
















































QTL’s) and sources due to background genetic vari-
ance (Fulker, Cherny, & Cardon, 1995; Fulker, Cherny,
Sham, et al.,1999; Nance and Neale, 1989; Boomsma
and Dolan, 1998). A necessary first step in mapping
complex traits to QTL’s is to establish the amount of
genetic variation that underlies the phenotypic varia-
tion of the trait. If phenotypic variation in a trait is
found to be caused in part by genetic sources, linkage
and/or association studies can be conducted in order
to characterize the effects of specific genetic loci on
the phenotypic variation. If phenotypic variation is not
found to be heritable, the search for effects of specific
genetic loci will not be initiated. However, in some
cases it may be concluded that phenotypic variance in

INTRODUCTION

Recent advances in molecular genetics have made it
possible to partition genetic variance into sources due
to particular genetic loci (quantitative trait loci’s;
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The power to detect sources of genetic and environmental variance varies with sample size,
study design, effect size and the statistical significance level chosen. We explored whether the
power of the classical twin study may be increased by adding non-twin siblings to the classical
twin design. Sample sizes to detect genetic and shared environmental variation were compared
for kinships with only twins, kinships consisting of twins and one additional sibling, and kin-
ships with twins and two additional siblings. The effect of adding siblings to the classical twin
design was considered for univariate and bivariate analyses.

For the univariate case, adding one non-twin sibling resulted in a decrease in sample size
needed to detect additive genetic influences in the presence of environmental influences. How-
ever, adding two additional siblings did not decrease the number of subjects as compared to the
classical twin design. The sample size required to detect common environmental factors was
also greatly decreased by adding one non-twin sibling. Adding two non-twin siblings resulted
in a small additional decrease. In models including additive genetic, dominant genetic, and unique
environmental effects, adding one sibling to a twin family decreased the required sample size
to detect dominant genetic influences. Adding two siblings to a twin family resulted in only a
slight additional decrease in sample size.

In the bivariate case a similar pattern of results was found, in addition to the observation
that the overall required sample size, as expected, was lower than in the univariate case. The
decrease in sample size from bivariate testing was more pronounced in a design with one or two
additional siblings, as compared to a design with twins only. It is concluded that a well con-
sidered choice of family design, i.e. including families with twins and one or two additional sib-
lings increases the statistical power to detect sources of variance due to additive and non-additive
genetic influences, and common environment.
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a trait can not be ascribed to genes because the statis-
tical power to detect sources of genetic variation is in-
sufficient (Svikis, Velz & Pickens, 1994; Pickens,
Svikis, McGue, Lykken, et al., 1991). This will pre-
clude further searching for effects of QTL’s on that par-
ticular trait, even though such QTL’s may be present.

The statistical power of quantitative genetic stud-
ies is influenced by the size of the effect (e.g. heri-
tability), the sample size, the probability level (α)
chosen, and the homogeneity of the sample (Neale and
Cardon, 1992; Cohen, 1992; Tanaka, 1987). Increasing
the sample size is the most common way to increase the
statistical power of a study, but is often limited by re-
sources of time and money. Another means to increase
statistical power is the use of multivariate testing. In the
context of structural equation modeling the statistical
power to detect genetic effects rises as a (non-linear)
function of multivariate testing under the condition that
the measures are correlated (Schmitz, Cherny, and
Fulker, 1998). In the context of partitioned twin analy-
ses it has been shown that choosing a different (e.g.
other than 1 to 1) MZ to DZ ratio influences statistical
power such that an MZ to DZ ratio of 1 to 4 is optimal
for partitioned twin analyses (Nance & Neale, 1989).

In the present paper we focus on increasing the sta-
tistical power of the classical twin study by adding non-
twin siblings to MZ and DZ twin pairs. Since non-twin
siblings share on average half of their segregating genes,
just like DZ twins, adding non-twin siblings to the clas-
sical twin design may provide an efficient way to in-
crease the power to detect sources of genetic and shared
environmental variance. Adding two more siblings to a
twin kinship provides five additional observed covari-
ances, whereas adding a whole new family consisting of
two siblings provides only one additional observed co-
variance. In the present paper we examine the effects of
adding non-twin siblings to twin families on the esti-
mated sample size needed to detect additive genetic (A)
variance (Va), dominant genetic (D) variance (Vd), and
common environmental (C) variance (Vc), with a power
of 80% in the context of structural equation modeling.

METHOD

We calculated covariance matrices for three ex-
perimental designs, which differed in family constitu-
tion. Design 1 included only MZ twins and DZ twins.
Design 2 included families with MZ and DZ twins and
one additional sibling. Design 3 included families with
MZ and DZ twins and two additional siblings. For all
three designs we calculated the sample size needed to
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detect an effect of interest with a power of 80%. The
MZ twins to DZ twins ratio was 1 to 1 for all three de-
signs (thus, the ratio MZ to ‘non MZ sibpairs’, is not
1 to 1 for all designs). It should be noted that we re-
port sample size in subjects and not in twin pairs. The
same number of subjects refers to different numbers
of twin pairs and a different number of families for all
three designs. We will use the terms ‘highest power’
and ‘fewest subjects needed’ to refer to an optimal de-
sign to detect sources of phenotypic variance.

All analyses were carried out using the statistical
software package Mx (Neale, 1997). Estimation of pa-
rameters was obtained by normal theory maximum like-
lihood. Goodness of fit testing was based on the
likelihood ratio tests. First univariate models were con-
sidered. In order to obtain the sample size needed to
detect varying levels of additive genetic variance with
a fixed power level of (1 − β) = .80, covariance matri-
ces were calculated with sources of additive genetic
variance (Va) accounting for 10% to 90% of the phe-
notypic variance in the presence of sources of common
environmental variance (Vc) accounting for 00%, 10%,
and 20% of the variance. Remaining variance was at-
tributed to unique environmental (E) sources of vari-
ance (Ve). To detect sources of Vc covariance matrices
were calculated with Vc accounting for 10% to 90% of
the phenotypic variance in the context of sources of Va

accounting for 00%, 10%, and 20% of the phenotypic
variance. In addition, covariance matrices were calcu-
lated with sources of variation due to A, D (dominant
genetic variance) and E. Only the situation in which
dominance was ‘complete’ (Va to Vd = 2 to 1; see ap-
pendix I) was considered. In the ADE-models the total
genetic variance, i.e. Va and Vd together accounted for
30% to 90% of the total phenotypic variance. For all
situations, remaining variance was attributed to Ve.

Since non-twin siblings, like DZ twins, share on
average half of their genes, expectations for non-twin
sibling covariances were modeled similarly to expec-
tations for DZ covariances.

In the ACE-models the expected phenotypic vari-
ance (σ2) of twins and siblings is Va + Vc + Ve, the ex-
pected MZ covariance Va + Vc, and the expected DZ
and sibling covariance .5 Va + Vc. In ADE-models, the
expected phenotypic variance is Va + Vd + Ve, the ex-
pected MZ covariance Va + Vd, and the expected DZ
and sibling covariance .5 Va + .25 Vd.

It is known that the use of a multivariate pheno-
type, as opposed to a univariate phenotype, results in
a gain of statistical power if the multivariate traits are
correlated (Schmitz et al.1998). To find out how much



adding siblings andusing a multivariate phenotype af-
fects statistical power we also looked at several bi-
variate designs. We calculated covariance matrices for
two traits with a phenotypic correlation of .50. Both
traits could be influenced by A, C, and E or by A, D,
and E. Total influences of sources of A, C or D, and E
were uniform for each trait. The phenotypic correlation
between the two traits could be due to additive genetic
correlation (rA), dominant genetic correlation (rD),
common environmental correlation (rC), or to unique
environmental correlation (rE), depending on the spe-
cific situation that was considered. Figure 1 depicts the
construction of covariance matrices for kinships con-
sisting of twins and one additional sibling for a bi-
variate ADE-model (Cholesky decomposition) in which
rE is absent and all phenotypic correlation is due to rA
and rD. All latent variables have unit variance.

Power calculations were carried out by fitting the
known model to the exact (population) covariance ma-
trices as described in Neale and Cardon (1992). In mod-
els which contain a parameter which is known to be zero,
the zero parameter can either be fixed at zero or freed
(estimated) while computing the power to detect one of
the other non-zero parameters. For example, when treat-
ing the ACE-model in which Vc is zero as an AE-model,
the power to detect sources of variation due to A is sig-
nificantly higher than when the ACE-model is treated as
an ACE-model, i.e. with Vc estimated as a free param-
eter. In the power calculations the zero-parameter was
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estimated as a free parameter because we are interested
in computing the power to detect Va, in ACE-models,
regardless of the value of Vc (and vice versa). The same
reasoning applies to the bivariate calculations.

Constraining a certain set of parameters to zero and
refitting the model provides the non-centrality parame-
ter. From this non-centrality parameter the sample size
required to reject the false model with a power of 80%
and a significance level α of .05 can be calculated (Mar-
tin et al.,1978; Hewitt and Heath, 1988) and is conve-
niently supplied by Mx.

RESULTS

Univariate Models

ACE-models

We fitted full univariate models with sources of
variation due to additive genetic (A), common environ-
mental (C) and unique environmental influences (E).
Dropping either genetic or common environmental 
parameters and refitting the model provides the non-cen-
trality parameter. With Mx (Neale, 1997) the cor-
responding number of subjects required to detect the
parameter that was dropped with a power of 80% and α
of 5% was calculated for 1 degree of freedom. Results
concerning the estimated sample size (in subjects)
needed to detect Va in ACE-models for the three designs
are depicted in Figure 2 (and appendix II). Figure 2a con-

Fig. 1. Pathdiagram for the bivariate ADE-model, cholesky decomposition. Example for twins and one additional sibling, no unique environ-
mental correlation (rE). The covariance between trait 1 and trait 2 is (a11*a21) + (d11*d21) and the correlation between trait 1 and trait 2 is
(a11*a21) + (d11*d21)/√(σ2

1*σ2
2).



cerns low values of Va (10% − 20%), Figure 2b concerns
intermediate values of Va (30%–50%), and Figure 2c
concerns high values of Va (60%–90%) accounting for
the total phenotypic variance. All values of Va are re-
ported three times, i.e. in the context of values of Vc of
0%, 10%, and 20%.

As can be seen in Figure 2a, 2b, and 2c, for vari-
ous values of Va and Vc, design 2 (families consisting
of MZ and DZ twins and one non-twin sibling) is the
most optimal design to detect sources of variation due
to A, i.e. with design 2 fewer subjects are required to
achieve a power of 80% (see appendix II). The number
of subjects needed to detect a fixed value of Va is on
average 9.3% more in the classical twin design (design
1) compared with a design with twins and one additional
sibling. This can result in 2849 fewer subjects that are
needed with design 2 to detect an additive genetic in-
fluence of 10% compared with the classical twin design.

Including families with twins and two additional
sibs, is lesspowerful than including families with twins
and one additional sibling, and also less powerful than
including families with twins only for the detection of
Va; adding two siblings at the cost of the total number
of MZ twins is disadvantageous, but adding one sib-
ling is ideal.

Results for detecting common environmental in-
fluences are given in Figures 3a, 3b, and 3c, for low,
moderate, and high values of Vc respectively (see also
Appendix III).
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Under various values of Vc and Va, the power to
detect sources of variation due to C rises substantially
when one sibling is added to the classical twin design;
on average 50.4% fewer subjects are needed as com-
pared to the classical twin design (design 1). Adding
two siblings decreases sample size even more, but not
as dramatically as the decrease from no additional sib-
lings to one additional sibling.

Many empirical studies suggest models in which
sources of variation due to C are of less importance
than sources of variation due to A (Plomin, DeFries, &
McClearn, 1990). Therefore, we also calculated the sam-
ple size required to detect small values of Vc in the con-
text of higher values of Va. Figure 4 depicts the number
of subjects needed to detect values of Vc of 10% and
20% in the context of values of Va of 20% , 30%, 40%
or 50% (Appendix IV).

As expected, sample size required to detect Vc with
a power of 80% decreases as a result of higher values
of Vc and higher values of Va. Comparing the sample
size required to detect sources of variation due to A
(Figure 2b) with the sample size required to detect
sources of variation due to C, shows that in the realis-
tic situation where Va > Vc sources of variation due to
C are very difficult to detect. Even if the sample size is
large enough to detect sources of variation due to A, the
small value of Vc may still go undetected. If for exam-
ple the true model is an ACE-model with Va = 50%, Vc

= 20%, and Ve = 30%, and the total sample size 328

Fig. 2 a,b,c.Required sample size to detect sources of variance due to additive genetic effects in ACE models for three different family de-
signs with a power of 80%. Design 1 = MZ and DZ twins only, Design 2 = MZ and DZ twins and one additional sibling, Design 3 = MZ and
DZ twins and two additional siblings.



(just enough for design 1 to detect Va of 50%, with
power of 80%), Vc will not be detected and the AE-
model will be proposed as the most parsimonious model.
This results in a biased estimate of Va (in this case Va
is estimated to be 70%).

Adding siblings to the classical twin design de-
creases the sample size required to detect both Va and
Vc and has the largest effect on the sample size required
to detect Vc (i.e. 50.4% fewer subjects needed for Vc,
9.3% fewer subjects needed for Va). Therefore, the bias
towards overestimating values of Va as a result of not
detecting Vc in situations where Va > Vc, is less likely

Power and Sibship Size 151

to be present in designs where siblings are added to the
classical twin design.

ADE-Models

We also fitted full univariate models with sources
of variation due to additive genetic (A), dominance (D)
and unique environmental influences (E). Since a DE-
model is unrealistic we report the sample size required
to detect sources of variation due to A andD (2 df test)
and to detect sources of variation due to D (1 df test)
with a power of 80%. Results for detecting Va and Vd,
or Vd are given in Figures 5a and 5b (and appendix V).

Fig. 3 a,b,c.Required sample size to detect sources of variance due to common environmental influences in ACE models for three different
family designs with a power of 80%.

Fig. 4. Required sample size to detect sources of variance due to common environmental influences in ACE models where Va > Vc, for three
different family designs with a power of 80%.



Under various values of Va and Vd, with fixed ratio
of Va to Vd is 2 to 1, adding one sibling to a twin family
decreases the sample size required to detect Vd. Adding
two siblings decreases sample size even more but less
than the decrease due to adding one sibling. Absolute ef-
fects are slightly higher with increasing values of Va and
Vd. Figure 5a also emphasizes the very large sample size
that is required to detect dominant genetic influences.
Even the largest possible value of Vd under complete
dominance with the most optimal design will go unde-
tected if the sample is smaller than 1776 subjects.

Sample sizes required to detect both Va and Vd si-
multaneously are considerably smaller as compared to
sample sizes required to detect Vd. In contrast, how-
ever, adding siblings does not decrease sample size
needed to detect Va and Vd simultaneously. In fact, a
design with one or two siblings requires somewhat
more subjects to detect Va and Vd with a power of 80%,
as can be seen in Figure 5b. It should be noted how-
ever that the number of subjects needed to detect Va

and Vd at the same time is considerably less than the
number of subjects needed to detect Vd only. This im-
plies that if the sample size is large enough to detect
Vd it will also be sufficient to detect Va and Vd.
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In conclusion, to optimize the power to detect Vd,
a design with additional siblings, as compared to a de-
sign with twins only, is preferred.

Bivariate Models

ACE-Models

To detect sources of variance due to additive ge-
netic influence (A), we calculated both the sample size
required to detect all sources of Va (df = 3; paths a11,
a21, and a22 in Figure 1) and the required sample size to
detect the common genetic pathway (df = 1; path a21).
We considered the test for the detection of the common
pathway to be a test for the presence of a genetic cor-
relation (rA). The following situations to detect sources
of variance due to A were considered: a) The genetic
correlation (rA) is ‘moderate’ and equal to the common
environmental correlation (rC) and to the unique envi-
ronmental correlation (rE). Variances due to A, C and
E (uniform for both traits) are 40%, 10%, and 50% re-
spectively of the phenotypic variance. b) rC is absent,
rA is high (.80), and rE is small (.36), variances due
to A, C and E are 40%, 10%, and 50% respectively.

Fig. 5 a,b.Required sample size to detect sources of variance due to dominant genetic influences (a) and total genetic (dominant & additive
influences)(b) influences in ADE models, for three different family designs with a power of 80%.



c) Variances due to C are absent. rA is .60, rE is .27,
variances due to A and E are 70% and 30% respec-
tively. As mentioned before, all parameters were es-
timated, as opposed to constraining these parameters,
which were zero in the full model. It should also be
noted that considering the tests for total Va, total Vc, and
total Vd to be 3 df-tests is a conservative approach, as it
could be argued these are actually 2 df-tests, or tests
with df’s somewhere between 2 and 3. Testing, for ex-
ample, whether either or both univariate genetic vari-
ances equal zero, implies that the genetic covariance is
zero. If variances due to additive genetic influences for
both traits equal zero, a correlation between these
sources of variance is not possible. In other words, if
the sample size required to detect each of the univa-
riate variances due to additive genetic influences is
insufficient, a correlation due to additive genetic in-
fluences can also not be detected. Therefore, consider-
ing the test for the power to detect ‘total Va’ (i.e. both
univariate variances due to additive genetic influences
and the correlation due to additive genetic influences in
the bivariate case) a 3 df test will provide an overesti-
mation of the sample size needed for a power of 80%.
Results of situation a, b, and c for the three different
kinships, are given in Table I.

As can be seen in Table I the same pattern of re-
sults is found in the bivariate case as in the univariate
case; a design with one additional sibling is optimal for
the detection of Va in ACE-models. In addition, sig-
nificantly fewer subjects are needed in the bivariate
case as compared to the univariate case. Depending on
whether the phenotypic correlation is due to rA, rC, or
rE, the sample size required to detect Va may decrease
and is lowest in cases where there is no influence of
common environmental sources (i.e. statistical power
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is highest in these cases). However, when there are uni-
variate common environmental influences but no com-
mon environmental correlation, the sample size required
to detect variance due to additive genetic influences in-
creases. Comparing situations a, b, and c leads to the
conclusion that the power to detect sources of variance
and covariance due to A (df 3) is highest (and the re-
quired sample size is smallest) when there is no uni-
variate common environmental source of variation.
However, if there are common environmental sources
of variation, sources of variance due to A are easier to
detect when there is also a correlation between these
two univariate common environmental sources of vari-
ation, and again a design with one additional sibling is
optimal.

To detect sources of common environmental
sources of variation, we calculated both the power to
detect all sources of variation due to C (df = 3) and the
power to detect the common pathway (df = 1), which
is a test to detect the environmental correlation (rC).
We considered situations analogous to the situations in
which power was calculated to detect sources of vari-
ation due to A; a) The common environmental corre-
lation is ‘moderate’ and equal to the genetic correlation
and to the unique environmental correlation, i.e. rC =
rA = rE = .50. Uniform univariate variances due to A,
C and E are 10%, 40%, and 50% respectively. b) rA is
absent. rC is high (.80), and rE is small (.36), variances
due to A, C and E are 10%, 40%, and 50% respectively,
c) Variances due to A and rA are absent. rC is .60, rE
is .27, variances due to C and E are 70% and 30% re-
spectively. Again, for all situations the phenotypic cor-
relation was .50. Results are given in Table II.

Although the results in the bivariate case resem-
ble those in the univariate case (i.e. a design with two

Table I. Total samplesize (in number of subjects) needed to detect additive genetic influences in full bivariate ACE models under three dif-
ferent sibship sizes with power (1 − β) = .80 and α = .05

Va = 40% rA = .50 Va = 40% rA = .80 Va = 70% rA = .60
Vc = 10% rC = .50 Vc = 10% rC = .00 Vc = 00% rC = .00
Ve = 50% rE = .50 Ve = 50% rE = .36 Vc = 30% rE = .27

all Va (df = 3) rA (df = 1) all Va (df = 3) rA (df = 1) all Va (df = 3) rA (df = 1)
design 1 660 2392 782 884 156 270
design 2 564 1917 678 735 147 237
design 3 680 2260 820 876 180 284

Note: MZ/DZ ratio = 1/1; design 1 = twins only, design 2 = twins and one additional sibling, design 3 = twins and two additional siblings.
‘All V a’ refers to both univariate variances and the genetic correlation.
In order to calculate the total number of families needed, all cells concerning design 1 need to be divided by 2, all cells concerning design 2
need to be divided by 3, and all cells concerning design 3 need to be divided by 4.



additional siblings is optimal for the detection of Vc),
the difference between design 2 and design 3 (i.e.
adding one or two siblings) in the bivariate case is more
substantial. Whereas in the univariate case only a small
additional effect was found, in the bivariate case 4 to
5 times less subjects are needed with two additional
siblings as compared to one additional sibling.

ADE-Models

We calculated covariance matrices for two traits
that were influenced by A, D, and E in the context of
complete dominance. Sources of variance due to A and
D accounted for 40% and 20% respectively of the total
phenotypic variance. We assumed that the ratio Va to
Vd remained equal over the two traits. This implies that
rA = rD (see appendix I). Three situations were con-
sidered: a) rA = rD = .80,; b) rA = rD =.50; c) rA = rD
= .30. For all three situations the phenotypic correla-
tion was fixed at .50 by attributing all remaining co-
variance to rE. We report the total number of individual
subjects needed to detect sources of total Va and Vd due
to A and D (df = 6), rA & rD (df = 2), total D (df = 3),
and rD (df = 1) for a power of 80%. Results are given
in Table III.

Analogous to the univariate case a design with two
additional siblings is optimal for the detection of Vd

and a design with twins only is optimal for the detec-
tion of Va and Vd simultaneously. Comparison with the
univariate results shows that in a design with twins
only, fewer subjects are needed to detect sources of
variance due to D as a result from bivariate testing. This
effect, however, is stronger when a design consisting
of twins and two additional siblings is used, suggest-
ing that in addition to the decrease in sample size as a
result from bivariate testing, adding siblings will de-
crease the sample size required to detect sources of
variance due to D even further.
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Designs Where Only Sibs of mz Twins are Included

In the previous analyses all families were of the
same structure; consisting of MZ and DZ twins only,
or with one or two additional siblings. For several rea-
sons this may not always be realistic. For illustrative
purposes, we included two other designs in which one
(design 4) or two siblings (design 5) were added to MZ
twin families, but not to DZ families. Analyses were
run for a few ‘standard’ situations of the ACE-models
and ADE-models for univariate testing only. Results
for ACE and ADE models are given in Table IV.

Comparison of the results of designs 4 and 5 and
the results of designs 2 and 3 shows that in ACE-mod-
els a design consisting of MZ twins and one additional
sibling and DZ twins only (design 4) is optimal for the
detection of Va, and performs even better than design 2.
For the detection of Vc in ACE-models design 3 and 5
are both optimal.

In the context of ADE-models, design 3 (MZ/DZ
twins with two additional siblings), requires the smallest
sample size and is more optimal than design 4 or 5 for
the detection of sources of variation due to dominance.

CONCLUSION

We demonstrated that with a fixed power of 80%,
a probablity level of 5% and under varying levels of
heritability and common environmental influences,
adding one sibling to the classical twin design signifi-
cantly decreases the number of subjects that are needed
to detect each of these sources of variation. Adding two
siblings to a twin pair yields an additional decrease of
sample size to detect sources of variation due to the
common environment but is not optimal for the detec-
tion of additive genetic influences. If the trait is influ-
enced by additive and non-additive genetic factors,
adding one sibling to the classical twin design decreases
the sample size needed to detect sources of variation

Table II. Total samplesize (in number of subjects) needed to detect common environmental influences in full bivariate ACE models under
three different sibship sizes with power (1 − β) = .80 and α = .05

Va = 10% rA = .50 Va = 10% rA = .00 Va = 0% rA = .00
Vc = 40% rC = .50 Vc = 40% rC = .80 Vc = 70% rC = .60
Ve = 50% rE = .50 Ve = 50% rE = .36 Ve = 30% rE = .27

all Vc (df = 3) r C (df = 1) all Vc (df = 3) r C (df = 1) all Vc (df = 3) rC (df = 1)
design 1 444 1498 518 560 100 156
design 2 213 774 249 279 48 96
design 3 48 760 44 268 16 108

Note: see table 1 for definitions.
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due to dominance. Adding two siblings decreases the
number of required subjects somewhat more but the de-
crease is relatively small (compared to the decrease due
to adding one sibling). These effects are more pro-
nounced in the bivariate case than in the univariate
case. An additional benefit of adding siblings is that
these designs, as compared to the classical twin design,
are less likely to result in an overestimation of additive
genetic influences as a result of not detecting small
sources of common environmental influences.

We modeled the sibling covariances under the as-
sumption that age differences in heritability are not im-
portant. A more complex model would take into
account age differences between non-twin siblings. It
is known that for some measures heritability increases
with age as a result of amplification of genetic effects
across ages (e.g. intelligence; Boomsma, 1993),
whereas for other measures heritability estimates may
decrease with age (e.g. problem behaviour; Van der
Valk et al., 1998). Assuming that the same genes op-
erate across the age span, adding siblings who are older
than the twins will increase power when heritability in-
crease with age, and will decrease power when heri-
tability estimates decrease with age. Similarly, adding
parents will increase power to detect genetic factors if
heritability increases with age.

Schork (1993) noted the dramatic improvement in
statistical power resulting from the use of larger sibships
for the detection of QTL effects. In addition, Dolan,
Boomsma and Neale (1999) demonstrated the value of
adding non-twin siblings to two-sibling- (or DZ twin-)
families for the detection of codominant QTL effects.
Our aim was to determine whether the use of an ex-
tended twin design, as needed for the detection of QTL-
effects, would also be useful for the detection of overall
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Table IV. Total sample size (in number of subjects) needed to de-
tect additive genetic, dominance and common environmental influ-
ences in univariate ACE-models and ADE-models for designs with

including MZ and DZ twins and siblings added to MZ families
only, a power of (1 − β) = .80, and significance level α = .05

Va = 40% Vc = 40% Va = 40% Va = 40%
Vc = 10% Va = 10% Vd = 20% Vd = 20%

effect  
detected→ Va Vc Va + Vd Vd

design 4 705 338 83 6313
design 5 744 285 84 5313

Note: MZ/DZ ratio = 1/1: design 4 = Mz twins and one additional
sibling, DZ twins only, design 5 = MZ twins and two additional sib-
lings and DZ twins onl.



sources of variance (i.e. A, C, and D). Our calculations
showed that without the need to increase total sample
size, adding one sibling to the classical twin design im-
proves the statistical power by a large extent to detect
sources of variation due to common environmental in-
fluences, additive genetic influences and dominance.
Adding siblings and using a bivariate phenotype results
in gain of statistical power which can not only be as-
cribed to bivariate testing but also to the use of an ex-
tended twin design.

In conclusion, adding at least one sibling to the
classical twin design, as opposed to a design with twins
only, will provide a significant gain in statistical power
to detects sources of variation due to A, C, and D. An
attractive side-effect of a design with additional sib-
lings is that it is also beneficial for the detection of
QTL-effects.

APPENDIX I

Consider a biallelic trait with alleles B and b. Let
a be the effect of genotype BB on the phenotypic mean,
−a the effect of bb, and d the effect of Bb on the phe-
notypic mean. Assuming equal allele frequencies of B
and b, the mean genotypic effect on the phenotypic
mean is 1/2 d.The total genetic variance (σ2g) equals
1/2 a2 + 1/4 d2, = Va + Vd

For complete dominance d = a. Substituting d for
a in the formulae for the genetic variances, gives: Va =
1/2 a2 and Vd 1/4 a2, thus Va = 2 Vd
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Now consider a bivariate model with latent vari-
ances scaled to unity, (see figure 1) and

• uniform genetic influences over traits: Va 1 =
Va 2 and Vd 1 = Vd 2

• assumption of uniform d to a ratio over traits
(a11)

2/(d11)
2 = (a21)

2/(d21)
2 = (a22)

2/(d22)
2

• rA = a11 * a21/√{(a11)
2* [(a21)

2 + [(a22)
2]} which

simplifies to rA = a21/a11

• rD = d11 * d21/√{(d11)
2* [(d21)

2 + [(d22)
2]} which

simplifies to rD = d21/d11

This implies that the additive genetic correlation
equals the dominant genetic correlation.
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APPENDIX V

Samplesize (in subjects) needed to detect additive genetic and dominance influences in ADE-models.
See Appendix II for definitions

Va = 20% Va = 30% Va = 40% Va = 50% Va = 60%
Vd = 10% Vd = 15% Vd = 20% Vd = 25% Vd = 30%

Va & V d Vd Va & V d Vd Va & V d Vd Va & V d Vd Va & V d Vd

design 1 148 22808 76 11036 42 5958 42 5958 22 3518
design 2 156 11790 84 5631 48 3081 48 3081 27 1950
design 3 148 11328 84 5236 48 2784 48 2784 28 1776





       

Twin–singleton differences in intelligence?
Daniëlle Posthuma1, Eco JC De Geus1, Nico Bleichrodt2 and Dorret I Boomsma1
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The twin method has been criticised for its alleged non-generalisability. When population
parameters of intellectual abilities are estimated from a twin sample, critics point to the twin–
singleton differences in intrauterine and family environments. These differences are suggested to
lead to suboptimal cognitive development in twins. Although previous studies have reported twin–
singleton differences in intelligence, these studies had two major drawbacks: they tested young
twins, and twins were compared with (genetically) unrelated singletons. To test accurately
whether twin–singleton differences in intelligence exist, a group of adult twins and their non-twin
siblings were administered the Dutch WAIS-III. The group was large enough to detect twin–
singleton differences of magnitudes reported in earlier investigations. The data were analysed
using maximum likelihood model fitting. No evidence of differences between adult twins and their
non-twin siblings on cognitive performance was found. It is concluded that twin studies provide
reliable estimates of heritabilities of intellectual abilities which can be generalised to the singleton
population. Twin Research (2000) 3, 83–87.

Keywords: twin study, intelligence, twins, singletons

Introduction

Classic behavioural genetic studies provide statis-
tical estimates of heritabilities that form the first step
in the search for genes for complex behaviour.1,2 A
large part of these behavioural genetic studies are
based on twin samples. These samples have some-
times been criticised for their alleged non-general-
isability; since twins are ‘special’ they may not be
representative of singletons. Especially in the field of
cognitive abilities twins are generally considered to
be at a disadvantage compared with singletons.3–6

Twins share the womb at the same time and
consequently share prenatal nutrition provided by
the mother’s dietary intake. When preparing for
labour, twins compete for the best position. This
suboptimal intrauterine environment may lead to
prematurity, low birth weight and lower weight-for-
gestational age,7 which in turn in several cases have
been associated with low childhood IQ.8–12 Apart
from a general suboptimal intrauterine environment
for both twins, it is known that one of the two
foetuses will suffer more from this suboptimal
environment than the other.13 It is usually the
second-born twin that experiences the greatest
adverse effects of sharing the womb.14

Beside these adverse effects of sharing the womb
twins may suffer from twin-related stresses in the

family environment in which they are reared. A
multiple birth puts stress on a family which may
have a negative effect on the (cognitive) develop-
ment of a twin pair. In some studies it is argued that
especially for monozygotic (MZ) twins, who are very
much alike, limitation of resources and competition
may lead to negative influences for at least one twin
member.3

A relatively small number of studies has been
devoted to detecting twin–singleton differences in
cognition.4,6,15 The one study that stands out was
conducted by Record, McKeown and Edwards6 who
compared an impressive number of singletons, twins
and even a few triplets. Verbal reasoning scores from
the British eleven-plus examination were gathered
from 48 913 singletons, 1082 twin pairs and eleven
triplets. Standard verbal reasoning scores were sig-
nificantly lower for twins (standard verbal IQ 95.7)
than for singletons (100.1). Triplets performed even
worse (91.6). The authors investigated whether this
4.4 standard points difference between twins and
singletons could be attributed to effects of maternal
age, birth weight, gestational age, zygosity and
whether a twin was born first or second. None of
these factors could explain the difference.

Record et al6 also investigated whether twins of
whom one had died shortly after birth differed from
singletons; although for these ‘twins’ a slightly lower
score than normal singletons (1.9 points) was found,
this difference was much smaller than the 4.4 points
difference between singletons and twins of which
both members were still alive. Based on this observa-
tion the authors concluded that the difference of
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4.4 points between singletons and twins cannot be
attributed to negative effects of sharing the womb,
but instead must be sought in the environment in
which twins are reared. However, since Record et al6

did not control for any difference in twin families
and singleton families, they could not rule out
selection biases in the sampling of twin and non-
twin families. Such biases may exist because twins
as a group may have a slightly different genetic or
social background than singletons.

Nathan and Guttman16 tried to overcome selection
bias in twin and singleton families by comparing
twins and singletons (aged 8–13 years) who were
reared in the same kibbutz. A kibbutz is an Israeli
community in which children are collectively
reared. So although the twins and singletons in this
study did not have the same genetic background,
they were accurately matched for family environ-
ment and childrearing practices. In this study dizy-
gotic (DZ) twins performed worse than MZ twins
and singletons. According to the authors, however,
this difference could be totally ascribed to the
relatively few years of schooling of the group of DZ
mothers. Thus, in spite of the attempt to match twins
and singletons this study is also an example of
biased family sampling.

In addition to comparing twins with familially
unrelated singletons, most previous studies have
been conducted using young twins.9,10,17–20 Because
these studies show that twins recover any deficits in
intellectual performance by 6–8 years of age,18–20 the
comparison of twins and singletons at ages below
8 years does not provide a good indication of adult
twin–singleton differences. To the best of our knowl-
edge studies comparing the IQ of adult twins and
genetically related singletons have not yet been
conducted.

In the present study mean scores of adult MZ and
DZ twins on intellectual ability are compared with
the mean scores of their non-twin siblings. Non-twin
siblings make an ideal control group; both genetic
background and early familial environments are
perfectly matched.

Method

Subjects

The subjects were 358 family members from a total of
152 twin families who participated in a project
investigating the genetics of adult brain function.
The Dutch version of the Wechsler Adult Intelli-
gence Scale-III (WAIS-III)21 was administered when
the participants visited the laboratory for a com-
bined session of neuropsychological and electro-
encephalographic measurements. All subjects were
recruited from the Netherlands Twin Registry. The

twins had previously participated in one of two
previously conducted studies in which zygosity was
assessed by blood group polymorphisms and DNA
typing.22,23

In total, 98 siblings, 101 MZ twins, 153 DZ twins
and 9 triplets participated. Since the group of triplets
was small, we discarded the data of the last born of
the triplets and treated the remaining two members
as if they were twins. This left 98 siblings and
260 twins. The study recruited twin pairs and at
most two of their non-twin siblings. It also included
single twins (co-twin refused participation) and
siblings only (both twins refused). Thus, families
consisted of at least one member and at most four
members. Table 1 shows the number of families with
a particular constitution, eg 27 MZ families consist-
ing of two twin members and no siblings partici-
pated; siblings from nine families participated with-
out the twins. Due to administrative errors five
individual test scores are missing subtest digit
symbol-coding, four individual test scores are miss-
ing subtests block design and digit symbol-free
recall, and one individual test score is missing
subtest digit symbol-pairing and subtest letter-num-
ber sequencing. Results are based on the available
number of subjects per subtest (see Table 3).

Mean age and sex distribution per group are
displayed in Table 2. Of the 98 non-twin siblings, 35
were younger than the twin from the same family,
and 63 were older. Distribution of sex did not differ
in the DZ twins and the siblings. Slightly fewer
female MZ twins than male MZ twins participated.

Table 1 Sample configuration

number of non-
twin siblings

0 1 2

mz twins 2 twins 27 18 3 total mz twin pairs: 48
1 twin – 4 1

dz twins 2 twins 32 27 10 total dz twin pairs: 69
1 twin 12 8 1

no twin – 7 2
total non-twin siblings: 64 + 34 = 98

Table 2 Mean age and sex distribution per group

Mean age
Group Male Female Total in years (sd)

mz twins 58 43 101 39.7 (12.63)
dz twins 70 89 159 37.3 (11.87)
sibs 46 52 98 37.1 (12.02)

sd = standard deviation

Intelligence in twins and singletons
y D Posthuma et al

84



Procedure

Eleven subtests of the Dutch WAIS-III were admin-
istered in a fixed order. Subtests included block
design, letter–number sequencing, information,
matrix reasoning, similarities, picture completion,
arithmetic, vocabulary, digit symbol coding, digit
symbol pairing and digit symbol free recall. Age and
sex normalised scores for the Dutch WAIS-III are not
yet available; raw scores were used in the analyses
throughout. All subjects were paid Dfl. 50.- for
participation.

Statistical analyses

As can be seen from Table 1 the data were charac-
terised by the varying number of participating family
members; families consisted of one to four members
which could be any combination of one or two twins
and/or non-twin siblings. This variability in number
of observations per family causes serious computa-
tional problems. In Mx24 the handling of such
‘incomplete’ data is implemented by calculating
twice the negative log-likelihood (–LL) of the raw
data for each family, with the following formula:

–LL = –k log (2π) + log |Σ| + (xi – µi)' Σ
–1 (xi

– µi),

where k (k = 1, 2, 3 or 4) denotes the number of
observed variables within a family, Σ (4 3 4) is the
covariance matrix of family members, xi (for i = 1, 2,
3, 4) is the vector of observed scores, µi is the column
vector of the estimated means of the variables, and
|Σ| and Σ–1 are the determinant and inverse of
matrix Σ, respectively.

When two models which provide –2LLs are
nested, subtracting the two –2LLs from each other
provides a ∆(–2LL) which has a ø2 distribution. A
high ø2 against a low gain of degrees of freedom (∆df)
denotes a worse fit of the second, more restrictive
model relative to the first model.

Four univariate nested models were fitted using
this procedure. In the first model all means were
estimated individually. The second model is the
same as the first model with two extra equality
constraints; one on the means of both members of the
MZ twin pairs and another one on the means of both
members of the DZ twin pairs. The third model is the
same as the second model but further constrains the
means of the MZ twin pairs and the DZ twin pairs to
be equal. The fourth is the same as the third model
but with an extra equality constraint on the means of
all twins (mz and dz) and siblings.

Model 2 tests whether the means of first born twins
and second born twins within zygosity groups are
significantly different. The third model serves as a
test of the assumption that the means in MZ twins

and DZ twins do not differ. Model 4 tests whether the
means of twins and siblings are significantly
different.

For all models the variances of all twin members
and all siblings were constrained equal, and all
covariances of all twin sib pairs, the covariance of
two sibs within one family and the covariance of the
DZ twins were set equal.

Statistical power

We calculated the necessary sample size for each
group (singletons and twins) based on the effect size
as found in Record et al’s study.6 A measure of effect
size that is independent of scaling is Cohen’s d,
which is calculated as follows:

d = (µ1 – µ2)/σ

where µl is the mean of the first group (singletons),
µ2 is the mean of the second group (twins) and σ is
the common standard deviation.25

Record et al6 found a 4.4 standard points differ-
ence between the two groups. The standard devia-
tion of an IQ score is by definition 15. The effect size
in the Record et al study was thus 0.29, which is
considered a small effect. For a one-tailed test with
α = 0.05, 1 – â = 0.80, and two related samples, 70
individuals per group (singletons and twins) are
needed to detect an effect of such small magnitude.26

We had 260 twins and 98 non-twin siblings giving us
the power to detect effect sizes well below 0.29.

Results

The observed means and standard deviations of
WAIS-III subtests per group are displayed in Table 3.

Table 3 Observed means and standard deviations of WAIS-III
subtests per group

mz twin dz twin sibs
subtest (N = 101) (N = 159) (N = 98)

Block design 26.20 (8.96) 25.72 (9.28)a 26.25 (8.85)b

LN sequencing 12.21 (3.42) 11.21 (2.61) 11.86 (2.90)c

Information 23.41 (6.32) 23.93 (6.00) 24.11 (6.54)
Matrix reasoning 19.36 (3.38) 19.16 (3.44) 19.40 (3.28)
Similarities 26.91 (5.58) 27.17 (5.43) 27.33 (5.58)
Picture completion 20.86 (2.55) 20.72 (2.60) 20.55 (3.18)
Arithmetic 13.86 (3.86) 13.75 (3.89) 14.70 (4.12)
Vocabulary 49.07 (11.60) 48.26 (10.55) 47.83 (13.54)
DS coding 76.09 (15.22) 77.66 (19.52)d 78.83 (15.86)e

DS free recall 7.63 (1.20)f 7.54 (1.12)d 7.54 (1.27)c

DS pairing 13.25 (4.25) 12.67 (4.19) 12.92 (4.02)C

abased on 157 observations dbased on 158 observations
bbased on 96 observations ebased on 94 observations
cbased on 97 observations f based on 99 observations
LN = Letter-number DS = Digit symbol
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To test whether the above differences in mean scores
indicated true differences, univariate analyses in Mx
using twice the negative log-likelihood were run.
The results for these analyses are presented in
Table 4, from which it can be seen that comparison of
model 4, the most parsimonious model, with
model 1 did not cause a significant worsening of the
fit for any of the WAIS III subtests. In other words, for
all subtests a model which estimates all means to be
equal fits better than a model in which all means are
estimated separately. There was no reason to believe
that means of twins and singletons in our sample
differed in IQ.

We did find, however, that comparison of model 4
(all means equal) with model 3 (separate means for
twins and siblings) showed a significant worsening
of the fit for subtests arithmetic and digit symbol-free
recall, in the sense that on arithmetic singletons
performed slightly better than both MZ and DZ
twins, and on digit symbol-free recall MZ twins
performed slightly better than both DZ twins and
singletons. We also found that MZ twins performed
significantly better than DZ twins on subtest letter–
number sequencing.

Discussion

It has been suggested that twins have an intellectual
disadvantage compared with singletons and that
twin samples are not representative of the normal
population. If true, this might influence general-
isability of heritability estimates obtained in twin
studies, for instance by a restriction of range of IQ
scores. In the Record et al6 study a standard IQ score
difference of 4.4 points was found between twins
and singletons. Our study had enough statistical
power to detect an effect of at least the same
magnitude on each of the individual IQ subtests. We

found, however, no evidence of a twin–singleton
difference. In fact, means and standard deviations in
our study showed no differences at all between
twins and singletons. In the Record et al6 study,
where these differences were found, a priori differ-
ences in social class or genetic background of twin
families and singleton families could never be ruled
out. Since our twins and singletons came from the
same family, social class and genetic background
were perfectly matched across twin families and
singleton families.

Our results are in line with an earlier report by
Kallman27 who administered the Wechsler Bellevue
Scale to 134 twin pairs (aged 60–89 years), and
compared the scores of these twins to standardised
scores based on a comparable group of singletons.
Kallman concluded that there was no significant
difference between twins and singletons in measures
of intellectual performance.

Although in our study no evidence was found for
twin–singleton differences in intellectual ability,
one cannot necessarily generalise from this in
respect of personality, lifestyle, disease susceptibil-
ity or mortality rates. However, recent comparisons
of twins and singletons on problem behaviour,28

mortality rates29 and psychiatric symptoms30 have
not suggested twin–singleton differences in these
fields either. All in all, significant disadvantages of
twins in comparison with singletons seem to be
implied rather than observed.
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Table 4 Fit indices for nested sequence of models fitted to raw data of WAIS-III subtest scores of MZ twins, DZ twins and siblings

2. Means 1st born
twins equal means 3. Means mz twins 4. Means twins equal (4–1) All means

1. All means 2nd born twins, equal means dz means non-twin equal against all
Subtest unequal within zygosity groups twins siblings means unequal

–2LL df –2LL df –2LL df –2LL df c2 (Ddf = 7)a

Block design 2451.48 343 2453.90 345 2454.01 346 2459.56 350 8.08 n.s.
Letter-number sequencing 1738.22 346 1739.38 348 1744.57 349 1750.37 353 12.15 n.s.
Information 2194.37 347 2197.44 349 2197.87 349 2205.64 354 11.27 n.s.
Matrix reasoning 1842.22 347 1845.75 349 1845.93 350 1848.00 354 5.78 n.s.
Similarities 2150.00 347 2151.07 349 2151.21 350 2157.71 354 7.71 n.s.
Incomplete pictures 1681.34 347 1681.81 349 1681.85 350 1687.18 354 5.84 n.s.
Arithmetic 1919.46 347 1920.33 349 1920.44 350 1930.52 354 11.06 n.s.
Vocabulary 2675.27 347 2678.30 349 2678.60 350 2682.41 354 7.14 n.s.
Digit symbol coding 2964.08 342 2965.69 344 2965.99 345 2967.20 349 3.12 n.s.
Digit symbol free recall 1082.13 343 1082.29 345 1082.61 346 1092.84 350 10.71 n.s.
Digit symbol pairing 1988.00 346 1990.40 348 1991.25 349 1994.45 353 6.45 n.s.

df = degrees of freedom; –2LL = twice the negative log likelihood; n.s. = not significant: when the increase in c2 is not significant, the
most restrictive model is accepted; aan increase in c2 of more than 14.07 for Ddf = 7 is significant at the 0.05 level.
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to locate the particular genes that account for these in-
fluences (e.g., Petrill et al.,1997; Flint, 1999). The ge-
netic influence on observable behavior is the outcome
of a complex interplay between several genes which
each may have unique but small effects on the observed
behavior. Kosslyn and Plomin (2000) suggested that to
increase one’s chances of finding the actual genes in-
fluencing behavior, it might be wiser to look for genes
that are linked to more basic traits (i.e., more directly
under the influence of DNA) than behavior. The more
basic traits have become known as intermediate phe-
notypes or endophenotypes (Boomsma et al., 1997;
Lander, 1988; Kendler, 1999).

Indices of brain function are already widely used
as intermediate phenotypes in the study of behavior.
Changes in serotonin neurotransmission may affect mood

INTRODUCTION

The study of the genetics of human behavior has long
focused on actual observable behavior, such as smok-
ing, alcoholism, or intelligence (e.g., Maes et al.,1999;
Heath et al., 1999; Bouchard and McGue, 1981). Al-
though there is now clear evidence of genetic influ-
ences on these behaviors, it has often proven difficult
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The hunt for genes influencing behavior may be aided by the study of intermediate phenotypes
for several reasons. First, intermediate phenotypes may be influenced by only a few genes, which
facilitates their detection. Second, many intermediate phenotypes can be measured on a contin-
uous quantitative scale and thus can be assessed in affected and unaffected individuals. Continu-
ous measures increase the statistical power to detect genetic effects (Neale et al.,1994), and allow
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and memory (e.g., Fink et al., 1999), and electrical
activity of the brain has been linked to alcoholism,
sensation seeking, and cognition (e.g., Schukit, 1986;
Rodriguez, 1999; Glass and Riding, 1999; Zuckerman,
1990). Electroencephalographic θ and α oscillations of
the brain have been linked to memory performance (for
a review see Klimesch, 1999) and the P300 evoked po-
tential has been linked to general IQ (for a concise
overview see Detterman, 1994). In the genetics of psy-
chopathology, another main intermediate phenotype is
brain structure. Indices of brain structure have been as-
sociated with schizophrenia (e.g., Lawrie and Abukmeil,
1998; McCarley et al., 1999), mood disorders (e.g.,
Drevets et al., 1997), and dementia (e.g., Kaye et al.,
1997). Although an obvious intermediate phenotype,
human brain structure and volume have received little
attention from geneticists. The few studies that have
reported on the heritability of brain structure in humans
generally report on very specific structures of the
brain (e.g., Carmelli et al.,1998; Steinmetz et al.,1994)
or have been conducted on small sample sizes (e.g.,
Bartley et al.,1997). Thus, while many studies report
genetic influences on behavior, and a number of stud-
ies link behavior to brain structure, there are virtually
no studies that report on the genetic or environmental
influences on brain structure.

In the light of future investigations of the genetic
influences on brain structure or other intermediate phe-
notypes, we illustrate in this paper how Mx (Neale, 1997)
can be used to analyze the genetic and environmental in-
fluences on a particular brain structure: the cerebellum.
The cerebellum is one of the larger structures of the brain
and lies posterior to the brain stem. It is thought to be
involved in the coordination of movement and motor
functioning (Ghez, 1991). Since the measurement of
cerebellar volumes or other structures with magnetic
resonance imaging (MRI) is costly, an approach is needed
that minimizes the required number of subjects with-
out affecting statistical power. A powerful design to study
the genetic and environmental influences on a meas-
ured intermediate phenotype like brain structure is the
extended twin design (Posthuma and Boomsma, 2000).
In this design nontwin siblings are added to the classi-
cal twin design (as opposed to recruiting more twin fam-
ilies), which yields increased statistical power to detect
genetic and shared environmental influences on a meas-
ured variable. Extended twin designs, however, pro-
vide data characterized by families of variable size, i.e.,
some families may include twins and one nontwin sib-
ling, while other families may include twins and two
or three nontwin siblings. Analyzing families of variable
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size means having to deal with the nuisance of having
missing data and requires a statistical package which
efficiently handles variable pedigree sizes.

Intermediate phenotypes are often correlated with
other observed variables. For example, age and sex are
known to affect cerebellar volume (see, e.g., Luft et al.,
1999; Raz et al., 1998; Passe et al., 1997). Also, cere-
bellar volume is expected to covary with body height
and intracranial space. These two types of “confounders”
need to be addressed differently. In nongenetic designs,
it is common practice to regress out the effects of body
height and intracranial space on brain volumes. How-
ever, in the hypothetical situation where half of the phe-
notypic variance in cerebellar volume is due to genetic
factors which are shared with genetic factors that in-
fluence both intracranial space and body height, such a
regression approach will lead to the conclusion that phe-
notypic variance in cerebellar volume is low. Applying
a multivariate approach would correctly show the her-
itability of cerebellar volume.

In the present paper an approach is illustrated that
deals with these two issues simultaneously: correction
for linear effects of age and sex on multivariate observed
scores (of cerebellar volume, body height, and intracra-
nial space) in an analysis that allows estimation of
genetic and environmental (co-)variation of these mul-
tivariate phenotypes. This analysis is embedded in an
extended twin design to maximize the statistical power.

METHODOLOGY

A Linear Regression Model for Causal Effects 
on Observed Scores

Both age and sex are associated with body height,
intracranial space, and cerebellar volume. In order to
correct for these effects we employ a linear regression
model for a continuous trait Yj (j = 1, . . ., m, where m
is the number of phenotypes) with observed values 
y = (yij , . . ., ynj, where n is the total number of sub-
jects).

In the subsequent analyses two explanatory vari-
ables (x1 and x2; age and sex, respectively) have causal
effects on the observed individual scores of height, in-
tracranial space, and cerebellar volume. All variables
were multivariately normal distributed conditional on
the values of age and sex except for body height in ad-
ditional siblings. This was totally explained by one
very tall male additional sibling. Inclusion of this in-
dividual did not influence the results presented in this
paper.



The linear regression model for individual i (i =1,
. . ., n) and trait j (1, . . ., m) is

where µij is the expected value of individual i on vari-
able j, agei is the individual value of the first (age, in
years) explanatory variable, and sexi is the individual
value of the second (sex; 0 denotes female, 1 denotes
male) explanatory variable. β0j is the intercept (grand
mean) of variable j, β1j is the regression estimate of
age for variable Yj, and β2j is the deviation of males on
variable Yj.

Trivariate Analysis

Simultaneously with the linear correction for age
and sex, the covariance of cerebellar volume with body
height and intracranial space is modeled, using a trian-
gular decomposition of the (co-)variance matrix of these
traits (Neale and Cardon, 1992). With this decomposi-
tion it is possible to investigate whether the observed co-
variance between traits is due to a common set of genes
and/or due to a common set of environmental influences.
For example, diet habits may influence both body weight
and cholesterol levels, yielding a phenotypic correlation
caused by a common environmental factor.

We used a trivariate, triangular decomposition
model including regression on the observed scores, in
which all latent variances which are part of the vari-
ance decomposition model have been scaled to unity.
This must be distinguished from the variances of the
definition variables (age and sex) which are part of the
regression model; these definition variables concern in-
dividual observed values and therefore have no vari-
ance (N = 1 for each individual).

The triangular variance decomposition model can
easily be redefined as a model in which the common
pathways are recalculated into correlations by follow-
ing the general tracing rules of path analysis (Wright,
1934; Neale and Cardon, 1992, Chap. 13) and applying
the general formula for calculating a correlation. If the
coefficients from the paths of A1 (the first latent addi-
tive generic factor) to body height (B) and intracranial
space (I) are denoted a1b and a1i, respectively, and the
coefficient of the path from A2 (the second latent ad-
ditive generic factor) to intracranial space is denoted
a2i, the genetic correlation between body height and in-
tracranial space [rg (B, I)] is obtained as follows:

rg B, I a b a i a b a i a i( ) / [ (( ) ( ) )]= × +1 1 1 1 22 2

µ β β βij j j i j iage sex= + +0 1 2
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The (non-)shared environmental correlation is cal-
culated analogously.

Handling Variable Pedigree Sizes

Extended twin designs provide data characterized
by families of variable size. Such “incomplete” data
can be analyzed in Mx (Neale, 1997) via full informa-
tion maximum likelihood, which uses the observed
data. To obtain a measure of how well the specified
model for means and covariances fits the observed val-
ues, the raw data option in Mx calculates the negative
log-likelihood (−LL) of the raw data for eachpedigree
(Lange et al.,1976), as

where k (k = 1, . . ., p; p = number of family members
times number of phenotypes) denotes the number of
observed variables within a family (and can vary over
families), Σ(pxp) is the expected covariance matrix of
family members, yi (for i = 1, . . ., p) is the vector of
observed scores, µi the column vector of the expected
values of the variables, and | Σ | and Σ−1 are the deter-
minant and inverse of matrix Σ, respectively.

Combining the expression of the −LL for each
pedigree with a linear model for the expected scores as
outlined previously gives a new expression for the −LL:

Since the families are independent, their joint like-
lihood is simply the product of their individual likeli-
hoods and the log of the joint likelihood is the sum of
the log-likelihoods per family. Thus, summing the
negative likelihoods (−LL’s) of all families gives the
−LL of the model. In Mx the −LL of the model is dou-
bled because twice the difference between two models
(2 [−LL full model − (−LL nested model)]) is—under certain
regularity conditions—asymptotically distributed as χ2.
Thus, two nested models (a nested model includes
fewer parameters and does not introduce new parame-
ters compared to the model under which it is nested),
which provide −2LL’s, may be subtracted to provide a
∆(−2LL) which has a χ2 distribution. A high χ2 against
a low gain of degrees of freedom (∆df) denotes a worse
fit of the second, more restrictive model relative to the
first model.

An example Mx job that can be used to conduct
the trivariate analysis with a linear correction of age

− = − + + − − − ′

− − −−

LL k y x x

y x x

i i i

i i i

log( ) log ( )

( )

2 0 1 1 2 2

0 1 1 2 21

π β β β

β β β

Σ

Σ

− = − + + − ′ −−LL k y yi i i ilog( ) log ( ) ( )2 1π µ µΣ Σ



and sex on the individual scores in a design with vari-
able pedigree sizes is available at the Mx website,
http://views.vcu.edu/mx/examples.html, in the brain
section.

Subjects

Subjects were recruited from The Netherlands Twin
Registry (Boomsma, 1998) (170 cases) and through the
Utrecht Medical Centre Twin Sample (86 cases). All
subjects underwent physical and psychological screen-
ing to exclude cases of pathology known to affect brain
structure.

Subjects were 256 family members from a total of
111 twin families. In total, 34 siblings (aged 29.6 years;
SD, 4.81 years; 15 female, 19 male), 32 MZ male twin
pairs (aged 30.34 years; SD, 9.20 years), 17 DZ male
twin pairs (aged 30.3 years; SD, 7.01 years), 21 MZ
female twin pairs (aged 34.1 years; SD, 11.68 years),
20 DZ female twin pairs (aged 30.6 years; SD, 8.48
years), and 21 DZ opposite-sex twin pairs (aged 30.3
years; SD, 12.35 years) participated. Seventy-seven fam-
ilies consisted of a twin pair and 34 families consisted
of a twin pair and one additional sibling.

Cerebellar volume and intracranial space were ob-
tained by 1.5-T MRI as described by Baaré et al.(2000)
and analyzed according to the method described by
Staal et al. (2000) and Hulshoff Pol et al. (2000).

RESULTS

Descriptive Statistics

Significant correlations (corrected for the effects
of age) were observed between body height and in-
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tracranial space (0.194 and 0.229 for males and fe-
males, respectively; see Table I) and between body
height and cerebellar volume (0.280 and 0.194 for
males and females, respectively). In addition, a sub-
stantial correlation of 0.593 for males and 0.575 for fe-
males was observed between intracranial space and
cerebellar volume.

Twin- and sib-pair correlations, as given in Table II,
suggest that cerebellar volume, as well as body height
and intracranial space, is largely heritable. The low DZM
correlation was due mainly to two DZM pairs with large
intrapair differences. However, in these two pairs in-
dividual scores were in the normal range and there was
no indication of environmental confounding, so they
were included in the analyses.

Model Fitting

When using raw data, the fit (−2LL) of a model
can merely provide information on how well a more
parsimonious model fits the data relative to a more gen-
eral model. To gain some insight into the fit of the ACE
model, which is the basic model for nested models
AE/CE and E, we report the −2LL of a saturated model.
In this saturated model the means are modeled in a
similar way as in the ACE models, while the variance/
covariance structure is not modeled, and all variances
and covariances in MZ and DZ twins are estimated.

First, univariate genetic models for height, in-
tracranial space, and cerebellar volume were fitted to
the data correcting for the effects of age and sex on the
observed scores. The regression estimates of the linear
regression models for the observed scores of body
height, intracranial space, and cerebellar volume show
that height, intracranial space, and cerebellar volume
decrease with age in our sample and are larger in males

Table I. Means and Intercorrelations of Cerebellar Volume, Intacranial Space, 
and Height

Mean SD Body height Intracranial space

Body height (cm)
Male 181.94 6.66 — —
Female 168.50 6.55 — —

Intracranial space (cm3)
Male 1504.10 107.01 0.194* —
Female 1340.26 113.09 0.229* —

Cerebellar volume (cm3)
Male 146.80 11.17 0.280** 0.593**
Female 133.56 12.15 0.194* 0.575**

* Significant at the 0.05 level.
** Significant at the 0.01 level.



than in females (Table III). This decrease with age may
also reflect a cohort effect in our sample.

From the univariate regression analyses the ex-
pected value for an individual can be calculated. For
example, the expected cerebellar volume (cm3) for a
male subject aged 30 is 140.94 − (0.23 ∗ 30) + 12.70
= 146.74 cm3.

Simultaneous with the correction for the effects
of age and sex, the remaining phenotypic variance was
decomposed into sources of variance due to additive
genetic factors, shared environmental factors, and non-
shared environmental factors. Comparison of the fit of
the variance decomposition models with the saturated
model shows that the ACE model describes the data
reasonably (body height and intracranial space) to well
(cerebellar volume). The most parsimonious model of
the variance decomposition models for all three vari-
ables was a model in which additive genetic influences
and unique environmental influences contributed to the
phenotypic variance, whereas the influence of common
environmental factors was nonsignificant (Table IV).
Table IV includes the estimates and 95% confidence
intervals for A, C, and E as found in the full ACE model.
As expected, the observed variance in body height is
highly heritable; 72% (47–92%) of the total variance is
explained by genetic factors in the full ACE model.
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The heritabilities of intracranial space and cerebellum
are also high; estimates for sources of variance due to
genetic factors are 65% (40–91%) and 81% (54–92%),
respectively.

In the multivariate analysis the influence of com-
mon environmental factors was, again, not significantly
different from zero (dropping C from the ACE model
caused an increase in −2LL of 4.546 for a gain of 6 df’s).
The fit of the multivariate ACE model was reasonable
compared to that of a saturated model (∆−2LL, 138.681;
∆df,72).

The regression coefficients in the multivariate analy-
sis (AE model) are slightly different from the regression
weights as estimated in the three univariate analyses. Fig-
ure 1 shows the unstandardized estimates in the triangu-
lar variance decomposition model. The unique environ-
mental correlations between body height and intracranial
space and between body height and cerebellar volume
were nonsignificantly different from zero (∆df = 2, ∆−
2LL = 3.293) and were excluded from the models to
which Table V refers. In Table V the genetic and unique
environmental correlations (Table Va) and the standard-
ized genetic contributions of body height and intracra-
nial space to the total variance of cerebellar volume are
given, as well as the unique genetic variance of cerebel-
lar volume (Table Vb).

Table II. Twin and Sibling Correlations by Zygositya

MZM MZF DZM DZF DOS TSM TSF TSOS 
(32)b (21)b (17)b (20)b (21)b (15 + 11)c (8 + 11)c (11 + 12)c

Body height 0.78 0.92 0.61 0.64 0.47 0.70 0.31 0.15
Intracranial space 0.90 0.92 0.33 0.70 0.40 0.67 0.62 −0.07
Cerebellar volume 0.85 0.93 −0.06 0.78 0.27 0.66 0.77 −0.12

a MZM/MZF—monozygotic male/female; DZM/DZF/DOS—dizygotic male/female/opposite sex; TSM/TSF/TSOS—twin-sib pair male/female/
opposite sex.

b Pairs.
c Twin-sib correlations are calculated as the mean correlation of all “first” twins with their nontwin sibling and all “second” twins with their non-

twin sibling. The number of pairs denotes the number of first twins with siblings and the number of second twins with siblings. Please note that
for TSM and TSF, in all families except DOS families, the nontwin sibling provides two correlations: one with the first twin and another one
with the second twin.

Table III. Regression Estimates of the Linear Regression Model on the Means of Body Height, Intracra-
nial Space, and Cerebellar Volume

β1

β0 (effect of age; age β2

(grand mean) entered in years) (deviation of males)

Body height (cm) 172.20 −0.11 13.16
Intracranial space (cm3) 1345.63 −0.33 169.82
Cerebellar volume (cm3) 140.94 −0.23 12.70
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The genes that account for individual differences in
body height also account to some extent for individual
differences in both intracranial space and cerebellar vol-
ume (genetic correlations are 0.21 and 0.25, respectively).
The genetic correlation of 0.57 between intracranial space
and cerebellar volume indicates that some, but not all, of
the genes that influence intracranial space are also im-
portant for cerebellar volume. Since the proportion of
variance accounted for common environmental influ-
ences for each trait is relatively low, the common envi-
ronmental correlation between intracranial space and
cerebellar volume (0.44) can be misleading: although of
medium size, it explains only a relatively small part of
the total covariance between these two traits.

Six percent of the total variance in cerebellar vol-
ume is accounted for by genetic factors shared with
body height, 24% is accounted for by genes that are
shared with intracranial space, and 58% of the total vari-
ance in cerebellar volume is due to genetic factors that
are unique to cerebellar volume.

DISCUSSION

Direct effects of age and sex on body height, in-
tracranial space, and cerebellar volume were modeled

Fig. 1. Results of multivariate model fitting. The upper half shows
the decomposition of the variance and covariance for body height,
intracranial space, and cerebellar volume. Path coefficients are un-
standardized; standardized estimates are given in Tables Va and b.
The lower half represents the regression weights as estimated in the
multivariate model, which may differ slightly from those estimated
in the univariate analyses.



simultaneously with a multivariate genetic model for
the covariance between family members. For all three
variables a slight decrease with age was found and a
significant deviation for males, who were taller and had
larger brain volumes than females. A trivariate genetic
analysis was conducted on body height, intracranial
space, and cerebellar volume, to dissect the pattern of
covariance among these three variables and to deter-
mine the relative contributions of genetic and environ-
mental influences to the remaining variance of each of
these variables. For intracranial space and cerebellar
volume, genetic factors accounted for 88% of the phe-
notypic variance. A large part of the genetic factors that
are associated with cerebellar volume also controlled
intracranial space (24%). Genetic factors that explain
phenotypic variance in body height, however, accounted
for only a small part of the genetic variation in both in-
tracranial space and cerebellar volume. These findings
suggest that studies using cerebellar volume as an in-
termediate phenotype will also need to consider the ge-
netic covariance of cerebellar volume with intracranial
space.

The causes of interindividual variation in human
brain structure are largely unknown. This study shows
that at least for one brain structure, cerebellar volume,
interindividual differences are due largely to genetic
variation between individuals. In mouse studies, several
genes have already been implicated that influence de-
velopment of the cerebellum. For example, Favor et al.
(1996) showed that in mice, functioning of the Pax2
locus, which has its counterpart in the human PAX2locus,
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is absolutely necessary for the normal development of
the cerebellum. In addition, Millen et al. (1994) re-
ported a reduction in cerebellar volume in mice due to
dysfunctioning of the En-2 locus.

Besides being of importance in its own right, a high
heritability of human cerebellar volume in particular
and brain structure in general may be of crucial impor-
tance in the study of causes of variation in complex
behaviors. For example, correlations between brain size
and psychometric IQ range between 0.38 and 0.45 [see
Storfer (1999) for an overview of brain size–IQ rela-
tions], depending on which brain structure (i.e., gray
matter volume, white matter volume, cerebral volume)
is studied.

Quantitative intermediate phenotypes with high
heritability are becoming more and more important in
the field of behavioral genetics (e.g., Flint, 1999; Be-
gleiter et al.,1999; Boomsma et al.,1997). These phe-
notypes are more “upstream,” as Kosslyn and Plomin
(2000) put it, and it is possible that they are influenced
by a smaller number of genes, which could facilitate
detection of these genes. In addition, quantitative in-
termediate phenotypes can also be obtained from non-
affected individuals. Thus, if a strong relationship be-
tween some brain structure and a psychiatric trait exists,
such as the association between a reduction in prefrontal
cortex volume and uni- and bipolar depression (Drevets
et al., 1997), it might be wiser to put a continuous
index of prefrontal cortex volume in a time-consuming
search for genes than to use a measure of uni- or bipolar
depression.

Table V

(a) Genetic (lower half) and unique environmental (upper half) correlations with 95% confidence intervals (in parentheses)

Body height Intracranial space Cerebellar volume

Body height — n.s. n.s.
Intracranial space 0.21 — 0.44 

(0.06–0.36) (0.21–0.63)
Cerebellar volume 0.25 0.57 —

(0.10–0.40) (0.44–0.67)

(b) Standardized estimates in the multivariate approach of components of the genetic variance of cerebellar volume after correction for the
effects of age and sex on the observed values

Genetic variance Genetic variance 
due to genes that due to genes that Remaining genetic 

Total genetic also influence also influence variance unique to
Cerebellar volume variance body height intracranial space cerebellar volume

Estimate 88% 6% 24% 58%
95% confidence interval 81–92% 1–14% 14–36% 47–69%



Although a strong phenotypic relationship between
the brain and the behavior is prerequisite, an equally
important requirement for the intermediate phenotype
to be of use in linkage studies is that it has a high ge-
netic correlation with the behavior. Therefore, the in-
termediate phenotypes and the target behavior need to
be analyzed in a multivariate design. Such a design
must allow for the correction of covariates such as age
and sex. Finally, since intermediate phenotypes require
psychophysiological measurements, they are usually
more complex and costly than behavioral measures ob-
tained from observation, interview, or questionnaires,
which makes it crucial to use an optimal statistical de-
sign. The present study shows that all three requirements
for the genetic analyses of intermediate phenotypes (i.e.,
multivariate genetic analysis, correcting for linear ef-
fects on the mean, and optimal statistical power) can be
handled in a single statistical approach using the Mx
statistical package.

An additional advantage of the approach used in
this paper is that it can easily be generalized to associ-
ation analysis of quantitative trait loci (QTL). Measured
covariates are not limited to sex and age but can also
include polymorphic markers or candidate genes (e.g.,
Neale et al.,2000) which can be modeled directly (Zhu
et al., 1999) or more sophisticatedly via within- and
between-family effects (Fulker et al.,1999; Sham et al.,
2000).
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We recently showed that the correlation of gray and white
matter volume with full scale IQ and the Working Memory

dimension are completely mediated by common genetic factors
(Posthuma et al., 2002). Here we examine whether the other
WAIS III dimensions (Verbal Comprehension, Perceptual
Organization, Processing Speed) are also related to gray and
white matter volume, and whether any of the dimensions are
related to cerebellar volume. Two overlapping samples provided
135 subjects from 60 extended twin families for whom both
MRI scans and WAIS III data were available. All three brain
volumes are related to Working Memory capacity (r = 0.27). 
This phenotypic correlation is completely due to a common
underlying genetic factor. Processing Speed was genetically
related to white matter volume (rg = 0.39). Perceptual
Organization was both genetically (rg = 0.39) and environmen-
tally (re= ± 0.71) related to cerebellar volume. Verbal
Comprehension was not related to any of the three brain
volumes. It is concluded that brain volumes are genetically
related to intelligence which suggests that genes that influence
brain volume may also be important for intelligence. It is also
noted however, that the direction of causation (i.e., do genes
influence brain volume which in turn influences intelligence, 
or alternatively, do genes influence intelligence which in turn
influences brain volume), or the presence or absence of pleio-
tropy has not been resolved yet.

Two independent studies recently quantified the contribu-
tion of genetic and environmental factors to interindividual
differences in brain volumes (Baaré et al., 2001; Thompson
et al., 2001). Baaré et al. (2001) used magnetic resonance
imaging (MRI) to measure intracranial space, total brain
volume, total white matter volume, total gray matter
volume, and lateral ventricle volume in 258 subjects
belonging to 112 (extended) twin families. They reported
very high heritabilities for all volumes (ranging from 80 to
90%) except ventricular volume (no genetic influences).
Thompson et al. (2001) used voxel based MRI techniques
on 10 MZ twin pairs and 10 DZ twin pairs and reported
high heritability of gray matter volume in several cortical
regions. Results from previous studies also suggested that

genetic factors are much more important than environmen-
tal factors for inter-individual differences in brain volumes
(Bartley et al., 1997; Carmelli et al., 1998; Carmelli et al.,
2002; Pennington et al., 2000; Reveley et al., 1984).

Since the second half of the 19th century positive corre-
lations between head size (as measured with a measuring
tape around the head) and psychometric intelligence have
been observed. Correlations generally range around 0.20
(Jensen, 1994; Posthuma et al., 2001a), but can be as high
as 0.44 (van Valen, 1974). MRI provides a more accurate
measure of the size of the brain, as head size includes both
brain volume and thickness of the skull. Several studies
have correlated MRI-brain volumes with measures of intel-
ligence, and, on average, brain volume as measured with
MRI and IQ correlate around 0.40 (e.g., Andreasen et al.,
1993; Egan et al., 1994; Raz et al., 1993; Storfer, 1999;
Wickett et al., 2000; Willerman et al., 1992).

Three multivariate genetic studies of brain volume and
intelligence have investigated the nature of the correlation
between brain volume and intelligence (Pennington et al.,
2000; Thompson et al., 2001; Wickett et al., 1997), but 
did not have the optimal design (Pennington et al., 2000;
Wickett et al., 1997) or  enough statist ical power
(Thompson et al., 2001) to decompose the observed corre-
lation into genetic and environmental components. Using 
a dataset consisting of 24 MZ pairs, 31 DZ pairs, and 
25 additional siblings (135 individuals from 60 families) for
whom both data on brain volume and intelligence were
available, we recently showed that the correlations between
gray or white matter volume to full scale IQ (WAIS III) and
its Working Memory dimension are completely mediated 
by an underlying set of genes that influences both brain
volumes and IQ (Posthuma et al., 2002).
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Using the same sample of 135 individuals from 60 fam-
ilies we now investigate whether three different brain
volumes (total white matter of the cerebrum, total gray
matter of the cerebrum, total volume of the cerebellum) are
differentially correlated to each of the other standard WAIS
III  dimensions: Verbal Comprehension, Perceptual
Organization, and Processing Speed. We expect to find dif-
ferential correlations between each of the three brain
volumes and each of the four WAIS III dimensions. For
example, the WAIS III dimension Processing Speed is an
index of the speed of central nervous system processing
(WAIS III, 1997), and is therefore expected to be related
strongest to white matter volume, as white matter reflects
the degree of interconnectiveness between neuronal cells.

The three brain volumes were obtained by using 
MR imaging in a large Dutch sample (258 Dutch adults
from 112 extended twin families) of twins and their sib-
lings (Baaré et al., 2001). Using structural equation
modelling on the combined MRI and WAIS III datasets,
we will test whether the correlation between these brain
volumes and WAIS III dimensions is genetically or envi-
ronmentally mediated.

Methodology
Subjects — WAIS III Sample

Six hundred eighty-eight family members from 271
extended twin families participated in an ongoing study on
the genetics of adult brain function (Posthuma et al.,
2001a, 2001b; Posthuma, 2002; Wright et al., 2001) until
December 2000. All participants were obtained from the
Netherlands Twin Registry (Boomsma, 1998). Zygosity was
determined by DNA fingerprinting. The complete sample
consisted of two age cohorts: a young adult cohort with a
mean of 26.2 years of age (SD = 4.19) and an older adult
cohort with a mean around 50.4 years of age (SD = 7.51).
Participating families consisted of one to eight siblings
(including twins). On average 2.5 subjects per family par-
ticipated. In the young cohort 171 males and 210 females
participated, in the older cohort 135 and 172 respectively.
The young cohort included 54 MZ pairs, 73 DZ pairs, 18
single twins and 109 additional siblings. The older cohort
included 48 MZ pairs, 58 DZ pairs, 15 single twins, and
80 additional siblings (for a detailed description of the
sample characteristics see Posthuma et al., 2001b). The
study was approved by the scientific and ethical committee
of the Vrije Universiteit Amsterdam. Subjects were paid
NLG 50 (23 EUROS) for participation.

Subjects — MRI sample

The MRI sample was obtained from a large study on the
genetics of brain volumes (Baaré et al., 2001; Posthuma 
et al., 2000). For this second dataset, subjects were recruited
from the (healthy) twin sample of the department of
Psychiatry of the University Medical Center Utrecht, the
Netherlands, and from the Netherlands Twin Registry. One
hundred and twelve pairs of twins (112 families), 33 MZ
male (MZM), 17 DZ male (DZM), 21 MZ female (MZF),
20 DZ female (DZF), and 21 DZ opposite-sex (DOS), and
19 male (SM) and 15 female (SF) full siblings participated in
the study. Zygosity was determined by DNA fingerprinting.

Subjects were required not to have any severe medical dis-
eases. Mental and physical health was assessed by means of
the Family Interview for Genetic Studies (Nurnberger 
et al., 1994), and a medical history inventory, respectively.
All subjects gave written informed consent to participate in
the study after full explanation of the study aims and proce-
dures. The study was approved by the scientific and ethical
committee of the University Medical Center Utrecht.
Subjects were paid NLG 75 (34 EUROS) for participation.

Overlap Between the Two Samples

The combined dataset consisted of 808 subjects from 322
families. For 135 subjects from 60 families data on both IQ
and MRI-scans were available. This “overlapping” dataset
consisted of 16 families from which MZ twins (without
additional non-twin siblings) participated, 8 families from
which the MZ twins and one additional sibling partici-
pated, 21 families from which the DZ twins (without
additional non-twin siblings) participated, 10 families from
which the DZ twins and one additional sibling partici-
pated, two families from which one twin and one non-twin
sibling participated, and three families from which only
one member participated. In other words, the overlapping
dataset consisted of 24 MZ twins and 69 DZ twins/sib
pairs. The mean age in the overlapping dataset was 29.2
(SD = 7.34). There were 57 females and 78 males.

To obtain the most accurate estimates of means and
variances of IQ scores and brain volumes, the combined
dataset of 808 subjects was used in the analyses, as opposed
to using only the subset with data on both MRI and
WAISIII scores. In Mx (Neale, 1997) such incomplete
datasets can be handled easily (see also Statistical Analyses).

The average time between the MRI scans and the 
IQ measurements was 13 weeks, ranging from –1.5 years
(IQ measurement before MRI scans) to + 3.3 years 
(MRI scan before IQ measurement). Age at time of IQ
measurement was included as an effect on the IQ scores
while age at time of the MRI scans was included as an
effect on brain volumes.

Intelligence Testing

Psychometric IQ was measured with the Dutch adaptation
of the WAIS III (WAIS-III, 1997). As we previously
showed (Posthuma et al., 2001b) that our IQ sample is rep-
resentative of the Dutch population and the present sample
size exceeds the WAIS III standardization sample, we report
unstandardized raw IQ scores, and explicitly model the
effects of sex and age in the multivariate analysis. Individual
scores for each subtest except digit-symbol substitution
were calculated by weighting the observed score by 
the maximum possible score on that subtest times 100 
(i.e., percentage correct on each subtest). For digit-symbol
substitution the number of correct items per 60 seconds
was calculated. Nine subtests were used to calculate the
four dimensions according to the WAIS III guidelines
(1997); Verbal Comprehension (VC; the mean percentage
correct of subtests information, similarities, and vocabu-
lary), Working Memory (WM; the mean percentage correct 
of subtests arithmetic and letter-number sequencing),
Perceptual Organization (PO; the mean percentage correct
of subtests block design, matrix reasoning, and picture 
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completion), and Processing Speed (PS; the number of
correct items per 60 seconds of subtest digit-symbol substi-
tution). The validity of these four dimensions was recently
confirmed by a reanalysis of the WAIS manual data by
Deary (2001).

MR Image Acquisition and Processing

MR images were obtained on a 1.5 Tesla Philips Gyroscan
scanner at the University Medical Center Utrecht. For vol-
umetric analysis a three dimensional (3D) T1 — weighted,
coronal, spoiled gradient echo scan (FFE) of the whole
head (TE = 4.6 ms, TR = 30 ms, flip angle = 300, 170-180
contiguous slices; 1 ´ 1 ´ 1.2 mm3 voxels), and a coronal
dual contrast turbo spin echo (DTSE) of the whole brain
(TE1 = 14 ms, TE2 = 80 ms, TR = 6350 ms, 120 contigu-
ous slices; 1 ´ 1 ´ 1.6 mm3 voxels) were acquired.

Images were coded to ensure blindness for subject iden-
tification, zygosity and family membership. Image volumes
were transformed into Talairach space (no scaling)
(Talairach & Tournoux, 1988) and corrected for magnetic
field inhomogeneities. Volumetric measurements were
obtained using automated segmentation procedures and
included intracranial, whole brain, gray and white matter
of the cerebrum (excluding cerebellum and brain stem),
and lateral and third ventricle volumes (Schnack et al.,
2001a; Schnack et al., 2001b). Automatic segmentation
software included histogram analysis algorithms, anatomi-
cal knowledge based decision rules  and ser ie s of
mathematical morphological operators to connect all voxels
of interest. Intracranial volume was segmented on DTSE
scans. Cerebral gray and white matter volumes were
obtained after cerebellar and brain stem tissue was
removed. The segmentation procedures yielded highly reli-
able volume measurements with inter-rater intraclass
correlations all above 0.96.

The present study included gray matter volume of the
cerebrum, white matter volume of the cerebrum and cere-
bellar volume. Cerebellar volume was not separated into
white and gray matter volumes as the location of the cere-
bellum complicates the reliable separation of cerebellar
white and gray matter volume (i.e., at the edges of the coil
artefacts will influence this separate detection). However,
the detection of total cerebellar volume does not suffer
from these artefacts and can be reliably measured.

Statistical Analyses

As the sample consisted of unbalanced pedigrees and had
some missing data, models were fitted to the raw data
instead of covariance matrices. This was accomplished by
using the rectangular data file option in Mx (Neale, 1997).

We previously determined whether interindividual vari-
ation in each of the four WAIS III dimensions could be
explained by additive genetic influences (A), dominance
genetic influences (D), shared environmental influences
(C), or non-shared environmental influences (E). We found
that shared environmental influences on each of these
dimensions were non-significantly different from zero, and
that all four dimensions were highly heritable (ranging
from 66% to 83%) (Posthuma et al., 2001a), in line with
estimates from previous studies (Bouchard & McGue,
1981; McClearn et al., 1997). Heritability estimates did

not differ across males and females, but cohort differences
existed for Working Memory. In the young cohort the
genetic variation was mainly due to dominance genetic
variation whereas in the older cohort the genetic variation
was additive. The broad heritability estimates of the
Working Memory dimension, however, were homogeneous
across cohorts.

For the MRI measures as well as for the IQ measures
shared environmental influences were non-significantly dif-
ferent from zero (Baaré et al., 2001; Posthuma et al., 2000;
Posthuma et al., 2001a) and a model that decomposed the
variance in genetic variance (A) and non-shared environmen-
tal variance (E) fitted well for all brain volumes and WAIS III
dimensions. Therefore, the (co-)variances in the multivariate
genetic models were decomposed into two possible latent
sources of variance: genetic variance (A), and non-shared
environmental variance (E). The latter also includes all
sources of variance due to measurement error. For DZ twin
pairs (and sibpairs) similarity of addixtive genetic influences
was set at 50%, and no similarity in non-shared environmen-
tal influences. For MZ twin pairs, similarity of additive
genetic variance was set at 100% and similarity in non-
shared environmental influences was fixed at zero.

Using Structural Equation Modelling to Decompose 
the (co-)variance into Genetic and Environmental Components

Decomposition of the variances and covariances into genetic
(A) and environmental (E) components was obtained using
structural equation modelling with maximum likelihood esti-
mation. Environmental factors incorporate those factors 
in the environment that are not shared by siblings. Let matri-
ces A and E be symmetric and of dimensions 7 ´ 7 (for seven
variables; total gray matter, total white matter, cerebellar
volume, Verbal Comprehension,  Working Memory,
Perceptual Organization, and Processing Speed). Matrix A
denotes the genetic component while matrix E denotes the
environmental component. The diagonal elements of matrix
A denote the genetic variances of each of the seven variables.
For example, element a11 is the genetic variation in gray
matter volume. The off-diagonal elements of matrix A repre-
sent the genetic covariance between variables. Analogously,
the diagonal elements of matrix E denote the environmental
variances of the seven variables, and the off-diagonal elements
denote the covariances due to environmental influences.

As matrices A and E are covariance matrices, they are
restricted to be positive definite. This is accomplished 
by calculating matrix A and E as the product of a triangular
matrix and its transpose. Thus, matrix A is calculated as 
X ´ X’, where X is triangular and of dimensions 7 ´ 7 (for
seven variables). Analogously, matrix E is Z ´ Z’. This is
also known as a Cholesky factorization of matrices A and E.

The decomposition of variances and covariances into
genetic and environmental components necessitates the use
of a genetically informative design, such as the twin design.
The correlation between the genetic component that influ-
ences the phenotype of one twin and the genetic component
that influences the phenotype of the co-twin is 1 for MZ
twins and 0.5 for DZ twins/sibling pairs. The correlation
between the environmental component that influences the
phenotype of one twin and the environmental component

133Twin Research April 2003

Genetic Correlations Between Brain Volumes and the WAIS-III Dimensions 



that influences the phenotype of the co-twin is zero for
both MZ and DZ twins/sibling pairs.

The variance is formally represented as

A + E = X ´ X’ + Z ´ Z’.

The covariance is formally represented as

A = X ´ X’ for MZ twins,

0.5 ´ A = 0.5 ´ X ´ X’ for DZ twins.

The genetic correlation between variables i and j (aij ) is
derived as the genetic covariance (aij) between variables i
and j divided by the square root of the product of the
genetic variances of variables i (aii) and j (ajj):

rgij = .

Analogously, the environmental correlation (reij ) between
variables i and j is derived as the environmental covariance
between variables i and j divided by the square root of the
product of the environmental variances of variables i and j:

reij = .

The phenotypic correlation (r) is the sum of the product of
the genetic correlation and the square roots of the genetic
variances of the two phenotypes and the product of the
environmental correlation and the square roots of the envi-
ronmental variances of the two phenotypes. Or, in other
words, the phenotypic correlation is composed of a genetic
contribution and an environmental contribution.

r = rgij ´ !§ ´ !§ajj—
(ajj + ejj )

aii—
(aii + eii)

eij——
Ïeii ´ ejj

aij——
Ïaii ´ ajj

+ reij ´ !§ ´ !§ .

Results
Descriptives

Means, and standard deviations of the WAIS III scores
clearly show that males generally have a higher score on the
WAIS III dimensions, except on Processing Speed, where
females are faster than males (Table 1a). These effects are
evident in both the young and the older cohort. Subjects in
the older cohort generally have a lower score on all four
WAIS III dimensions (see Table 1a).

The MRI-data set was not divided in two age cohorts as
the median of age was 28.6 years and 83% of the sample
were younger than 36. Thus, for brain volumes, age (at
time of MRI-scan) was included as a linear effect on the
mean volumes. A sex difference in brain volume is evident
in each of the three total volumes; males generally have
larger volumes than females (see Table1b).

Table 2 presents the phenotypic correlations on the
variables adjusted for the effects of sex, age or cohort.

The Working Memory dimension of the WAIS III con-
sistently and significantly correlated to all three brain
volumes. The Verbal Comprehension dimension did not
correlate significantly with any of the brain volumes.
Perceptual Organization correlated significantly with gray
matter volume and cerebellar volume, but not with white
matter volume. Processing speed correlates significantly
with white matter volume, and the correlation with gray
matter volume was almost significant (p = 0.07).

A seven-variate Cholesky decomposition of gray matter
volume, white matter volume, cerebellar volume, Verbal
Comprehension, Working Memory, Perceptual Organization,
and Processing Speed was conducted to estimate the contri-
butions of genetic factors and non-shared environmental

ejj—
(ajj + ejj )

eii —
(aii + eii)
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Table 1a

Descriptives of WAIS III Dimensions

Age VC WM PO PS

Young Females
Mean 26.0 63.6 62.2 79.9 44.0
N 210 210 210 210 208
SD 4.0 11.2 13.0 11.0 6.7

Young Males
Mean 26.3 67.5 66.1 83.9 39.4
N 171 171 171 171 168
SD 4.4 12.6 13.2 9.4 6.4

Older Females
Mean 50.5 58.1 54.2 66.1 35.7
N 172 172 172 172 172
SD 7.7 13.2 13.5 12.2 8.4

Older Males
Mean 50.3 65.0 64.0 69.8 35.3
N 135 135 135 135 135
SD 7.3 13.0 12.4 12.7 6.3

Note: VC = verbal comprehension; WM = working memory; PO = perceptual organization; PS = processing speed. N = number of subjects; SD = standard deviation.



factors to the phenotypic correlations. Analyses included
simultaneous correction for the effects of sex, age or cohort
on the individual scores. Table 3a lists the genetic (below
diagonal) and environmental correlations from the full AE-
Cholesky model, Table 3b gives the heritabilities of each
variable  — these are not thoroughly discussed as they have
been discussed previously (Posthuma et al., 2001a;
Posthuma et al., 2000; Baaré et al., 2001). As an illustra-
tion, Figure 1 shows MRI scans of four individuals
belonging to an MZ and a DZ twin pair. Table 4 provides
the path coefficients as estimated.

All inter-domain environmental correlations are statisti-
cally non-significantly different from zero (as judged from the
95% CIs) and do not contribute to the observed correlation,
except for the environmental correlation (–0.71) between
Cerebellar volume and Perceptual Organization. The con-
tribution of environmental factors to the phenotypic
correlation is Ï0.13 ´ –0.71 ´ Ï0.32 = –0.14, whereas
the contribution of genetic factors to the phenotypic corre-
lation is Ï0.87 ´ 0.35 ´ Ï0.68 = 0.27. Thus the maximum
likelihood estimate of the phenotypic correlation is –0.14 +
0.27 = 0.13.
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Table 1b

Descriptives of Brain Volumes

Age GMV (in cm3) WMV (in cm3) CBV (in cm3)

Females
Mean 31.7 612.4 422.9 133.6
N 118 118 118 118
SD 10.2 63.0 51.9 12.2

Males
Mean 30.6 668.2 493.8 147.0
N 140 140 140 140
SD 9.0 60.1 50.1 11.2

Note: GMV = gray matter volume; WMV = white matter volume; CBV = cerebellar volume. N = number of subjects; SD = standard deviation.

Table 2

Pearson Correlations Between Gray Matter Volume, White Matter
Volume, Cerebellar Volume, Verbal Comprehension, Working Memory,
Perceptual Organization and Processing Speed. Individual Scores on
Each Variable Are Adjusted for the Effects of Sex, Age and Cohort

GMV WMV CBV VC WM PO

WMV 0.59**

CBV 0.47** 0.49**

VC 0.06 0.01 0.03

WM 0.27** 0.28** 0.27** 0.54**

PO 0.20* 0.08 0.18* 0.49** 0.51**

PS 0.16 0.25** 0.11 0.28** 0.40** 0.34**
Note: Intra-domain correlations Printed in normal text, Inter-domain correlations are

printed in bold.

* significant at the 0.05 level; ** significant at the 0.01 level. (N = 258 for brain
volumes, N = 135 for inter–domain correlations; N = 688 for WAIS III dimensions).

Table 3a

Genetic (Below Diagonal) and Environmental (Above Diagonal) Correlations and 95% Confidence Intervals (in Brackets) 
from the AE Full Cholesky Model

GMV WMV CBV VC WM PO PS

GMV 0.00 0.08 –0.14 –0.13 0.19 0.00

(–0.24–0.25) (–0.17–0.32) (–0.43–0.18) (–0.38 –0.15) (–0.10–0.46) (–0.27–0.28)

WMV 0.69 0.35 0.07 0.03 –0.22 –0.17
(0.58–0.79) (0.10–0.56) (–0.35–0.49) (–0.30–0.38) (–0.50–0.18) (–0.50–0.19)

CBV 0.49 0.47 –0.23 –0.05 –0.71 0.26
(0.35–0.62) (0.33–0.59) (–0.58–0.22) (–0.34–0.29) (–0.84––0.35) (0.09–0.54)

VC 0.15 0.05 0.03 0.19 0.11 0.09
(–0.09–0.37) (–0.18–0.28) (–0.19–0.24) (0.01–0.36) (–0.07–0.29) (–0.09–0.27)

WM 0.40 0.33 0.30 0.66 0.12 0.04

(0.14–0.61) (0.08–0.55) (0.07–0.51) (0.57–0.76) (–0.05–0.29) (–0.12–0.22)

PO 0.10 0.01 0.35 0.61 0.72 0.04
(–0.17–0.36) (–0.24–0.28) (0.11–0.57) (0.51–0.70) (0.60–0.82) (–0.13–0.22)

PS 0.25 0.39 0.09 0.35 0.62 0.51
(–0.02–0.50) (0.12–0.63) (–0.15–0.31) (0.23–0.47) (0.49–0.74) (0.37–0.64)

Note: Intra-domain correlations in normal text inter-domain correlations in bold.



Table 3b

Maximum Likelihood Estimates of Heritabilities of Brain Volumes and
WAIS III Dimensions.

Heritability

Whole brain gray matter volume 0.82

Whole brain white matter volume 0.87

Cerebellar volume 0.87

Verbal Comprehension 0.84

Working Memory 0.65

Perceptual Organization 0.68

Processing Speed 0.63

The observed correlat ion between perceptual
Organization and Gray matter volume consisted of a
genetic contribution (0.07) and an environmental contri-
bution (0.05), both did not reach significance. The other
inter-domain phenotypic correlations were all completely
explained by an underlying common genetic factor.

Verbal Comprehension is not genetically associated
with any of the three brain volumes, whereas Working
Memory is genetically associated with all three brain
volumes. Processing Speed is genetically related with 
white matter volume, but not with gray matter volume or
cerebellar volume.
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Figure 1

MR images of the brains of a same sex monozygotic twin pair (MZ twins, upper row) and a same sex dizygotic twin pair (DZ twins, lower row).

Table 4

Unstandardized Genetic and Non-shared Environmental Path Coefficients.

GMV WMV CBV VC WM PO PS

Unstandardized Genetic Path Coefficients. 
GMV 47.93
WMV 31.55 33.18
CBV 5.21 1.86 8.98
VC 1.63 –0.78 –0.44 10.96
WM 4.19 0.86 1.11 6.60 6.97
PO 0.91 –0.75 3.38 5.65 3.66 5.11
PS 1.36 1.64 –0.58 1.84 2.44 1.55 3.58

Unstandardized Non-shared Environmental Path Coefficients. 
GMV 22.54
WMV 0.04 17.94
CBV 0.31 1.42 3.76
VC –0.71 0.35 –1.28 4.66
WM –1.01 0.20 –0.40 1.23 7.58
PO 1.19 –1.42 –4.36 –0.19 0.78 4.14
PS 0.01 –0.71 1.43 0.85 0.15 1.53 3.37



Discussion

Phenotypic correlations between gray and white matter
volume, and cerebellar volume on the one hand, and the
four WAIS III dimensions (Verbal Comprehension,
Working Memory, Perceptual Organization, and Processing
Speed) on the other hand, indicated that part of the inter-
individual variance in IQ dimensions is shared with
interindividual variance in brain volumes. The most consis-
tent correlation was found between brain volume and
Working Memory, which is generally considered a central
part of intelligence (Kyllonen & Chrystal, 1990). Gray and
white matter and cerebellar volume relate equally strong to
Working Memory. The correlations between Working
Memory and all three brain volumes were completely
mediated by a  common underlying  genetic  factor.
Seventeen per cent of the genetic variation in Working
Memory can be accounted for by genes influencing these
three brain volumes.

Intriguingly, the Verbal Comprehension dimension,
which was the most heritable of all four WAIS III dimen-
sions, did not correlate to any of the three brain volumes.
Results from lesion and neuroimaging studies indicate that
left temporal and frontocortical regions predominantly influ-
ence tasks that tap verbal comprehension. Thompson et al.
(2001) reported the highest heritabilities (ranging from
95–100%) for gray matter density in these linguistic regions.
They specifically reported a higher heritability in the left tem-
poral parietal region — comprising Wernicke’s regions
thought to be involved in language processing — than in the
right linguistic region (Thompson et al., 2001). For the
present study broad volumes were available, as opposed to
voxel based data. We therefore choose not to incorporate
hemispheric effects, also because we previously demonstrated
the high correlation ( > .9) between left-right broad volumet-
ric measurements and the absence of differential heritabilities
for the two hemispheres (Baaré et al., 2001). In the present
study, the absence of a (genetic) association of Verbal
Comprehension with global volumes of white and gray
matter does not preclude the existence of a genetic association
with more localized volumes of the brain, such as Wernicke’s
area or the dorsolateral prefrontal areas (Brodmann areas 9
and 46; Rajkowska & Goldman-Rakic, 1995).

Processing Speed was genetically related to white matter
volume. White matter volume includes all myelinated
axons in the cerebrum. Thickness of the myelin sheath 
is related to nerve conduction velocity and therefore its
relation to Processing Speed seems intuitively appealing.
We previously showed that genetic variation in perceptual
speed as indexed by inspection time accounted for only
10% of the genetic variance in Verbal IQ but for 22% of
the genetic variance in Performance IQ (Posthuma et al.,
2001b). As perceptual speed is likely to depend on axonal
myelination, it can be hypothesized that part of the genes
that influence IQ are common to the genes that influence
myelination of axons by oligodendrocytes. A candidate
gene known to be involved in myelination is the Plp gene
(Boison & Stoffel, 1994; Griffiths et al., 1995, Ikenaka 
& Kagawa, 1995; Lemke, 1993). Other genes implicated to
be important for myelination from knock out mouse

studies are the cgt-gene (Stoffel and Bosio, 1997), the MAG
gene (Fujita et al., 1998, Sheikh et al., 1999; Bartsch, 1996
for a review), and the tn-r gene (Weber et al., 1999).

Part of the genes responsible for cerebellar volume are
also responsible for Perceptual Organizational ability, as
reflected by the genetic correlation between these two mea-
sures. Although traditionally the cerebellum has been
viewed as a neural substrate mainly involved in motor
control (e.g., Ito, 1984), the presence of a correlation
between cerebellar volume and components of intelligence
has been reported since the 1980s (e.g., Leiner et al., 1986,
1993). Functional neuroimaging studies have shown that
the cerebellum is involved in both motor and non-motor
cognitive operations, such as working memory (Klingberg
et al., 1996), complex problem solving (Kim et al., 1994),
attentional activation (Allen et al., 1997), and semantic
association (Petersen et al., 1989; Martin et al., 1995). 
The involvement of the cerebellum in higher cognitive
functions may not be surprising from a biophysiological
point of view, as the human cerebellum contains more
neurons than the remainder of the brain combined
(Williams & Herrup, 1988), and has axonal connections
with all major subdivisons of the central nervous system.

The genetic association of cerebellar volume with both
Perceptual Organization and Working Memory is indica-
tive of its general role in cognition. Recently, Airey et al.
(2001) reported linkage of five quantitative trait loci for
cerebellar size in mice, and proposed a set of candidate
genes lying within the linkage regions. For example, the
Pax2 gene on chromosome 19 plays a critical role in early
development of the cerebellum. Human homologous chro-
mosomal regions of the five QTL’s in mice as reported 
by Airey et al. (2001), are 1q23-43, 10q11-23, 9q13-q24,
11q12-q13, 10q23-qter, 16q12-22. These regions may also
contain candidate genes for cognition.

The recent advances in morphometric/imaging tech-
niques will enable future research to investigate function-
volume relations on a voxel based manner (e.g., Ashburner
& Friston, 2000; Hulshoff Pol et al., 2001). This may
eventually lead to a detailed map of the human brain as it
relates to specific cognitive abilities. The present study has
made a first step in this direction by determining that the
long-known relation between brain size and intelligence,
even if using relatively unrefined measures such as total
gray matter, total white matter, or total cerebellar volume,
is of genetic origin.

Some caution in interpretation of a “genetic association”
must be taken: determining that the association between
different brain volumes and WAIS III-IQ dimensions is of
genetic origin, as opposed to being of environmental origin,
does not resolve the direction of causation between these
two domains of measures. Four scenarios may underlie the
established genetic association: 1) pleiotropy — there is a
set of genes that influences both brain volumes and scores
on the WAIS III dimensions; 2) unidirectional causation —
there is a set of genes that influences variation in brain
volumes and this variation in turn leads to variation in
WAIS III dimension scores; 3) reversed unidirectional cau-
sation — there is a set of genes that influences variation in
WAIS III dimension scores and this variation in turn leads

137Twin Research April 2003

Genetic Correlations Between Brain Volumes and the WAIS-III Dimensions 



to variation in brain volumes; 4) reciprocal causation — 
a combination of scenarios 2 and 3.

Which of these four scenarios is most plausible has not
been resolved yet, we merely established that the association
follows a genetic pathway. Future studies will need to
resolve the direction of causation to understand the plastic-
ity of the brain and its role in cognition.

References
Airey, D. C., Lu, L., & Williams, R. W. (2001). Genetic control

of the mouse cerebellum: Identification of quantitative trait
loci modulating size and architecture. Journal of Neuroscience,
21(14), 5099–5109.

Allen, G., Buxton, R. B., Wong, E. C., Courchesne, E. (1997).
Attentional  activation of the cerebellum independent 
of motor involvement. Science, 275(5308), 1940–1943.

Andreasen, N. C., Flaum, M., Swayze, V. 2nd, O’Leary, D. S.,
Alliger, R., Cohen, G., et al. (1993). Intelligence and brain
structure in normal individuals. American Journal of Psychiatry,
150(1), 130–134.

Ashburner, J., & Friston, K. J. (2000). Voxel-based morphometry:
The methods. Neuroimage, 11, 805–821.

Baaré, W. F. C (2001). Brain structure abnormalities in schizophre-
nia and genetic variation in human brain morpholog y.
Unpublished doctoral dissertation. University of Utrecht, 
The Netherlands.

Baaré, W. F. C., Hulshoff Pol, H. E., Boomsma, D. I., Posthuma,
D., Geus, E. J. C, de, Schnack, H. G., et al. (2001).
Quantitative genetic modeling of human brain morphology
variation. Cerebral Cortex, 11, 816–824.

Bartley, A. J., Jones, D. W., & Weinberger, D. R. (1997). Genetic
variability of human brain size and cortical gyral patterns.
Brain, 120, 257–269

Bartsch, U. (1996). Myelination and axonal regeneration in the
central nervous system of mice deficient in the myelin-associ-
ated glycoprotein. Journal of Neurocytology, 25, 303–313.

Boison, D., & Stoffel, W. (1994). Disruption of the compacted
myelin sheath of axons of the central nervous system in prote-
olipid protein-deficient mice. Proceeding of the National
Academy of Science, 91(24), 11709–11713.

Boomsma, D. I. (1998). Twin registers in Europe: An overview.
Twin Research, 1(1), 34–51.

Bouchard, T. J. Jr., & McGue, M. (1981). Familial studies 
of intelligence: A review. Science, 212, 1055–1059.

Carmelli, D., DeCarli, C., Swan, G. E., Jack, L. M., Reed, T.,
Wolf, P. A., et al. (1998). Evidence for genetic variance 
in white matter hyperintensity volume in normal elderly male
twins. Stroke, 29, 1177–1181

Carmelli, D., Swan, G. E., DeCarli, C., & Reed, T. (2002).
Quantitative genetic modeling of regional brain volumes and
cognitive performance in older male twins.  Biological
Psychology, 61(1–2), 139–155.

Deary, I. J. (2001). Human intelligence differences: A recent
history. Trends in Cognitive Science, 5, 127–130.

Egan, V., Chiswick, A., Santosh, C., Naidu, K., Rimmington, J.
E., & Best, J. J. K. (1994). Size isn’t everything — A study 
of brain volume, intelligence and auditory-evoked potentials.
Personality and Individual Differences, 17(3), 357–367

Fujita, N., Kemper, A., Dupree, J., Nakayasu, H., Bartsch, U.,
Schachner, M., et al. (1998). The cytoplasmic domain of the
large myelin-associated glycoprotein isoform is needed for
proper CNS but not peripheral nervous system myelination.
Journal of Neuroscience, 15(6), 1970–1978.

Griffiths, I. R., Montague, P., & Dickinson, P. (1995). The prote-
olipid protein gene. Neuropathology and Applied Neurobiology,
21, 85–96.

Hulshoff Pol, H. E., Schnack, H. G., Mandl, R. C. W., van
Haren, N. E. M., Koning, H., Collins, D. L., et al. (2001).
Focal gray matter density changes in schizophrenia. Archives 
of General Psychiatry, 58, 1118–1125.

Ikenaka, K., & Kagawa, T. (1995). Transgenic systems in studying
myelin gene expression. Developmental Neuroscience, 17,
127–136.

Ito, M. (1984). The cerebellum and neural control. New York:
Raven Press.

Jensen, A. R. (1994). Psychometric g related to differences in head
size. Personality and Individual Differences, 17, 597–606.

Kim, S. G., Ugurbil, K., & Strick, P. L. (1994). Activation of 
a cerebellar output nucleus during cognitive processing.
Science, 12(265), 949–951.

Klingberg, T., Kawashima, R., & Roland, P. E. (1996). Activation
of multi-modal cortical areas underlies short-term memory.
European Journal of Neurosciences, 8(9), 1965–1971.

Kyllonen, P. C., & Christal,  R. E. (1990). Reasoning ability 
is (little more than) working-memory capacity? Intelligence,
14, 389–433.

Leiner, H. C., Leiner, A. L., & Dow, R.S. (1993). Cognitive and
language functions of the human cerebellum. Trends 
in Neuroscience, 16(11), 444–447.

Leiner, H. C., Leiner, A. L., & Dow, R. S. (1986). Does the cere-
bellum contribute to mental skills? Behavioral Neuroscience,
100(4), 443–454.

Lemke, G. (1993). The molecular genetics of myelination: 
An update. Glia, 7, 263–271.

Martin, A.,  Haxby, J.  V., Lalonde, F. M., Wiggs, C. L.,  
& Ungerleider, L. G. (1995). Discrete cortical regions associ-
ated with knowledge of color and knowledge of action.
Science, 270, 102–105.

McClearn, G. E., Johansson, B., Berg, S., Pedersen, N. L., Ahern,
F., Petrill, S., et al. (1997). Substantial genetic influence 
on cognitive abilities in twins 80 or more years old. Science,
276, 1560–1563.

Neale, M. C. (1997). Mx: Statistical modeling (3rd ed.). Box
980126 MCV, Richmond VA 23298.

Pennington, B. F., Filipek, P. A., Lefly, D., Chhabildas, N.,
Kennedy, D. N., Simon, J. H., et al. (2000). A twin MRI
study of size variations in human brain. Journal of Cognitive
Neuroscience, 12(1), 223–232.

Petersen, S. E., Fox, P. T., Posner, M. I., Mintun, M. A.,  
& Raichle, M. E. (1989). Positron emission tomographic
studies of the processing of single words. Journal of Cognitive
Neuroscience, 1, 153–170.

Posthuma, D. (2002). Genetic variation and cognitive ability.
Unpublished doctoral  d issertat ion. Vrije Univers iteit
Amsterdam, The Netherlands.

138 Twin Research April 2003

Dani‘ lle Posthuma, Wim F. C. Baar„, Hilleke E. Hulshoff Pol, Ren„ S. Kahn, Dorret I. Boomsma, and Eco J. C. De Geus

http://ninetta.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0270-6474^28^2921:14L.5099[aid=4801918]
http://ninetta.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0002-953X^28^29150:1L.130[aid=4801919]
http://ninetta.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/1047-3211^28^2911L.816[aid=4801920]
http://ninetta.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0300-4864^28^2925L.303[aid=4801921]
http://ninetta.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0027-8424^28^2991:24L.11709[aid=4801922]
http://ninetta.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0039-2499^28^2929L.1177[aid=4801923]
http://ninetta.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/1364-6613^28^295L.127[aid=4801924]
http://ninetta.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0305-1846^28^2921L.85[aid=4801927]
http://ninetta.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0003-990X^28^2958L.1118[aid=4801928]
http://ninetta.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0378-5866^28^2917L.127[aid=4801929]
http://ninetta.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0953-816X^28^298:9L.1965[aid=4801932]
http://ninetta.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0166-2236^28^2916:11L.444[aid=4801933]
http://ninetta.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0735-7044^28^29100:4L.443[aid=4801934]
http://ninetta.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0898-929X^28^2912:1L.223[aid=4801935]
http://ninetta.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0270-6474^28^2921:14L.5099[aid=4801918]
http://ninetta.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0002-953X^28^29150:1L.130[aid=4801919]
http://ninetta.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0027-8424^28^2991:24L.11709[aid=4801922]
http://ninetta.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0305-1846^28^2921L.85[aid=4801927]
http://ninetta.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0003-990X^28^2958L.1118[aid=4801928]
http://ninetta.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0378-5866^28^2917L.127[aid=4801929]
http://ninetta.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0166-2236^28^2916:11L.444[aid=4801933]
http://ninetta.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0735-7044^28^29100:4L.443[aid=4801934]
http://ninetta.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0898-929X^28^2912:1L.223[aid=4801935]


Posthuma, D., Geus, E. J. C. de, Baaré, W. F. C., Hulshoff Pol, H.
E., Kahn, R. S., & Boomsma, D. I. (2002). The association
between brain volume and intelligence is of genetic origin.
Nature Neuroscience, 5(2), 83–84.

Posthuma, D., Geus, E. J. C. de, & Boomsma, D. I. (2001b).
Perceptual speed and IQ are associated through common
genetic factors. Behavior Genetics, 31(6), 593–602.

Posthuma, D., Geus, E. J. C. de, Neale, M. C., Hulshoff Pol, H.
E., Baaré, W. F. C., Kahn, R. S., et al. (2000). Multivariate
genetic analysis of brain structure in an extended twin design.
Behavior Genetics, 30, 311–319.

Posthuma, D., Neale, M. C., Boomsma, D. I., & Geus, E. J. C.
de. (2001a). Are smarter brains running faster? Heritability 
of alpha peak frequency, IQ and their interrelation. Behavior
Genetics, 31(6), 567–579.

Rajkowska, G., & Goldman-Rakic, P. S. (1995). Cytoarchitectonic
definition of prefrontal areas in the normal human cortex: II.
Variability in locations of areas 9 and 46 and relationship to the
Talairach Coordinate System. Cerebral Cortex, 5(4), 323–337

Raz, N., Torres, I. J., Spencer, W. D., Millman, D., Baertschi, J.
C., & Sarpel, G. (1993). Neuroanatomical correlates of age-
sensitive and age-invariant cognitive-abilities — An in-vivo
MRI investigation. Intelligence, 17(3), 407–422.

Reveley, A. M, Reveley, M. A, Chitkara, B., & Clifford, C.
(1984). The genetic basis of cerebral ventricular volume.
Psychiatry Research, 13, 261–266.

Schnack, H. G., Hulshoff Pol, H. E., Baaré, W. F. C., Staal, W.
G., Viergever, M. A., & Kahn, R. S. (2001a). Automated sep-
aration of gray and white matter from MR images of the
human brain. NeuroImage, 13, 230–237.

Schnack, H. G., Hulshoff Pol, H. E, Baare, W. F. C., Viergever,
M. A., & Kahn, R. S. (2001b). Automatic segmentation of
the ventricular system from MR images of the human brain.
NeuroImage, 14, 95–104.

Sheikh, K. A., Sun, J., Liu, Y., Kawai, H., Crawford, T. O., Proia,
R. L., et al. (1999). Mice lacking complex gangliosides
develop Wallerian degeneration and myelination defects.
Proeedings of  the National Academy of Science, 96(13),
7532–7537.

Stoffel, W., & Bosio, A. (1997). Myelin glycolipids and their func-
tions. Current Opinion in Neurobiology, 7(5), 654–661.

Storfer, M. (1999). Myopia, intelligence, and the expanding
human neocortex: Behavioral influences and evolutionary
implications. International Journal of Neuroscience, 98 ,
153–276.

Talairach, J., & Tournoux, P. (1988). Co-Planar stereotaxic atlas of
the human brain. Stuttgart, Germany: Georg Thieme Verlag.

Thompson, P. M., Cannon, T. D., Narr, K. L., van Erp, T.,
Poutanen, V. P., Huttunen, M., et al. (2001). Genetic influ-
ences on bra in structure. Nature Neuroscience , 4(12) ,
1253-1258.

van Valen, L. (1974). Brain size and intelligence in man. American
Journal of Physical Anthropology, 40(3), 417–423.

WAIS-III. (1997). Dutch version. Manual. Lisse: Swets and
Zeitlinger.

Weber, P., Bartsch, U., Rasband, M. N., Czaniera, R., Lang, Y.,
Bluethmann, H., et al. (1999). Mice deficient for tenascin-
R display alterations of the extracellular matrix and decreased
axonal conduction velocitie s in the  CNS. Journal o f
Neuroscience, 19, 4245–4262.

Wickett, J. C., Vernon, P. A., & Lee, D. H. (2000). Relationships
between factors of intelligence and brain volume. Personality
and Individual Differences, 29, 1095–1122.

Willerman, L., Schultz, R., Rutledge, J. N., et al. (1992).
Hemisphere size asymmetry predicts relative verbal and non-
verbal intelligence differently in the sexes — An MRI study of
structure-function relations. Intelligence, 16(3–4), 315–328.

Williams, R. W., & Herrup, K. (1988). The control of neuron
number. Annual Review of Neuroscience, 11, 423–453.

Woodward, K., & Malcolm, S. (1999). Proteolipid protein gene:
Pelizaeus-Merzbacher disease in humans and neurodegenera-
tion in mice. Trends in Genetics, 15(4), 125–128.

Wright, M. J., Boomsma, D. I., Geus, E. J. C. de, Posthuma, D.,
Van Baal, G. C. M., Luciano, M., et al. (2001). Genetics of
cognition: Outline of collaborative twin study. Twin Research,
4, 48–56.

139Twin Research April 2003

Genetic Correlations Between Brain Volumes and the WAIS-III Dimensions 

http://ninetta.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/1097-6256^28^295:2L.83[aid=4801936]
http://ninetta.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0001-8244^28^2931:6L.593[aid=4801937]
http://ninetta.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0001-8244^28^2930L.311[aid=4801938]
http://ninetta.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0001-8244^28^2931:6L.567[aid=4801939]
http://ninetta.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/1047-3211^28^295:4L.323[aid=4801940]
http://ninetta.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0165-1781^28^2913L.261[aid=4801942]
http://ninetta.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/1053-8119^28^2913L.230[aid=4801943]
http://ninetta.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/1053-8119^28^2914L.95[aid=4801944]
http://ninetta.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0959-4388^28^297:5L.654[aid=4801945]
http://ninetta.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0020-7454^28^2998L.153[aid=4801946]
http://ninetta.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/1097-6256^28^294:12L.1253[aid=4801947]
http://ninetta.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0002-9483^28^2940:3L.417[aid=4801948]
http://ninetta.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0270-6474^28^2919L.4245[aid=4801949]
http://ninetta.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0168-9525^28^2915:4L.125[aid=4801951]
http://ninetta.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/1369-0523^28^294L.48[aid=4801916]
http://ninetta.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0001-8244^28^2931:6L.567[aid=4801939]
http://ninetta.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0020-7454^28^2998L.153[aid=4801946]
http://ninetta.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/1097-6256^28^294:12L.1253[aid=4801947]
http://ninetta.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0002-9483^28^2940:3L.417[aid=4801948]
http://ninetta.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0270-6474^28^2919L.4245[aid=4801949]
http://ninetta.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/1369-0523^28^294L.48[aid=4801916]




Behavior Genetics, Vol. 31, No. 6, November 2001 (© 2001)

567
0001-8244/01/1100-0567$19.50/0 © 2001 Plenum Publishing Corporation

Are Smarter Brains Running Faster? Heritability of Alpha
Peak Frequency, IQ, and Their Interrelation

D. Posthuma,1,3 M. C. Neale,2 D. I. Boomsma,1 and E. J. C. de Geus1

It has often been proposed that faster central nervous system (CNS) processing amounts to a
smarter brain. One way to index speed of CNS processing is through the assessment of brain
oscillations via electroencephalogram (EEG) recordings. The dominant frequency (peak fre-
quency) with which neuronal feedback loops in an adult human brain oscillate in a relaxed state
is around 10 cycles/sec, but large individual differences exist in peak frequencies. Earlier stud-
ies have found high peak frequencies to be associated with higher intelligence. In the present
study, data from 271 extended twin families (688 participants) were collected as part of a large,
ongoing project on the genetics of adult brain function and cognition. IQ was assessed with the
Dutch version of the Wechsler Adult Intelligence Scale (WAIS-IIIR), from which four dimen-
sions were calculated (verbal comprehension, working memory, perceptual organization, and
processing speed). Individual peak frequencies were picked according to the method described
by Klimesch (1999) and averaged 9.9 Hz (SD1.01). Structural equation modeling indicated that
both peak frequency and the dimensions of IQ were highly heritable (range, 66% to 83%). A
large part of the genetic variance in alpha peak frequency as well as in working memory and
processing speed was due to nonadditive factors. There was no evidence of a genetic correla-
tion between alpha peak frequency and any of the four WAIS dimensions: Smarter brains do not
seem to run faster.

KEY WORDS: Neural speed; intelligence; twin study; electroencephalogram (EEG).

chronized synaptic activity of large populations of
neurons (Steriade et al.,1990). The dominant frequency
(peak frequency) of this rhythmic activity in a relaxed
state in adults is around 10 Hz, but large differences exist
in individual peak frequencies (Lykken et al.,1974; van
Beijsterveldt and Boomsma, 1994; Klimesch, 1999;
Osaka et al.,1999). Previous studies have attempted to
relate peak frequency to intelligence, arguing that a faster
oscillating brain reflects rapid information processing,
which in turn is associated with higher intelligence (e.g.,
Vogel and Broverman, 1964; Anokhin and Vogel, 1996;
Osaka et al., 1999), but this theory has long been de-
bated (e.g., Ellingson, 1966; Ellingson and Lathrop,
1973; Vogel and Broverman, 1964).

In the past decade, experimental evidence has
increased our understanding of the underlying physio-
logical mechanisms responsible for brain oscillations,
particularly in the alpha frequency range (Steriade
et al.,1990; Lopes da Silva, 1991). Generally, the alpha

INTRODUCTION

The idea that faster central nervous system (CNS) pro-
cessing may amount to a smarter brain has been pro-
posed in earlier studies (e.g., Vernon, 1987) and has
recently been supported by studies reporting positive
relations between inspection time and IQ (Luciano et al.,
2001; Posthuma et al., 2001). An alternative way to
index speed of CNS processing is through the assess-
ment of brain oscillations via electroencephalogram
(EEG) recordings. Rhythmic activity measured with
EEG scalp recordings derives from the summed syn-
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rhythm, as measured from the scalp, is defined to range
between 8 to 13 Hz, occurs during wakefulness, and
can be measured particularly over the occipital cortex.
It appears when the eyes are closed and disappears
when the eyes are opened (Berger, 1929). Alpha waves
have been shown to be generated in thalamocortical
feedback loops of excitatory and inhibitory nerve cells
(Steriade et al.,1990; Lopes da Silva, 1991). In the vi-
sual cortex, the alpha rhythm can also be generated by
cortico-cortical networks involving layer V pyramidal
neurons (Lopes da Silva and Storm van Leeuwen 1977;
Steriade et al., 1990). The specific alpha peak fre-
quency of an individual is determined by the intrinsic
membrane properties of the thalamic neurons project-
ing to the cortex (Steriade et al., 1990).

Lebedev (1990, 1994) has proposed a functional
role for the human alpha rhythm in stating that “cycli-
cal oscillations in an alpha rhythm determine the capac-
ity and speed of working memory. The higher the fre-
quency the greater the capacity and the speed of
memory” (Lebedev, 1994). In addition, Klimesch (1997)
has argued that thalamo-cortical feedback loops oscil-
lating within the alpha frequency range allow searching
and identification of encoded information. He specu-
lated that faster oscillating feedback loops would cor-
respond to faster access to encoded information. These
theories are supported by the results of some recent stud-
ies; Klimesch (1997) found that the alpha peak fre-
quency of good working memory performers lies about
1 Hz higher than that of poor working memory per-
formers. A study by Lehtovirta et al. (1996), compar-
ing Alzheimer’s patients with controls, found that alpha
peak frequency of Alzheimer’s patients was significantly
lower than that of controls. This was explained in terms
of cognitive slowing due to cholinergic deficits charac-
teristic of Alzheimer’s disease. It is also known that
peak frequency tends to decrease with normal aging
(Köpruner et al.,1984). In summary, a theoretical neuro-
physiological framework as well as empirical evidence
support the existence of a link between peak alpha fre-
quency and (working) memory processes. Because work-
ing memory is a central component of intelligence
(Daneman and Merikle, 1996; Engle et al., 1999; Kyl-
lonen and Christal, 1990; Necka, 1992), it seems rea-
sonable to expect that alpha peak frequency is important
to intelligence.

Metaphorically, the peak frequency of thalamo-
cortical alpha activity can be hypothesized to determine
the speed of encoding (and accessing) of information just
like the processor speed of a microprocessor is deter-
mined by its basic clock cycle. High alpha peak fre-
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quency then is expected to be associated with high IQ.
Only very few studies, however, have related alpha peak
frequency successfully to measures of IQ. Anokhin and
Vogel (1996) reported a correlation of 0.35 between
alpha peak frequency and verbal abilities, but thus far
this result has not been replicated (e.g., Jausovec and
Jausovec, 2000). Also, no large study has provided a her-
itability estimate for alpha peak frequency (only a few
small studies have appeared that reported twin correla-
tions, e.g., Christian et al.,1996). Although it has been
speculated that the relation between alpha peak fre-
quency and IQ is due to a genetic basis (e.g., Vogel,
2000), to our knowledge there have been no multivari-
ate genetic studies reporting on the genetic correlation
of alpha peak frequency with measures of IQ.

In the present study, we investigated whether and
to what extent individual differences in alpha peak fre-
quency can be attributed to genetic or environmental
factors. In addition, the possible association between
alpha peak frequency and each of the four dimensions
of the WAIS-IIIR is decomposed into genetic and en-
vironmental components. An extended twin design (i.e.,
including families consisting of twins and additional
siblings) is used to maximize statistical power to de-
tect genetic and environmental influences (Posthuma
and Boomsma, 2000).

METHODS

Subjects

Subjects were recruited from the Netherlands Twin
Registry (Boomsma, 1998) as part of a large ongoing
project on the genetics of cognition and adult brain
function (Posthuma et al., 2001; Wright et al., 2001).
Adult twins and their non-twin siblings were asked to
participate in a 4.5-hour testing protocol. In one-half
of the protocol, psychometric intelligence, inspection
time, and reaction times were assessed; in the other half
EEG activity was measured. The EEG registration in-
cluded two noncognitive tasks that were analyzed for
the present paper: 3 min resting EEG with eyes closed
(EC) and 3 min resting EEG with eyes open (EO). The
order of the two halves of the protocol was randomized
across family members.

A total of 688 family members from 271 extended
twin families participated in the study until December
2000. The complete sample consists of two age cohorts:
a young adult cohort with a mean age of 26.2 years (SD
4.19) and an older adult cohort with a mean age of 50.4
years (SD7.51). Participating families consisted of one



to eight siblings (including twins). On average, 2.5 sub-
jects per family participated. In the young cohort, 171
males and 210 females participated, in the older cohort
135 and 172, respectively. The young cohort included
54 MZ pairs, 73 DZ pairs, 18 single twins, and 109 ad-
ditional siblings. The older cohort included 48 MZ pairs,
58 DZ pairs, 15 single twins, and 80 additional siblings
(for a detailed description of the sample characteristics
see Posthuma et al.,2001).

Intelligence Testing

IQ was measured with the Dutch adaptation of the
WAISIII-R (WAIS-III, 1997). Dutch standardization
norms for this version are currently being finalized, so
it is not yet possible to report standard IQ scores. In-
dividual scores for each subtest, except digit-symbol
substitution, were calculated by weighting the observed
score by the maximum possible score on that subtest
times 100 (i.e., percentage correct on each subtest). For
digit-symbol substitution the number of correct items
per 60 sec was calculated. Nine subtests were admin-
istered. Subtest information measures general knowl-
edge and information gathered from daily life. In sub-
test similarities, the subject is asked to describe in
which aspect two verbally presented concepts are sim-
ilar. In subtest vocabulary,the subject is asked to ver-
bally describe the meaning of a specified term. Subtest
arithmeticrequires the subject to solve arithmetic ques-
tions within a certain time limit without paper and pen-
cil. In subtest letter-number sequencing,the subject is
asked to repeat a random sequence of up to eight num-
bers and letters and to put them in numerical and
alphabetical order. In subtest block design,the subject
needs to copy within a certain time limit a red and white
pattern using red and white blocks. Subtest matrix rea-
soningrequires the subject to decide which of five al-
ternatives is most reasonably the missing part from a
logical sequence. In subtest picture completion,the sub-
ject needs to state which essential part has been omit-
ted from a given picture. In digit-symbol substitution,
the subject needs to replace numbers with specified
symbols as quickly and accurately as possible.

According to the WAIS guidelines (1997), the
following four dimensions were calculated: Verbal
Comprehension (VC; the mean percentage correct of
subtests information, similarities,and vocabulary),
Working Memory (WM; the mean percentage correct
of subtests arithmetic and letter-number sequencing),
Perceptual Organization (PORG; the mean percentage
correct of subtests block design, matrix reasoning,and

picture completion), and Processing Speed (PSPD; the
number of correct items per 60 seconds of subtest digit-
symbol substitution). The validity of these four dimen-
sions was recently confirmed by a re-analysis of the
WAIS manual data by Deary (2001).

EEG Administration

The EEG was recorded with 19 Ag/AgCl electrodes
mounted in an electrocap. Signal registration was con-
ducted using an AD amplifier developed by Twente
Medical Systems (Enschede, The Netherlands). Signals
were continuously represented online on a Nec multi-
sync 17-in. computer screen using POLY 5.0 software
(POLY, 1999) and stored for offline processing. Stan-
dard 10–20 positions were F7, F3, F1, Fz, F2, F4, F8,
T7, C3, Cz, C4, T8, T7, P3, Pz, P4, T8, O1, and O2
(Jasper, 1958). Software-linked earlobes (A1 and A2)
served as a reference. The vertical electrooculogram
(EOG) was recorded bipolarly between two Ag/AgCl
electrodes placed on the outer right canthus and 1 cm
above the eyebrow of the right eye. The horizontal EOG
was recorded bipolarly between two Ag/AgCl electrodes
affixed 1 cm left from the left eye and 1 cm right from
the right eye. An Ag/AgCl electrode placed on the fore-
head was used as a ground electrode. Impedances of all
EEG electrodes were kept below 3 KV; impedances of
the EOG electrodes below 10 kV. The EEG was am-
plified (0.05–30 Hz), digitized at 250 Hz and stored for
offline processing. Dynamic regression analysis in the
frequency domain (Brillinger, 1975) was used to mini-
mize eye artifacts, especially rolling of the eyes in the
eyes closed (EC) condition. During the EEG measure-
ments, the subjects were seated in a comfortable re-
clining chair in a dimly-lit, sound-attenuated, electri-
cally shielded room. A computer screen was placed
80 cm in front of them. Subjects were instructed to close
their eyes, relax, and minimize movement during the
3-min EEG recording of the EC task. During the 3-min
recording of the eyes open (EO) task subjects were
instructed to fixate on the dot presented at the center of
the computer screen and to avoid blinking.

Determination of Individual Alpha Peak
Frequency (IAF)

Alpha peak picking is usually conducted on EEG
recording of an EC condition by finding the maximum
power within a certain frequency range. It is sometimes
argued, however, that the “real” alpha peak occurs at
that frequency which is most depressed by opening of
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the eyes (e.g., Klimesch, 1999). In the present paper,
the latter criterium was used to obtain accurate local-
ization of the individual alpha peak frequency.

A power density spectrum was calculated by using
a Fast Fourier Transform applied to 4-sec epochs of
the 3-min recordings of each condition. This yielded
44 epochs (epoch 45 was not used for computational
reasons) and a 0.25 Hz resolution in the power spectra.
Because the occipital-parietal alpha rhythm can best be
detected at occipital leads (depressed by opening of the
eyes; Berger, 1929), O1 and O2 were chosen to calcu-
late the power density spectra and the individual alpha
peak frequencies (IAF). In the first 100 subjects, cor-
relation of alpha peak frequency between O1 and O2
was found to be very near to 1, so one of the two
occipital leads (O2) will be reported on only.

The peak frequency in the EC condition was
determined as the highest peak in a window of 7 to
14 Hz in the EC power spectrum, irrespective of the
shape of the spectrum. Visual inspection was conducted
for peak frequencies occurring at the boundaries of the
search window. Final localization of the correct IAF
was based on an automated comparison between the
peak frequency, as determined in the EC condition and
the frequency at which alpha power was most depressed
by opening of the eyes (i.e., finding the peak frequency
in the spectrum obtained by subtracting the EO spec-
trum from the EC spectrum). If these two methods of
peak detection yielded an identical peak frequency, this
was taken as the IAF.

If the two methods yielded different peak fre-
quencies (which occurred in 21% of the sample), the
spectra were visually inspected in order to determine
the real alpha peak frequency. For example, in cases
where the EC spectra showed two peaks of approxi-
mately the same magnitude, that peak was taken at
which alpha depression was highest.

Spectra with very low power (i.e., below 1.5
mV/Hz) and spectra with less than 44 epochs were re-
moved from further analysis.

Statistical Analysis

Because the sample consisted of unbalanced pedi-
grees and had some missing data, models were fitted
to the raw data instead of covariance matrices. This was
accomplished by using the rectangular data file option
in Mx (Neale, 1997). Four bivariate saturated models
of IAF with each of the four WAIS dimensions were
fitted in order to determine the fit of the four more
restrictive bivariate variance decomposition models.

570 Posthuma, Neale, Boomsma, and de Geus

The saturated models included a linear regression effect
of age within each cohort and a deviation for males
from the females within each cohort. The significance
of these effects on the means were estimated in the satu-
rated models. In addition, it was tested whether there
was evidence for: (1) heterogeneity of variances across
MZ twin pairs, DZ twin pairs, and siblings, across
males and females, and across cohorts; (2) hetero-
geneity of correlations across MZM pairs and MZF
pairs, and across DZM pairs, DZF pairs, DOS pairs,
and sib-sib male/female pairings; (3) heterogeneity of
DZ correlations and sib-sib correlations; (4) differences
in means between MZ twin pairs, DZ twin pairs, and
siblings; and (5) differences in means between age
cohorts. The resulting most parsimonious saturated
model is the model against which the bivariate vari-
ance decomposition models are tested.

In the bivariate variance decomposition models, the
observed variance was decomposed in three of four pos-
sible latent sources of variance: additive genetic (A),
shared environment (C) or non-additive (D), and non-
shared environment (E) following Neale and Cardon
(1992). For DZ twin pairs (and sib pairs if the saturated
models indicated no difference in correlation between
DZ twin pairs and sib pairs), similarity in shared envi-
ronmental influences was fixed at 100%, similarity of
additive genetic influences at 50%, similarity of non-
additive genetic influences at 25%, and no similarity in
nonshared environmental influences. For MZ twin pairs,
similarities of additive genetic, nonadditive genetic, and
shared environmental influences were fixed at 100% and
no similarity in nonshared environmental influences.

RESULTS

Of the complete sample of 688 subjects, 27 took the
IQ test at home and did not participate in the EEG mea-
surement session. Data from 12 subjects contained too
many recording errors to be included in the peak pick-
ing procedure. In 18 cases, the IAF could not be picked
due to very low-voltage power spectra. This left 631 sub-
jects with an IAF. The mean IAF of the complete sam-
ple was 9.9 Hz (SD1.01). Subjects with IQ test data, but
without an IAF, were still included in the analyses.

Saturated Model Fitting Results and Descriptives

The saturated model fitting procedures indicated
that for the individual alpha peak frequency and the four
WAIS dimensions: (1) the variances were homogenous
across sexes and across zygosities; (2) the MZF and



MZM correlations were homogenous; (3) the DZM,
DZF, and DOS correlations were homogenous; and
(4) the DZ correlations and sib pair correlations were
homogenous. In addition, no differences in means were
found between MZ twins, DZ twins, and sibs. However,
the total variances and twin correlations across age co-
horts were found to be statistically significant.

Table I shows the estimates of descriptive statis-
tics in the most parsimonious saturated model, includ-
ing significant effects on the means.

Males score higher than females in both age cohorts
on all four WAIS dimensions except for Processing
Speed. In contrast, males have a slower IAF, compared
with females, in both the young and the older cohort.
Please note that for IAF, the grand mean (10.03) repre-
sents the female mean (because no significant effects of
age cohort and age within cohorts were found); the gen-
eral mean, including females and males, was 9.9 Hz as
previously stated.

All significant regression effects of age within the
older cohort are negative, indicating that IAF and IQ
scores decrease with age. In the young cohort, only the
effect of age on Verbal Comprehension was statisti-
cally significant. The positive sign indicated an in-
creasing score with age within the younger cohort.

The scores on the four WAIS dimensions in the
older cohort are lower than the scores in the young co-
hort. From Table I it can be computed, for example,
that for a male of average age (i.e., 26.18 years) in the
young cohort the expected score for Verbal Compre-
hension is 51.39 1 0.47 * 26.18 1 3.86 5 67.55,

whereas for a male of average age (50.39 years) in the
older cohort the expected score is 51.39 1 22.50 2
0.28 * 50.39 1 5.92 5 65.70.

The phenotypic correlation between IAF and each
of the four WAIS dimensions is calculated simultane-
ously with modeling the effects of age and sex on the
observed scores. The correlations between IAF and
each of the four WAIS dimensions were homogeneous
over sex and ranged from 20.04 to 0.15. With one ex-
ception, none of the phenotypic correlations was sta-
tistically significant. The correlation of 0.15 between
IAF and Working Memory in the older cohort was sig-
nificant at an a of .05 (Dx2 5 4.96, Ddf 5 1, p 5 .026),
but was not significant at the Bonferroni corrected a
of .006, correcting for multiple testing. The correla-
tions were not dropped from the variance decomposi-
tion models, however, because a significant genetic cor-
relation and a significant environmental correlation
acting in opposing ways may result in a phenotypic cor-
relation that is not different from zero.

The pattern of MZ and DZ correlations as esti-
mated by maximum likelihood (ML) from the most par-
simonious saturated model (Table II) suggests mainly
genetic influences on IAF and the four WAIS dimen-
sions. For IAF and Processing Speed in both cohorts,
Working Memory in the young cohort, and Perceptual
Organization in the older cohort, the MZ correlation is
more than twice as high as the DZ correlation, sug-
gesting nonadditive genetic influences. ADE models
were fitted for these variables. For all other variables,
ACE models were fitted.
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Table I. Estimates of Descriptive Statistics of Individual Alpha Peak Frequency (IAF) and the Four WAIS Dimensions From the Final 
Saturated Model

Correlation (IAF-IQ)
Effects on the mean

Deviation Regression Regression Deviation Deviation of
Young Older Grand of older weight of age weight of age of males in males in
cohort cohort mean cohort in young cohort in older cohort young cohort older cohort

IAF — — 10.03 0 0 0 20.18 20.03
VC 0.06 20.04 51.39 122.5 10.47 20.28 13.86 15.92
WM 20.04 0.15* 62.71 0 0 20.15 13.21 18.56
PSPD 0.02 0.04 44.17 110.26 0 20.38 24.69 0
PORG 20.03 0.08 79.74 112.07 0 20.50 14.03 13.63

IAF 5 Individual alpha peak frequency.
VC 5 Verbal comprehension.
WM 5 Working memory.
PSPD 5 Processing speed.
PORG 5 Perceptual organization.
*Statistically significant at the 0.05 level.



Variance Decomposition Model Fitting Results
and Descriptives

Bivariate variance decomposition models of IAF
and each of the four WAIS dimensions were fitted in
order to determine the nature of the possible covari-
ance between IAF and IQ. The statistical significance
of the estimates in the full bivariate variance decom-
position models was established by fitting nested mod-
els and comparing the fit statistic to the preceding
model using the likelihood ratio x2 test. Results are pre-
sented in Table III. Equality of variances due to A, D,
C, or E across cohorts was also tested and showed no
differences in A, D or C, and E estimates for Verbal
Comprehension, Processing Speed, and Perceptual Or-
ganization across cohorts.

Estimates from the full bivariate variance decom-
position models are given in Table IV. Estimates in the
most parsimonious variance decomposition models are
given in Table V.

The observed phenotypic variance in IAF is mainly
due to genetic variance. The genetic variance is de-
composed into additive genetic variance (39%) and vari-
ance due to nonadditive generic influences (32%) in the
young cohort. In the older cohort, only a very small part
of the variance is ascribed to additive genetic variance
(,1%) and the main genetic variance is due to nonad-
ditive genetic variance (83%). Because models includ-
ing nonadditive generic influences but excluding addi-
tive genetic influences are biologically implausible
(Falconer and Mackay, 1996), the additive variance
component is always retained in the model.

For the WAIS dimensions, except for Working
Memory in the young cohort and Processing Speed in
the both cohorts, a model which included an additive
genetic component and a nonshared environmental
component best fit the data. For Working Memory in
the young cohort and Processing Speed in the both co-
horts, however, the nonadditive genetic component
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could not be dropped from the model without signifi-
cantly worsening the fit. The variance due to nonaddi-
tive genetic influences in Working Memory in the
young cohort was large (71%). Estimates of the genetic
and nonshared environmental variance components of
Processing Speed were homogeneous across cohorts.
Thirty-two percent of the total variance was due to ad-
ditive genetic influences, 34% to nonadditive genetic
influences, and 34% to nonshared environmental in-
fluences. Also, for Perceptual Organization and Verbal
Comprehension, no difference in variance components
estimates was found between cohorts; 68% and 83%,
respectively, was due to additive genetic influences,
and 32% and 17%, respectively, to nonshared envi-
ronmental influences.

All common pathways from the bivariate variance
decomposition models could be dropped, except the
common nonshared environmental factor between IAF
and Verbal Comprehension in the young cohort and the
common nonshared environmental factor between IAF
and Working Memory in both cohorts. The corre-
sponding nonshared environmental correlation was 0.31
and the corresponding phenotypic correlation 0.07 for
IAF and Verbal Comprehension. For IAF and Working
Memory, the nonshared environmental correlation was
0.17 and the corresponding phenotypic correlation was
0.05 in the young cohort and 0.04 in the older cohort.

In conclusion, although a high heritability for IAF
and all four WAIS dimensions was found, no genetic
correlation between IAF and any of the four measures
emerged.

Post-hoc Investigation

Because it is known that head size and alpha peak
frequency tend to correlate negatively (Nunez et al.,
1978), whereas head size and IQ correlate positively
(e.g., Jensen, 1994), we conducted ad hoctests in SPSS
to determine whether mediating effects of head size

Table II. MZ and DZ Correlations as Estimated by Maximum Likelihood From the Saturated Model 
in Two Different Age Cohort (see Table I for abbreviations)

N pairs* IAF VC WM PSPD PORG

Young MZ 54 (47) 0.73 0.84 0.70 0.62 0.69
Cohort DZ/sib pairs 283 (253) 0.26 0.46 0.16 0.24 0.34
Older MZ 48 (44) 0.83 0.82 0.67 0.70 0.69
Cohort DZ/sib pairs 242 (192) 0.17 0.45 0.34 0.23 0.25

*Number of pairs for IAF in brackets; sibpairs included all possible sib pairings within a family.
Italic: Variables for which an ADE model instead of an ACE model is fitted.
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may have blurred a positive relation between IAF and
IQ. Head circumference was measured with a measur-
ing tape. In the complete sample, the correlation be-
tween IAF and head size was 20.12 (p 5 0.003). This
negative correlation was mainly due to a negative cor-
relation between IAF and head size in females from the
young cohort (20.17, p 5 0.016).

The correlations in the complete sample between
head size and each of the four WAIS dimensions were
all significant (p , 0.001), except for Processing Speed.
For Perceptual Organization, Verbal Comprehension,
and Working Memory the correlations were 0.15, 0.20,
and 0.23, respectively.

When, in the complete sample, the correlation be-
tween IAF and each of the four WAIS dimensions was
corrected for the effects of head size (in addition for
correcting for the effects of age), still no correlation
between IAF and any of the WAIS-dimensions was
found. Also, when the dataset was divided into the four
groups of young females, young males, older females,
and older males, no correlation between IAF and any
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of the WAIS dimensions was observed after correction
for head size, although for the older males the correla-
tions of IAF and verbal comprehension and IAF with
working memory were almost significant (0.17 with
p 5 0.063 and 0.16 with p 5 0.081, respectively).
In conclusion, mediating effects of head size did not
explain the absence of a relation between IAF and IQ.

DISCUSSION

The present study, which includes a large repre-
sentative sample of healthy Dutch adults, is the first
large study to report heritability estimates of alpha peak
frequency. It is also the first study to investigate the
genetic and/or environmental correlation between alpha
peak frequency and IQ. No significant correlation be-
tween alpha peak frequency and IQ at either the ge-
netic, environmental, or phenotypic level was found,
with the exception of a small correlation of peak fre-
quency with Working Memory and Verbal Compre-
hension in the older cohort. These correlations were

Table IVa. Variance Decomposition Estimates (95% CI) in the Full Bivariate Models

%A %D %C %E

Young IAF 40 (0274) 31 (1278) — 28 (18242)
VC 74 (56287) — 9 (0226) 17 (12223)
WM 11 (0257) 59 (11278) — 30 (21245)
PSPD 33 (2265) 33 (1266) — 35 (26246)
PORG 69 (34279) — 0 (0226) 31 (21246)

Older IAF 1 (0254) 82 (28289) — 17 (11228)
VC 74 (56287) — 9 (0226) 17 (12223)
WM 67 (28278) — 0 (0227) 33 (22251)
PSPD 33 (2265) 33 (1266) — 35 (26246)
PORG 37 (0276) 32 (0277) — 31 (20250)

Table IVb. Estimates (95% CI) of Genetic and Environmental Correlations in the Full Bivariate Models

A correlation with IAF D correlation with IAF E correlation with IAF

Young IAF — — —
VC 0.05 (21.00–1.00) — 0.30 (0.04–0.51)
WM 21.00 (21.00–1.00) 0.25 (20.95–1.00) 0.18 (20.10–0.43)
PSPD 20.98 (21.00–0.24) 0.83 (20.28–1.00) 0.09 (20.16–0.33)
PORG 20.08 (21.00–1.00) — 0.03 (20.21–0.27)

Older IAF — — —
VC 0.05 (21.00–1.00) — 0.08 (20.20–0.35)
WM 1.00 (0.22–1.00) — 0.12 (20.18–0.40)
PSPD 1.00 (20.84–1.00) 20.29 (21.00–0.61) 0.10 (20.93–0.39)
PORG 1.00 (21.00–1.00) 20.33 (21.00–1.00) 0.06 (20.23–0.35)



completely mediated by a common nonshared envi-
ronmental factor. Because they did not survive the Bon-
ferroni correction for multiple testing, however, these
correlations should be regarded with caution.

The absence of a genetic correlation between alpha
peak frequency and any of the four WAIS dimensions
in this study suggests that genetic differences among
individuals in the speed with which the thalamo-corti-
cal feedback loops within the brain oscillate do not con-
tribute to differences among individuals in IQ. This re-
sult is at odds with findings in previous studies. Studies
in subjects with mental retardation (see Ellingson,
1966; Vogel and Broverman, 1964 for a review of the
early studies) or Alzheimer’s disease (Lehtovirta et al.,
1996; Klimesch, 1997) most clearly show that when the
brain is not functioning optimally, both alpha peak and
IQ are depressed. In addition, however, a significant
link between alpha peak frequency and IQ has been
found in populations with a normal IQ range (e.g.,
Klimesch et al.,1996; Klimesch, 1999; Köpruner et al.,
1984; Lebedev, 1994; Osaka et al.,1999; Anokhin and
Vogel, 1996). Compared with these previous studies,
our study differs mainly in the operationalization of IQ;
in the present study, the correlation between alpha peak
frequency and WAIS dimensions was investigated.
Most previous studies did not use the WAIS to mea-
sure IQ (e.g., Klimesch et al., 1996; Klimesch, 1997,
1999; Lehtovirta et al., 1996; Köpruner et al., 1984;
Lebedev, 1994; Osaka et al.,1999). Anokhin and Vogel
(1996) did use a measure similar to the WAIS to tap
general IQ, spatial IQ, and arithmetic abilities and
found no significant correlation with any of these and
alpha peak frequency. However, in the same study, a

significant correlation of 0.35 between alpha peak and
verbal abilities, as measured by the Amthauer’s Intel-
ligence Structure Test and Horn’s Leistungsprüfsystem
test, was reported, suggesting that alpha peak frequency
may correlate with very specific mental abilities and
may not be related to general IQ. Klimesch (1997), who
repeatedly linked high alpha peak frequency to good
memory performance, used several tests other than the
WAIS to tap both working memory and memory: a
Sternberg test, a verbal recognition test, an experi-
mental learning test, and an incidental learning test.

A possible explanation for the absence of a corre-
lation between alpha peak frequency and scores on the
WAIS-dimensions could be that neural speed per se
does not play a prominent role in general IQ. Rather,
the degree of connectivity between areas or the total
gray and white matter (brain volume) may be of greater
importance. In other words, efficient interconnectivity
of the brain could result in high processing speed with-
out the need of fast oscillating thalamo-cortical feed-
back loops. Studies relating coherence (a measure of
connectivity of the brain) to IQ have indeed reported a
relation between efficient connectivity and measures of
intelligence (e.g., Jausovec and Jausovec, 2000;
Anokhin et al., 1999).

Alpha peak frequency was shown to be highly her-
itable: In the young adult cohort, 71% of the total vari-
ance could be ascribed to genetic variance; in the older
cohort this was 83%. These estimates of heritability are
among the largest heritabilities reported for a quantita-
tive trait (Plomin and DeFries, 1990). A large part of the
genetic variance was estimated to be caused by non-
additive genetic variance; 32% in the young cohort and
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Table V. Estimates (95% CI) in the Most Parsimonious Bivariate Variance Decomposition Models

%A %D %E E correlation with IAF

Young IAF 39 (0–74) 32 (1–80) 29 (18–44) —
VC 83 (78–87) — 17 (12–22) 0.31 (0.04–0.50)
WM 0 (0–53) 71 (16–80) 29 (20–43) 0.17 (0.01–0.33)
PSPD 32 (1–69) 34 (1–72) 34 (26–46) —
PORG 68 (57–76) — 32 (24–43) —

Older IAF 0 (0–62) 83 (28–89) 17 (11–28) —
VC 83 (78–87) — 17 (12–22) —
WM 67 (50–78) — 33 (22–50) 0.17 (0.01–0.33)
PSPD 32 (1–69) 34 (1–72) 34 (26–46) —
PORG 68 (57–76) — 32 (24–43) —

Note: In Tables IVa and IVb, estimates for IAF are taken from the bivariate model IAF with VC, which
was representative of all four bivariate models. This causes slightly different parameter estimates for IAF
in Table IVb compared with Table IVa.



83% in the older cohort. Nonadditive genetic variation
can be either dominance variation or epistatic variation
or both. Dominance variation of a trait refers to the vari-
ation due to the interaction effect of the two alleles that
define the genotype at a locus. Dominance is distinct
from the interaction that may occur between genotypes
at separate loci (i.e., epistasis). However, these sources
of variance are confounded in the classical twin study
(i.e., including only MZ twin pairs and DZ twin pairs/sib
pairs) as in most non-experimental genetic studies.

A large estimate of nonadditive influences and a
near-zero estimate of additive genetic influences was
found for alpha peak frequency in the older cohort.
However, the confidence intervals around the estimates
of nonadditive genetic variance and additive genetic
variance are very broad and highly overlapping, indi-
cating the difficulty in the separate detection of these
two influences. The real additive variation and real
dominance variation could be anywhere between 1%
and 74%, or 1% and 80%, respectively. In the classic
twin design, estimates of nonadditive genetic influences
and additive genetic influences are highly negatively
correlated (20.9), resulting in stable broad heritability
estimates, but large fluctuations in the estimates of
these two influences (Eaves, 1972). Including subjects
of many different genetic relationships (e.g., MZ twin
pairs. DZ twin pairs, half siblings, parent-offspring)
will increase the reliability to separate additive from
nonadditive genetic influences.

An alternative explanation for the large estimate
of nonadditive genetic influences may be that the ob-
served DZ correlation was slightly lower than the true
DZ correlation. This bias may occur when twins are
sampled from a truncated distribution, which may lead
to a slightly misrepresented sample. Martin and Wil-
son (1982) showed that this selection reduces the cor-
relation between twin pairs and has a proportionally
larger effect on lower correlations as compared to
higher correlations. This, in turn, may easily result in
the estimation of huge nonadditive genetic effects and
zero additive genetic effects. For example, when the true
MZ correlation is 0.8 and the true DZ correlation is 0.3,
the corresponding true percentages of the total variation
explained by additive and nonadditive genetic influences
are 40% and 40%, respectively. However, if the observed
correlations are 0.8 for MZs and 0.2 for DZs, the per-
centage of observed variation explained by additive ge-
netic influences is estimated to be zero and the percent-
age of variation explained by nonadditive influences is
estimated to be 80% (the percentage of variation ex-
plained by nonadditive genetic influences can quickly
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be obtained by calculating (2 3 MZ-correlation minus 
4 3 DZ-correlation) 3 100).

Although the magnitude of the nonadditive genetic
influences on alpha peak frequency is likely to be over-
estimated, other studies support our results in suggest-
ing the presence of nonadditive genetic effects in at
least some loci. Lykken et al. (1982) reported an MZ
correlation of 0.81 and a DZ correlation of 20.15. Al-
though Lykken et al. (1982) did not test the departure
from the additive model nor estimate the proportion of
nonadditive influences, their results were explained in
terms of dominance, epistasis, and gene-environment
interactions. Christian et al. (1996) did estimate the in-
fluence of both dominance variance and variance due
to epistasis. They found no evidence of additive genetic
variance on alpha peak frequency, but the dominance
variance and the epistatic variance were estimated at
21% and 18%, respectively.

An alternative explanation for MZ correlations to
be more than two-fold the DZ correlation is a specific
MZ environment (Wyatt, 1993). Because the twin cor-
relations on EEG parameters for MZs reared together
and MZs reared apart are similar (van Beijsterveldt and
Boomsma, 1994), this specific MZ environment can
only reasonably be sought in a more similar prenatal
environment for MZs compared with DZs. It is known
that a dysfunctional prenatal environment may result
in dysfunctional neuropsychological functioning, as
measured by EEG (Scher, 1997a, 1997b). When, for
example, MZs are exposed to a specific prenatal envi-
ronment that causes them to have more similar alpha
peak frequencies later in life, the MZ correlation will
be inflated compared with the DZ correlation and will
falsely result in an estimation of nonadditive genetic
influences (Christian et al., 1975). However, such an
effect will also be present in different mean alpha peak
frequencies. In the present study, no mean differences
were found between MZs, DZs and sibs. In addition,
when MZs are under the influence of an additional
source of variance (i.e., their specific prenatal envi-
ronment) the result will be a greater total variance for
MZ twin pairs compared with DZ twin pairs and sibs.
Again, we found no evidence for a difference in vari-
ance as a function of zygosity. The nonadditive genetic
influences in alpha peak frequency thus appear to be
genuine nonadditive genetic influences.

While addressing its primary question, this study
uncovered a number of noteworthy findings on the ge-
netic architecture of the IQ dimensions. As expected,
differences among individuals in the four WAIS di-
mensions could be attributed to genetic factors and non-



shared environmental factors, but not to shared envi-
ronmental factors. The absence of shared environmen-
tal influences on specific cognitive abilities measures in
adults is consistent with reports from other studies
(Plomin et al., 1994a, 1994b). On average 70% of
the total interindividual variance was accounted for by
additive genetic factors for Verbal Comprehension in
both cohorts, Perceptual Organization in both cohorts,
and Working memory in the older cohort. For Percep-
tual Organization in the older cohort, the full variance
decomposition model estimated a moderate amount of
nonadditive genetic variance that did not reach signifi-
cance. However, for Processing Speed in both cohorts
and Working Memory in the young cohort, the non-
additive genetic variance was significantly different from
zero and explained 34% and 71% of the total variance,
respectively.

The presence of nonadditive genetic variance in
specific cognitive abilities or IQ in general is not often
explicitly tested for, presumably because only very large
samples have enough statistical power to detect it (Mar-
tin et al., 1978). The large amount of variance due to
nonadditive genetic sources in combination with the use
of an extended twin design (Posthuma and Boomsma,
2000) gave enough power to detect nonadditive genetic
variance in the present study, although the detection was
not very accurate as indexed by the broad confidence in-
tervals. As discussed earlier, very large sample sizes and
information from many different genetic relationships
between subjects are needed to separate additive genetic
influences from nonadditive genetic influences reliably.

The presence of nonadditive genetic influences on
cognitive abilities in the present study complies with
the early work of Jinks and Fulker (1970), who reana-
lyzed the IQ data of Burt and Howard (1956) and con-
cluded that “. . . dominant gene action for IQ almost
certainly exists.” Reported MZ and DZ correlations
from some recent IQ studies also suggest the influence
of nonadditive genetic variance. For example, Plomin
et al. (1994b) reported an MZ correlation of 0.60 and
a DZ correlation of 0.08 for the WAIS digit span sub-
test in the SATSA sample of 67-year-old subjects. In
addition, for several other subtests the reported MZ and
DZ correlations were suggestive of nonadditive genetic
variance. However, nonadditive genetic variance was
not included in the analyses.

Fulker and Eysenck (1979) noted that for “. . . many
genes influencing IQ there is a marked degree of domi-
nance.” Evidence from human inbreeding studies, they
argued, clearly indicate the presence of recessive alleles
for low IQ and dominant alleles for high IQ. Normally,
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offspring show a regression to the population mean; i.e.,
the children of parents who are of lower-than-average
IQ tend to be of average IQ as well as the children of
parents of higher-than-average IQ. If the IQ of children
of blood-related parents tends to be lower than that of
children from unrelated parents, then there is evidence
of recessive alleles influencing low IQ. This is exactly
what was observed in an Israeli study by Bashi (1977);
controlling for socioeconomic status, children born to
biologically related parents were of lower IQ than chil-
dren born to unrelated parents. In fact, children born to
double first cousins showed a larger adverse effect than
children born to first cousins. Another study by See-
manova (1971) found that the IQ of 161 children born
from incestuous relationships was severely depressed.
In contrast, the IQ of 95 children born to the same moth-
ers but from a different relationship was completely nor-
mal. These findings clearly suggest the existence of re-
cessive alleles decreasing IQ and, more generally, of
nonadditive genetic variation in IQ.

In conclusion, this study, which included 688
healthy Dutch adult family members, showed that both
alpha peak frequency and specific cognitive abilities, as
measured with the WAIS, were highly heritable. Possi-
bly as a consequence of the large sample size and the
power added by the extended twin design, significant ev-
idence was obtained for nonadditive genetic influences
on IQ and on alpha peak frequency. No association be-
tween alpha peak frequency and WAIS-IQ at either the
genetic, environmental, or phenotypic level was found.
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Perceptual Speed and IQ Are Associated Through Common
Genetic Factors

D. Posthuma,1,2 E. J. C. de Geus,1 and D. I. Boomsma1

Individual differences in inspection time explain about 20% of IQ test variance. To determine
whether the association between inspection time and IQ is mediated by common genes or by a
common environmental factor, inspection time and IQ were assessed in an extended twin de-
sign. Data from 688 participants from 271 families were collected as part of a large ongoing
project on the genetics of adult brain function and cognition. The sample consisted of a young
adult cohort (mean age 26.2 years) and an older adult cohort (mean age 50.4 years). IQ was as-
sessed with the Dutch version of the WAIS-3R. Inspection time was measured in the so-called
P-paradigm, in which a subject is asked to decide which leg of the P-figure is longest at vary-
ing display times of the P-figure. The number of correct inspections per second (i.e., the reci-
procal of inspection time) was used to index perceptual speed. For Verbal IQ and Performance
IQ, heritabilities were 85% and 69%, respectively. For perceptual speed, 46% of the total vari-
ance was explained by genetic variance. No differences in heritability estimates across age co-
horts or sexes were found. Across the whole sample, a significant phenotypic correlation was
found between perceptual speed and Verbal IQ (0.19) and between perceptual speed and Per-
formance IQ (0.27). These correlations were entirely due to a common genetic factor that ac-
counted for 10% of the genetic variance in verbal IQ and for 22% of the genetic variance in per-
formance IQ. This factor is hypothesized to reflect the influence of genetic factors that determine
axonal myelination in the central nervous system.

KEY WORDS: Neural speed; information processing; intelligence; extended twin design; inspection time.

quickly; all that is required is an accurate response. Dis-
play time of the P-figure is varied in order to determine
the display time at which a predefined percentage (e.g.,
80%) of the subjects’ answers is correct. The manipula-
tion of display time (also called SOA; stimulus onset
asynchrony) is usually implemented by using a backward
masking method, i.e., covering the stimulus with a P-
figure of which both legs are equally long. This reduces
after-image of the stimulus on the computer screen,
which otherwise would have allowed subjects to gain
time beyond the actual display time of the stimulus. The
use of different masking methods or no mask at all may
blur inspection time-IQ correlations, because smarter
people may benefit more from after-image artifacts. A
prerequisite for obtaining a reliable inspection time-IQ
association is the use of a good mask (Knibb, 1992).

A meta-analysis conducted by Kranzler and Jensen
(1989) indicated that inspection time and IQ correlate

INTRODUCTION

In 1996, Deary and Stough stated that “inspection time
is, to date, the only single information processing index
that accounts for approximately 20% of intelligence-test
variance.” Inspection time is defined as the minimum dis-
play time a subject needs to make an accurate perceptual
discrimination on an obvious stimulus, and is often
thought to reflect speed of apprehension or perceptual
speed (Kranzler and Jensen, 1989). Visual inspection
time is usually measured in the so-called P-paradigm in
which subjects are asked to decide which leg of the P-
figure is longest. There is no need to make this decision
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around 20.50: The less time a person needs to make
an accurate decision on an obvious stimulus, the higher
his or her IQ. Inspection time correlates somewhat
higher with performance IQ (20.54) than with verbal
IQ (20.40) and correlations seem constant over age
(Kranzler and Jensen, 1989). It is attractive to hypoth-
esize that inspection time indexes the speed of percep-
tual processing, or even central nervous (CNS) system
processing in general, hence explaining its association
with IQ. In fact, the primary idea behind studies in-
vestigating the correlation between inspection time and
IQ has been that a faster brain should result in a smarter
brain. If this idea holds true, then unravelling the de-
terminants of interindividual variance in inspection
time in adult humans may also cast light on factors that
determine interindividual differences in IQ.

In the present paper, we investigate which factors
(genetic or environmental) contribute most to inter-
individual variability in inspection time and which fac-
tors mediate the observed correlation between inspec-
tion time and IQ. An extended twin design (i.e.,
including families consisting of twins and additional
siblings) is used to maximize statistical power to de-
tect genetic and environmental influences (Posthuma
and Boomsma, 2000).

METHOD

Subjects

Subjects were recruited from The Netherlands
Twin Registry (Boomsma, 1998) and participated in a
large and as yet ongoing project on the genetics of cog-
nition and adult brain function.

Analyses are based on the 688 family members
from a total of 271 extended twin families that had en-
tered the study by December 2000. Fig. 1 depicts the
age distribution of the complete sample showing it ac-
tually consisted of two cohorts: a young adult cohort
with a mean of 26.2 (SD4.19) years of age and an older
adult cohort with a mean of 50.4 (SD7.51) years of age.
We did not want to rule out possible differential age ef-
fects on IQ or inspection time for the two age cohorts.
For example, in the young cohort age may not have any
effect at all on IQ, whereas in the older cohort a grad-
ual decrease in IQ with age seems reasonable to expect.
It was decided, therefore, to include cohort-status in the
analyses. Allocation of a family member to one of the
two cohorts (young cohort under 36 years of age, older
cohort above 36 years of age) was based on the age of
the twins. There was a slight overlap in age of the non-
twin siblings between the two cohorts.
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Table I lists the complete sample configuration.
For example, in the young cohort, 20 MZ families con-
sisting of a complete MZ pair and one additional sib-
ling participated. Participating family members ranged
from 1 to 8, with an average of 2.5 subjects per family.
In the young cohort, 171 males and 210 females par-
ticipated, in the older cohort 135 and 172, respectively.

Table II lists the specific distribution of sex, age,
educational level, and zygosity groups within the two
cohorts.

The Dutch classification system for education
level (Standaard Onderwijs Indeling [SOI], 1998) fol-
lows the International Standard Classification of Edu-
cation (ISCED, 1997). The Dutch standard has seven
categories, ranging from primary education (category 1)
through tertiary education (category 7). The average
SOI educational level was 4.21 (SD1.05), meaning that
on average subjects received schooling until 16 years
of age, which is compatible with the general Dutch
population (CBS, 2000). The subjects in the young
cohort had a significantly higher average education
category (mean 4.4, SD 1.03) than subjects in the
older cohort (mean 4.0, SD 1.04). The same was true
for males (mean 4.3,SD1.04) and females (mean 4.1,
SD1.03). This pattern was also compatible with males
and females of different ages in the general Dutch
population (CBS, 2000).

Task and Variables

Inspection Time

A Parameter Estimation by Sequential Testing
(PEST) procedure (Findlay, 1978; Pentland, 1980) was

Fig. 1. Age distribution (N 5 688) showing two cohorts.
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Table I. Family Configuration in the Sample According to Zygosity, Cohort, and Number of Additional Non-Twin Siblings

Additional siblings

0 1 2 3 4 6

fams ss fams ss fams ss fams ss fams ss fams ss

Young cohort
MZ twin pair 31 62 20 60 2 8 1 5 — — — — Total MZ pairs: 54

single twin 1 1 3 6 — — — — — — — —
DZ twin pair 16 32 24 72 7 28 — — — — — — Total DZ pairs: 47

single twin 1 1 4 8 1 3 — — — — — —
DOS twin pair 11 22 12 36 2 8 1 5 — — — — Total DOS pairs: 26

single twin 2 2 4 8 1 3 — — 1 5 — —
no twins — 2 2 2 4 — — — — — —

Total Young 62 120 69 192 15 54 2 10 1 5 — — Total additional
siblings: 109

Older cohort
MZ twin pair 26 52 16 48 4 16 1 5 — — 1 8 Total MZ pairs: 48

single twin 2 2 3 6 — — — — 1 5 — —
DZ twin pair 20 40 15 45 1 4 — — — — — — Total DZ pairs: 36

single twin 3 3 1 2 2 6 — — — — — —
DOS twin pair 11 22 8 24 2 8 — — 1 6 — — Total DOS pairs: 22

single twin 2 2 1 2 — — — — — — — —
no twins — — 1 1 — — — — — — — —

Total Older 64 121 45 128 9 34 1 5 2 11 1 8 Total additional
siblings: 80

Total 126 241 114 320 24 88 3 15 3 16 1 8

Note: Fams 5 number of families, ss 5 number of subjects, MZ 5 monozygotic twins, DZ 5 dizygotic same sex times, DOS 5 dizygotic op-
posite sex twins. Example: In the young cohort, 24 families consisting of a full DZ pair and one additional sibling participated (72 subjects).
In the complete sample, 114 families consisting of one additional sibling and either a complete or an incomplete twin pair participated.

Table II. Descriptives of the Two Cohorts by Zygosity and Sex

Mean age (SD) Education
ss Age range (yrs) (yrs) (SOI* categories)

Young cohort
MZM 50 22.4–33.9 26.0 (3.07) 4.6 (1.14)
MZF 62 22.5–33.9 25.5 (3.42) 4.1 (0.93)
DZM 38 21.8–30.0 26.0 (2.13) 4.5 (0.76)
DZF 62 22.5–33.4 25.8 (2.72) 4.7 (0.92)
DOS 60 18.8–31.8 25.4 (2.87) 4.4 (0.85)

Add. siblings-males 54 13.9–42.6 27.3 (6.67) 4.0 (1.02)
Add. siblings-females 55 16.7–39.3 27.3 (5.85) 4.5 (1.03)

Total 381 13.9–42.6 26.2 (4.19) 4.4 (0.95)
Older cohort

MZM 48 36.0–69.1 49.1 (6.92) 4.3 (1.09)
MZF 53 42.2–67.4 52.5 (7.8) 3.8 (0.96)
DZM 26 42.7–64.1 52.4 (5.07) 4.3 (1.37)
DZF 52 42.1–62.7 50.5 (6.21) 3.7 (1.09)
DOS 47 41.6–71.0 49.8 (7.98) 4.2 (1.09)

Add. siblings-males 37 37.0–68.4 50.8 (8.48) 4.3 (1.09)
Add. siblings-females 44 29.1–70.9 48.3 (8.50) 3.6 (0.97)

Total 307 29.1–71.0 50.4 (7.51) 4.0 (1.11)

*SOI 5 Dutch standard classification system; ss 5 number of subjects.



incorporated into a P-paradigm following the descrip-
tion in Luciano et al. (2001). Briefly, the PEST proce-
dure uses a staircase method in which stimulus dura-
tion is altered based on the subjects’ response. If a
correct answer is given, stimulus duration time of the
next trial is decreased; if an incorrect answer is given,
stimulus duration of the next trial is increased. The
amount of increase or decrease is dependent on the
number of previous reversals of increase/decrease.
Thus, after many reversals, increases and decreases on
subsequent trials become smaller and the PEST proce-
dure converges on the subjects’ inspection time. The
task ends when the PEST estimate has become suffi-
ciently stable or as soon as the maximum number of
trials is presented.

For each subject, a cumulative normal function
(mean 5 0) was fitted post hocto the stimulus dura-
tion times. The SD of this curve is the SOA at which
84% accuracy (corrected for guessing) is achieved (as
described in detail in Luciano et al. 2001). The recip-
rocal of the SD 3 1000 can be interpreted as the num-
ber of inspections per second resulting in a correct
judgement (Smith, 2000). This measure was used
throughout this paper and will be referred to as per-
ceptual speed.In contrast to inspection time itself, the
number of correct inspections per second or perceptual
speed is expected to correlate positively with IQ, i.e.,
a high value on perceptual speed means that more cor-
rect perceptions per time unit are made and refers to a
fast inspection time.

To ensure accurate SOAs, a dynamic backward
mask (Evans and Nettelbeck, 1993) was used (Fig. 2).
All instructions were given on a computer screen and
the importance of accuracy over reaction time was
stressed in the instruction.
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Intelligence Testing

IQ was measured with the Dutch adaptation of the
WAIS-3R (WAIS-III, 1997). Standardization norms for
this version are currently being determined and at this
point it is not possible to report standard IQ scores. Per-
formance IQ was calculated as the mean of three sub-
tests (picture completion, block design, matrix reason-
ing) and verbal IQ was based on the mean score on four
subtests (information, similarities, vocabulary, arith-
metic).

Statistical Analysis

Because the sample consisted of unbalanced pedi-
grees and had some missing data, models were fitted
to the raw data rather than covariance matrices. This
was accomplished by using the rectangular data file op-
tion in Mx (Neale, 1997). Saturated models were fitted
in order to determine the fit of the variance components
models. The saturated models included modeling a lin-
ear regression effect of age within each cohort and a
deviation for males within each cohort. The signifi-
cance of these effects of the means were estimated in
the saturated models and the following assumptions of
the (extended) twin method were tested: (1) hetero-
geneity of variances across MZ twins, DZ twins, and
siblings, across males and females, and across cohorts;
(2) heterogeneity of correlations across MZM twins and
MZF twins, and across DZM twins, DZF twins, DOS
twins, and sib-sib male/female pairings; (3) hetero-
geneity of DZ correlations and sib-sib correlations;
(4) differences in means between MZ twins, DZ twins,
and siblings; and (5) differences in means between co-
horts. The resulting most parsimonious saturated model
is the model against which the variance components
models are tested.

In the variance components models, the observed
variance was decomposed in three of four possible latent
sources of variance: additive genetic (A), non-additive
genetic (D), shared environment (C), and non-shared
environment (E) following Neale and Cardon (1992).
For DZ twins (and sib pairs if the saturated models in-
dicated no difference in correlation between DZ pairs
and sib pairs) similarity in shared environmental in-
fluences was fixed at 100%, similarity of additive ge-
netic influences at 50%, similarity of non-additive ge-
netic influences at 25%, and no similarity in non-shared
environmental influences. For MZ twins similarities of
additive genetic, non-additive genetic and shared en-
vironmental influences were fixed at 100% and no sim-
ilarity in non-shared environmental influences.

Fig. 2. P-paradigm with backward masking; the P is briefly pre-
sented and covered with the mask. The amount of increase/decrease
of stimulus duration in each trial is dependent on whether or not the
subject answered correctly or incorrectly in the previous trials (see
text also).



Results

Twenty seven subjects of the total 688 subjects
took an IQ test at home and did not have data on the
computerized inspection time task. Ten subjects who
came to the laboratory were unable to perform the in-
spection time task due to a lack of time or computer
problems. Inspection time results from another 10 sub-
jects were discarded from the analyses because they
had an unusual long inspection time (2000 ms), which
raised the suspicion that they did not perform the task
as intended. This left 688 subjects with IQ data of
whom 641 also had data on perceptual speed.

Saturated Model Fitting Results and Descriptives

The saturated model fitting procedures indicated
that for perceptual speed, Verbal IQ and Performance
IQ (1) the variances were homogenous across sexes and
across zygosity; (2) the MZF and MZM correlations
were homogenous; (3) the DZM, DZF, and DOS cor-
relations were homogenous, and the DZ correlations
and sibpair correlations were homogenous; (4) no dif-
ferences in means were found between MZs, DZs and
sibs; and (5) the variances and twin correlations across
cohorts were homogenous.

Table III shows the significant effects on the means
in the most parsimonious trivariate saturated model. Males
performed better on all three measures in both the young
and the old cohort, except for perceptual speed, where
males and females scored equally well. The difference in
means between males and females was larger in the older
cohort compared with the young cohort. In the young co-
hort, there was no effect of age on perceptual speed and
Performance IQ. On Verbal IQ every year would raise the
score with 0.22 points, i.e., being 25 years of age adds
0.22 * 25 5 5.5 to the grand mean. In the old cohort, for
all three measures a higher age decreases the score.

The grand means were equal for both cohorts ex-
cept on Verbal IQ. Although the sign of the deviation
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of the old cohort is positive, this does not correspond
to a higher mean in the older cohort compared with the
young cohort. This can easily be demonstrated by cal-
culating the expected scores for a female aged 26.2 years
(i.e., the average age in the young cohort) and a female
aged 50.4 years (the average age in the old cohort). For
the 26.2-year-old female, the expected verbal IQ score
is 22.70 1 (0.22 * 26.2) 5 28.46, whereas for the 50.4-
year-old female, the expected verbal IQ score is 22.70
1 6.55 2 (0.07 * 50.4) 5 25.72.

The phenotypic correlations between the three
measures were homogeneous over cohorts, sex, and zy-
gosity. The correlation between perceptual speed and
Verbal IQ was 0.19, between perceptual speed and Per-
formance IQ was 0.27, and the correlation between Ver-
bal IQ and Performance IQ was 0.49. These were all
statistically significant at the 0.01 level.

Twin and sibling correlations were also homoge-
neous over cohorts and sexes, and there was no differ-
ence between DZ correlations and sib-correlations. The
MZ and DZ correlations (and 95% CI) for perceptual
speed were 0.48 (0.31 2 0.60) and 0.20 (0.10 2 0.31),
respectively, for Verbal IQ 0.84 (0.79 2 0.88) and 0.47
(0.37 2 0.55), respectively, and for Performance IQ
0.69 (0.58 2 0.77) and 0.32 (0.22 2 0.42), respectively.
The overall pattern of correlations indicates additive
genetic influences and perhaps some common envi-
ronmental influences.

Variance Components Modelling

The minus two log likelihoods (-2LLs) of the
nested trivariate variance components models were
compared to the -2LLs of the final saturated model by
way of likelihood ratio test. In this way, a measure of
goodness of fit of the variance components models was
obtained.

The full trivariate ACE model fitted reasonably
well with a chi-square of 0.78 compared with the sat-

Table III. Grand means, Standard Deviations (SD), and Effects on the Means of Perceptual Speed, Verbal IQ, and Performance IQ 
(as estimated with ML in the final saturated trivariate model)

Regression Deviation 
Deviation weight of age Regression of males Deviation 

Grand of older in young weight of age in young of males
mean SD cohort cohort in older cohort cohort in older cohort

Perceptual Speed 14.16 4.67 — — 20.05 — 1.70
Verbal IQ 22.70 5.41 6.55 0.22 20.07 1.00 2.89
Performance IQ 23.63 3.63 — — 20.09 1.10 1.46



urated model and the same amount of degrees of free-
dom. However, shared environmental influences could
be dropped from the model without significantly wors-
ening the fit of the model (x2

6 5 2.82). For the same
reason, all common non-shared environmental factors
could be dropped from the model (x2

3 5 3.22). In con-
trast, the common genetic factors could not be dropped
from the model without significantly worsening the fit.
Dropping the common genetic factor for perceptual
speed and Verbal IQ resulted in a x2 of 11.06 with one
degree of freedom, for the common genetic factor be-
tween perceptual speed and Performance IQ the x2

with one degree of freedom was 18.18, and for the
common genetic factor between verbal IQ time and
performance IQ the x2 with one degree of freedom was
31.62.

Thus, a trivariate model that included additive ge-
netic influences and non-shared environmental influ-
ences, and that allowed all phenotypic correlation be-
tween the three measures to be explained by common
additive genetic factors fitted the data best. Fig. 3 illus-
trates this model and the standardized path coefficients.

As can also be calculated from Fig. 3 (see Neale
and Cardon, 1992), the percentage of variation ex-
plained by additive genetic factors for perceptual speed,
Verbal IQ, and Performance IQ was 46% (95% CI
33–58), 85% (80–89) and 69% (60–77), respectively.
The remaining variation explained by non-shared
unique environmental influences was 54% (42–67),
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15% (11–20), and 31% (23–40) for perceptual speed,
verbal IQ, and performance IQ.

The genetic correlation between perceptual speed
and Verbal IQ was 0.31 (0.18–0.44). Or in other words,
10% of the genetic variance in Verbal IQ is explained
by genetic factors that are shared with perceptual speed.
The genetic correlation between perceptual speed and
Performance IQ was 0.47 (0.33–0.61), indicating that
22% of the genetic variance in performance IQ was ex-
plained by genetic factors shared with perceptual speed.

Not surprisingly, a high genetic correlation was
also observed between Verbal IQ and Performance IQ;
0.65 (0.56–0.72), corresponding to 28% of the genetic
variance in Performance IQ that is shared with genetic
factors important to Verbal IQ. This also means that
50% of the genetic variance in Performance IQ is
unique to Performance IQ, and thus unshared with either
perceptual speed or Verbal IQ.

DISCUSSION

In a large sample of 688 individuals, the pheno-
typic correlation between the number of correct in-
spections per second and Verbal IQ was 0.19 and be-
tween the number of correct inspections per second and
Performance IQ was 0.27. The magnitudes of these cor-
relations are lower than the current consensus (e.g.,
Nettelbeck, 1987; Kranzler and Jensen, 1989) that sets
the correlation between inspection time and IQ around
20.50 (the difference in sign simply reflects the re-
verse scaling of the number of correct inspections per
second in comparison to inspection time). A possible
source of difference is the use of different strategies by
our subjects that may blur inspection time-IQ correla-
tions (Knibb, 1992). This is not likely because a back-
ward masking procedure was used to prevent the use
of strategy. Furthermore, it has been shown that if
strategies are used, the inspection time–IQ relation
tends to be lower rather than higher than when no
strategies are used (Deary and Stough, 1996).

It remains unclear why the inspection time–IQ re-
lation in our sample is below the estimate derived from
the meta-analysis (Kranzler and Jensen, 1989). It should
be pointed out that the uncorrected correlations in this
meta-analysis were very comparable to ours (around
20.30). Only when an attempt was made to correct for
artifact effects inherent in pooling over studies for
conducting a meta-analysis the corrected inspection
time–IQ correlations came into the 20.50 range. Two
sources of evidence suggest that the lower estimates for
phenotypic inspection time–IQ correlation may be more

Fig. 3. Standardized estimates (95% CI) in best-fitting trivariate
model. Reported values are estimated simultaneously with effects of
age and sex on the observed scores.
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correct. First, the number of subjects in this study (688)
is larger than the total number of subjects used in the
meta-analysis (n 5 88 for PIQ, n 5 218 for VIQ, and
n 5 633 for total IQ). Second, our results are consis-
tent with findings from another recent large study, which
included 390 twin pairs aged 16 years (Luciano et al.,
2001). In this study, a phenotypic correlation between
inspection time and IQ of 20.36 was found.

Variance components analysis suggested moder-
ate genetic influences on perceptual speed as indexed
by inspection time; 46% of the interindividual variance
was explained by genetic variance and 54% was ex-
plained by non-shared environmental sources of vari-
ance including measurement error. Shared environ-
mental sources of variance did not significantly
contribute to the interindividual variance. This pattern
was uniform over two age cohorts and over both sexes.
The influence of genetic variation on interindividual
variation in IQ was much higher; 85% and 69% for
Performance IQ and Verbal IQ, respectively, with the
estimates uniform over cohorts and sexes. The ob-
served correlation between our measure of perceptual
speed and the two IQ measures was mediated com-
pletely by the sharing of underlying genetic factors;
10% of the genetic variance in Verbal IQ was explained
by genetic factors shared with perceptual speed.
Twenty-two percent of the genetic variance in perfor-
mance IQ was explained by genetic factors shared with
perceptual speed. These results are similar to the re-
sults obtained by Lucianoet al. (2001) in a sample of
16-year-old twins.

Although no structural biological theories exist
which specifically address inspection time, the exist-
ing biological model for visual processing based on the
monkey brain holds strong clues to the possible source
of genetic influences on perceptual speed/inspection
time. Fig. 4 briefly explains this model.

A recent meta-analysis on the latencies of re-
sponses evoked by visual stimuli in the monkey, mostly
obtained by intracranial electrophysiological record-
ings, showed that earliest responses in the lateral genic-
ulate nucleus of the thalamus occurred at 28 to 31 msec,
earliest responses in the primary and extrastriate visual
cortices at 35 (V1), 54 (V2), and 61 (V4) msec, and
earliest responses in the posterior part of the inferior
temporal cortex (TE1) at 57 msec (Lamme and Roelf-
sema, 2000). Presumably, activation of V2 and inferior
temporal cortex is minimally required when discrimi-
nating a simple two-dimensional object such as the P
figure. These latencies of the early visual pathways in
monkeys compare quite reasonably to the earliest vi-

sual evoked potentials over the occipital cortex that
occur around 60 msec (Celesia, 1993).

The interest in inspection time in intelligence re-
search is driven mainly by the notion that it indexes a
basic process in brain function, like perceptual, or even
general information processing speed (Jensen, 1993;
Eysenck, 1995), although this notion has been debated
(Stankov and Roberts, 1997). If differences in inspec-
tion time reflect perceptual speed, then Fig. 4 reveals
that a major source for genetic influences are the con-
duction velocity in the optic nerve to the thalamic LGN
and the projection of LGN neurons to the primary cor-
tex, and on to extrastriate areas. Optic nerve conduc-
tion velocity and conduction velocity from LGN neu-
rons to higher areas depend on the fibre diameter of the
axons, the number and form of ion channels in the axon
membrane, and the quality (thickness and stability) of
the myelin sheath generated by the oligodendrocytes
(Kandel et al., 1991). We hypothesize that part of the
common genetic factors underlying IQ and inspection
time are factors that determine myelination of axons by
oligodendrocytes. Results from aging studies have in-
dicated that, with aging, white matter (which is mainly
composed of myelinated axons) density tends to de-
crease, whereas gray matter (cell bodies) density re-
mains stable (Courchesne et al., 2000). This suggests
that aging does not result in neuronal apoptosis but in-
stead goes along with a reduction in myelin, either by
thinning of myelin sheaths or axonal degeneration. This
will influence axonal conduction velocity and may ex-
plain the reduction in inspection time in the older co-
hort compared with the young cohort in this study.

Several genes that influence CNS axonal myeli-
nation have been implicated from animal models, some
of which are known to cause dysmyelination in humans
as well. The Plp gene (Xq22.3), for example, codes for
two membrane proteins important for myelination. Dis-
ruption of expression of the Plp gene in mice causes a
disruption in the assembly of the myeline sheath, which
leads to a profound reduction in conduction velocity of
CNS axons (Boison and Stoffel, 1994; Griffiths et al.,
1995, Ikenaka and Kagawa, 1995; Lemke, 1993). The
influence of the Plp gene is specific to CNS axonal
myelination because it does not affect peripheral con-
duction velocity nor give rise to gross behavioral anom-
alies (Boison and Stoffel, 1994). Although the exact
role of the Plp gene in the CNS remains poorly defined
(Knapp, 1996; Griffiths et al., 1998), mutations in the
same gene in humans are known to result in Pelizaeus-
Merzbacher disease (PMD) (e.g., Anderson et al.,1999;
Griffths et al., 1995; Woodward and Malcolm, 1999).



PMD is a hypomyelination disease which, in its mildest
form, may lead to optic atrophy and dementia. Other
genes implicated to be important for myelination in
knock out mouse studies are the cgt gene(Stoffel and
Bosio, 1997), the MAGgene (Fujita et al.,1998, Sheikh
et al., 1999; Bartsch, 1996, for a review), and the tn-r
gene (Weber et al., 1999).

Obviously, as is apparent from Fig. 4, aspects of
visual processing other than conduction velocity de-
termine inspection time as well. Speed of receptor po-
tential generation in the photoreceptors and its trans-
duction to ganglion cells depends on the availability of
cGMP, the number of cGMP gated channels, and the
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availability of glutamate—factors that may well be
under genetic control. Most important, the efficiency
of synaptic neurotransmission in the LGN and striate
neurons is a major determinant of visual processing
speed. Given the staggering amount of protein interac-
tions involved in neurotransmission, it is easy to envi-
sion how synaptic transmission could introduce genetic
variance in inspection time (and IQ). In fact, a sodium
channel isoform was recently identified that influenced
both axonal conduction velocity as well as synaptic re-
sponses (Caldwell et al., 2000). Finally, although in-
spection time seems to depend largely on the “fast feed-
forward sweep of visual information processing,” we

Fig. 4. The visual pathway in monkeys. Visual information processing-starts with the absorption of light by the visual pigments in the pho-
toreceptors of the retina. This stimulates cGMP (cyclic nucleotide 38–58 cyclic gunosine monophosphate) phosphodiesterase, which reduces the
amount of cytoplasmic cGMP and closes the cGMP gated channels, changing the ionic current across the membrane. This, in turn, leads to a
hyperpolarization of the photoreceptor membrane and results in the reduction of glutamate in the synaptic cleft between photoreceptor and in-
terneuron. The interneuron then transduces the electrical signal by way of graded potentials, eventually triggering an action potential in the
ganglion cell. The axons of the ganglions cells leave the retina at the optic disc, where they become myelinated by oligodendrocytes and form
the optic nerve (Tessier-Lavigne, 1991). That oligodendrocytes are a source of optic nerve myelination contrasts with other peripheral nerves
where myelin is always generated by Schwann cells; this makes the optic nerve a good model for central nervous system conduction velocity.

Most detailed anatomical information exists on the monkey brain (Kandel et al.,1991; Salin and Bullier, 1995). Information from both eyes
is conducted through neurons in the optic tract to the lateral geniculate nucleus (LGN) of the thalamus. Retinal information also travels to the
pretectal area of the midbrain for the control of pupillary constriction, to the superior colliculus (SC), the pulvinar (Pv) for the control of (sac-
cadic) eye movements, and to the cerebellum to control movement in response to visual input. The lateral geniculate nucleus projects to layer
4 of the primary visual cortex (V1) that projects on to V2 and higher visual association cortices (V4, MT), eventually leading to visual aware-
ness. From the retina to the LGN and from the LGN to the area V1, parallel pathways (magno-, parvo-, and koniocellular) transfer different
kinds of information that are recombined in areas V1 and V2. After recombination, two pathways emerge: a dorsal, magno-dominated pathway
to the posterior parietal cortex involved with space and movement, and a ventral, parvo-dominated pathway concerned with object identifica-
tion and perception to the inferior temporal cortex.



cannot rule out effects of horizontal connections within
the visual layers, e.g., within V1, or of recurrent pro-
cessing from hierarchically higher visual areas (Lamme
and Roelfsema, 2000), which brings in a number of pos-
sible additional genetic factors.

In summary, we found that the correlations be-
tween perceptual speed and Verbal IQ and between per-
ceptual speed and Performance IQ were entirely due to
a common genetic factor that accounted for 10% of the
genetic variance in Verbal IQ and for 22% of the ge-
netic variance in Performance IQ. We conclude that
perceptual speed as indexed by inspection time can be
used as an intermediate phenotype in linkage and as-
sociation studies aimed at detecting genetic loci that
determine interindividual variance in intelligence.
Genes related to CNS axonal conduction velocity con-
stitute good candidate genes for intelligence.
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Abstract

Psychometric IQ (WAIS-III), onset and peak latency of the lateralized readiness potential

(LRP), decision time, and accuracy were assessed during an Eriksen Flanker task in a young

(149 families) and in an older (122 families) cohort of twins and their siblings. Stimulus-

response incongruency effects were found on all measures of processing speed and accuracy.

The effects on the percentages of wrong button presses and too slow (�/1000 ms) responses

were larger in the older than in the younger age cohort. Significant heritability was found for

processing speed (33�/48%), accuracy (41%), and stimulus-response incongruency effects (3�/

32%). Verbal and performance IQ correlated significantly with stimulus-response incon-

gruency effects on accuracy (�/0.22 to �/0.39), and this correlation was completely mediated

by an underlying set of common genes. It is concluded that measures of the ability to perform

well under conditions of stimulus-response incongruency are viable endophenotypes of

cognitive ability. # 2002 Elsevier Science B.V. All rights reserved.

Keywords: Intelligence; Endophenotype; Lateralized readiness potential (LRP); Heritability; Genetic

correlation

1. Introduction

The presence of genetic influences on cognitive ability is well established (e.g.

Bouchard and McGue, 1981; Plomin et al., 2001). Little is known, however, about

the pathways that lie between genes and cognitive ability. Two strategies may be
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employed to identify these pathways. The first, bottom-up strategy starts with the

sequence of known genes, identifies the gene product, establishes the function of the

gene product at the cellular level, its possible role in neuronal networks and

ultimately its effects on cognition. A second, top-down strategy focuses on individual

variability in cognitive ability. It consecutively traces individual differences in

cognitive ability back to differences in brain function, to the neurophysiological

substrates determining brain function, to the cellular pathways underlying this
neurophysiology, to the proteins involved in these cellular pathways, and finally to

the genes coding for these proteins.

In the top-down strategy, cognitive psychophysiological experimentation plays a

crucial role by indexing the first important element in this approach; individual

differences in brain function. Measures of brain function that correlate with

cognitive ability through shared genetic factors are called ‘‘endophenotypes’’ (de

Geus and Boomsma, 2002). A rapidly increasing number of potential endopheno-

types have already been tested for crucial properties of heritability and (genetic)
covariation with cognitive ability (for a review see Posthuma et al., 2002). A specific

class of these endophenotypes came from the theoretical framework of the neural

speed theory of intelligence (Eysenck, 1986; Vernon, 1987, 1993). Within this

framework, many studies have looked at the heritability of reaction times and their

correlation with measures of intelligence (e.g. Baker et al., 1991; Ho et al., 1988;

Finkel and Pedersen, 2000; Luciano et al., 2001; Neubauer and Knorr, 1997; Rijsdijk

et al., 1998). Reaction times are moderately to highly heritable (40�/80%) and

correlate around �/0.20 to �/0.40 with measures of intelligence. This association is
largely (70�/100%) explained by common underlying genetic factors that influence

both reaction times and intelligence.

Reaction time in a typical choice reaction time task reflects the final outcome of a

multi-stage process of stimulus detection, stimulus evaluation, response selection,

response activation, and response initiation. Processing speed of each of these stages

can be indexed separately, and tested for heritable individual differences and their

relevance to intelligence. For instance, we previously showed that 46% of the

individual differences in the speed of early stimulus detection (as measured by
inspection time), can be ascribed to genetic differences among subjects (Posthuma et

al., 2001b). Moreover, the correlation between this early step and IQ was shown to

be completely mediated through a common genetic pathway (Posthuma et al.,

2001b). Besides early stimulus detection and reaction times, a number of studies have

looked at P3 latency as a measure of the speed of stimulus evaluation. van

Beijsterveldt and van Baal (2002) reported a ‘‘meta’’-heritability across these studies

of 51%. Also, a number of studies have reported correlations of P3 latencies with IQ,

although not systematically (for a review see Wright et al., 2002). To date there have
been virtually no investigations of individual differences in the speed of other stages

of information processing.

A potential measure of another aspect of processing speed is the lateralized

readiness potential (LRP). The LRP is mathematically derived from the Bereitschaft-

spotential or Readiness Potential (RP; Kornhuber and Deecke 1965). The onset of

the LRP is considered to reflect the output of the response selection stage (Coles,
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1989; Eimer, 1998) and its peak latency is thought to additionally reflect central

motor processes that take place after response selection has taken place, i.e. response

activation (Falkenstein et al., 1994). Actual response initiation can be measured by

EMG onset or alternatively as the release of a home button (decision time). In this

paper, we examined the heritability of the latency of (pre-) motor selective response

activation using the onset and peak latency of the LRP. The heritability of the speed

of response initiation was examined using decision time. Since large individual

differences in speed�/accuracy trade off may exist, even under standardized

instructions, we also assess the heritability of accuracy. To test their viability as

endophenotypes of cognitive ability, we examined the phenotypic and genetic

correlation of processing speed and accuracy with psychometric IQ.

The LRP was obtained during an Eriksen flanker task (Eriksen and Eriksen,

1974). We tested processing speed during the performance of the congruent trials

because these are comparable to the two-choice reaction time tasks used in many

studies testing the neural speed of intelligence hypothesis. In addition, the Eriksen

flanker task can be used to specifically test the effects of stimulus-response

incongruency. Stimulus-response incongruency in this task generally induces slowing

and loss of accuracy (Botvinick et al., 1999; Cohen et al., 1992; Kramer et al., 1994).

This may reflect impairment of selective attentional control over the local inhibitory

circuits in the perceptual or premotor cortices (Cohen et al., 1992; Servan-Schreiber,

1990; Spencer and Coles, 1999) or of top-down inhibitory control of frontal

executive areas (e.g. Kramer et al., 1994; West, 1996). The concepts of selective

attention as well as inhibitory control are included in almost all theories of higher

cognitive function (Anderson and Spellman, 1995; Baddeley, 1986; Dempster, 1991,

1992; Fuster, 1997 West, 1996). Therefore, we examined the heritability of stimulus-

response incongruency effects and explored their phenotypic and genetic correlation

to IQ.
All assessments were made in a large sample of twin pairs and their singleton

siblings. Twin families had been recruited from two separate age cohorts: 149

families with a mean age of 26 (SD 4.2) and 122 families with a mean age of 50 (SD

7.5). A randomly drawn sample of one subject per family was used to explore the

effects of age and sex on stimulus-response incongruency effects on the onset and

peak latency of the LRP, decision time and the number of too slow and incorrect

responses. Structural equation modelling on the complete sample of genetically

related subjects (twins and additional siblings) was used to examine whether

individual differences in processing speed during trials with congruent stimulus-

response mapping are influenced by genetic factors. Following this, the heritability

was tested for stimulus-response incongruency effects using the contrast between

stimulus-response congruent and stimulus-response incongruent trials. For all

Eriksen flanker task derived measures we then computed the phenotypic correlation

with psychometric IQ. In the main multivariate analyses, these phenotypic

correlations were decomposed into a genetic and environmental part to test (1)

whether common underlying genetic or environmental factors influence processing

speed, accuracy and intelligence and (2) whether common underlying genetic or
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environmental factors influence stimulus-response incongruency effects and intelli-

gence.

2. Methodology

2.1. Subjects

Subjects were recruited from the Netherlands Twin Register (Boomsma, 1998) as

part of a large ongoing project on the genetics of cognition and adult brain function

(Posthuma et al., 2001a,b; Wright et al., 2001). Adult twins and their non-twin

siblings were asked to participate in a testing protocol lasting 4.5 hrs. In one half of

the protocol, psychometric intelligence, inspection time and decision time were

assessed, in the other half electroencephalographic activity (EEG) was measured.

The EEG registration consisted of a resting EEG measurement (Posthuma et al.,
2001a), an oddball task (van Beijsterveldt et al., 2001), a spatiovisual working

memory task (Hansell et al., 2001) and the Flanker task (Eriksen and Eriksen, 1974).

The order of these tasks within the EEG session was fixed. The order of the two

halves of the protocol was randomized across family members. In the present paper

only data from the IQ test and from the Eriksen Flanker Task are reported.

Six hundred and eighty-eight family members from 271 extended twin families had

participated in the study by December 2000. Participating families consisted of one

to eight siblings (including twins). On average 2.5 subjects per family participated. In
a young adult cohort 171 males and 210 females participated, in an older cohort this

was 135 males and 172 females. The young cohort included 54 MZ pairs, 73 DZ

pairs, 18 single twins and 109 additional siblings. The older cohort included 48 MZ

pairs, 58 DZ pairs, 15 single twins, and 80 additional siblings.

2.2. Intelligence testing

IQ was measured with the Dutch version of the Wechsler Adult Intelligence Scale
(WAIS-III, 1997). Standardization norms for this version are currently being

determined and at this point we can report unstandardized raw IQ scores only.

All analyses, however, will explicitly model effects of sex and age on the raw IQ

scores. Performance IQ was calculated as the mean score of three subtests (picture

completion, block design, matrix reasoning) and verbal IQ was based on the mean

score on four subtests (information, similarities, vocabulary, arithmetic).

2.3. Flanker task procedure

Subjects were in a supine position facing a monitor at 80 cm distance, in a dimly lit

sound attenuated, and electrically shielded chamber. Two boxes with an upper and a

lower button were placed left and right in front of the subject. A single randomized

sequence of 120 trials was generated and used for all subjects. A trial was started

when the subject simultaneously pressed the left and right lower buttons. Subjects
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always used the index fingers. The trials started with a tone (1 KHz, 100 ms) and a

simultaneously presented fixation dot in the centre of the monitor. After 1000 ms,

the stimulus array was presented for 100 ms (see Fig. 1). Stimuli consisted of a

horizontal stimulus array comprising five arrowheads. Left and right arrowheads

occurred with equal probability. Likewise, the flanking arrowheads were as often

congruent as incongruent with the target arrow. This resulted in four conditions each

containing 30 trials: left congruent (B/B/B/B/B/), right congruent (�/�/�/�/�/),

left incongruent (�/�/B/�/�/), and right incongruent (B/B/�/B/B/).

Subjects were instructed to respond with the left hand if the central arrowhead

pointed to the left, and with the right hand if the central arrowhead pointed to the

right. Responding meant releasing the lower ‘‘home’’ button and pushing the upper

‘‘response’’ buttons. They were asked to respond as fast and accurately as possible

and to ignore the flanking arrowheads. Visual feedback (‘‘right’’, ‘‘wrong’’ or ‘‘too

slow’’, and total current points) was presented 1000 ms after the onset of the stimulus

array, and lasted 1500 ms. They gained 1 point for each correct response and lost 5

points for wrong button presses or too-slow responses. Wrong button presses

incorporated all premature responses, wrong home button releases, and wrong

response button presses. Responses were too slow when they exceeded the maximum

response time of 1000 ms. Trials were separated by an inter trial interval of 1500 ms

after which the next trial started as soon as both home buttons had been pressed.

Home button release time and time of response button pressing were stored for all

trials as well as the number of too-slow responses (�/1000 ms) and wrong button

presses. Performance measures were decision time, the number of incorrect and the

number of too-slow responses. These measures were all averaged over left and right

hand trials. Decision time was computed as the time interval between stimulus onset

and home button release. Too-slow responses and wrong button presses were

counted and converted to a percentage, because in a small number of subjects, timing

information on a few of the 120 trials was lost. Before recording, all subjects received

30 practice trials.

Fig. 1. Temporal structure of the LRP task.

D. Posthuma et al. / Biological Psychology 61 (2002) 157�/182 161



2.4. EEG recording and LRP computation

The EEG was recorded with 19 Ag/AgCl electrodes mounted in an electrocap.

Signal registration was conducted using an AD amplifier developed by Twente

Medical Systems (Enschede, The Netherlands). Signals were continuously repre-

sented online on a Nec multisync 17’’ computer screen using POLY 5.0 software

(POLY, 1999) and stored for offline processing. Standard 10�/20 positions were F7,

F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1, and O2 (Jasper, 1958).

Additionally F1 and F2 were placed halfway between F3 and Fz, and between Fz

and F4, respectively. Positions C3 and C4 are located above the right and left motor

cortices, respectively, and are used in this analysis.

Software-linked earlobes (A1 and A2) served as reference. The vertical electro-

oculogram (EOG) was recorded bipolarly between two Ag/AgCl electrodes, affixed 1

cm below the right eye and 1 cm above the eyebrow of the right eye. The horizontal

EOG was recorded bipolarly between two Ag/AgCl electrodes affixed 1 cm left from

the left eye and 1 cm right from the right eye. An Ag/AgCl electrode placed on the

forehead was used as a ground electrode. Impedances of all EEG electrodes were

kept below 3 kV, and impedances of the EOG electrodes were kept below 10 kV. The

EEG was amplified (0.05�/30 Hz), digitized at 250 Hz and stored for offline

processing.
LRPs were computed for correct trials only. Per trial, the epoch used for data

analysis started 250 ms preceding stimulus array onset, and ended 1000 ms after

onset of the stimulus array. The mean amplitude in the 250 ms preceding the

stimulus array was defined as the baseline. Epochs were discarded from further

analyses if values exceeded 200 mV on the vertical or horizontal EOG channels, or

values exceeded 80 mV on the EEG channels. A three step subtraction method

was performed to calculate the LRP waveforms. First, we subtracted the time

series recorded from C4 from those recorded over C3 on each trial for the right

hand responses. Second, we subtracted the time series recorded from C4 from

those recorded over C3 on each trial for left hand responses. Third, the

two difference waves for left and right hand responses were subtracted, which

resulted in the LRP waveform. This method is also known as the double subtraction

method:

LRP� (C3�C4)righthand�(C3�C4)lefthand

Peak latency of the LRP was determined by searching the most negative value in

the 350�/900 ms post stimulus window. Onset of the LRP was calculated by a single-

subject based regression procedure with one degree of freedom (Mordkoff and

Gianaros, 2000). This method fits a linear regression to the LRP slope using the

individually fixed LRP peak negativity. The intercept with the x -axis denotes LRP

onset.
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2.5. Statistical procedure

2.5.1. Effects of SEX and AGE COHORT on stimulus-response incongruency effects

As the total sample existed of genetically related subjects, a subset of unrelated

subjects was obtained by randomly drawing one subject from each family. On this

subset of genetically unrelated subjects, effects of sex and age cohort and their

interactions with condition were tested using a repeated measurements MANOVA

(GLM, SPSSwin v10.0, 1999). The within subjects factor was CONDITION

(congruent, incongruent), and between subjects factors were SEX (female, male)

and AGE COHORT (younger, older). Stimulus-response incongruency effects and
modulation by age and sex are reflected in the CONDITION main effects, and the

AGE COHORT�/CONDITION and SEX�/CONDITION interaction effects,

respectively.

2.5.2. Phenotypic correlation of IQ with processing speed, accuracy and stimulus-

response incongruency effects

In the subset of genetically unrelated subjects, Pearson correlations of verbal IQ

and performance IQ with the onset and peak latency of the LRP, decision time,

percentage too-slow responses or wrong button presses were calculated using SPSS

10.0. As the percentages of too-slow responses and wrong button presses were highly
skewed both a log-transformation and a transformation to an ordinal scale were

used. The transformation to the ordinal scale was done by regrouping the data into

four categories: 0�/5% slow, 5�/10%, 10�/15%, and more than 15%. Polyserial

correlations with IQ were calculated using the software package PRELIS (version

2.12a; Jöreskog and Sörbom, 1996). The log-transformed and the ordinally

transformed variables gave highly similar results. Only correlations obtained using

the log-transform of the percentages too-slow responses and wrong button presses

will be presented.

2.5.3. Estimating heritability of processing speed, accuracy, and stimulus-response

incongruency effects

To estimate heritability of the processing speed we used onset and peak latency of

the LRP and decision time in the congruent condition . To estimate heritability of

accuracy we used the percentages too-slow responses or wrong button presses in the

congruent condition . However, the data from the congruent condition were analyzed

in a single analysis with the data from the incongruent condition to allow us to

simultaneously estimate the heritability of the stimulus-response incongruency

effects on speed and accuracy by using a linear combination of the two scores (�/

1�/incongruent�/�/1�/congruent) in the path model. The percentages of too-slow
responses or wrong button presses had to be log transformed to obtain normality, so

here a linear combination of the log-transformed variables in the congruent and

incongruent condition would not work. Stimulus-response incongruency effects on

accuracy, therefore, were obtained from a separate analysis on the log transform of

the contrast between the two conditions.
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Heritability was derived from structural equation modelling that estimates sources

of (co-) variance in the observed measures due to additive genetic variation (A) or

due to shared (C) and non-shared environmental (E) variation (Neale and Cardon,

1992). MZ twins share 100% of their genes, while DZ twins share on average 50% of

their genes, as do singleton sibling pairs. Shared environment is per definition 100%

shared by the twins of both MZ and DZ pairs, and will consist mainly of the family

environment. Thus, the expectation for the covariance between two members of an
MZ twin pair is A�/C. The expectation for the covariance between two members of a

DZ twin pair or between singleton sibling pairs is 1/2A�/C. Non-shared environ-

mental factors incorporate those factors in the environment that are not shared by

siblings. The expectation for the variance is A�/C�/E.

Our extended twin design (i.e. consisting of twins and additional siblings) provides

data characterized by families of variable size. Such ‘incomplete’ data can be

analyzed in Mx (Neale, 1997) via full information maximum likelihood, which uses

the observed data, and provides parameter estimates that make the observed data
most likely. In order to obtain a measure of how well the specified model for means

and covariances fits the observed values, the raw data option in Mx calculates the

negative Log-Likelihood (�/LL) of the raw data for each pedigree (Lange et al.,

1976), as:

�LL��k log(2p)� log½S½�(yi�m)? S�1(yi�m);

where k (k�/1, . . ., p ; p is the number of family members times the number of

phenotypes) denotes the number of observed variables within a family (and can vary

over families), S is the expected covariance matrix of family members with
dimension p by p , yi (for i�/1, . . .p ) is the vector of observed scores, m is the

column vector of the mean expected values of the variables for that pedigree, and ½S½
and S�/1 are the determinant and inverse of matrix S, respectively.

Since the families are independent, their joint likelihood is the product of their

individual likelihoods and the log of the joint likelihood is the sum of the log

likelihoods per family. Thus, summing the negative likelihoods (�/LLs) of all

families gives the �/LL of the model. In Mx the �/LL of the model is doubled

because twice the difference between two models (2{�/LL full model�/(�/LL nested
model)}) is*/under certain regularity conditions*/asymptotically distributed as x2.

Thus, two nested models (a nested model includes fewer parameters and does not

introduce new parameters compared to the model under which it is nested) which

provide �/2LLs, may be subtracted to provide a D(�/2LL) which has a x2

distribution. A high x2 against a low gain of degrees of freedom (Ddf) denotes a

worse fit of the second, more restrictive model relative to the first model.

When the model is written in terms of matrix algebra, generalization from the

univariate case to a multivariate case becomes straightforward. Let matrices A, C
and E be of dimensions n �/n , where n denotes the number of variables measured on

each subject. Matrix A denotes the genetic component, matrix C denotes the shared

environmental component, while matrix E denotes the non-shared environmental

component. The diagonal elements of matrix A denote the genetic variances of the

three variables. For example, element a11 is the genetic variation in the first variable.
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The off-diagonal elements of matrix A represent the genetic covariance between

variables. Analogously, the diagonal elements of matrices C and E denote the shared

and non-shared environmental variances of the three variables, and the off-diagonal

elements denote the covariances due to shared and non-shared environmental

influences.

As matrices A, C, and E are covariance matrices, they are restricted to be positive

definite. This is accomplished by calculating matrices A, C, and E as the product of a
triangular matrix and its transpose. Thus, matrix A is calculated as X/�/X?, where X is

triangular and of dimensions 3�/3 (for three variables). Analogously, matrix C is Y/�/

Y?, and matrix E is Z/�/Z?. This is also known as a Cholesky factorization of matrices

A, C and E.

2.5.4. Decomposition of phenotypic correlations with IQ into environmental and

genetic correlation

A multivariate decomposition of covariances into genetic and environmental

components was used for each measure that showed a significant phenotypic

correlation with verbal or performance IQ. The decomposition of covariances into

genetic and environmental components necessitates the use of a genetically
informative design, such as the twin design. The variance is formally represented as

A�C�E�X�X?�Y�Y?�Z�Z?:

The covariance is formally represented as

A�C�X�X?�Y�Y? for MZ twins;

0:5�A�C�0:5�X�X?�Y�Y? for DZtwins:

The genetic correlation between variables i and j (/rgij) is derived as the genetic

covariance (aij ) between variables i and j divided by the square root of the product

of the genetic variances of variables i (aii ) and j (ajj );

rgij �
aijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aii � ajj

p :

Analogously, the shared (/rcij) and non-shared (/reij) environmental correlation

between variables i and j are derived as the respective environmental covariances

between variables i and j divided by the square root of the product of the respective

environmental variances of variables i and j . The phenotypic correlation (r) is the

sum of the product of the genetic correlation and the square roots of the genetic

variances of the two phenotypes and the product of the environmental correlation

and the square roots of the environmental variances of the two phenotypes.
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r�rgij�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aii

(aii � cii � eii)

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ajj

(aii � cii � eii)

s
�rcij

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cii

(aii � cii � eii)

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cjj

(aii � cii � eii)

s
�reij

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

eii

(aii � cii � eii)

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ejj

(aii � cii � eii)

s
:

r�genetic contribution�shared environmental contribution

�non-shared environmental contribution:

3. Results

3.1. Effects of SEX and AGE COHORT on stimulus-response incongruency effects

Psychometric IQ scores were available for 688 subjects (271 families). Table 1

shows age and IQ for the random selection of unrelated individuals, one from each

of these families. Analyses of sex and age cohort effects on verbal and performance
IQ for this sample have been described elsewhere (Posthuma et al., 2001b). Briefly, it

was found that males generally had higher IQ scores than females and younger

subjects had higher IQ scores than older subjects.

Seventy eight subjects did not perform the Eriksen flanker task. For the remaining

610 subjects (250 families) data on the average decision time over correct trials and

the percentage of trials with too-slow responses or wrong button presses are shown

Table 1

Age and IQ in the randomly selected group of unrelated subjects

Age Verbal IQ Performance IQ

Young females N 74 74 74

Mean 26.02 28.24 23.64

Sd 3.78 5.03 3.51

Young males N 75 75 75

Mean 25.96 29.23 24.34

Sd 4.41 4.83 3.14

Older females N 63 63 63

Mean 51.11 26.04 19.40

Sd 7.46 6.22 3.89

Older males N 59 59 59

Mean 50.59 29.33 20.62

Sd 7.36 5.07 4.05
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Table 2

Decision time, percentage wrong button presses and percentage responses ‘too slow’ in the randomly selected group of unrelated subjects

Decision time (ms) Percentage wrong button presses Percentage ‘too slow’

Congruent Incongruent Congruent Incongruent Congruent Incongruent

Young females N 68 68 68 68 68 68

Mean 456.99 552.66 0.20 3.31 2.52 8.52

Sd 39.47 41.89 0.68 8.83 3.20 8.89

Young males N 69 69 69 69 69 69

Mean 467.34 562.91 0.23 2.05 3.07 9.00

Sd 36.27 40.27 1.01 5.75 4.81 9.47

Older females N 59 59 59 59 59 59

Mean 499.66 586.08 2.38 6.78 8.50 22.12

Sd 44.93 51.22 5.47 11.46 8.10 18.68

Older males N 54 54 54 54 54 54

Mean 497.60 589.26 0.74 5.94 7.26 17.71

Sd 46.92 53.38 2.44 11.50 8.60 16.50
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in Table 2. The expected effects of CONDITION were found for the percentage too-

slow (F (1, 246)�/188.98, P B/0.0001), percentage wrong button presses (F (1, 246)�/

44.27, P B/0.0001), and decision time (F(1, 246)�/1872.92, P B/0.0001): stimulus-

response incongruency resulted in a prolonged decision time (�/92.33 ms), more

wrong button presses (3.63%) and more too-slow (9.00%) responses. No main or

interaction effects were found involving SEX.

Significant effects of AGE COHORT were found for the percentage too-slow
(F (1, 246)�/46.67, P B/0.0001), percentage wrong button presses (F (1, 246)�/12.68,

P B/0.0001), and decision time (F (1, 246)�/40.84, P B/0.0001). Older subjects made

more responses that were ‘too-slow’ (�/8.12%), made more wrong button presses (�/

2.51), and had prolonged decision times (�/33.17 ms) as compared to younger

subjects. In addition, AGE COHORT significantly interacted with CONDITION

for the percentage too slow (F (1, 246)�/21.49, P B/0.0001) responses and wrong

button presses (F (1, 246)�/4.56, P B/0.05). Stimulus-response incongruency led to a

larger percentage wrong button presses responses in the older cohort (4.80%) than in
the younger cohort (2.47%). Likewise, it affected the percentage too-slow responses

more in the older cohort (12.03%) than in the younger cohort (5.96%). In contrast,

the AGE COHORT�/CONDITION interaction failed to reach significance for

decision time (F (1, 246)�/2.38, P�/0.12). Because the number of too-slow responses

was higher in the older cohort, particularly during the incongruent condition, the

lack of an interaction effect on decision time may have reflected the exclusion of the

correct but slow trials. To explore this, we plot histograms of the reaction time

(decision time�/movement time) from all correct trials in the congruent and
incongruent conditions for the two age cohorts in Fig. 2. In the incongruent

condition of the older cohort it is evident that a number of correct trials are missing

from the distribution because we classified reaction times above 1000 ms as too-slow.

However, extrapolating from the normal curve this missing tail accounts for only

about 3�/5% of the responses. In reality, 20% of the trials were coded too slow. This

means that 15�/17% of the too-slow responses were not simply ‘‘correct but slow’’,

but must have been drawn from another distribution.

Two further measures of processing speed were derived from the LRP: onset and
peak latency. We found that a number of subjects did not show a waveform

resembling a readiness potential, which made computation of the LRP problematic.

We then decided to select only subjects with a minimum of 30 correct trials (for the

congruent as well as the incongruent condition) who had unambiguous LRP traces,

even if this meant compromising statistical power of the genetic analyses in terms of

lowered sample sizes.

A reliable onset of the LRP was available for 376 subjects in the congruent

condition and 361 subjects in the incongruent condition. Peak latency of the LRP
was available for 407 subjects in the congruent condition and 376 subjects in the

incongruent condition. Fig. 3 shows the grand averages of the LRP waveforms in the

congruent and incongruent conditions for the remaining participants in both age

cohorts. The figure nicely demonstrates the stimulus-response incongruency effects

on the onset and peak latency of the LRP. The positive dip before the onset of the

negative shift in the incongruent condition reflects activation of the wrong response.
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The analyses of the effects of SEX and AGE COHORT were again performed on

the subset of genetically unrelated subjects. LRP latencies of these subjects are

shown in Table 3. For the onset (F (1, 175)�/666.16, P B/0.0001) and peak latency of

the LRP (F (1, 184)�/450.32, P B/0.0001) significant effects of CONDITION were

found. The presence of incompatible flankers resulted in a prolonged onset (�/115.86

ms) and prolonged peak latency (�/96.96 ms). The main effect of AGE COHORT

was significant for the onset (F (1, 175)�/6.07, P B/0.05) and peak latency of the

LRP (F (1, 184)�/16.77, P B/0.0001) and indicated that the onset (�/13.55 ms) and

the peak latency of the LRP (�/32.60 ms) were slower in the older compared to the

young cohort. There were no main effects of SEX, and no interactions of SEX with

either AGE COHORT or CONDITION.

Fig. 2. Distribution of the single trial reaction times (decision time�/movement time). Reaction time was

recorded in correct trials only; trials with reaction times over 1000 ms were coded too slow.
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3.2. Genetic analyses of processing speed and accuracy

The distribution of percentage wrong button presses and percentage too-slow

responses was highly skewed. In view of the comparable effects of stimulus-response

Fig. 3. Grand averages of the LRP.

Table 3

Onset and peak latency of the LRP in the randomly selected group of unrelated subjects

Onset (ms) Peak latency (ms)

Congruent Incongruent Congruent Incongruent

Young females N 50 50 55 55

Mean 186.96 301.04 347.75 441.93

Sd 49.61 52.39 62.04 56.01

Young males N 57 57 60 60

Mean 194.63 322.84 359.00 452.20

Sd 39.55 45.94 65.83 53.47

Older females N 35 35 36 36

Mean 214.46 312.43 386.33 487.00

Sd 51.93 49.48 41.73 56.18

Older males N 37 37 37 37

Mean 204.81 318.97 379.08 478.86

Sd 42.38 39.84 82.28 69.02
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incongruency effects and aging on both type of incorrect responses, we collapsed

them into a single percentage for the genetic analyses. This percentage was still

highly skewed, and analyses were run using both a threshold model and a log

transform. The ordinal transformation and log-transformation gave highly similar

results (data not shown) and below we report only on the log-transform of the

percentage incorrect response. Maximum likelihood estimates of the twin correla-

tions are given in Table 4. Virtually all MZ correlations are higher than DZ twin
correlations. This suggests the presence of genetic influences on the variance in onset

and peak latency of the LRP, decision time, percentage incorrect responses, and

verbal and performance IQ.

Decomposing the variance in IQ measures by structural equation modelling into

genetic, shared and non-shared environmental components confirmed our previous

finding (see Posthuma et al., 2001b) that verbal and performance IQ are highly

heritable (85 and 69%, respectively). No evidence was found for shared environ-

mental influences. Although the final sample size for the LRP measures is
significantly larger than any previous study on the LRP, and more than sufficient

to estimate age and sex effects on the mean, it is still critically small for the separate

detection of genetic influences and shared environmental influences (see e.g.

Posthuma and Boomsma, 2000). We choose, therefore, to decompose the variance

in genetic variance (A) and non-shared environmental variance (E; including

measurement error) and not to include shared environmental variance in the model.

Thus, although the factor A is modelled as additive genetic influences, it should be

kept in mind that this factor may also contain shared environmental influences.
Table 5 shows the fit statistics of the full AE model and the best reduced variance

decomposition models in which different models were allowed for the young and

older cohort in each of the two conditions.

The congruent condition was used to assess heritability of processing speed and

accuracy. Under the most parsimonious models, genetic influences explained 43% of

interindividual differences in the onset of the LRP in the young cohort and 46% of

interindividual differences in the peak latency of the LRP in the older cohort (see

Table 6). Genetic influences explained 33% of the variance in decision time in the
young and 48% of the variance in the older cohort. In the older cohort, 41% of the

variance in accuracy derived from genetic influences. No genetic influences on the

percentage incorrect responses in the young cohort could be detected. This may not

be surprising as in the young cohort very few incorrect responses were given in the

congruent condition, keeping the interindividual variance very low.

3.3. Genetic analyses of the effects of stimulus-response incongruency

The contrast between the congruent and incongruent conditions was used to assess
heritability of the effects of stimulus-response incongruency on processing speed and

accuracy. Table 7 shows that individual differences in the effects of stimulus-

response incongruency on onset and peak latency of the LRP were not due to genetic

differences, with the exception of the onset of the LRP in the young cohort.

However, individual differences in the effects of stimulus-response incongruency on
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Table 4

Twin correlations

Onset Peak latency Decision time Percentage incorrect IQ

Congruent Incongruent Congruent Incongruent Congruent Incongruent Congruent Incongruent VIQ PIQ

Young cohort

MZ 0.69 (16) 0.15 (18) 0.04 (23) 0.73 (20) 0.56 (46) 0.49 (46) �/0.24 (46) 0.30 (46) 0.84 (54) 0.70 (54)

DZ 0.24 (117) �/0.02 (119) 0.21 (136) 0.03 (129) 0.06 (241) 0.35 (239) 0.07 (241) 0.26 (241) 0.47 (283) 0.31 (283)

Older cohort

MZ 0.35 (16) 0.44 (13) 0.41 (18) 0.16 (14) 0.50 (45) 0.33 (45) 0.39 (45) 0.38 (45) 0.84 (48) 0.70 (48)

DZ �/0.32 (68) 0.09 (54) 0.29 (81) 0.48 (47) 0.24 (185) 0.22 (183) 0.23 (185) 0.30 (185) 0.47 (242) 0.31 (242)

MZ�/monozygotic twins; DZ�/dizygotic twin and twin-sibling pairs. VIQ, PIQ�/verbal and performance IQ. Between brackets: number of pairs.
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decision time and on the percentage incorrect responses (including too slow) were

under significant genetic control. Under the most parsimonious models, genetic

influences explained 25% of interindividual differences in decision time in the young

cohort and 32% in the older cohort. Genetic influences explained 23% of the variance

in percentage incorrect in the young and 29% in the older cohort.

Table 5

Fit statistics of the full AE and the best (reduced) variance decomposition models (bold)

�/2LL df x2 Ddf P

ONSET

Full AE-model 7852.73 721

E-model, AE-model for congruents in young cohort 7857.34 726 4.62 5 0.47

PEAK LATENCY

Full AE-model 8577.71 767

E-model in young cohort, AE-model in older cohort 8579.36 770 1.65 3 0.65

DECISION TIME

Full AE-model 12 393.12 1200

% INCORRECT

Full AE-model 12 322.22 1201

AE-model, E-model for congruents in young cohort 12 323.94 1202 1.72 1 0.19

All models are bivariate models that include the congruent and incongruent conditions and a linear

combination of these two conditions to derive estimates for the stimulus-response incongruency effects.

Table 6

Percentage of the variance in processing speed and accuracy explained by additive genetic variation (A)

and non-shared environmental variation (E)

YOUNG COHORT OLDER COHORT

A E A E

ONSET

Full AE-model 48 (7�/76) 52 (24�/93) 3 (0�/28) 97 (72�/100)

E-model, AE-model for congruents in young cohort 43 (3�/73) 57 (27�/97) �/ 100

PEAK LATENCY

Full AE-model 2 (0�/23) 98 (77�/100) 46 (20�/66) 54 (34�/80)

E-model in young cohort, AE-model in older cohort �/ 100 46 (20�/66) 54 (34�/80)

DECISION TIME

Full AE-model 33 (10�/54) 67 (46�/90) 48 (25�/66) 52 (34�/75)

% INCORRECT

Full AE-model 3 (0�/23) 97 (77�/100) 41 (20�/58) 59 (42�/80)

AE-model, E-model for congruents in young cohort �/ 100 41 (20�/58) 59 (42�/80)
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3.4. Phenotypic correlations with verbal IQ and performance IQ

The phenotypic correlations (by age cohort) of onset and peak latency of the LRP
and decision time with verbal and performance IQ are shown in Table 8. These

correlations do not show a meaningful pattern for the young cohort, but suggest a

significant relation between processing speed and IQ in the older cohort. However, in

contrast to our expectation, this IQ/processing speed correlation was not reflected in

the onset and peak latency of the LRP.

Table 9 shows the pattern of correlations of stimulus-response incongruency

effects with verbal and performance IQ. Significant correlation was found with IQ

for the effects on accuracy. Incongruency effects on the number of too slow and the
number of wrong button presses were significantly larger in the subjects with lower

IQ scores.

3.5. Decomposition of the phenotypic correlations into genetic and environmental

correlations

Only the significant phenotypic correlations in Tables 8 and 9 were selected for

decomposition into genetic and environmental components. The results of this

decomposition are depicted in Table 10. The correlation of verbal and performance

IQ with decision time in the older cohort was completely explained by an underlying
set of genes. Dropping the environmental contributions to verbal IQ/decision time

and performance IQ/decision time correlations did not cause a significant worsening

of the fit of the model (VIQ x2
1/�/0.02, P�/0.88; PIQ x2

1/�/0.001, P�/0.98). The

correlation of verbal and performance IQ with percentage incorrect in the congruent

condition in the older cohort was also completely explained by an underlying set of

Table 7

Percentage of the variance in stimulus-response incongruency effects on processing speed and accuracy

explained by additive genetic (A) and non-shared environmental variation (E)

YOUNG COHORT OLDER COHORT

A E A E

ONSET

Full AE-model 15 (0�/49) 85 (51�/100) 10 (0�/45) 90 (55�/100)

E-model, AE-model for congruents in young cohort 26 (2�/47) 74 (53�/98) �/ 100

PEAK LATENCY

Full AE-model 6 (0�/28) 94 (72�/100) 3 (0�/35) 97 (65�/100)

E-model in young cohort, AE-model in older cohort �/ 100 3 (0�/35) 97 (65�/100)

DECISION TIME

Full AE-model 25 (6�/44) 75 (56�/94) 32 (3�/69) 68 (31�/97)

% INCORRECT

Full AE-model 23 (6�/40) 77 (60�/94) 29 (5�/12) 71 (48�/95)
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Table 8

Phenotypic correlation of verbal (VIQ) and performance (PIQ) with processing speed and accuracy

Onset Peak latency Decision time Wrong button presses ‘Too slow’ Total incorrect

Young VIQ 0.01 0.10 0.06 0.11 �/0.04 �/0.01

Cohort PIQ �/0.02 0.04 0.09 0.00 �/0.14 �/0.13

Older VIQ 0.13 0.06 �/0.21* �/0.07 �/0.25** �/0.23*

Cohort PIQ 0.03 �/0.16 �/0.25** �/0.07 �/0.24** �/0.23*

* Significant at the 0.05 level.

** Significant at the 0.01 level.
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Table 9

Phenotypic correlation of verbal (VIQ) and performance IQ (PIQ) with stimulus-response incongruency effects

Onset Peak latency Decision time Wrong button presses ‘Too slow’ Total incorrect

Young VIQ �/0.07 �/0.24** 0.01 �/0.11 �/0.24** �/0.22**

Cohort PIQ 0.08 �/0.10 �/0.18* �/0.33** �/0.29** �/0.39**

Older VIQ 0.01 �/0.13 0.14 �/0.28** �/0.29** �/0.36**

Cohort PIQ �/0.06 �/0.04 0.11 �/0.29** �/0.32** �/0.39**

* Significant at the 0.05 level.

** Significant at the 0.01 level.
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genes. Dropping the environmental contributions from the model did not cause a

significant worsening of the fit (VIQ x2
1/�/0.37, P�/0.54; PIQ x2

1/�/0.01, P�/0.94).

The correlation of verbal and performance IQ with stimulus-response incon-

gruency effects on the percentage incorrect responses in both cohorts was completely

explained by an underlying set of genes. Dropping the environmental contributions

to these correlations for both cohorts did not cause a significant worsening of the fit
of the model (VIQ;/x2

2/�/1.20, P�/0.55; PIQ:/x2
2/�/2.80, P�/0.25).

4. Discussion

This study examined the genetic contribution to interindividual variance in the
speed of selective response activation, decision time and accuracy in the congruent

condition of the Eriksen Flanker task. It also examined the genetic contribution to

slowing and loss of accuracy induced by stimulus-response incongruency. It was

specifically tested whether processing speed, accuracy and stimulus-response

incongruency effects were genetically correlated with IQ. These analyses required a

large sample of genetically related subjects, in our case twins and their singleton

siblings. This large sample provided us with the opportunity to evaluate effects of

age and sex on these measures for which most previous samples using the Flanker
task had only low statistical power. Below, we review these age and sex effects and

follow this with a discussion of phenotypic and genetic correlations with IQ.

As expected, the presence of incongruent flankers led to a significant increase in

the onset (115.86 ms) and peak latency of the LRP (96.96 ms) and in decision time

(92.33 ms), which is in line with previous findings on this task (e.g. Eriksen and

Table 10

Genetic correlation and genetic contribution to the significant phenotypic correlations with verbal (VIQ)

and performance IQ (PIQ)

VIQ PIQ

Genetic correlation Genetic con-

tributiona (%)

Genetic correlation Genetic con-

tributiona (%)

Decision time

(older)

�/0.20 (�/0.41 to �/0.001) 100 �/0.34 (�/0.56 to �/0.12) 100

Percentage incor-

rect (older)

�/0.51 (�/0.70 to �/0.31) 100 �/0.52 (�/0.73 to �/0.30) 100

Incongruency ef-

fects on the per-

centage incorrect

(young)

�/0.44 (�/0.79 to �/0.20) 100 �/0.68 (�/1.00 to �/0.43) 100

Incongruency ef-

fects on the per-

centage incorrect

(older)

�/0.37 (�/0.89 to �/0.12) 100 �/0.48 (�/0.93 to �/0.21) 100

a Genetic contribution�/percentage of the phenotypic correlation explained by a genetic correlation.
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Eriksen, 1974; Botvinick et al., 1999; Casey, et al., 2000; Gratton et al., 1988; Kopp

et al., 1996; Kramer et al., 1994). No evidence of sex differences was found on the

performance of the Eriksen flanker task throughout. For age, the expected effects

were found on all measures of processing speed. Subjects from the older age cohort

(mean age 50) had an onset of the LRP that was on average 13.55 ms delayed

compared to subjects in the younger age cohort (mean age 26). The peak latency of

the LRP was delayed by an average of 32.60 ms in the older age cohort, and decision

times were prolonged by 33.17 ms. At first sight, this cognitive slowing did not seem

amplified by stimulus-response incongruency, since no evidence was found for an

interaction of age-cohort and condition on decision time. This is consistent with

findings from a previous study that looked at decision time during an Eriksen

flanker task and compared means across a cohort of 32 young (mean age 20.6)

subjects and a cohort of 30 older subjects (mean age 67.8) subjects (Kramer et al.,

1994). They found significant differences in mean decision time between the two

cohorts (i.e. the older subjects had a longer decision time) and significant

prolongation of decision time in the incongruent condition compared to the

congruent condition in both cohorts, but no interaction effects.

It should be noted, however, that our measures of processing speed were all

computed over trials in which a correct response had to be given within 1000 ms.

Slower trials were coded as ‘too slow’ and no mean decision time was recorded for

these trials; instead the ‘too slow’ feedback was given instantaneously. This stern

criterion was chosen to make sure that the subjects would remain motivated to

respond as fast as possible. Fig. 2 suggests that at least part of the potentially correct

trials in the incongruent condition in the older cohort fell in the ‘too slow’ category,

which meant they were not used to compute average decision time, onset and peak

latency of the LRP. We found a significantly larger stimulus-response incongruency

effect on the percentage responses too slow in the older cohort: the presence of

incongruent flanking stimuli induced 12.03% more too-slow responses than the

congruent condition. This figure was only half (5.96%) in the young cohort. These

findings do allow for possible amplification of cognitive slowing by stimulus-

response incongruency in the older cohort. The failure of the age cohort by condition

interaction on decision time to reach significance may have been due to removing

these ‘‘correct but slow responses just after 1000 ms’’. However, three observations

suggest that a substantial part of the too-slow responses were qualitatively different

from such correct but slow responses. First, unless the distribution in Fig. 2 is

extremely skewed to the right, only a few percent of the correct trials are missing*/

far less than the actual percentage of too-slow responses found. Secondly, in 74% of

the too-slow responses the home button was never released. This means that even the

decision time was larger than 1000 ms, almost double of what it is in the correct

trials. In these trials subjects literally ‘did not lift a finger’. Thirdly, the number of

wrong button presses also showed evidence of stronger stimulus-response incon-

gruency effects in the older than in the younger cohort. Stimulus-response

incongruency, therefore, seems to do more harm than response slowing alone. A

fair summary of our findings is that older subjects experience more interference by
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incongruent flankers than younger subjects when they have to respond correctly

within a fixed time frame.

The source of individual differences in the interference induced by stimulus-

response incongruency is still unresolved. Larger interference may derive from

impairments in local inhibitory connections in the motor or perceptual system

(Cohen et al., 1992; Servan-Schreiber, 1990; Spencer and Coles, 1999) or from

impairments in top-down inhibitory control signals generated by a supervisory
attentional system (Kramer et al., 1994; West, 1996) or a conflict monitoring system

(Botvinick et al., 2001).

Localisation of these impairments in cognitive control in the brain is still

unresolved although the frontal cortex seems to play an important role (Botvinick

et al., 1999; Dempster, 1991; Fuster, 1997; Hazeltine et al., 2000; MacDonald et al.,

2000; Smith and Jonides, 1999; Ullsperger and von Cramon, 2001). For our purposes

it suffices that processes of inhibitory control and attentional selection are highly

plausible source of individual differences in cognitive ability. Although cognitive
ability (or IQ) in itself is highly heritable, it is likely to be influenced by a number of

genes of small effect. These genes are more easily uncovered by focussing on

elementary aspects of cognition, such as processing speed or resistance to

interference. The main goal of our study was to test Flanker task derived behavioural

and electrophysiological measures of processing speed and resistance to interference

as viable ‘‘endophenotypes’’ of cognitive ability. This endophenotype approach

requires that the Flanker-task derived measures must be heritable and show evidence

of genetic correlation to intelligence (de Geus and Boomsma, 2002).
Using the complete dataset of genetically related subjects, it was found that genetic

effects accounted for over 40% of the variance in LRP-onset (young cohort) and

LRP-peak amplitude (older cohort) in the congruent condition. Neither parameters,

however, were systematically associated with verbal and performance IQ, and no

genetic correlation could be found. This contrasted with our expectation that the

more intelligent subjects would be fastest in their selective response activation. This

expectation derived from the theoretical framework of the neural speed theory of

intelligence (Eysenck, 1986; Vernon, 1987, 1993). Within this framework, previous
studies have systematically found reaction time to be a heritable trait that is both

genetically and phenotypically correlated with measures of intelligence (e.g. Baker et

al., 1991; Finkel and Pedersen, 2000; Ho et al., 1988; Neubauer and Knorr, 1997;

Rijsdijk et al., 1998; Luciano et al., 2001). In an earlier report on these same subjects

we found that the speed of early stimulus detection (as measured by inspection time)

was significantly correlated with IQ through a common genetic pathway (Posthuma

et al., 2001b). We now extend these findings by showing a similar pattern for

decision time in the older cohort, where a significant genetic correlation was found of
decision time with verbal (�/0.20) and performance IQ (�/0.34).

It is unclear why the onset or peak latency of the LRP did not show the expected

(genetic) correlation with IQ that we did find in these same subjects with the other

processing speed measures (inspection time and decision time), and that others found

with total reaction time (Finkel and Pedersen, 2000; Luciano et al., 2001). A first

explanation is that the largest source of individual differences relevant to IQ may
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simply be in the early perceptual stage of a response, in the stage between selective

response activation and the actual response execution, or even in movement

execution itself. A second more humble explanation may be the difference in the

reliability of the methodologies to assess the various parameters. Reaction times can

be recorded with a high level of fidelity, whereas the ERPs, almost by their nature,

are highly noisy. Error variance is further increased by the use of a difference score,

i.e. the subtraction of left and right EEG signals. Although LRP data are highly
useful to compare groups, they may be less suitable to a pure individual differences

design. Interestingly, the latency of another ERP, the P3 latency, also showed no

evidence of a genetic correlation with IQ in a group of adolescent twins in who IQ

and reaction time did derive from common genetic factors (Wright et al., 2002).

Aware of the potential problems in the reliability of the LRP, we rigidly selected only

those traces in which a clear readiness potential was visible, and used only subjects in

which we could average 30 of such traces. As a consequence of this selection of

highly reliable LRP traces, a substantial number of subjects were lost, eroding the
power to detect low but reliable correlation with IQ.

In addition to processing speed, we also examined the effects of stimulus-response

incongruency as a possible genetic correlate of IQ. Effects of stimulus-response

incongruency on the LRP-derived measures did not classify as useful endopheno-

types of verbal or performance IQ, and neither did the effects on decision time. In

contrast, the effects of incongruent flankers on the percentage of incorrect responses

were heritable in both age cohorts and correlated at a genetic level with psychometric

IQ. In other words, the genetic factor underlying these stimulus-response incon-
gruency effects also explained part of the variance in verbal and performance IQ. We

conclude that the ability to perform correctly on a speeded choice reaction time task

under conditions of response conflict is a viable endophenotype of cognitive ability.
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Combined Linkage and Association Tests in Mx

D. Posthuma,1,3 E. J. C. de Geus,1 D. I. Boomsma,1 and M. C. Neale2

Statistical methods aimed at the detection of genes for quantitative traits suffer from two prob-
lems: (i) when a linkage approach is employed, relatively large sample sizes are usually required;
and (ii) when an association approach is employed, effects of population stratification may blur
genuine locus–trait associations. The variance components method proposed by Fulker et al.
(1999) addressed both these problems; it is statistically powerful because it involves a combined
analysis of linkage and association and can include information from multiplex families, which
reduces the overall amount of necessary individual genotypes. In addition, it includes an explicit
test for the presence of spurious association. After a brief illustration of the various ways in
which population stratification may affect locus–trait associations, the implementation in Mx
(Neale, 1997) of the method as proposed by Fulker et al. (1999) is discussed and illustrated. In
addition, an extension to this method is proposed that allows the use of (variable) sibship sizes
greater than two, the estimation of additive and dominance association effects, and the use of
multiple alleles. These extensions can be implemented when parental genotypes are available
or unavailable.

KEY WORDS: QTL; population stratification; structural equation modeling; variance components
modeling; quantitative trait.

INTRODUCTION

Statistical methods aimed at the detection of quantita-
tive trait loci (QTLs) have primarily focused on detect-
ing linkage between a QTL (or a marker in linkage
disequilibrium with the QTL) and a trait (e.g., Almasy
and Blangero, 1998; Amos, 1994; Boomsma and Dolan,
1998; Eaves et al., 1996; Fulker and Cardon, 1994;
Fulker and Cherny, 1996; Goldgar, 1990; Haseman and
Elston, 1972; Schork, 1993). Recently, however, atten-
tion has shifted toward methods designed to detect
associations between QTLs and traits (e.g., Abecasis
et al., 2000; Fulker et al., 1999; Lesch et al., 1996;
Plomin et al., 2001). Under certain conditions, testing
for association can be more powerful than testing for

linkage (Risch, 2000; Risch and Merikangas, 1996;
Sham et al., 2000), even without assuming that one of
the typed markers is the actual trait locus (Long and
Langley, 1999).

A widely used design to test for an association be-
tween a locus and a trait is the case-control design. This
design, however, is sensitive to the effects of popula-
tion stratification that may confound genuine locus—
trait associations (Hamer and Sirota, 2000). Spurious
associations may arise in a population that is a mix of
two or more genetically distinct subpopulations. Any
trait that is more frequent in one of the subpopulations
compared to the other subpopulation(s) (e.g., because
of cultural differences or assortative mating) will show
a statistical association with any allele that has a dif-
ferent frequency across those two populations (e.g., as
a result of different ancestors or genetic drift). This as-
sociation is called spurious because within each popu-
lation the allele is unrelated to variation in the trait. In
practice, more than two populations may have com-
bined and it will not be obvious from the combined
populations whether or not the sample is stratified and
in what way.
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Population stratification is often considered the
culprit for nonreplication of previously found associa-
tions (Cardon and Bell, 2001; Ioannidis et al., 2001;
Plomin and Caspi, 1999; Risch, 2000; Sullivan et al.,
2001). However, what is frequently overlooked is that
population stratification is as likely to obscure genuine
associations as it is to falsely introduce them. The first
aim of this paper is to illustrate these opposing impacts
of population stratification on association under vari-
ous admixtures of subpopulations with different trait
means and different allele frequencies.

To control for the confounding effects of popula-
tion stratification, family-based tests have been devel-
oped in which locus–trait associations are compared
across genetically related individuals. Because these in-
dividuals stem from the same stratum, locus–trait asso-
ciations observed within genetically related individuals
are genuine. Most available family-based tests for as-
sociation have been developed for binary traits, such
as the Haplotype Relative Risk test (HRR, Falk and
Rubinstein, 1987; Terwilliger and Ott, 1992) and the
Transmission Disequilibrium Test (TDT, Spielman
et al., 1993). Under the assumption of random ascer-
tainment, a clinical binary diagnosis such as “depressed”
or “not depressed” or “hypertensive” vs. “normoten-
sive,” however, is less powerful for gene finding than a
continuous trait such as the score on a depression scale
or blood pressure (Boomsma et al., 2000; Van den Oord,
1999). For this reason the TDT has recently been ex-
tended to the analysis of quantitative traits (q-TDT;
Allison, 1997; Rabinowitz, 1997). The TDT is based on
the comparison of transmitted alleles from the parents
to affected offspring with nontransmitted alleles. In its
original form the TDT has some drawbacks: (i) it re-
quires parental genotypes that complicates its applica-
tion to late-onset diseases; (ii) two homozygous parents
are noninformative, resulting in a decrease of the avail-
able sample size; and (iii) no more than one affected
child per family can be included because siblings are
not genetically independent. Recently, extensions of the
TDT have been developed that deal with some of its
original drawbacks (reviewed in Zhao, 2000).

Fulker et al. (1999) proposed a variance compo-
nents sib-pair analysis for mapping QTL. This method
is based on the modeling of allelic effects on the trait
values as a test for association and simultaneous mod-
eling of the sibship covariance structure as a test for
linkage (Fulker et al., 1999). By partitioning the asso-
ciation effects into a between family component and a
within family component, spurious associations can
be separated from genuine associations. The between
family effects reflect both the genuine and the possible

spurious association between locus alleles and a trait
(or allelic association between locus alleles and trait
locus alleles). The within family effects reflect only the
genuine association.

When simultaneously modeling linkage (using
identity by descent (IBD) information at positions
across the genome) and association (using the alleles
from candidate genes/markers) lying within the region
that shows linkage), evidence for linkage in a genomic
region is expected to decrease; by modeling the allelic
effects on the trait values, the residual variance will
show less evidence for linkage. If the evidence for link-
age does not completely decrease in the presence of a
significant genuine association effect of a marker
within the linkage region, this could imply that the link-
age derives from some other gene within that genomic
region, that not all relevant alleles of that locus have
been genotyped, or that (part of) the observed linkage
may have been artefactual (i.e., because of marker
genotype errors) (Abecasis et al., 2000, 2001; Cardon
and Abecasis, 2000; McKenzie et al., 2001).

The second aim of this paper is to present an im-
plementation of the combined linkage and association
test, including the test for the presence of spurious as-
sociations. Although we will present this implementa-
tion in the context of using Mx software (Neale, 1997),
the general algebraic formulas can also be implemented
in other genetic software, such as MERLIN (Abecasis
et al., 2002) or SOLAR (Almasy and Blangero, 1998).
Mx (Neale, 1997) is a matrix algebra interpreter that
uses numerical optimization to obtain parameter esti-
mates by maximum likelihood. Its flexibility allows the
relative simple implementation of extensions to multi-
ple (marker) alleles, dominance as well as additive as-
sociation effects, and variable sibship sizes. In addition,
either parental genotypes or sibling genotypes can be
used to derive the coefficients used for the decompo-
sition of the association into spurious and genuine
effects. These extensions will also be discussed in
algebraic terms and implemented in an example Mx
script.

Effects of Population Stratification 
on Statistical Association

We start with a brief definition of some terms used
in this paper and will mostly adhere to the definitions
given by Terwilliger and Göring (2000). Linkage
between a marker and a trait locus refers to the non-
independent segregation of the marker and the trait
locus, implying that the recombination fraction between
them is less than 0.5. Linkage between a locus and a
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trait is related to this and denotes that pairs of geneti-
cally related individuals that share two locus alleles
IBD are phenotypically more alike than pairs of ge-
netically related individuals that share none of their al-
leles on the locus IBD. The locus may either be the trait
locus itself or be a marker linked to the trait locus (i.e.,
a recombination fraction between the marker and the
trait locus of less than 0.5); it is in linkage disequilib-
rium (LD), but not necessarily in disequilibrium with
the trait locus, LD or allelic association refers to the
situation in which certain alleles of a marker are pref-
erentially cosegregated with certain alleles of a trait
locus. LD may occur because two loci are in tight link-
age but can also occur as a result of population strati-
fication or when certain allele combinations at different
loci confer enhanced reproductive fitness. In the latter
two cases we speak of disequilibrium. Association be-
tween a locus and a trait refers to the apparent allelic
effects of a locus on trait values. This locus may either
be the trait locus itself (i.e., the actual gene) or be a
marker in LD with the trait locus.

When several populations have combined, spuri-
ous association between a locus and a trait may arise.
The size and direction of this association depend on the
combination of allele frequencies and trait means in
the subpopulations. Different trait means for the same
genotypic category across subpopulations will gener-
ally result in a difference of the overall means across
subpopulations, which is why a difference in overall
trait means across subpopulations is generally given as
a prerequisite for spurious association to occur. Yet, it
should be kept in mind that the crucial events leading
to spurious associations between alleles at a locus and
a trait are a difference in allele frequencies at that locus

and a difference in the trait means for a given genotype
across subpopulations.

Consider two subpopulations A and B that combine
to form the mixed population M. Let subpopulation A
have a trait mean �A of 105 and subpopulation B
a trait mean �B of 100. Consider a diallelic locus with
alleles E and e and frequencies p and q, respectively,
where q = 1 − p. Let p in subpopulation A (pA) be 0.9
and p in subpopulation B (pB) be 0.5. This locus con-
tributes neither to �A nor to �B; in other words, within
each subpopulation there is no association between the
locus and the trait. Let �m and pm denote the trait mean
and the frequency of allele E, respectively, in the mixed
population (M). Let P, H, and Q denote the genotypic
frequencies of the three possible genotypes EE, Ee, and
ee, respectively. As subpopulations A and B are in
Hardy-Weinberg equilibrium (HWE), P, H, and Q
may be calculated from the allele frequencies of each
subpopulation

PA = p2
A, HA = 2pAqA, Q A = q2

A

and

PB = p2
B , HB = 2pBqB , and QB = q2

B

(see also Table I).
As the locus is not related to the phenotypic trait

values, the three genotypic categories have equal means
within subpopulations. Across subpopulations, how-
ever, the trait means are different for individuals that
have similar genotypes. Assuming equal population
sizes for subpopulations A and B, mixing the subpop-
ulations creates population M, where the genotypic
frequencies PM, HM, and QM are derived from the geno-
typic frequencies of the two subpopulations A and B

Table I. Formulas and Hypothetical Situation Illustrating the Effects of Population Stratification in the Absence of a Genuine Association

Population Allele Genotypic Trait means (�g ) for given
mean frequencies frequencies genotype

� p(E) q(e) P(EE) H(Ee) Q(ee) EE Ee ee
A 105.00 0.9 0.1 0.81 0.18 0.01 105.00 105.00 105.00
B 100.00 0.5 0.5 0.25 0.50 0.25 100.00 100.00 100.00
M 102.50 0.7 0.3 0.53 0.34 0.13 103.82 101.32 100.19

Note: Following Falconer and Mackay (1996) p denotes the frequency of allele E, q = 1 − p and denotes the frequency of allele e. P, H, and
Q denote the genotypic frequencies of genotypes EE, Ee, and ee, respectively. P, H, Q, p, and q in the mixed population are derived from the

genotypic frequencies in the subpopulations. PM is derived as 
T∑

t=1
Pt × nt/

T∑
t=1

nt , where n is the total sample size of subpopulation t, and 

t = 1, . . . , T . Analogously, HM is derived as 
T∑

t=1
Ht × nt/

T∑
t=1

nt , and QM is derived as 
T∑

t=1
Qt × nt/

T∑
t=1

nt . The allele frequencies p and q in the 

combined population M are derived as pM = PM + 1
2 HM and qM = QM + 1

2 HM respectively.
Two subpopulations A and B of equal size, differ both in trait means (per genotype) and in allele frequencies of a diallelic locus. Within

each population no locus-trait association exists, whereas in the mixed population M a spurious locus-trait association is clearly evident.
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Fig. 1. Graphical representation of the effects of population strati-
fication. Two populations A and B differ both in overall trait means
(and trait means per genotype) and in allele frequencies of a diallelic
locus. Within each population no locus–trait association exists,
whereas in the mixed population a spurious locus–trait association
is clearly evident. Specifics concerning this situation are given in
Table I. Genotypes and their frequencies are given on the x-axis,
whereas the trait means per genotype are scaled on the y-axis.

Fig. 2. Biometric model for a diallelic trait with alleles E and e. Let
a be the effect of genotype EE on the trait mean, −a the effect of ee,
and d the dominance deviation of the heterozygous genotype Ee.

last three cells from Table I, however, the estimated a
and d in the mixed population M would be obtained as
(103.82 − 100.19)/2 = 1.82 and 101.32 − (103.82 +
100.19)/2 = −0.69, respectively.

For the example given in Table I and represented
in Figure 1 we used extreme allele frequency differ-
ences (�p = pA − pB = 0.4) between the two sub-
populations and a mean difference of 5 scale points.
Figure 3a plots the effects of varying allele frequency
differences between populations A and B for four ��s
(�A − �B = 10, 5, −5, or −10) on the estimated value
of a in the mixed population, in the absence of a gen-
uine association (i.e., a = 0 in subpopulations A and
B). In Figure 3b the effect on the calculated value of d
in the mixed population is plotted for the same situa-
tions and a d of 0 in subpopulations A and B. The al-
lele frequency pB is constant at 0.5, whereas the allele
frequency pA is varied in steps of 0.01 from 0.99 to
0.01. The mean �B is constant at 100, whereas �A is
110, 105, 95, or 90.

As becomes evident from Figures 3a and b, pop-
ulation stratification will result in spurious associations
between a locus and a trait. As the genuine a and d
values were 0, the estimated a and d values in the mixed
population are always biased (except when �p = 0),
and may result both in positive effects of a and d, as
well as in negative values of a and d. The bias in esti-
mation of d becomes relatively small when the differ-
ence in allele frequency between subpopulations A and
B is small to moderate (between −0.3 and 0.3).

Using the same situations as described above, yet
assuming a value of +2 for a in subpopulations A and
B, shows that in the presence of a genuine association
the estimated value of a in the mixed population may
be overestimated, underestimated, or of reversed sign.

As the genuine dominance deviation was fixed at
0, the calculated dominance deviation from the mixed
population is always biased (except when �p = 0 or
when the genotypic means are equal across popula-
tions) and is similar to the effects seen in Figure 3b.
Our purpose is to clarify the different ways in which

(Table I). As is shown in Table I, PM, HM, and QM

are 0.53, 0.34, and 0.13, respectively. The allele fre-
quencies are calculated following the rules of the
biometrical model (Falconer and Mackay, 1996):
pM = PM + 1

2 HM and qM = QM + 1
2 HM . Note that

population M is no longer in HWE.
The trait means for each genotype in population

M are a function of the trait means and frequencies of
each genotype in subpopulations A and B. Assuming
equal population sizes, the trait mean of individuals
with genotype g in population M is calculated as
follows (�g, M ):

�g, M = Gg, A × �g, A + Gg, B × �g, B

Gg, A + Gg, B
(1)

where Gg, A refers to the frequency of genotype g in
population A, Gg, B refers to the frequency of genotype
g in population B, �g, A refers to the trait mean for geno-
type g in population A, and �g, B refers to the trait mean
for genotype g in population B.

For the example given in Table I, this results in
different trait means for each of the three genotypic
categories in population M, reflecting a spurious sta-
tistical association between the locus and the trait.
Figure 1 presents this effect graphically.

In the biometrical model, which is drawn in Fig-
ure 2, a denotes the (additive) effect of genotype EE
on the trait, −a denotes the (additive) effect of geno-
type ee on the trait, and d denotes the dominance de-
viation for the heterozygous genotype Ee. In association
analysis we aim to quantify a and d. In the situation de-
scribed in Table I and Figure 1, both a and d are 0 for
subpopulations A and B. From the values given in the
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Fig. 3. a, Effect of population stratification on the calculated value
of a in the absence of a genuine locus–trait association (a = 0; d = 0)
for varying levels of allele frequency differences. The mixed popu-
lation exists of populations A and B with constant �B (100) whereas
�A is varied from 110, 105, 95, and 90. Allele frequency pB is con-
stant at 0.5. Allele frequency pA is varied with steps of 0.01 from
0.99 to 0.01. b, Effect of population stratification on the calculated
value of d in the absence of a genuine locus–trait association (a = 0;
d = 0) for varying levels of allele frequency differences. The mixed
population exists of populations A and B with constant �B (100),
whereas �A is varied from 110, 105, 95, and 90. Allele frequency
pB is constant at 0.5. Allele frequency pA is varied with steps of
0.01 from 0.99 to 0.01.

population stratification may affect genetic effects in
general; thus we chose not to discuss situations in
which a genuine dominance deviation is present.

Implementing the Test for Combined 
Linkage and Association in Mx

Modeling Spurious and Genuine Association

When allelic effects are estimated from genetically
related subjects, effects of population stratification
can be controlled for. The method proposed by Fulker
et al., 1999 uses the within family genetic effects on the
trait value as an estimate of the genuine association. The

between family genetic effects on the trait value include
both the genuine and the possible spurious association.
When the between family genetic effects and the within
family genetic effects are unequal, a spurious association
is said to exist, which may either be in the same direc-
tion (between genetic effects > within genetic effects) or
in the opposite direction (between genetic effects <

within genetic effects) compared to the genuine associ-
ation. Thus, equating the between effects and the within
effects serves as a test of the presence (and direction) of
spurious associations between a locus and a trait in the
data set. This test can be conducted on DNA markers as
well as candidate genes.

Estimation of the between genetic effects is based
on defining the contribution of each family or sibship
to the population mean in terms of genetic effects. Thus,
for each sibship the genetic mean needs to be calcu-
lated. Estimation of the within genetic effects is based
on defining each individual’s genetic deviation from the
genetic mean of his sibship. The genetic family/sibship
mean can be calculated using the sibling genotypes (if
parental genotypes are unavailable) or using the parental
genotypes (if available). In this section the implemen-
tation in Mx (Neale, 1997) of the combined linkage and
association method for these two situations (parental
genotypes unavailable and parental genotypes avail-
able) as can be applied to real data, is discussed.

Parental Genotypes Unavailable

In Table II the coefficients for the within (genuine)
and between (possibly spurious and genuine) additive
and dominance effects are derived for a diallelic locus
using sibpairs. The general expression for the means,
following Fulker et al. (1999) yet including both addi-
tive effects and dominance, for the observed score in
sib j from the ith family (yij) is:

yij = � + ab Abi + aw Awij + db Dbi + dw Dwij + eij (2)

where � denotes the overall trait mean (equal for all in-
dividuals), Abi is the derived coefficient (e.g., 1

2 , or − 1
2 ,

1, etc.) for the between families additive genetic effect
for the ith family, as calculated in the fifth column of
Table II. Awij denotes the coefficient by which the
within families additive genetic effects need to be mul-
tiplied for sib j from the ith family as derived in the last
two columns of Table II. Dbi is the coefficient by which
the between families dominant genetic effect needs to
be multiplied for the ith family, as calculated in the fifth
column of Table II. Dwij denotes the coefficient as de-
rived for the within families dominant genetic effects
for sib j from the ith family (see last two columns
of Table II). Parameters ab and aw are the estimated

(a)

(b)
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additive between and within effects; parameters db and dw are the estimated dominance between and within effects,
and eij denotes that part of the grand mean that is not explained by the genotypic effects.

For a diallelic locus, derivation of the additive between and within coefficients and the dominance between
and within coefficients is straightforward and can be taken from Table II (e.g., 1

2 , or − 1
2 , 1, etc.). For a locus with

more than two alleles, however, this becomes a daunting task. We therefore chose to have the necessary coefficients
calculated by the program instead of specifying them in a matrix (e.g., Neale, 2000; Neale et al., 1999).

Let matrices A and C be vectors of dimensions 1 × n , where n = 2, . . . , n for the number of alleles at the locus.
Let matrices D and F be subdiagonal matrices of dimensions n × n . Matrix A contains the estimated combined spu-
rious and genuine (i.e., between) additive allelic effects. Matrix C contains the estimated genuine additive (i.e.,
within) allelic effects. Matrix D contains the estimated spurious and genuine (i.e., between) dominance deviations
for the heterozygous genotypes, and matrix F contains the estimated genuine (i.e., within) dominance deviations.
Let matrix I be a vector containing one’s of dimension 1 × n . In the Mx script language this is written (see also
Appendices I and II for full Mx script example; anything after ! on the same line is not read by the Mx program
and can be used for additional remarks):

#define n 5 !number of alleles = 5 ; the letter n will be substituted
!by the number 5, except when n occurs as part of a word

Begin matrices; !start declaration of matrices
A Full 1 n  free !will contain additive allelic effects WITHIN
C Full 1 n  free !will contain additive allelic effects BETWEEN
D Sdiag n n free !will contain dominance deviations within
F Sdiag n n free !will contain dominance deviations between
I Unit 1 n !unit vector to multiply allelic effects [1 1 1 1 1]

End matrices; !end declaration of matrices

With these matrices, two symmetric matrices of dimensions n × n , one for the between (i.e., the sum of the
spurious and genuine effects) and one for the within (i.e., the genuine effects) estimates, are calculated that con-
tain the genotypic effects of the homozygous genotypes on the diagonal and the genotypic effects of the hetero-
zygous genotypes on the off-diagonals.

Begin algebra;

K = (A'@I) + (A@I') ; !calculates linear combinations of the allelic effects
L = D + D' ; !dominance deviations below and above diagonal
W = K + L ; !creates one full n x n matrix containing the WITHIN

!genotypic effects

M = (C'@I) + (C@I') ; !calculates linear combinations of the allelic effects
N = F + F' ; !dominance deviations below and above diagonal
B = M + N ; !creates one full n x n matrix containing the BETWEEN

!genotypic effects

End algebra;

The symbol @ denotes the Kronecker product (⊗) in Mx and results in the multiplication of each element of
the first matrix by the second matrix. For a locus with five alleles, matrix W is a symmetric matrix of dimension
n × n containing the following estimated effects for a locus with five alleles (n = 5):

W




aw,1 + aw,1

aw,1 + aw,2 + dw,12 aw,2 + aw,2

aw,1 + aw,3 + dw,13 aw,2 + aw,3 + dw,23 aw,3 + aw,3

aw,1 + aw,4 + dw,14 aw,2 + aw,4 + dw,24 aw,3 + aw,4 + dw,34 aw,4 + aw,4

aw,1 + aw,5 + dw,15 aw,2 + aw,5 + dw,25 aw,3 + aw,5 + dw,35 aw,4 + aw,5 + dw,45 aw,5 + aw,5

where aw,1...n refers to the genuine additive allelic effects of the alleles labeled 1 . . . n , and dw,12...nn refers to the
genuine dominance deviation of the heterozygous genotypes labeled 12 . . . nn . Note that with this notation aw,1...aw,n

refers to allelic effects, whereas aw refers to genotypic effects. Similarly, matrix B will be symmetric, of dimen-
sion n × n and will contain the analogous estimated genuine and spurious additive and dominance genotypic effects
(subscripted b).
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We now proceed to the calculation of the sibship genetic means and each individual’s deviation from the sib-
ship’s genetic mean. For sibships of size two, each individual’s deviation from the sibship genetic mean can eas-
ily be deducted by precalculating half the difference between the genetic effects of each sib (as is done in Table II).
For sibship sizes larger than two, the within component is no longer simply “half the difference,” but instead is
mathematically represented by the deviation of sib j from the i th sibship mean. The individual genotypes should
be in the datafile (which is the “raw” datafile and not a variance/covariance matrix). These are selected from the
list of input variables to be used and will be specified in a matrix. They need to be treated differently from vari-
ables that are to be analyzed (the phenotype). The definition variable function in Mx can be used to sep-
arate variables that are used as covariates (such as sex, age, and allelic effects) from the dependent variables.

G2: datagroup

Select pheno1 pheno2 pheno3 a1s1 a2s1 a1s2 a2s2 a1s3 a2s3 !Select all variables to
!be used or analysed

..
Definition_variables a1s1 a2s1 a1s2 a2s2 a1s3 a2s3 !define which variables

!need to be treated as a
!covariate

Begin matrices ; !begin declaration of matrices for group 2
..
K Full 1 4 Fixed !Will contain first and second allele of sib1
L Full 1 4 Fixed !Will contain first and second allele of sib2
M Full 1 4 Fixed !Will contain first and second allele of sib3

..
End matrices ; !end declaration of matrices for group 2

Specify K a1s1 a2s1 a1s1 a2s1 !put alleles of sib 1 into vector
Specify L a1s2 a2s2 a1s2 a2s2 !put alleles of sib 2 into vector
Specify M a1s3 a2s3 a1s3 a2s3 !put alleles of sib 3 into vector

For each individual, two alleles need to be present in the data file. The alleles should be coded as 1, 2, 3, . . . , n .
For each sibship, different elements need to be taken from matrices B and W to calculate the family genetic mean
and each individual’s deviation from that mean. The definition variables that have now been put into matrices (K, L,
and M) that contain numbers that correspond to the specific alleles from the respective individual. For example, if
the first sib has genotype 11, the second sib has genotype 34, and the third sib has genotype 13 at a marker locus,
matrix K contains [1 1 1 1], matrix L contains [3 4 3 4], and matrix M contains [1 3 1 3].

Matrices K, L, and M can now be used to select the relevant cells from matrices B and W:

!For sibships of size 3 for a univariate trait
Begin matrices
B Computed n n  = B1 !spurious and genuine genotypic effects,

!precalculated in previous Mx group
W Computed n n  = W1 !genuine genotypic effects
S Full 1 1 Fixed !to contain sibshipsize (3)
G Full 1 1 Free !grand mean, to be estimated

!dimensions 1 x number of variables
End matrices
Matrix S 3 !sibship size = 3
Begin Algebra;

V = (\part(B,K) + \part(B,L) + \part(B,M) ) % S ;
!sib genetic mean: between effects (spurious and genuine)

D = (\part(W,K) + \part(W,L) + \part(W,M) ) % S ;
!used for individual’s deviation from sib mean: within effects (genuine)

End Algebra;
Means G + V + (\part(W,K)-D) | G + V + (\part(W,L)-D) | G + V + (\part(W,M)-D) ;

!means model: grand mean + sib genetic mean effects + individual’s deviation
!from sib genetic mean, for three sibs

The \part statement in Mx allows one to select a rectangular submatrix from a larger matrix. For exam-
ple, \part(B,K) tells Mx to select from matrix B the part specified in matrix K. Matrix K should always be of
dimension 1 × 4 (start row, start column, end row, end column) and specifies the elements of matrix B where the
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relevant submatrix (which can also be a single element)
starts and ends. Because matrix K contains the alleles
of an individual, the submatrix is selected conditional
on that individual’s genotype.

In our example, in which the first sib is of geno-
type 11, the second sib has genotype 34, and the third
sib has genotype 13, the mean of the estimates in cells
(denoted by row and column) 11, 34, and 13 from ma-
trix B is calculated as the sibship genetic mean (repre-
senting the between family effects of that sibship, in
matrix V). Similarly, for the first sib the within family
effect is calculated by subtracting the estimate in cell
11 from matrix W from the mean of the parameters in
cells 11, 34, and 13 from matrix W (i.e., (\part
(W,K)-D)).

Because of linear dependency between the allelic
effects, two constraint groups (one for the within ef-
fects and one for the between effects) are needed in
which the sum of all the allelic effects is constrained
to be 0 (see Appendices I and II).

Abecasis et al. (2000) showed that calculation of
the sibship genetic mean based on both parental geno-
types is less error prone than calculation of the sibship
genetic mean based on available sibling genotypes. For
sibship sizes of four and above the two methods are
equally powerful and error rates are closer to nominal
significance rates. The above method can be used when
genotype information from both parents is unavailable.

Parental Genotypes Available

When both parental genotypes are available, the
expected mean additive genotypic value of the off-
spring (abi ) equals the midparental genotypic value

abi = Gi F + Gi M

2
, (3)

where Gi, F is the additive genotypic value of the father
in family i, and Gi, M is the additive genotypic value of
the mother in family i.

When dominance effects are also considered, the
midparental genotypic value is no longer an estimate
of the expected offspring mean, because parents and
offspring are uncorrelated in terms of dominance ef-
fects. The genotypes of the parents, however, do pro-
vide information on the expected dominance effects in
the offspring. For example, when one parent is of geno-
type EE, with a corresponding genotypic value of a,
and the other parent is of genotype ee, with a corre-
sponding value of −a , the midparental genetic value
will be 0. However, all of their offspring will be of
genotype Ee, with a corresponding genetic value of d.
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For each type of parental mating we therefore need
to calculate all possible genotypes in the offspring
and their probability, given the parental mating type.
The mean value in terms of a and d of the possible
genotypes in the offspring weighted by their probabil-
ity gives the expected offspring (i.e., sibling) genetic
mean. In Table III the coefficients for additive and
dominance between and within effects are derived, con-
ditional on the parental genotypes.

Extending this to a multiallele locus quickly be-
comes a large undertaking, and it is more convenient to
use a program such as Mx that can calculate the neces-
sary coefficients (Abi , Awijk, Dbi , and Dwijk) by which the
effects (ab, aw, db, and dw) need to be multiplied condi-
tional on the parental genotypes. For a given parental
mating type, the possible genotypes of offspring and their
probabilities may be calculated in Mx by using the
parental alleles to select elements from the matrices that
contain the between and within effects (matrices B and
W). Whereas in the previous section both alleles that
were used to select from matrices B and W were from
the same person (i.e., one sib), we now pair paternal and
maternal alleles to obtain all possible genotypes of the
offspring. The maximum number of genotypic categories
in the offspring from one mating type is four (i.e., when
both parents are heterozygous and have four different
alleles). We thus specify in Mx the following matrices:

resulting from the QTL, or a marker in LD with the
QTL (�2

d ). The variance-covariance matrix for the i th

family, �ijk is then given by

�ijk =
{

�2
f + �2

a + �2
d + �2

e if j = k

�2
f + �̂ijk�2

a + ẑijk�2
d if j �= k

(4)

where �̂ijk is the estimated proportion of alleles shared
IBD between sibs j and k for the i th family, and ẑijk is
the probability of complete IBD sharing between sibs
j and k for the i th family. The estimated proportion of
alleles shared IBD between sibs j and k (�̂ijk) is based
on the probabilities that sibs j and k share 0, one, or
two alleles IBD ( p(IBD=0) , p(IBD=1) , p(IBD=2) , respec-
tively) that can be obtained from genetic software such
as Genehunter (Kruglyak et al., 1996). The formula to
obtain �̂ijk for the i th family is given by

�̂ijk = 0 × p(IBD=0)ijk
+ 0.5 × p(IBD=1)ijk

+ 1 × p(IBD=2)ijk

(5)

The probability of complete IBD sharing between
sibs j and k for the i th family simply equals pIBD2ikj:

ẑijk = p(IBD=2)ijk
(6))

Tests

The test for spurious association consists of the
joint test that matrix A equals matrix C (from the first

Specify N a1p1 a1p2 a1p1 a1p2 !first allele parent one first allele parent two
Specify O a1p1 a2p2 a1p1 a2p2 !first allele parent one second allele parent two
Specify X a2p1 a1p2 a2p1 a1p2 !second allele parent one first allele parent two
Specify Y a2p1 a2p2 a2p1 a2p2 !second allele parent one second allele parent two

These are used to select relevant submatrices from
matrix B and W to calculate the genetic offspring (i.e.,
sibship) mean and each offspring’s individual devia-
tion from that mean (see Appendix II for the full Mx
script). The additive and dominance coefficients can be
calculated in Mx in this manner for an arbitrary num-
ber of alleles and an arbitrary number of offspring.

Modeling Linkage

Implementation of the linkage component in the
variance components model is straightforward and can
be done by using the “pi-hat” (�̂) approach, in which
the covariance resulting from the marker or trait locus
for a sibpair is modeled as a function of the IBD status
of that sibpair. Generally, for sibships, the phenotypic
variance is decomposed in familial variance (�2

f ), vari-
ance resulting from nonshared environmental influ-
ences (�2

e ), additive variance from the QTL or marker
in LD with the QTL (�2

a ), and dominance variance

group in our example script), and that matrix D equals
matrix F (from the first group in our example script).
If the parameters in these matrices cannot be con-
strained to be equal, there is evidence of spurious as-
sociation. The conservative test for the presence of a
genuine association is to test whether matrices A and
D are significantly different from 0.

The test for the presence of dominance effects can
be conducted by comparing the minus two loglikeli-
hoods (−2LL’s) from the full model and a model with-
out the subdiagonal matrices D and F from the first
group in the example Mx script that contain the devia-
tions of the heterozygous genotypes from the mid value
of the two corresponding homozygous genotypes. This
can be done conservatively only for the presence of
the genuine dominance effects (i.e., dropping matrix D)
or for the presence of both the genuine and spurious
dominance effects (dropping matrices D and F).

Three models may be evaluated to test whether
linkage is present and whether the linkage component
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can be partly or completely explained by the associa-
tion: (i) a model with a linkage component only; (ii) a
model with both linkage and association; (iii) a model
with the association component only. If the linkage
component is reduced in model (ii) as compared to
model (i), but still significant, this may indicate that
within the linkage region another gene, besides the gene
used for the association component, is also influencing
the trait, that not all relevant alleles of that locus have
been genotyped, or that LD between the marker and the
trait locus is incomplete. If the linkage component
disappears when modeled simultaneously with associ-
ation, it indicates that the linkage is completely ex-
plained by the association effects of the tested locus or
by the effects of another locus that is in complete LD
with the tested locus.

Practical Considerations

The implementation in Mx of the analysis as pro-
posed by Fulker et al. (1999) is flexible in terms of the
number of alleles it can incorporate, variable sibship
sizes, the inclusion of both additive and dominance ef-
fects and can be used both when parental genotypes are
available or unavailable. Theoretically, it may include
loci with an unlimited number of alleles. With an in-
creasing number of alleles, however, the chance in-
creases that not all possible genotypes are present in
the sample. This should be explored beforehand, and
the corresponding elements in matrices A, C, D, and F
containing the allelic effects and dominance deviations
should be fixed to prevent nonidentification. For ex-
ample when alleles labelled 3 and 4 do not exist in a
heterozygous genotype, the dominance deviation for
genotype “3,4” cannot be estimated. Element 3,4 from
matrices D and F needs to be constrained at 0. If, on
the other hand, two alleles only occur in a heterozy-
gote, the additive effects cannot be distinguished from
the dominance deviation and either one cannot be es-
timated. Related to this, it is also possible to group cer-
tain alleles as if they were one allele (or different alleles
with the same effect) and to contrast the effect of one
allele against the effects of all other alleles. This can
be implemented in Mx by using constraints on the
corresponding matrix elements containing the allelic
effects. If alleles that differ in size are used (e.g., vari-
able number tandem repeats [VNTRs], a linear regres-
sion of allele size may be incorporated into the model
(see for example Zhu et al., 1999).

Sibship size may vary across families. In this case
one may use the variable length datafile option
in Mx and use sibship size (specified in Matrix S from
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Fig. 4. Effect of population stratification on the calculated value of
a in the presence of a genuine locus–trait association (a = +2; d = 0)
for varying levels of allele frequency differences. The mixed popu-
lation exists of populations A and B with constant �B (100), whereas
�A is varied from 110, 105, 95, and 90. Allele frequency pB is
constant at 0.5. Allele frequency pA is varied with steps of 0.01 from
0.99 to 0.01.

neglecting the stratified nature of the complete sample
will lead to an overestimation of genetic effects.

In the presence of a genuine association, underes-
timation of the additive genetic effects will occur when,
within subpopulations, relatively higher trait values
tend to go together with a lower frequency of the in-
creaser allele, or vice versa (either a positive �p and
a negative ��, or a negative �p and a positive ��).
In this case we may speak of discordant pairing of al-
lele frequency and trait value. This situation may be
understood by considering that the overall mean of a
subpopulation may also influenced by other (non-)
genetic factors. For example, it is well known from
mouse model systems, that the same allele at the same
locus may cause a major disease in one mouse strain,
but no phenotype in a strain with a different genetic
background (e.g., Linder, 2001; Liu et al., 2001;
Montagutelli et al., 2000). The same has been reported
for effects on gene expression in different environ-
mental backgrounds (Cabib et al., 2000; Crabbe et al.,
1999). Put differently, in one strain the presence of the
particular allele leads to crossing a certain threshold
value above which a disease will evolve, whereas in
the other strain, because of a different genetic or envi-
ronmental background, this threshold is not reached.
The frequency of the disease-predisposing allele may
therefore rise in the population with the genetic or en-
vironmental background that prevents the individuals
within that population from reaching a threshold. In
humans, the presence of different genetic (or environ-
mental) backgrounds that derive from mixed ethnicity
may cause the allele frequency of the increaser allele

the second Mx group in the example script) as a
definition variable, which is read from the
datafile and varies across families. The simultaneous
implementation of an arbitrary number of alleles, for
an arbitrary sibship size, using parental genotypes or
sibling genotypes, and decomposing both the additive
effect and the dominance deviations into genuine and
spurious effects is unique to Mx.

CONCLUSION

We have illustrated the effects of population strat-
ification on quantitative traits and have shown that in the
absence of a genuine association, population stratifica-
tion may result in a spurious association between any
trait that differs in mean between subpopulations and any
locus that differs in allele frequency between subpopu-
lations. This situation is illustrated by the well-known
“chopsticks gene” example as described by Hamer and
Sirota (2000). As was also mentioned by Witte et al.
(1999; for binary traits), population stratification may
not only result in overestimation of allele effects on
quantitative traits, but also in an underestimation. More
specifically, in the presence of a genuine association
population, stratification may result in: (i) an overesti-
mation of the genuine association effects, (ii) an under-
estimation of the genuine association effects, or (iii) a
reversal or incorrect direction of allelic effects.

Genuine association effects will be overestimated
because of the effects of population stratification when
within the subpopulations’ higher trait values are asso-
ciated with a higher frequency of the increaser allele
and lower trait values are associated with a lower in-
creaser allele frequency. Or, in other words, a positive
�p( pA − pB) is related to a positive ��(�A − �B), and
a negative �p to a negative �� (see also Figure 4). In
this case we may speak of concordant pairing of allele
frequency and trait value. In practice, such a situation
may exist, for example, as a result of assortative mat-
ing within subpopulations that differ in trait means and
allele frequencies. Differences in trait means and allele
frequencies may exist as a result of historical or cultural
differences or as a result of natural selection. For ex-
ample, when in one population high trait values increase
reproductive fitness, the frequency of the increaser al-
lele for that trait and the overall trait mean may increase
in that population. In the other population, in which high
trait values are irrelevant for reproductive fitness, the
increaser allele frequency and the overall trait mean
remain the same. Assortative mating within subpopu-
lations ensures that eventually concordant pairing be-
tween increaser allele and trait value will exist, and
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of a subpopulation with a relatively low trait mean to
be higher than the allele frequency of the increaser al-
lele in a population with a higher overall trait mean.

Non-Mendelian traits are likely to be influenced
by multiple (risk) factors of which the presence differs
across subpopulations; thus discordant pairing may
realistically hide genuine allele–trait associations when
the effects of population stratification are neglected.
When the difference in trait means between subpopu-
lations and the difference in increaser allele frequen-
cies becomes extreme in the presence of discordant
pairing, the genuine allelic effects will appear reversed
in sign as a result of population stratification. This sug-
gests that in the mixed population individuals who are
homozygous for the increaser alleles (EE) have a lower
trait value than individuals who are homozygous for
the decreaser allele (ee), whereas in the subpopulations
the opposite is true. This statistical effect is known as
Simpson’s paradox (Simpson, 1951; Yule, 1900) and
refers to the reversal of the direction of an association
when data from several groups are combined to form a
single group. Its importance to gene hunting studies
may well have been illustrated by the numerous asso-
ciation studies for schizophrenia, in which the same al-
lele of the same locus has both been associated with
increased and decreased risk for schizophrenia (Baron,
2001; Bray and Owen, 2001).

Family-based tests of association explicitly model
the consequences of population stratification, by look-
ing at allelic effects within genetically related subjects.
In the method proposed by Fulker et al. (1999) spuri-
ous association is defined as the difference between the
allelic effects as estimated from the comparison of un-
related subjects (between effects) and the allelic effects
as estimated from the comparison of genetically related
subjects (within effects). This method, which was orig-
inally proposed to include sibpairs, diallelic markers,

and additive effects, has now explicitly been extended
to include variable sibship sizes, multiallele markers,
and dominance deviations, using the parental genotypes
(if available) or the sibling genotypes.

It is known that the use of multivariate phenotypes
may provide more statistical power than univariate
phenotypes (e.g., Allison et al., 1998; Boomsma and
Dolan, 1998). The method as implemented in Mx can
easily be extended to multivariate phenotypes. One can
then model the association as an effect on the factor
mean of multivariate measurements. In this case it may
be assumed that the allelic association effects on the
multivariate measurements are all proportionally re-
lated. Covariance among the traits resulting from the as-
sociation will lead to a decrease in the estimated amount
of covariance because of the linkage component.

With the rapidly increasing availability of large
amounts of genomic data, the detection of linkage and/or
association between a marker (and all the linked loci
surrounding the marker that are in LD with it) and a trait
becomes a realistic tool in the hunt for genes for com-
plex traits. Combining linkage analysis and association
analysis has already proved to be a powerful tool in gene
finding (e.g., Neale et al., 1999; Trembath et al., 1997;
Zhu et al., 1999; see Beekman et al., 2003 for a practi-
cal implementation of the method described in the
present paper). Particularly when fine mapping is a goal
of interest this method is invaluable, because the effect
of linkage will be reduced when estimated in the pres-
ence of association, thereby providing information
on the specific region where the QTL is expected to
reside (Cardon and Abecasis, 2000). An explicit test for
population stratification is crucial to rule out spurious
associations. The Fulker et al. (1999) method has
all these advantages and, as was shown in the present
paper, can easily be conducted in a statistical package
such as Mx.

APPENDIX I: PARENTAL GENOTYPES UNAVAILABLE

Mx scripts can also be downloaded from the Mx homepage or from the Mx Scripts' Library:
http://www.vcu.edu/mx
http://www.psy.vu.nl/mxbib

!Mx script for the conduction of the combined linkage and association method
!testing for spurious association
!extended to sibships>2, additive and dominance association, multiple alleles
!using sibling genotypes to calculate the mean genotypic value within a sibship

#define n 5 !number of alleles is 5
#define nvar 1 !univariate
#define nsibs 3 !sibshipsize = 3
#ngroups 4 !one precalculation group, one data group, two constraint groups

G1: calculation group between and within effects
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Data Calc
Begin matrices; !start declaration of matrices
A  Full  1  n  free !will contain additive allelic effects within
C  Full  1  n  free !will contain additive allelic effects between
D  Sdiag  n  n free !will contain dominance deviations within
F  Sdiag  n  n free !will contain dominance deviations between
I  Unit 1 n !unit vector to multiply allelic effects [1 1 1 1 1]

End matrices; !end declaration of matrices

Begin algebra;
K = (A'@I) + (A@I') ;
L = D + D' ;
W = K + L ;
M = (C'@I) + (C@I') ;
N = D + D' ;
B = M + N ;

End algebra ;
st .2 all
end

G2: datagroup: sibship size three
Data NInput=12
Missing =-99.00
Rectangular File=myfile.dat
Labels ph1 ph2 ph3 als1 a2s1 a1s2 a2s2 a1s3 a2s3 pi12 pi13 pi23 z12 z13 z23
Select ph1 ph2 ph3 a1s1 a2s1 a1s2 a2s2 a1s3 a2s3 pi12 pi13 pi23 z12 z13 z23;

!selects 3 phenotypes; one for each sib
!selects 6 allele variables, a1s1 is allel #1 from sib #1
!selects pi's and z's

Definition_variables
a1s1 a2s1 a1s2 a2s2 a1s3 a2s3 pi12 pi13 pi23 z12 z13 z23;
!declare the allele variables and the pIBD=2 as definition variables

Begin Matrices;
F Lower nvar nvar Free ! familial variance
Q Lower nvar nvar Free ! QTL additive variance
R Lower nvar nvar Free ! QTL dominance variance
E Lower nvar nvar Free ! non-shared environmental variance
B Computed n n = B1 ! spurious and genuine genotypic effects
W Computed n n = W1 ! genuine genotypic effects
I Ident nsibs nsibs Fix !
P Sym nsibs nsibs Fix ! To contain pi-hats
Z Sym nsibs snibs Fix ! To contain pIBD2’s
T Stand nsibs nsibs Fix
K Full 1 4 Fix ! First and second allele of sib1
L Full 1 4 Fix ! First and second allele of sib2
M Full 1 4 Fix ! First and second allele of sib3
S Full 1 1 Fix ! to contain nsibs
G Full 1 nvar Free ! grand mean

End Matrices;
Matrix S 3 ! sibship size 3
Matrix K 1 1 1 1
Matrix L 1 1 1 1
Matrix M 1 1 1 1
Matrix P

0
1 0
1 1 0

Matrix Z
0
1 0
1 1 0

Specify K a1s1 a2s1 a1s1 a2s1 !genotype sib1 to be used for \part
Specify L a1s2 a2s2 a1s2 a2s2 !genotype sib2 to be used for \part
Specify M a1s3 a2s3 a1s3 a2s3 !genotype sib3 to be used for \part
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Specify P   1
pi12 1
pi13 pi23 1

Specify Z   1
z12 1
z13 z23 1

Specify T   .5 ! when familial variance is modeled as
.5 .5 ! add gen variance

Begin Algebra;
V = (\part(B,K) + \part(B,L) + \part(B,M) ) % S ; !”B”
D = (\part(W,K) + \part(W,L) + \part(W,M) ) % S ; !used for deviation: W

End Algebra;

Means G + V + (\part(W,K)-D) | G + V + (\part(W,L)-D) | G + V + (\part(W,M)-D);
Covariance T@(F*F') + P@(Q*Q') + Z@(R*R') + I@(E*E') ;

End

Constrain sum allelic effects = 0
Constraint ni=1
Begin Matrices;

A full 1 n = A1
O zero 1 1

End Matrices;
Begin algebra;

B = \sum(A) ;
End Algebra;
Constraint O = B ;
end

Constrain sum allelic effects = 0
Constraint ni=1
Begin Matrices;
C full 1 n = C1
O zero 1 1

End Matrices;
Begin algebra;
B = \sum(C) ;

End Algebra;
Constraint O = B ;
option multiple issat
end

save full.mxs

!test for spurious association W=B
Specify 1 A 101 102 103 104 105
Specify 1 C 101 102 103 104 205 !first 4 equal to within; last unequal but because

!of second constrain 205 will be equal to 105
Specify 1 D 801 802 803 804 805 806 807 808 809 810
Specify 1 F 801 802 803 804 805 806 807 808 809 810
end

!Drop dominance: non-conservative test (i.e. genuine and spurious)
Specify 1 D 801 802 803 804 805 806 807 808 809 810
Specify 1 F 801 802 803 804 805 806 807 808 809 810
Drop @0 801 802 803 804 805 806 807 808 809 810
end

!Drop all allelic effects: non-conservative test (i.e. genuine and spurious)
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Specify 1 A 101 102 103 104 105
Specify 1 C 101 102 103 104 205
Specify 1 D 801 802 803 804 805 806 807 8O8 809 810
Specify 1 F 801 802 803 804 805 806 807 808 809 810
Drop @0 101 102 103 104 105 801 802 803 804 805 806 807 808 809 810
end

get full mxs

!drop QTL linkage effect while keeping association effects in the model
Drop Q 2 1 1 !QTL additive variance
Drop R 2 1 1 !QTL dominance variance
end

APPENDIX II: PARENTAL GENOTYPES AVAILABLE

!Mx script for the conduction of the combined linkage and association method
!testing for spurious association
!extended to sibships>2, additive and dominance association, multiple alleles
!using parental genotypes to calculate the mean genotypic value within a sibship

#define n 5 !number of alleles is 5
#define nvar 1 !univariate
#define nsibs 3 !sibshipsize = 3
#ngroups 4 !one precalculation group, one data group, two constraint groups

G1: calculation group between and within effects
Data Calc

Begin matrices; !start declaration of matrices
A Full 1 n free !will contain additive allelic effects within
C Full 1 n free !will contain additive allelic effects between
D Sdiag n n free !will contain dominance deviations within
F Sdiag n n free !will contain dominance deviations between
I Unit 1 n !unit vector to multiply allelic effects [1 1 1 1 1]

End matrices; !end declaration of matrices
Begin algebra;
K = (A'@I)+(A@I') ;
L = D + D' ;
W = K + L ;
M = (C'@I)+(C@I') ;
N = F + F' ;
B = M + N ;

End algebra ;
st .2 all
end

G2: datagroup: sibship size three
Data NInput=12
Missing =-99.00
Rectangular File=myfile.dat
Labels ph1 ph2 ph3 a1p1 a2p1 a1p2 a2p2 a1s1 a2s1 a1s2 a2s2 a1s3 a2s3 pi12 pi13

pi23 z12 z13 z23
Select ph1 ph2 ph3 a1p1 a2p1 a1p2 a2p2 a1s1 a2s1 a1s2 a2s2 a1s3 a2s3 pi12 pi13

pi23 z12 z13 z23;
!selects 3 phenotypes; one for each sib
!selects 6 allele variables for sib, a1s1 is allel #1 from sib #1
!selects 4 allele variables for parents a1p1 is allel #1 parent #1
!selects pi’s and z’s

Definition_variables
a1p1 a2p1 a1p2 a2p2 a1s1 a2s1 a1s2 a2s2 a1s3 a2s3 pi12 pi13 pi23 z12 z13 z23;
!declare the allele variables and the pIBD=2 as definition variables
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Begin Matrices;
F Lower nvar nvar Free !familial variance
Q Lower nvar nvar Free !QTL additive variance
R Lower nvar nvar Free !QTL dominance variance
E Lower nvar nvar Free !non-shared environmental variance
B Computed n n = B1 !spurious and genuine genotypic effects
W Computed n n = W1 !genuine genotypic effects
I Ident nsibs nsibs Fix !To multiply E
P Sym nsibs nsibs Fix !To contain pi-hats and to multiply Q
Z Sym nsibs snibs Fix !To contain pIBD2’s and to multiply R
T Stand nsibs nsibs Fix !To multiply F
K Full 1 4 Fix !First and second allele of sib1
L Full 1 4 Fix !First and second allele of sib2
M Full 1 4 Fix !First and second allele of sib3
N Full 1 4 Fix !a1p1 a1p2
O Full 1 4 Fix !a1p1 a2p2
X Full 1 4 Fix !a2p1 a1p2
Y Full 1 4 Fix !a2p1 a2p2
S Full 1 1 Fix !to contain 4: maximum of 4 possible

!genetically different offspring
G Full 1 nvar Free !grand mean

End Matrices;
Matrix S 4
Matrix K 1 1 1 1
Matrix L 1 1 1 1
Matrix M 1 1 1 1
Matrix N 1 1 1 1
Matrix O 1 1 1 1
Matrix X 1 1 1 1
Matrix Y 1 1 1 1
Matrix P

0
1 0
1 1 0

Matrix Z
0
1 0
1 1 0

Specify K a1s1 a2s1 a1s1 a2s1 !genotype sib1
Specify L a1s2 a2s2 a1s2 a2s2 !genotype sib2
Specify M a1s3 a2s3 a1s3 a2s3 !genotype sib3
Specify N a1p1 a1p2 a1p1 a1p2 !parental alleles
Specify O a1p1 a2p2 a1p1 a2p2 !parental alleles
Specify X a2p1 a1p2 a2p1 a1p2 !parental alleles
Specify Y a2p1 a2p2 a2p1 a2p2 !parental alleles
Specify P   1

pi12 1
pi13 pi23 1

Specify Z   1
z12 1
z13 z23 1

Specify T   .5 ! when familial variance is modeled as
.5 .5 ! add gen variance

Begin Algebra;
V = (\part(B,N) + \part(B,O) + \part(B,X) + \part(B,Y)) % S ; !Between effects
D = (\part(W,N) + \part(W,O) + \part(W,X) + \part(W,Y)) % S ; !for Within effects

End Algebra;

Means G + V + (\part(W,K)-D) | G + V + (\part(W,L)-D) | G + V + (\part(W,M)-D);
Covariance T@(F*F') + P@(Q*Q') + Z@(R*R') + I@(E*E') ;
End
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Constrain sum allelic effects = 0
Constraint ni=1
Begin Matrices;

A full 1 n = A1
O zero 1 1

End Matrices;
Begin algebra;

B = \sum(A) ;
End Algebra;
Constraint O = B ;
end

Constrain sum allelic effects = 0
Constraint ni=1
Begin Matrices;
C full 1 n = C1
O zero 1 1

End Matrices;
Begin algebra;
B = \Sum(C) ;

End Algebra;
Constraint O = B ;
end

ACKNOWLEDGMENTS

The financial support of the Universitair Stimu-
lerings Fonds (Grant 96/22), the Human Frontiers
Science Program (Grant rg0154/1998-B), and the
Netherlands Organization for Scientific Research
(NWO, Grant 904-61-090) is greatly appreciated. The
Netherlands Organization for Scientific Research
(NWO, travel fund R 56-454), and the Simons Stichting
(traveling fund) provided travel grants to facilitate
collaboration with Dr. Neale, who was supported by
MH-01458. The authors wish to thank Drs. Pak Sham,
Conor Dolan, and Meike Bartels for their valuable
comments on topics related to this paper.

REFERENCES

Abecasis, G. R., Cardon, L. R., and Cookson, W. O. (2000). A gen-
eral test of association for quantitative traits in nuclear families.
Am. J. Hum. Genet. 66:279–292.

Abecasis, G. R., Cherny, S. S., and Cardon, L. R. (2001). The im-
pact of genotyping error on family-based analysis of quantita-
tive traits. Eur. J. Hum. Genet. 9:130–134.

Abecasis, G. R., Cherny, S. S., Cookson, W. O., and Cardon, L. R.
(2002). Merlin: Rapid analysis of dense genetic maps using
sparse gene flow trees. Nat. Genet. 30:97–101.

Allison, D. B. (1997). Transmission-disequilibrium tests for quanti-
tative traits. Am. J. Hum. Genet. 60:676–690.

Allison, D. B., Thiel, B., St. Jean, P., Elston, R. C., Infante, M. C.,
and Schork, N. J. (1998). Multiple phenotype modeling in gene-
mapping studies of quantitative traits: Power advantages. Am.
J. Hum. Genet. 63:1190–1201.

Almasy, L., and Blangero, J. (1998). Multipoint quantitative-trait
linkage analysis in general pedigrees. Am. J. Hum. Genet. 62:
1198–1211.

Amos, C. I. (1994). Robust variance-compents approach for assess-
ing genetic linkage in pedigrees. Am. J. Hum. Genet. 54:535–543.

Baron, M. (2001). Genetics of schizophrenia and the new millen-
nium: Progress and pitfalls. Am. J. Hum. Genet. 68:299–312.

Beekman, M., Posthuma, D., Heijmans, B. T., Lakenberg, N.,
Suchiman, H. E. D., Snieder, H., de Knijff, P., Frants, R. R.,
van Ommen, G. J. B., Kluft, C., Vogler, G. P., Slagboom, P. E.,
and Boomsma, D. I. (in press). Combined association and link-
age analysis applied to the APOE locus. Genet. Epidemiol.

Boomsma, D. I., Beem, A. L., van den Berg, M., Dolan, C. V.,
Koopmans, J. R., Vink, J. M., de Geus, E. J. C., and Slagboom,
P. E. (2000). Netherlands twin family study of anxious depres-
sion (NETSAD). Twin Res. 3:323–334.

Boomsma, D. I., and Dolan, C. V. (1998). A comparison of power
to detect a QTL in sib-pair data using multivariate pheno-
types, mean phenotypes, and factor scores. Behav. Genet.
28:329–340.

Bray, N. J., and Owen, M. J. (2001). Searching for schizophrenia
genes. Trends Mol Med. 7:169–174.

Cabib, S., Orsini, C., Le Moal, M., and Piazza, P. V. (2000). Abo-
lition and reversal of strain differences in behavioral re-
sponses to drugs of abuse after a brief experience. Science 289:
463–465.

Cardon, L. R., and Abecasis, G. R. (2000). Some properties of a vari-
ance components model for fine-mapping quantitative trait loci.
Behav. Genet. 30:235–243.

Cardon, L. R., and Bell, J. I. (2001). Association study designs for
complex diseases. Nat. Rev. Genet. 2:91–99.

Crabbe, J. C., Wahlsten, D., and Dudek, B. C. (1999). Genetics of
mouse behavior: Interactions with laboratory environment.
Science 284:1670–1672.

Eaves, L. J., Neale, M. C. H., and Maes, H. (1996). Multivariate mul-
tipoint linkage analysis of quantitative trait loci. Behav. Genet.
26:519–525.

Falconer, F. S., and Mackay, T. F. C. (1996). Introduction to quan-
titative genetics. Essex, UK: 4th ed. Longman Group, Ltd.

Falk, C. T., and Rubinstein, P. (1987). Haplotype relative risks: An
easy reliable way to construct a proper control sample for risk
calculations. Ann. Hum. Genet. 51:227–233.

Fulker, D. W., and Cardon, L. R. (1994). A sib-pair approach to
interval mapping of quantitative trait loci. Am. J. Hum. Genet.
54:1092–1103.

Fulker, D. W., and Cherny, S. S. (1996). An improved multipoint sib-
pair analysis of quantitative traits. Behav. Genet. 26:527–532.



196 Posthuma, de Geus, Boomsma, and Neale

Fulker, D. W., Cherny, S. S., Sham, P. C., and Hewitt, J. K. (1999).
Combined linkage and association sib-pair analysis for quanti-
tative traits. Am. J. Hum. Genet. 64:259–267.

Goldgar, D. E. (1990). Multipoint analysis of human quantitative
genetic variation. Am. J. Hum. Genet. 47:957–967.

Goldgar, D. E., and Oniki, R. S. (1992). Comparison of a multipoint
identity-by-descent method with parametric multipoint linkage
analysis for mapping quantitative traits. Am. J. Hum. Genet.
50:598–606.

Hamer, D., and Sirota, L. (2000). Beware the chopsticks gene. Mol.
Psychiatry 5:11–13.

Haseman, J. K., and Elston, R. C. (1972). The investigation of link-
age between a quantitative trait and a marker locus. Behav.
Genet. 2:3–19.

Ioannidis, J. P., Ntzani, E. E., Trikalinos, T. A., and Contopoulos-
Ioannidis, D. G. (2001). Replication validity of genetic associ-
ation studies. Nat. Genet. 29:306–309.

Kruglyak, L., Daly, M. J., Reeve-Daly, M. P., and Lander, E. S.
(1996). Parametric and nonparametric linkage analysis: A uni-
fied multipoint approach. Am. J. Hum. Genet. 58:1347–1363.

Lesch, K-P., Bengel, D., Heils, A., Sabol, S. Z., Greenberg, B. D.,
Petri, S., Benjamin, J., Muller, C. R., Hamer, D. H., and Murphy,
D. L. (1996). Association of anxiety-related traits with a poly-
morphism in the serotonin transporter gene regulatory region.
Science 29:274:1527–1531.

Linder, C. C. (2001). The influence of genetic background on spon-
taneous and genetically engineered mouse models of complex
diseases. Lab. Anim. NY 30:34–39.

Liu, J., Corton, C., Dix, D. J., Liu, Y., Waalkes, M. P., and Klaassen,
C. D. (2001). Genetic background but not metallothionein
phenotype dictates sensitivity to cadmium-induced testicular
injury in mice. Toxicol. Appl. Pharmacol. 176:1–9.

Long, A. D., and Langley, C. H. (1999). The power of association
studies to detect the contribution of candidate genetic loci to
variation in complex traits. Genome Res. 9:720–731.

Lynch, M., and Walsh, B. (1998). Genetics and analysis of quanti-
tative traits. Sinauer Associates, Sunderland.

McKenzie, C. A., Abecasis, G. R., Keavney, B., Forrester, T.,
Ratcliffe, P. J., Julier, C., Connell, J. M. C., Bennett, F.,
McFarlane-Anderson, N., Lathrop, G. M., and Cardon, L. R.
(2001). Trans-ethnic fine mapping of a quantitative trait locus
for circulating angiotensin I-converting enzyme (ACE). Hum.
Mol. Genet. 10:1077–1084.

Montagutelli, X. (2000). Effect of the genetic background on the
phenotype of mouse mutations. J. Am. Soc. Nephrol. 11 (Suppl.
16):S101–S105.

Neale, M. C. (1997). Mx: Statistical modeling. 3rd ed. Richmond,
VA: Virginia Commonwealth University.

Neale, M. C. (2000). The use of Mx for association and linkage
analysis. GeneScreen 1:107–111.

Neale, M. C., Cherny, S. S., Sham, P. C., Whitfield, J. B., Heath, A. C.,
Birley, A. J., and Martin, N. G. (1999). Distinguishing population
stratification from genuine allelic effects with Mx: Association
of ADH2 with alcohol consumption. Behav. Genet. 29:233–243.

Plomin, R., and Caspi, A. (1999). Behavioral genetics and personal-
ity. In Pervin, L. A., and John, O. P. (eds.), Handbook of per-
sonality: Theory and research. New York: Guilford Press.

Plomin, R., Hill, L., Craig, I., McGuffin, P., Purcell, S., Sham, P. C.,
Lubinski, D., Thompson, L., Fisher, P. J., Turic, D., and Owen,

M. J. (2001). A Genome-wide scan of 1847 DNA markers for
allelic associations with general cognitive ability: A five-stage
design using DNA pooling. Behav. Genet. 31:497–509.

Rabinowitz, D. (1997). A transmission disequilibrium test for quan-
titative trait loci. Hum. Hered. 47:342–350.

Risch, N. J. (2000). Searching for genetic determinants in the new
millennium.Nature 405:847–856.

Risch, N. J., and Merikangas, K. (1996). The future of genetic stud-
ies of complex human diseases. Science 273:1516–1517.

Schork, N. J. (1993). Extended multipoint identity-by-descent
analysis of human quantitative traits: Efficiency, power, and
modeling considerations. Am. J. Hum. Genet. 53:1306–1319.

Sham, P. C. (1998). Statistics in human genetics. London: Arnold
Publishers.

Sham, P. C., Cherny, S. S., Purcell, S., and Hewitt, J. K. (2000).
Power of linkage versus association analysis of quantitative
traits, by use of variance-components models, for sibship data.
Am. J. Hum. Genet. 66:1616–1630.

Simpson, E. H. (1951). The interpretation of interaction in contin-
gency tables. J. R. Stat. Soc. B 13:238–241.

Spielman, R. S., McGinnis, R. E., and Ewens, W. J. (1993). Trans-
mission test for linkage disequilibrium: The insulin gene region
and insulin-dependent diabetes mellitius (IDDM). Am. J. Hum.
Genet. 52:506–516.

Sullivan, P. F., Eaves, L. E., Kendler, K. S., and Neale, M. C. (2001).
Genetic case-control association studies in neuropsychiatry.
Arch. Gen. Psychiatry 58:1015–1024.

Terwilliger, J. D., and Göring, H. H. H. (2000). Gene mapping in the
20th and 21st centuries: Statistical methods, data analysis, and
experimental design. Hum. Biol. 72:63–132.

Terwilliger, J., and Ott, J. (1992). A haplotype-based “haplotype
relative risk” approach to detecting allelic associations. Hum.
Hered. 42:337–346.

Trembath, R. C., Clough, R. L., Rosbotham, J. L., Jones, A. B.,
Camp, R. D., Frodsham, A., Browne, J., Barber, R., Terwilliger,
J., Lathrop, G. M., and Barker, J. N. (1997). Identification of a
major susceptibility locus on chromosome 6p and evidence for
further disease loci revealed by a two stage genome-wide search
in psoriasis. Hum. Mol. Genet. 6:813–820.

Van den Oord, E. J. C. G. (1999). A comparison between different
designs and tests to detect QTLs in association studies. Behav.
Genet. 29:245–256.

Van den Oord, E. J. C. G. (2000). Framework for identifying quan-
titative trait loci in association studies using structural equation
modeling. Genet. Epidemiol. 18:341–359.

Witte, J. S., Gauderman, W. J., and Thomas, D. C. (1999). Asymp-
totic bias and efficiency in case-control studies of candidate
genes and gene-environment interactions: Basic family designs.
Am. J. Epidemiol. 149:693–705.

Yule, G. U. (1900). On the association of attributes in statistics. Phil.
Trans. R. Soc. Lond. A 194:257–319.

Zhao, H. (2000). Family based association studies. Stat. Methods
Med. Res. 9:563–587.

Zhu, G., Duffy, D. L., Eldridge, A., Grace, M., Mayne, C., O’Gorman,
L., Aitken, J. F., Neale, M. C., Hayward, N. K., Green, A. C., and
Martin, N. G. (1999). A major quantitative-trait locus for mole
density is linked to the familial melanoma gene CDKN2A: A
maximum-likelihood combined linkage and association analysis
in twins and their sibs. Am. J. Hum. Genet. 65:483–492.
















































































	000
	001
	001
	002
	003
	004

	002
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022

	003a
	003b
	004a
	004b
	005a
	005b
	006a
	006b
	007a_
	007a__
	007b_
	007b__
	008a
	008b
	009a
	009b
	010a
	010b
	Genetic analysis of IQ, processing speed and stimulus-response incongruency effects
	Introduction
	Methodology
	Subjects
	Intelligence testing
	Flanker task procedure
	EEG recording and LRP computation
	Statistical procedure
	Effects of SEX and AGE COHORT on stimulus-response incongruency effects
	Phenotypic correlation of IQ with processing speed, accuracy and stimulus-response incongruency effects
	Estimating heritability of processing speed, accuracy, and stimulus-response incongruency effects
	Decomposition of phenotypic correlations with IQ into environmental and genetic correlation


	Results
	Effects of SEX and AGE COHORT on stimulus-response incongruency effects
	Genetic analyses of processing speed and accuracy
	Genetic analyses of the effects of stimulus-response incongruency
	Phenotypic correlations with verbal IQ and performance IQ
	Decomposition of the phenotypic correlations into genetic and environmental correlations

	Discussion
	Acknowledgements
	References


	011a
	011b
	012
	12_01
	12_02
	12_03
	12_04
	12_05
	12_06
	12_07
	12_08
	12_09
	12_10

	013
	S_1
	S_2
	S_3
	S_4

	014
	r_1
	r_2
	r_3
	r_4
	r_5
	r_6
	r_7
	r_8
	r_9
	r_10
	r_11
	r_12

	015
	a01
	a02
	a03
	a04
	a05
	a06
	a07
	a09
	a10
	a11
	a12
	a13
	a14


