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Background: Depression is a heritable trait that exists on a continuum of varying severity and duration. Yet, the search for genetic
variants associated with depression has had few successes. We exploit the entire continuum of depression to find common variants for
depressive symptoms.

Methods: In this genome-wide association study, we combined the results of 17 population-based studies assessing depressive
symptoms with the Center for Epidemiological Studies Depression Scale. Replication of the independent top hits (p � 1 � 10�5) was
performed in five studies assessing depressive symptoms with other instruments. In addition, we performed a combined meta-analysis
of all 22 discovery and replication studies.

Results: The discovery sample comprised 34,549 individuals (mean age of 66.5) and no loci reached genome-wide significance (lowest
p ¼ 1.05 � 10�7). Seven independent single nucleotide polymorphisms were considered for replication. In the replication set (n ¼
16,709), we found suggestive association of one single nucleotide polymorphism with depressive symptoms (rs161645, 5q21, p ¼
9.19 � 10�3). This 5q21 region reached genome-wide significance (p ¼ 4.78 � 10�8) in the overall meta-analysis combining discovery
and replication studies (n ¼ 51,258).

Conclusions: The results suggest that only a large sample comprising more than 50,000 subjects may be sufficiently powered to detect
genes for depressive symptoms.
Key Words: Center for Epidemiologic Studies Depression Scale,
CHARGE consortium, depression, depressive symptoms, genetics,
genome-wide association study, meta-analysis
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ajor depressive disorder (MDD) is a complex disease with
an underlying heritable component. Family and twin
studies report a high familial tendency of the disorder

and heritability estimates of 31% to 42% (1,2). However, the long
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search for genetic variants associated with depression has had
few successes. Several linkage studies for major depressive
disorder have been performed and these identified only one
relevant locus (3,4). In addition, hundreds of candidate genes
have been investigated in association studies, but only six
variants have been confirmed in meta-analyses (5,6). Recent
efforts to find new candidate genes via genome-wide association
studies (GWAS) have also been largely unsuccessful (7–15).
Genome-wide association studies identified interesting regions,
but associations with MDD reached standard levels of genome-
wide significance at only one locus (15). Furthermore, only few
previously reported candidate genes were replicated in genome-
wide association studies (7,13,16).

Depression exists on a continuum of varying severity and
duration. Depressive symptoms (measured on a continuous scale)
and MDD (measured on a dichotomous scale) are associated with
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similar patterns of risk factors suggesting shared etiology with
varying severity (17). The ability to detect genetic predictors
might, therefore, be improved by analyzing depression quantita-
tively (18), defining MDD as a diagnostic entity applied to the
extreme of the depression continuum (19). Using the phenotypic
variation within cases and control subjects by analyzing depres-
sion quantitatively has been shown to greatly increase the power
to detect genetic variants (20). In fact, a GWAS of the depression
facet of personality (a continuous trait) identified several candi-
date genes. However, the sample size was small and findings
remain to be confirmed (21).

In the current study, we exploit the entire continuum of
depression, defined as the number and severity of depressive
symptoms a person experiences. We assessed depressive symp-
toms with one of the most widely used instruments in the
general population, namely the Center for Epidemiological Studies
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Depression (CES-D) scale. This scale assesses the following major
dimensions of depression: depressed mood, feelings of guilt
and worthlessness, feelings of helplessness and hopelessness,
psychomotor retardation, loss of appetite, and sleep disturbance.
The CES-D detects cases of MDD with high sensitivity and
specificity (22) and has proven to be relatively stable over time
(82% of older adults had stable CES-D scores over four measure-
ment rounds in 10 years) (23,24). In addition, a high CES-D score,
like a diagnosis of MDD, is associated with cardiovascular disease
and mortality (25,26). Moreover, heritability estimates of depres-
sive symptoms, as measured with the CES-D, range from 15% to
34% (27–29).

We present the results of a meta-analysis combining genome-
wide association results of depressive symptoms from 17
population-based studies of European ancestry (n = 34,549). In
addition, we sought to replicate our findings in five samples that
used instruments other than the CES-D to quantify depressive
symptoms (n = 16,709). Finally, we performed a combined meta-
analysis of all discovery and replication studies that included
51,258 individuals.

Methods and Materials

Discovery Samples
This discovery set included results from 17 population-based

studies comprising a total of 34,549 persons of European
descent. The following studies collaborating in the Cohorts for
Heart and Aging Research in Genomic Epidemiology (CHARGE)
Consortium (30) in the United States and Europe were included:
the Atherosclerosis Risk In Communities 1 and 2 studies (ARIC1
and ARIC2) (31), the Cardiovascular Health Study (CHS) (32), the
Framingham Heart Study (FHS) (33,34), and the Rotterdam Study
I, II, and III (RS-I, RS-II and RS-III) (35). The following population-
based studies joined the discovery analyses: the Baltimore Long-
itudinal Study of Aging (BLSA) (36); The Erasmus Rucphen Family
(ERF) (37) study; the Health, Aging and Body Composition study
(Health ABC); the Invecchiare in Chianti (Aging in the Chianti area;
InCHIANTI) (38) study; Helsinki Birth Cohort Study (HBCS) (39);
Multi-Ethnic Study of Atherosclerosis (MESA) (40); Nurses’ Health
Study (NHS) (41); Rush Memory and Aging Project (MAP) (42);
Religious Orders Study (ROS) (43), and SardiNIA study (44). All
studies were approved by their local institutional review boards
and all participants provided written informed consent.

Phenotype Definition
Depressive symptoms were measured with the CES-D scale

(10-item version [CHS, NHS, Rush MAP, Rush ROS], 11- item
version [ARIC1], or 20-item version [ARIC2, BLSA, ERF, FHS, HBCS,
Health ABC, InCHIANTI, MESA, RS-I, RS-II, RS-III, SardiNIA]). The
CES-D scale is designed for use in the general population. All
three CES-D versions used here detect the same four latent
factors (45): depressed affect, somatic symptoms, positive affect,
and interpersonal problems. Each item is scored from 0 to 3
depending on the frequency of the symptoms during the past
week. A higher score corresponds to more depressive symptoms.
Scores from one examination round per study were used, but
CES-D scores have been shown to be relatively stable over time
(23,24). In studies with multiple CES-D assessments, the round
with the largest number of participants (generally the first
examination round) was chosen. Persons with schizophrenia or
bipolar disorder were excluded, based on records, interviews, or
medication use (these disorders probably have a distinct genetic
component). In addition, persons with a Mini-Mental State
Examination score � 22, indicative of dementia, were excluded.
We included persons with genotype data and depressive symp-
tom score who were aged 40 years and older.
Adjustment for Use of Antidepressants
In the search for common variants for depressive symptoms in

a population-based sample, persons using antidepressants, who
most likely had depression or depressive symptoms, increase
genetic information. We, thus, did not exclude these persons
from the analysis, but we chose to adjust their total depressive
symptoms score for medication use. However, response to
antidepressants is highly variable. In addition, information on
compliance is often not available in population-based studies. We
therefore used a nonparametric imputation algorithm to adjust
the CES-D score for treatment effect. We made two assumptions:
the CES-D score of a person using antidepressants is a right-
censored value, i.e., the score is lower than the untreated value
would be; and persons with a high CES-D score, on average,
responded less to their medication than persons with a lower
CES-D score. We replaced the score of a person on antidepres-
sants with the mean depressive symptom score of all persons
using antidepressants that had the same or a higher depressive
symptom score. This procedure was performed separately for
men and women and was based on an algorithm used for
adjustment of blood pressure for persons on antihypertensive
drugs (46). Antidepressant medication was defined
by each study separately to account for differences between
countries.
Genotyping and Imputation
Genome-wide genotyping was performed by the individual

studies on Illumina (Illumina, Inc., San Diego, California) or
Affymetrix (Affymetrix, Santa Clara, California) platforms. All
studies imputed their genotype data to �2.5 million single
nucleotide polymorphisms (SNPs) to account for the different
genotyping platforms. HapMap release 22 CEU (HapMap sample
comprised of Utah residents with Northern and Western Euro-
pean ancestry) build 36 was generally used as reference for
imputation (two studies used build 35). Genotype and imputa-
tion quality control were performed in each study separately.
Genotype and quality control procedures for each study can be
found in Table S1 in Supplement 1.
Data Analysis
A linear regression was performed on total depressive symp-

tom score, adjusted for age and gender. The distribution of CES-D
scores is skewed, but linear regression is fairly robust to
nonnormality. Cardiovascular Health Study and Atherosclerosis
Risk In Communities additionally adjusted for field study site, NHS
for disease status, SardiNIA for self-report versus tester-read and
reported answers, and FHS for cohort (offspring, generation 3).
Furthermore, FHS used linear mixed effect models to account for
familial correlations. In the ERF study, kinship matrix was used to
correct for relatedness.
Meta-Analysis
We performed a p value based meta-analysis weighted by

sample size. This is a valid approach to account for the different
CES-D versions to measure depressive symptoms and for the
www.sobp.org/journal
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different distributions of depressive symptoms. The meta-analysis
test statistic was computed as follows:

Zmeta¼
X

i

bi

SEi
�

ffiffiffiffiffiffiffiffiffiffi
Ni

Ntotal

r

The meta-analysis was performed with METAL (http://
www.sph.umich.edu/csg/abecasis/metal/) (47). The beta (b) of
each individual study i was matched to a common coded allele
(the minor allele) for each SNP across all studies. Single nucleo-
tide polymorphisms with a minor allele frequency less than 2.5%
or an observed to expected variance ratio (imputation quality)
less than .30 were excluded on a per study basis. Single
nucleotide polymorphisms for which the total sample size was
lower than 5000 were removed from the results. Genomic control
correction was applied to each study’s results.

Replication
Independent top SNPs with a p value � 1 � 10�5 in the

discovery meta-analysis were selected with the clumping
function in PLINK (http://pngu.mgh.harvard.edu/purcell/plink/)
(48) (R2 � .05, 500 kilobase [kb]) for replication in five studies
that measured depressive symptoms with other instruments (total
n ¼ 16,709). Persons included in the replication studies were
independent from those in the discovery studies. Although
replication with other instruments than the CES-D might intro-
duce some heterogeneity, all instruments measure depressive
symptoms. Further, a positive replication would ensure that our
top hits are not instrument-dependent.

Age, Gene, Environment Susceptibility–Reykjavik Study (AGES)
(49), the ARIC 3 study (31), Monitoring of Trends and Determinants
of Cardiovascular Disease/Cooperative Health Research in the Region
of Augsburg F3 and F4 (MONICA/KORA F3 and F4) (50), and the
Study of Health in Pomerania (SHIP) (51,52) measured depressive
symptoms with the Geriatric Depression Scale (GDS), Maastricht
Questionnaire, Patient Health Questionnaire (PHQ-9), and the Beck
Depression Inventory-II (BDI-II), respectively. The BDI-II, GDS, and
PHQ-9 aim to screen for depression and are highly correlated
(53,54). The BDI-II is based on the DSM-IV criteria for MDD and
comprises 21 items on a scale of 0 to 3 with higher scores indicating
more severe depressive symptoms over the past 2 weeks. The
PHQ-9 is, like the BDI-II, based on the DSM-IV criteria for MDD, but it
consists of nine items on a scale of 0 to 3 to assess depressive
symptoms over the past 2 weeks. The GDS was specifically designed
to screen for depression in older adults and comprised 15 items
answered with “yes” or “no.” The Maastricht Questionnaire (21
items), although designed to measure vital exhaustion, correlates
with measures of depressive symptoms (55) and was previously
used to assess depressive symptoms (56,57).

Replication was considered significant if the Bonferroni-
corrected p value for testing seven SNPs was £.050 (uncorrected
p value £ 7.1 � 10�3).

Pathway Analysis
Protein ANalysis THrough Evolutionary Relationships

(PANTHER) (58) was used to identify and classify biological
processes among the SNPs associated with p values � 10�4 from
the overall meta-analysis (n ¼ 51,258). After SNP selection, SNPs
were annotated to genes and/or flanking genes with the SCAN
SNP and CNV Annotation Database (http://www.scandb.org).
Protein ANalysis THrough Evolutionary Relationships then com-
pares this gene list to a reference list (Homo Sapiens gene list
from the National Center for Biotechnology Information) using the
www.sobp.org/journal
binomial test. Results were Bonferroni-corrected to account for
multiple testing.

Candidate Gene Search
Altogether, 17 SNPs previously reported to be associated to

depression were selected: 1 SNP that has been found genome-
wide significantly associated with depressive phenotypes after
replication (7,59), 4 top SNPs from the largest MDD meta-analysis
so far (13), and 12 top SNPs from the only published GWAS that
studied a depressive trait continuously (21). Single nucleotide
polymorphisms were tested for association in the discovery
meta-analysis (n ¼ 34,549) and in the overall meta-analysis
including all studies that measured depressive symptoms (n ¼
51,258).

Results

Meta-Analysis of Depressive Symptoms
Table 1 shows the characteristics of the study populations.

Mean age in the discovery studies ranged between 55.9 and 80.8
years. The percentage of women varied between 44.6% and
100%. In line with the population-based design of the studies,
median depressive symptoms scores ranged between 2 and 10
for the CES-D 20-item version. This is well below the cutoff of 16
at which major depression cases in older adults can be identified
with high specificity and sensitivity (22). The percentage of
persons scoring above this cutoff varied between 4.7% and
27.1%. Distributions of CES-D scores differed between studies
and therefore a Z-score based meta-analysis was used to
combine the individual study results. Antidepressant use ranged
from 3.0% to 14.0%. On average, CES-D scores for persons on
antidepressants more than doubled after imputation.

The genomic control inflation factor lambda (lgc) for each
study ranged between .997 and 1.024. A meta-analysis of 17
studies (n ¼ 34,549) with depressive symptoms measured by
CES-D was performed (Q-Q and Manhattan plots in Figure S1 in
Supplement 1). The total number of SNPs analyzed was
2,391,896. No association reached the prespecified genome-
wide significance level of 5 � 10�8 for the association with the
depressive symptom score. However, we identified 117 SNPs with
a p value � 1 � 10�5, which included seven independent top
SNPs (R2 � .05 in 500 kb, Table 2). The SNP with the lowest p
value was rs8020095 (p ¼ 1.05 � 10�7) and maps to an intronic
region of GPHN on chromosome 14. Of the seven top SNPs, none
had a heterogeneity p value (tested by Cochran’s Q) below .05 in
the discovery meta-analysis.

We reran the analysis for the independent top SNPs excluding
people on antidepressants; p values of the top SNPs shifted
toward one (e.g., rs8020095 p value 1.56 � 10�6, rs161645
p value 1.71 � 10�3). Adding five points to the total score
for people using antidepressants in a subsample (RS-I, RS-II,
RS-III, n ¼ 7925) resulted in the same top SNPs and similar
p values for the top SNPs tested here.

Replication
Table 2 presents the results of the replication analysis and the

overall meta-analysis across discovery sample and replication
sample. The mean observed to expected variance ratio for the
seven top SNPs across all cohorts ranged between .91 and .98
(Table S2 in Supplement 1). In the replication sample, an SNP on
chromosome 5 showed an association with depressive symptoms
(5q21, rs161645, p ¼ 9.19 � 10�3, Table 2), but this association

http://www.sph.umich.edu/csg/abecasis/metal/
http://www.sph.umich.edu/csg/abecasis/metal/
http://pngu.mgh.harvard.edu/purcell/plink/
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Table 1. Study Sample Characteristics of Discovery and Replication Samples

Depressive Symptom Score International Standard Classification of Educationb

Sample Instrument n Mean (SD) Median (Range)

‡16

%a
Antidepressant

Users %

Mean

Age (SD) Female %

Current

Smokers % Level 0/1 % Level 2 % Level 3 % Level 4 % Level 5/6 %

Discovery Studies (n ¼ 34,549)

ARIC1 CES-D 11 393 3.80 (3.57) 3 (0–18) 9.92 14.0 72.7 (5.46) 59.5 19.6 2.0 8.1 35.4 7.9 46.6

ARIC2 CES-D 20 614 8.52 (7.41) 6 (0–34) 16.1 11.1 71.0 (5.60) 49.7 19.7 3.1 8.3 34.7 11.7 42.2

BLSA CES-D 20 764 6.90 (6.5) 5 (0–55) 8.51 NA 71.6 (13.8) 44.6 3.0 .4 1.5 11.0 12.4 74.8

CHS CES-D 10 3155 4.27 (4.29) 3 (0–26) 11.3 3.11 72.2 (5.29) 61.2 11.0 2.5 12.3 38.6 9.3 37.2

ERF CES-D 20 1297 12.7 (10.9) 10 (0–59) 27.1 8.20 55.9 (10.1) 56.7 43.2 40.4 42.5 13.6 NA 3.5

FHS CES-D 20 4956 7.25 (8.21) 4 (0–53) 10.3 10.4 56.1 (10.5) 53.3 14.7 .5 3.1 32.2 24.9 39.2

HABC CES-D 20 1654 4.93 (5.78) 3 (0–43) 4.70 3.60 73.8 (2.80) 47.1 6.4 11.9 NA 34.4 53.6 NA

InCHIANTI CES-D 20 942 11.8 (8.24) 10 (0–46) 24.6 3.40 70.4 (9.85) 52.8 18.5 73.5 11.2 7.3 4.6 3.4

RSI CES-D 20 3791 4.86 (7.35) 2 (0–52) 7.30 3.80 72.7 (7.21) 58.5 16.4 31.4 29.0 29.8 NA 9.8

RSII CES-D 20 2093 5.81 (7.90) 3 (0–48) 9.70 5.00 64.8 (8.03) 54.5 19.6 21.6 35.6 27.1 NA 15.7

HBCS CES-D 20 1386 9.58 (8.68) 7 (0–53) 19.4 4.70 63.4 (2.86) 59.7 23.0 33.0 18.4 26.0 NA 22.5

MESA CES-D 20 2423 6.93 (6.87) 5 (0–50) 10.0 12.2 62.7 (10.2) 52.2 11.4 1.6 3.4 16.5 28.4 50.1

NHS CES-D 10 5891 6.36 (4.50) 6 (0–26) 15.9 13.3 71.7 (6.70) 100 5.5 0 0 0 72.6 27.4

RSIII CES-D 20 2041 6.32 (8.22) 3 (0–53) 9.90 6.90 56.0 (5.67) 56.1 22.4 9.8 35.0 28.4 NA 26.8

Rush MAP CES-D 10 825 1.38 (1.75) 1 (0–8) 20.1 13.6 80.8 (6.53) 73.0 2.4 1.7 27.4 19.9 42.8 8.2

Rush ROS CES-D 10 778 1.10 (1.51) 1 (0–8) 13.9 9.00 75.5 (7.24) 66.5 2.1 1.3 5.4 3.1 46.0 44.2

SardiNIA CES-D 20 1438 11.9 (8.20) 10 (0–53) 25.2 3.00 58.0 (11.4) 59.5 NA 28.9 50.3 16.1 NA 4.8

Replication Studies (n ¼ 16,709)

AGES-RS GDS 2855 2.58 (2.26) 2 (0–15) 9.92 13.8 76.4 (5.46) 58.0 12.7 22.1 16.8 NA 33.3 27.8

ARIC3 MQ 8918 10.2 (8.79) 8 (0–42) 9.39 4.04 57.2 (5.67) 52.7 23.8 4.8 10.2 36.4 9.2 39.4

MK F3 PHQ-9 1433 3.52 (3.54) 3 (0–26) 6.80 NA 60.5 (9.13) 51.3 14.3 12.1 56.4 17.6 .8 13.1

MK F4 PHQ-9 1807 3.36 (3.3) 3 (0–27) 5.50 NA 60.9 (8.85) 51.5 14.6 10.0 52.4 22.6 1.1 14.0

SHIP BDI-II 1696 6.44 (7.11) 4 (0–58) 8.90 NA 59.4 (11.6) 51.4 25.5 5.1 .3 60.4 15.9 18.4

ARIC1, ARIC2, ARIC3, RSI, RSII, RSIII, MK F3, and MK F4 included unique individuals.
AGES-RS, Age, Gene, Environment Susceptibility–Reykjavik Study; ARIC, Atherosclerosis Risk in Communities study; BDI-II, Beck Depression Inventory-II; BLSA, Baltimore Longitudinal Study of

Aging; CES-D, Center for Epidemiologic Studies Depression scale; CHS, Cardiovascular Health Study; ERF, Erasmus Rucphen Family study; FHS, Framingham Heart Study; GDS, Geriatric Depression
Scale; HABC, Health, Aging and Body Composition study; HBCS, Helsinki Birth Cohort Study; InCHIANTI, Invecchiare in Chianti; MESA, Multi-Ethnic Study of Atherosclerosis; MK, Monitoring of trends
and determinants of cardiovascular disease/cooperative health research in the region of Augsburg (MONICA/KORA); MQ, Maastricht Questionnaire; NA, not applicable; NHS, Nurses Health Study;
PHQ-9, Patient Health Questionnaire-9 items; RS, Rotterdam Study; Rush MAP, Rush Memory and Aging Project; Rush ROS, Rush Religious Orders Study; SardiNIA, SardiNIA study; SHIP, Study of
Health In Pomerania; SD, standard deviation.

aCutoff for screen positives was 9 for ARIC1, 8 for CHS, 9 for NHS, 3 for Rush MAP and Rush ROS, 6 for AGES-RS, 24 for ARIC3, and 17 for SHIP.
bLevel 0: preprimary education; level 1: primary education or first stage of basic education; level 2: lower secondary education or second stage of basic education; level 3: (upper) secondary

education; level 4: postsecondary nontertiary education; level 5: first stage of tertiary education; level 6: second stage of tertiary education.
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Table 2. Meta-Analysis Results of CES-D Depressive Symptom Score in Discovery Studies, Replication of Results in Studies that Measured Depressive Symptoms with Other Instruments, and Overall

Meta-Analysis of All Studies

Discovery Meta-Analysis

CES-D n ¼ 34,549

Replication Other Instruments

n ¼ 16,709

Overall Meta-Analysis

n ¼ 51,258

SNPa Chr Position

SNPs

(n)b
Closest

Gene

Distance

(Base Pair) Allele MAF

Overall Direction

(Per Study) p Value

Overall Direction

(Per Study) p Value

Overall

Direction p Value

rs8020095 14 66,523,611 2 GPHN intron A/G .17 � (����������������� ? ) 1.05e-07 � (� ? ���) .79 � 3.04e-06

rs8038316 15 52,560,732 3 UNC13C intron A/G .05 � (� ? ����������������) 1.24e-06 � (�����) .42 � 9.64e-06

rs161645 5 104,097,816 3 NUDT12 1,171,427 A/G .34 � (����������������� ? ) 2.32e-06 � (�����) 9.19e-03 � 8.39e-08c

rs357282 5 38,904,792 0 OSMR intron T/G .13 � (������������������) 7.56e-06 � (�����) .87 � 1.60e-04

rs4653635 1 223,662,313 3 LBR intron A/G .16 � (������������������) 8.14e-06 � (�����) .55d
� 8.89e-04

rs4594522 20 30,718,645 5 COMMD7 35,508 C/T .36 � (������������������) 9.29e-06 � (�����) .80 � 1.56e-04

rs13137117 4 94,673,387 9 GRID2 intron T/A .25 � (������������������) 9.77e-06 � (�����) .97 � 2.63e-04

Direction of effect discovery: Framingham Heart Study, Cardiovascular Health Study, Rotterdam Study-I/Rotterdam Study-II/ Rotterdam Study-III, Atherosclerosis Risk in Communities1,
Atherosclerosis Risk in Communities2, Erasmus Rucphen Family study, Invecchiare in Chianti, Health, Aging and Body Composition, Baltimore Longitudinal Study of Aging, Helsinki Birth Cohort
Study, Multi-Ethnic Study of Atherosclerosis, Nurses’ Health Study (NHS)-breast cancer substudy, NHS-cardiovascular health disease substudy, NHS-kidney stones substudy, NHS-type 2 diabetes
substudy, Rush-Memory and Aging Project, Rush-Religious Orders Study, and SardiNIA study. Direction of effect replication: Age, Gene, Environment Susceptibility–Reykjavik Study, Atherosclerosis
Risk in Communities3, Monitoring of trends and determinants of cardiovascular disease/cooperative health research in the region of Augsburg (MONICA/KORA) F3, MONICA/KORA F4, and Study of
Health In Pomerania. Allele ¼ minor/major on the � strand, the minor allele is the coded allele.

?, not tested; CES-D, Center for Epidemiologic Studies Depression scale; Chr, chromosome; MAF, minor allele frequency; SNP, single nucleotide polymorphism.
aIndependent SNPs with a p value � 1 � 10�5 in the discovery meta-analysis. The total n for SNP rs8020095 was 40,902, for rs8038316 was 48,103, for rs161645 was 49,820, and for the other

SNPs was 51,258. The mean observed versus expected variance ratio (measure of imputation quality) for imputed SNPs ranged between .91 and .99. Table S2 in Supplement 1 includes this
information detailed per SNP.

bSupporting SNPs: number of SNPs in linkage disequilibrium with the top SNP (R2 � .8), with a p value � 10�4.
cLowest p value of the overall meta-analysis p ¼ 4.78 � 10�8 for SNP rs40465 (G/T) that is in linkage disequilibrium (R2

¼ .80) with rs161645, discovery p ¼ 2.58 � 10�6

(�����������������?), replication p ¼ 5.00 � 10�3 (�����).
dHeterogeneity p value � .05.
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Table 3. Pathway Analysis

Biological Process NCBI Observed Expected

Over/

Under

Adjusted

p Valuea

Neurotransmitter

Secretion

346 6 1.81 � 9.84e-03

Vitamin Transport 95 3 .50 � .014

Protein Metabolic

Process

3240 26 16.92 � .015

Synaptic Transmission 594 7 3.10 � .037

Transport 2857 22 14.92 � .038

Vesicle-Mediated

Transport

1160 11 6.06 � .040

Cation Transport 621 7 3.24 � .045

Cell-Cell Signaling 1331 12 6.95 � .045

Protein Transport 1646 14 8.60 � .048

Intracellular Protein

Transport

1646 14 8.60 � .048

Enrichment of biological processes among the top results (overall
meta-analysis p value � 10�4) was statistically tested with a binomial
test.

NCBI: number of genes in a biological process (reference). Observed:
number of genes that belong to a biological process among the GWAS
results. Expected: expected number of genes that belong to a biological
process in the GWAS results. Over/under: overrepresentation or under-
representation of the genes in the results.

GWAS, genome-wide association studies; NCBI, National Center for
Biotechnology Information.

aA Bonferroni-correction was applied to correct for multiple testing.
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Figure 1. Association results in the 5q21 region. Summary of the
association of single nucleotide polymorphisms (SNPs) on chromosome
5 (base 103,500,000 to 104,500,000) with depressive symptoms from the
overall meta-analysis (n ¼ 51,258). The SNP with the strongest association
(rs40465) is highlighted in blue and its corresponding p value is given.
Other SNPs are colored according to their degree of linkage disequili-
brium (LD) with rs40465, ranging from high LD (orange, R2 .5–1.0) to low
LD (white, R2 � .2). cM, centimorgan; kb, kilobase; Mb, megabase.
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did not reach the predefined threshold for multiple testing
(corrected for multiple testing p ¼ .064). This SNP resides in a
gene desert, with the closest gene NUDT12 more than 1000 kb
away.

In the overall meta-analysis including discovery and replica-
tion samples (n ¼ 51,258), SNP rs40465 reached genome-wide
significance (p ¼ 4.78 � 10�8). This SNP is in high linkage
disequilibrium with SNP rs161645 (R2

¼ .80). Rs40465 had a p
value of 2.58 � 10�6 in the discovery meta-analysis and a p value
of 5.00 � 10�3 in the meta-analysis of replication studies. An
association plot of the 5q21 region is presented in Figure 1.

In contrast, the strength of the associations of the other top
SNPs with depressive symptoms was attenuated, as judged
by the p value. All SNPs with a p value � 1 � 10�4 from the
overall meta-analysis (n ¼ 51,258) are presented in Table S3 in
Supplement 1.

Pathway Analysis
One hundred four functional genes of the 170 genes that

were annotated were mapped to biological processes. Relevant
processes that were overrepresented among top SNPs (p value
� 10�4) of the overall meta-analysis were neurotransmitter
secretion (Bonferroni-corrected p value ¼ 9.84 � 10�3), vitamin
transport (Bonferroni-corrected p value ¼ .014), and synaptic
transmission (Bonferroni-corrected p value ¼ .037). A complete
list of biological processes that were significantly overrepre-
sented is presented in Table 3.

Candidate Gene Search
None of the 17 tested candidate genes were replicated in the

current study (Table S4 in Supplement 1). Nine out of 17
associations had the same direction in our overall meta-analysis
as in the published study, and none of the nine was significant
(uncorrected for multiple testing).

Discussion

In this GWAS of depressive symptoms, we combined the
results of 17 population-based studies with 34,549 individuals to
find common variants for depressive symptoms. Including the
five replication studies, this effort comprised data from 51,258
independent individuals. Of the seven SNPs we attempted to
replicate, we found suggestive evidence for the observed
association of one SNP in the 5q21 region with depressive
symptoms. This region reached genome-wide significance when
tested over all studies (n ¼ 51,258).

Although evidence shows that depression can be well
represented by a continuum of depressive symptoms, we
observed a genome-wide significant hit in this large GWAS only
when pooling all studies with depressive symptoms. This diffi-
culty of finding signals is in line with GWAS of major depression.
Nine GWAS of depression, of which the largest comprised �6000
MDD cases and �7000 control subjects, yielded only one
genome-wide significant finding (15).

The approach of studying depression on a continuum has the
advantage that not only information on extremes is used but that
all available information is exploited. Van der Sluis et al. (20)
showed that if the phenotypic variation among cases, as well as
the variation among control subjects, is used, this greatly
increases the power to detect genetic variants. However, study-
ing depression along a continuum in population-based studies
implies that many individuals have a low depressive symptoms
score and that few persons score high. Therefore, it remains to be
validated whether the results presented here are generalizable to
clinical depression cases. In addition, the CES-D measures current
depressive symptoms and not remitted depressive symptomatol-
ogy. This introduces false-negatives, but in this population-based
approach in which low depressive symptomatology is over-
represented, the resulting bias would be conservative. Further-
more, the distribution of depressive symptoms differed between
cohorts. We therefore performed a p value based meta-analysis,
which is a valid approach, but has the consequence that we
cannot draw conclusions on effect sizes.
www.sobp.org/journal
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Differences in depressive symptoms distribution do not impact
on the validity of the findings. People with high depressive
symptoms are more likely to carry risk variants, but this should
not depend on the number of people with a high score.
Furthermore, the distribution of I2, a measure of heterogeneity
(60), of the results combining all samples did not differ from
the distribution of I2 of the results when samples with low or high
depression prevalence were meta-analyzed separately. No excess
heterogeneity was observed, which suggests that depressive
symptoms can be analyzed linearly. However, some genetic main
effects may be more detectable in very homogeneous popula-
tions. Observed differences in distributions of depressive symp-
toms may have resulted from environmental factors, and if these,
in turn, interact with specific genetic variants, only very homo-
geneous studies could also detect a genetic main effect.

Environmental factors, like education level, differed among
cohorts. In observational research, one would have controlled for
such possible confounders. In genetic studies, confounding by
environmental factors is unlikely to occur (61), but controlling for
environmental factors can also be done to increase precision, i.e.,
reduce the variance in depressive symptoms (62). However,
environmental factors explain very little variance in depressive
symptoms. Therefore, the benefit of performing additional con-
trolled analyses will be negligible and offset by running several
models with the risk of multiple testing.

In the current study, depressive symptom scores for people
using antidepressants were imputed to take into account the
high variability in response to antidepressants. In an analysis of
depressive symptoms, people on antidepressants, who most
likely had depression or depressive symptoms, are particularly
informative. Therefore, excluding this group a priori may have
changed the results. In a subsample, the imputation algorithm
used in the current study yielded similar results as adding an
arbitrary score of five points to the depressive symptom scores of
people using antidepressants.

This study was performed in older adults. Cerebrovascular
burden and cognitive impairment, which have a relatively high
prevalence in old age, are known to be associated with depressive
symptoms. In addition, while a high CES-D score indicates depres-
sive symptoms, it can also be suggestive of, for example, anxiety
(63). In other words, the level of depressive symptoms is a clinically
heterogeneous phenotype. However, the genetic background of
clinically heterogeneous phenotypes like anxiety and depression
may be more uniform than the clinical presentation suggests (64). In
addition, while nongenetic determinants of depression may differ
with age, genetic determinants were shown to be stable at different
ages (65,66). Therefore, the results presented here are presumably
generalizable to younger populations.

We combined results from studies that measured depressive
symptoms with instruments other than the CES-D to replicate the
association between depressive symptoms and seven indepen-
dent top SNPs. In an overall meta-analysis, we tested whether any
variation introduced by different instruments was offset by the
increased power. In the replication effort, one SNP (5q21 region)
reached a p value below .05 but did not pass this threshold when
controlling for multiple testing. Another SNP in the 5q21 region,
however, reached genome-wide significance when the associa-
tion across discovery and replication studies was tested (n =
51,258). The 5q21 region resides in a gene desert with the closest
gene, NUDT12, lying more than 1000 kb away. NUDT12 has not
been previously implicated in psychiatric disorders.

Although we observed suggestive association of the 5q21
region with depressive symptoms, genome-wide significance
www.sobp.org/journal
was observed only after pooling the results of the discovery
and replication studies. Also, we could not replicate associations
with candidate genes that previously have been reported to be
associated with depression. Several explanations are plausible.

A first explanation for these observations is that the top
SNPs identified in this study are false-positive findings. However,
the discovery set was large and although we did not find
any genome-wide significant hits, true hits are expected to be
found among the top findings. A pathway analysis on the results
of the overall meta-analysis showed that biological processes that
play a role in depression were overrepresented among our
top hits.

Second, the replication sample was smaller than the discovery
sample and may be underpowered to detect true effects with
moderate effect sizes, which might have been overestimated in
the discovery analysis (winner’s curse). Indeed, we found sugges-
tive evidence of association for only one of seven SNPs, but the
direction of association was compatible for five out of seven
SNPs.

Third, lack of replication might be related to heterogeneity of
the replication phenotype. In the replication approach, we
combined the results of studies that measured depressive
symptoms with different instruments. Instruments were also
administered at different time points across studies. However,
the instruments have been reported to be highly correlated
(correlations between .77 and .86) and relatively stable genetic
determinants over the life span were observed in an Australian
Twin study (53,54,65,67,68).

Several other factors can hinder the search for common
variants associated with depressive symptoms. Population strati-
fication, for example, can result in false-positive findings. To avoid
population stratification, only individuals from European descent
were included. Including only individuals from European descent
also minimized measurement error caused by cultural differences
in responses to the CES-D (69). Other possible explanations are
the presence of genetic heterogeneity (70), gene-gene interac-
tions (71), and gene-environment interactions. The interaction
between candidate genes and life events has been repeatedly
studied for depression (72). However, to study this phenomenon
in a genome-wide approach requires much larger data sets (13).
In addition, it is suggested that the gain of gene-environment
interaction studies over studies of main effects for complex
diseases like depression is minimal (73). The study described here
focused on common genetic variation, but rare variants or copy
number variations not tagged by SNPs might play a role in
depression (74,75). Using a larger reference panel, like the
haplotypes generated by the 1000 Genomes Project, would have
improved the yield of rare variants. Harmonizing imputation
reference and imputation tools might have further increased the
power of the study to detect associations. Also, not single SNPs,
but many SNPs collectively, each with a very small effect, may
affect the susceptibility for depressive symptoms (66).

In conclusion, the efforts of a large collaboration to identify
common variants associated with depressive symptoms yielded
no genome-wide significant hit in the discovery sample. In the
replication approach, we found suggestive evidence for a SNP in
the 5q21 region. When analyzing the discovery and replication
samples, one genome-wide significant hit in this region was
observed. Further investigation of the 5q21 region is necessary to
verify the association with depressive symptoms and to pinpoint
the possible functional variant. Such a future study of depressive
symptoms could analyze this phenotype stratified by gender and
incorporate longitudinal information with repeated measures of
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depressive symptoms to provide more power to our search for
potential candidate genes.
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