruikt
(Hoofdstuk 10). Inhibitie kan worden gemeten in een taak waarbij de aanwezigheid
van afleidende elementen de uitvoering van een taak bemoeilijkt. Ofwel het negeren
van deze afleidende elementen, ofwel het richten van de aandacht op het doel van de
taak zijn nodig om tot een goede taakprestatie te komen. In de Eriksen Flanker taak
worden vijf pijlen aangeboden op een computer scherm (zie Figuur 3).
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Figuur 3:

Weergave van de Eriksen Flanker Taak.
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De pijlen wijzen 6f allemaal dezelfde kant op (congruente conditie), 6f de
middelste pijl wijst een andere kant op (incongruente conditie). De instructie is om
op grond van de richting van de middelste pijl met de linker of rechter hand zo snel
mogelijk een knop in te drukken. Beide handen rusten op een startknop die niet mag
worden losgelaten wanneer niet met die hand mag worden gereageerd. Wanneer alle
pijlen dezelfde kant op wijzen is de taak vrij makkelijk. Wijst echter de middelste pijl
de andere kant op, dan wordt de taak moeilijker, omdat de aandacht wordt afgeleid
door de flankerende pijlen die de andere kant op wijzen. Er worden dan meer fouten
gemaake en de reactietijd gaat omhoog. Ook in het EEG is dan een tijdsverschuiving
van het signaal zichtbaar. Het aantal fouten dat werd gemaakt in deze moeilijke
conditie bleek door genetische aanleg te worden beinvloed. Opnieuw bleck dat deze
genetische aanleg voor een deel overlapt met de genetische aanleg die de IQ-score
beinvloedt.

Bij cen deel van de deelnemers is, dankzij een samenwerking met de
onderzoeksgroep van Prof. Kahn van het Medisch Centrum Utrecht, tevens gekeken
naar anatomische eigenschappen van het brein (Hoofdstukken 6 en 7).

De gemeten Brein volumes zijn intracraniaal volume, grijze massa van de grote
hersenen, witte massa van de grote hersenen en het volume van het cerebellum (de
Kleine hersenen). We vonden dat deze brein volumes zeer erfelijk zijn (80-90%) en
dat ze een positieve relatie met de IQ-score hebben. Deze relatie tussen brein volume
en IQ-score kon geheel worden toegeschreven aan genen die zowel van invloed zijn
op de grootte van het brein als de hoogte van de IQ-score, en niet door
omgevingsfactoren die beide beinvloeden.

Samenvattend kan worden gezegd dat cognitieve vaardigheden op volwassen
leeftijd zeer erfelijk zijn en dat een aantal van de genen die van invloed zijn op deze
vaardigheden tevens van invloed zijn op brein volume, inspectietijd en de mate
waarin iemand in staat is om de aandacht niet te laten afleiden. Het blootleggen van
onderliggende verschillen in hersenfunctie en structuur is van belang omdat het helpt
bij de zoektocht naar genen voor (stoornissen in) cognitieve vaardigheden. Deze
onderliggende eigenschappen (ook wel ‘endofenotypes’ voor cognitieve vaardigheden
genoemd) geven aan welke van de vele genen als mogelijke kandidaat-genen voor
cognitieve vaardigheden kunnen worden beschouwd. De endofenotypes die uit het
huidige onderzoek naar voren zijn gekomen suggereren dat genen verantwoordelijk
voor de groei van de hersenen en de snelheid waarmee de zenuwen informatie in het
brein verwerken van belang zullen zijn voor IQ. Een aantal van deze genen is reeds
via dier-experimenteel onderzoek geidentificeerd en zullen in vervolgonderzoek
worden getoetst op hun mogelijke relatie tot cognitieve vaardigheden in de mens.
Onderzoek in tweelingfamilies is hierbij opnieuw een zeer krachtige aanpak. In
Hoofdstuk 11 van dit proefschrift werd een statistische methode besproken waarmee
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een mogelijke associatie tussen kandidaat-genen en een IQ-score kan worden
onderzocht in tweelingfamilies. Via deze methode hopen we in de toekomst
daadwerkelijk de genen te identificeren die van belang zijn om individuele verschillen
in cognitieve vaardigheden te verklaren.
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Appendix I: Full set of measures collected in (part) of the members of the extended
twin families participating in the study on which this thesis was based.
DOMAIN TASK MEASURE
Psychometric  Wechsler Adult Block design, Letter-number sequencing, Information,
intelligence Intelligence Scale- Matrix reasoning, Similarities, Picture completion,
revised (WAISIIIR) Arithmetic, Vocabulary, Digit symbol-coding, Digit-
symbol pairing and Digit symbol-free recall.

Groninger Intelligence

Vocabula
Test (GIT) 4
Processing Simple Reaction Time o i T
Reaction time, movement time, decision time
speed Task
Choice Reaction Time o . 45 e :
Task Reaction time, movement time, decision time, efficiency

Inspection Time Task  Inspection time

Oddball Task - EEG P3 latency

EleFi:ged Respiotiss Tile N1/P2, P3 latency
Eriksen Flanker Task -  Lateralized Readiness Potential (LRP) — Onset, amplitude,
EEG slope, peak latency, decision time, movement time,
accuracy
Working Delayed Response Task  N2-amplitude and latency, Slow wave amplitude, P3
memory - EEG amplitude and latency, intrahemispheric EEG Coherence,
EEG Power, Induced Band powers (ERD/ERS),
performance (%correct, spatial accuracy)
Sternberg Task Y%correct, Reaction time, Sternberg slope
Brain Magnetic Resonance Intracranial space, gray matter volume, white matter
volume Imaging (MRI) volume, cerebellar volume, ventricular volume.
Head circumference, nasion-inion distance
Resting Eyes closed - EEG EEG Power, Coherence, Alpha peak frequency

brain activity ~ Eyes open - EEG EEG Power, Coherence

Other Eyes open with Continuous finger blood pressure

physiological ~ finapress - EEG

Parameters Arm cuff Systolic pressure, diastolic pressure (DynaMap)
Heart rate, heart rate variability, baroreflex sensitivity
Weight, height

Lipids, Cholesterol, high density lipoprotein, triglycerides

hormones etc. apolipoproteines A1, A2, B, E
apoE genotype
C-Reactive Protein, Tissue type Plasminogen Activator,
Plasminogen Activator Inhibitor, Fibrinogeen, v
Willebrandt
Insulin, Glucose,

Other Questionnaire Mental effort Scale
Demographics

Health, life-style, addiction, personality, psychopathology,
religion, SES and educational attainment
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Appendix II: Biometric model describing the uni- and bivariate situation where & = 2

Consider a diallelic trait with alleles A1 and A2. Let  be the effect of genotype A1A1
on the phenotypic mean, -a the effect of A2A2, and 4 the effect of AIA2 on the
phenotypic mean.

-a a

|
I | | 1
A2A2 0 AlA2 AlA1

Assuming equal allele frequencies of Al and A2, the mean genotypic effect on the
phenotypic mean is %4d. The total genetic variance (O ;) equals Vo i’ + U d, =V, +
vV

d

For complete dominance 4 = 4. Substituting d for a in the formulae for the genetic
variances, gives: V, = V24’ and V,= % 4’ thus V, =2V,

Now consider a bivariate model with latent variances scaled to unity, and
e uniform genetic influences over traits: V,,=V, ,and V,, =V,
e assumption of uniform 4 to 4 ratio over traits
@)/ () = @) () = @)/ ()
er,=a,x a, /V{@,)x [(@,) "+ [(a,)]} which simplifies to r, = a,, / a,,
or,=d, xd,/ \/{(d“)z x [(d,) "+ [(dzz)z]} which simplifies tor, =d, /d,,.

This implies that the additive genetic correlation equals the dominant genetic
correlation.
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Appendix VII

Appendix VII: Mx job for combined linkage and association analyses, parental

genotypes unavailable

|Fulker et al.(1999) method
|Extended to sibship sizes > 2,

|Additive and dominance association

IMultiple alleles

1Using sibling genotypes to calculate mean genotypic value of sibship

#define n 5
#define nvar 1
#define nsibs 3
#ngroups 4

Gl: calculation group between and
Data Calc

Begin matrices;

A Full 1 n free

C Full 1 n free

D Sdiag n n free

F Sdiag n n free

I Unit1ln

End matrices;

Begin algebra;

K= (A'@I) + (ARI') ;
L=D+D";

W= K+L ;

M = (C'@I) + (Cer') :
N=0D+D";

B= M+N ;

End algebra ;

st .2 @all

end

G2: datagroup: sibship size three

Data NInput=12
Missing =-99.00
Rectangular File=myfile.dat

Inumber of alleles is 5

tunivariate

Isibshipsize = 3

lone precalculation, one data group, two constraint

within effects

Iwill contain additive allelic effects within

Iwill contain additive allelic effects between
Iwill contain dominance deviations within

Iwill contain dominance deviations between

lunit vector to multiply allelic effects {1111 1]

Labels phl ph2 ph3 alsl a2sl als2 a2s2 als3 a2s3 pil2 pil3 pi23 zI12 z13 723
Select phl ph2 ph3 alsl a2sl als2 a2s2 als3 a2s3 pil2 pil3 pi23 z12 z13 z23;
Iselects 3 phenotypes; one for each sib
Iselects 6 allele variables, alsl is allele #1 from sib #1

Iselects pi's and z’s
Definition_variables

alsl a2sl als2 a2s2 als3 a2s3 pil2 pil3 pi23 z12 z13 z23;
\declare the allele variables, pi and z as definition variables

Begin Matrices;

Lower nvar nvar Free
Q Lower nvar nvar Free
R Lower nvar nvar Free
E Lower nvar nvar Free
B Computed n n = Bl

W Computed n n = Wl

I Ident nsibs nsibs Fix!
P Sym nsibs nsibs Fix

Z Sym nsibs nsibs Fix
T
K
L
M
5
G
n

=

Stand nsibs nsibs Fix
Full 1 4 Fix
Full 1 4 Fix
Full 1 4 Fix
Full 1 1 Fix
Full 1 nvar Free
End Matrices;

Matrix S 3
Matrix K 1
Matrix L 1
Matrix M 1

Ifamilial variance

1QTL additive variance

1QTL dominance variance

Inon-shared environmental variance
Ispurious and genuine genotypic effects
lgenuine genotypic effects

!To contain pi-hats
|To contain pIBD2’s

IFirst and second allele of sibl
IFirst and second allele of sib2
IFirst and second allele of sib3
Ito contain nsibs

lgrand mean

! sibship size 3
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Matrix P

o
o

Matrix Z
0]
10
110

Specify K alsl a2sl alsl a2sl
Specify L als2 a2s2 als2 a2s2
Specify M als3 a2s3 als3 a2s3
Specify P 1

pil2 1

pil3 pi23 1
Specify Z 1

z12 1

z13 z23 1
Specify T .5

o5 5
Begin Algebra;
V=
D=
ni

End Algebra;

!genotype sibl to be used for \part
!genotype sib2 to be used for \part
!genotype sib3 to be used for \part

!when familial variance is modelled as add genetic

(\part(B,K) + \part(B,L) + \part(B,M) ) %S ; !“B”
(\part(W,K) + \part(W,L) + \part(W,M) ) % S

; lused for deviation: W

Means G+V+(\part(W,K)-D) |G+V+(\part(W,L)-D) |G+V+(\part(W,M)-D);
Covariance T@(F*F') + P@(Q*Q') + Z@(R*R') + I@(E*E") ;

End

Constrain sum allelic effects =
Constraint ni=1
Begin Matrices;
A full 1 n = Al !
0 zero 11
End Matrices;
Begin algebra;
B = \sum(A) ;
End Algebra;
Constraint 0 = B ;
end

Constrain sum allelic effects =
Constraint ni=1
Begin Matrices;
Cfullln=2¢C1!

0 zero 11

End Matrices;

Begin algebra;

B = \sum(C) ;

End Algebra;
Constraint 0 = B ;
option multiple issat
end

save full.mxs

!test for spurious association W=B
1

Specify 1 A 162 103 104 105
Specify 1 C 101 102 103 104 205

@
=

(0]

0

!'this is saturated model for submodel comparison

!first 4 equal to within; last unequal but because
lof second constrain 205 will be equal to 105

Specify 1 D 801 802 803 804 805 806 807 808 809 810
Specify 1 F 801 802 803 804 805 806 807 808 809 810

end

!Drop dominance :

non-conservative test (i.e. genuine and spurious)

Specify 1 D 801 802 803 804 805 806 807 808 809 810
Specify 1 F 801 802 803 804 805 806 807 808 809 810
Drop @0 801 802 803 804 805 806 807 808 809 810

end
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tDrop all allelic effects : non-conservative test (i.e. genuine and spurious) Appendix VIII: Mx job for the conduction of the combined linkage and association
Specify 1 A 101 102 103 104 105 :

Specify 1 C 101 102 103 104 205 / method, parental genotypes available.

Specify 1 D 801 802 803 804 805 806 807 808 809 810

Specify 1 F 801 802 803 804 805 806 807 808 809 810 |
Drop @0 101 102 103 104 105 801 802 803 804 805 806 807 808 809 810

end ‘

!Fulker et al.(1999) method
lExtended to sibship sizes > 2,
!Additive and dominance association
IMultiple alleles

get full.mxs IUsing parental genotypes to calculate mean genotypic value of sibship

Idrop QTL linkage effect while keeping association effects in the model

Drop Q 2 1 1 1QTL additive variance ‘ #define n 5 !number of alleles is 5
: i A #define nvar 1 lunivariate
Drop R 2 1 1 !QTL dominance variance #define nsibs 3 Isibshipsize = 3
end #ngroups 4 lone precalculation, one group, two constraint

Gl: calculation group between and within effects

Data Calc
Begin matrices; Istart declaration of matrices
A Full 1 n free !will contain additive allelic effects within
C Full 1 n free !will contain additive allelic effects between
D Sdiag n n free Iwill contain dominance deviations within
F Sdiag n n free Iwill contain dominance deviations between
I Unit1ln lunit vector to multiply allelic effects [1 1 1 1 1]

End matrices;
Begin algebra;
K (ARI') ;

(cer')

end

G2: datagroup: sibship size three
Data NInput=12
Missing =-99.00
Rectangular File=myfile.dat
Labels phl ph2 ph3 alpl a2pl alp2 a2p2 alsl a2sl als2 a2s2 als3 a2s3 pil2 pil3 pi23
z12 713 z23
Select phl ph2 ph3 alpl a2pl alp2 a2p2 alsl a2sl als2 a2s2 als3 a2s3 pil2 pil3 pi23
z12 z13 z23;
!selects 3 phenotypes; one for each sib
!selects 6 allele variables for sibs, alsl is allele #1 from sib #1
!selects 4 allele variables for parents alpl is allele #1 parent #1
Iselects pi’'s and z's
Definition_variables
alpl a2pl alp2 a2p2 alsl a2sl als2 a2s2 als3 a2s3 pil2 pil3 pi23 z12 z13 z23;
!declare the allele variables, pi and z as definition variables
Begin Matrices;

!
|
|
|
|
|
l st .2 all
l
I
|
!

|
\ F Lower nvar nvar Free !familial variance
Q Lower nvar nvar Free IQTL additive variance
l R Lower nvar nvar Free IQTL dominance variance
E Lower nvar nvar Free !non-shared environmental variance
l B Computed n n = Bl !spurious and genuine genotypic effects
W Computed n n = Wl !genuine genotypic effects
( I Ident nsibs nsibs Fix !To multiply E
P Sym nsibs nsibs Fix !To contain pi-hats and to multiply Q
| Z Sym nsibs nsibs Fix !To contain pIBD2’s and to multiply R
] T Stand nsibs nsibs Fix !To multiply F
| K Full 1 4 Fix !First and second allele of sibl
' L Full 1 4 Fix !First and second allele of sib2
: M Full 1 4 Fix !First and second allele of sib3
N Full 1 4 Fix talpl alp2
l 0 Full 1 4 Fix lalpl a2p2
| X Full 1 4 Fix la2pl alp2
| Y Full 1 4 Fix 1a2pl a2p2
S Full 1 1 Fix 'to contain 4: maximum of 4 possible genetically
!different offspring
| G Full 1 nvar Free !grand mean
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End Matrices;
Matrix
Matrix
Matrix
Matrix
Matrix
Matrix
Matrix
Matrix
Matrix

e e
[N
[ENE -
[ESy RN

o
o

Matrix

HHeMNhpe T<XXOZZr Xt

0
10
Specify K alsl a2sl alsl a2sl !genotype sibl
Specify L als2 a2s2 als2 a2s2 !genotype sib2
Specify M als3 a2s3 als3 a2s3 !genotype sib3
Specify N alpl alp2 alpl alp2 Iparental alleles
Specify 0 alpl a2p2 alpl a2p2 !parental alleles
Specify X a2pl alp2 a2pl alp2 Iparental alleles
Specify Y a2pl a2p2 a2pl a2p2 Iparental alleles
Specify P 1
pil2 1
pil3 pi23 1
Specify Z 1
z12 1
z13 z23 1
Specify T .5 Iwhen familial variance is modelled as add genetic
8 &5

Begm Algebra;

= (\part(B,N) + \part(B,0) + \part(B,X) + \part(B,Y)
D = (\part(W,N) + \part(W,0) + \part(W,X) + \part(W,Y)
End Algebra;

) % S ; !Between effects
) % S ; !for Within effects

Means G+V+(\part(W,K)-D) |G+V+(\part(W,L)- D)|G+V+(\part(w M)-D):
Covariance T@(F*F’') + P@(Q*Q') + Z@(R*R’) + I@(E*E')

End

Constrain sum allelic effects = 0
Constraint ni=1
Begin Matrices;

A full 1 n = Al

0 zero 11
End Matrices;
Begin algebra;

= \sum(A) ;

End Algebra;
Constraint 0 = B ;
end

Constrain sum allelic effects = 0
Constraint ni=1
Begin Matrices;
Cfull 1 n=Cl
0 zerol1l
End Matrices;
Begin algebra;

= \sum(C) ;
End Algebra;
Constraint 0 = B ;
end

Appendis IX 235

Appendix IX: Overview of multivariate genetic studies relating behavioural and
neurophysiological indices of brain structure / function to measures of cognitive
abilities. List is restricted to neurophsyiological indices that have been described in
this thesis
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