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Gene by environment (GxE) interaction studies have investigated the influence of a

number of candidate genes and variants for major depressive disorder (MDD) on the

association between childhood trauma and MDD. Most of these studies are

hypothesis driven and investigateonly a limitednumber of SNPs in relevant pathways

using differing methodological approaches. Here (1) we identified 27 genes and 268

SNPs previously associated with MDD or with GxE interaction in MDD and (2)

analyzed their impact on GxE in MDD using a common approach in 3944 subjects of

European ancestry from the Psychiatric Genomics Consortium who had completed

the Childhood Trauma Questionnaire. (3) We subsequently used the genome-wide

SNP data for a genome-wide case-control GxE model and GxE case-only analyses

testing for an enrichment of associated SNPs. No genome-wide significant hits and

no consistency among the signals of the different analytic approaches could be

observed. This is the largest study for systematic GxE interaction analysis in MDD in

subjects of European ancestry to date. Most of the known candidate genes/variants

could not be supported. Thus, their impact on GxE interaction in MDD may be

questionable. Our results underscore the need for larger samples, more extensive

assessment of environmental exposures, and greater efforts to investigate new

methodological approaches in GxE models for MDD.
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1 | INTRODUCTION

Major depressive disorder (MDD) is known to be substantially

heritable but also has a huge number of well-established environmen-

tal and lifestyle factors that contribute to the disease risk (Cerdá,

Sagdeo, Johnson, & Galea, 2010). Although the proportion of variance

attributable to genome-wide SNPs (SNP heritability) for MDD has

been estimated to be about 21–32% (Lee et al., 2013; Lubke et al.,

2012), there are only a few genome-wide significant hits for MDD or

depressive symptoms that have been detected to date (CONVERGE

consortium, 2015; Hek et al., 2012; Hyde et al., 2016; Okbay et al.,

2016) and their biological impact on depression is largely unknown.

Many factors could explain the lack of success so far including limited

sample size, the high symptom heterogeneity for MDD as well as the

strong contribution of environmental and, lifestyle factors and life

events (Flint & Kendler, 2014), and it has been hypothesized that

genetic factors need the presence of environmental triggers to exhibit

an effect on the individual (Caspi et al., 2003; Dunn et al., 2015).

Early childhood trauma (CT) is the most frequently investigated

environmental factor, which shows a high impact on major depression

and many other psychiatric disorders (Mandelli, Petrelli, & Serretti,

2015). Previous studies have suggested interaction effects between

CT and individual variants from several genes including the highly

studied serotonin-transporter-linked polymorphic region (5-HTTLPR)

(Caspi et al., 2003; Karg, Burmeister, Shedden, & Sen, 2011; Van der

Auwera et al., 2014), but also for BDNF, TPH2, FKBP5, DRD2 and many

other genes from candidate pathways (Appel et al., 2011; Grabe et al.,

2012; Mandelli & Serretti, 2013). These candidate gene approaches in

gene-environment (GxE) interaction analyses select single variants in

specific genes belonging to plausible disease-related pathways.

Although this approach seems sensible, there are many challenges in

this work. Many factors impact on their interpretation, not least non-

significant results are less likely to be taken forward for publication

generating a reporting bias (Duncan & Keller, 2011). Comparisons

between studies are difficult because of the different environmental

exposures considered such as stressful life events, abuse and neglect

subtypes, social support or living in rural/urban areas, different

methods of assessment (questionnaires vs. interviews), and the

different quantification of exposures (binary, categorical or continu-

ous) (Dunn et al., 2011; Mandelli & Serretti, 2013). Likewise, the
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phenotype definition varies between a binary lifetime major depres-

sion variable to a dimensional score of current depression. Moreover,

there are no common guidelines regarding how to perform GxE

analyses in MDD (type of regression model (linear or logistic model),

mode of action (multiplicative or additive), or assumed genetic effect

(additive, allelic, dominant or recessive model)). Until now, only two

GxE interaction analyses for depressive symptoms have been

performed on a genome-wide level. One was published by Dunn

et al. (2016) in a sample of African American and Hispanic women. In

N = 7179 African American women one genome-wide significant hit

was found near CEP350, a centrosomal protein which has never been

associated with a psychiatric phenotype before. Another study in a

Japanese population (N = 320) reported the genome-wide hit

rs10510057 near RGS10 (Otowa et al., 2016), but given the small

sample size this result should be regarded with caution. Both studies

performed a linear regression GxE analysis assessing the p-value of the

interaction term with a dimensional depression score as the outcome,

and stressful life events during the past 12 months as the

environmental exposure. Whether these findings can be replicated

in a population of European ancestry, although the environmental

exposure is different, needs to be elucidated.

Here, we focus on the most important known risk exposure for

MDD, early CT, and combine all cohorts from the Psychiatric Genomics

Consortium (PGC) with available CT and MDD data to perform gene-

environment (GxE) interaction. At the outset, despite being the largest

European ancestry study to date, we recognized that our study was

likely under-powered to detect GxE effects on a genome-wide level, so

we sought to reduce the multiple testing burden by screening the

literature and identified genes and SNPs previously implicated inMDD

or GxE in MDD. Our aims were 1) to analyze candidate variants, 2) to

compare different methodological approaches, and 3) to analyze the

genome-wide summary statistics of the GxE analyses for an

enrichment of significant findings. We hypothesize that candidate

genes/SNPs for a GxE interaction in MDD that have been proposed in

the past should at least show a nominally significant association

(p < 0.05) in our analyses.

2 | MATERIALS AND METHODS

2.1 | Participants

The PGC collates genome-wide genotypic and phenotypic data for

MDD (Psychiatric Genomics Consortium Steering Committee, 2009).

Subjects were recruited from the PGC wave two for MDD, with

phenotypic and genetic data of 16823 MDD cases and 25632

controls from 24 different cohorts with individuals from European

ancestry. All cases were diagnosed according to DSM-IV lifetime

MDD using structured diagnostic instruments from direct interviews

by trained interviewers or clinician-administered DSM-IV checklists.

Controls were screened for absence of MDD. Nine of these cohorts

also provide phenotyping of exposure to environmental factors as

risk for psychiatric disorders including CT. Five cohorts used the

most widely applied Childhood Trauma Questionnaire (CTQ) that

distinguishes between different dimensions of childhood abuse and

neglect (Bernstein et al., 2003) (Table S1): Cognition and Function in

Mood Disorders Study (COFAMS) from Australia (Baune & Air,

2016), the Netherlands Study of Depression and Anxiety (NESDA)

(Penninx et al., 2008), Radiant-UK from the United Kingdom (Lewis

et al., 2010), and two independent samples from the Study of Health

in Pomerania (SHIP) from Germany (Völzke et al., 2011). Six cohorts

used study-specific versions of CT assessment that do not capture all

five dimensions of abuse and neglect from the CTQ or used different

types of questions (Table S1): Depression Gene Network (DGN) from

the USA (Mostafavi et al., 2014), the Genetics of Recurrent Early-

Onset Depression (GenRED) from the USA (Holmans et al., 2007),

two independent samples from the Queensland Institute of Medical

Research (QIMR) from Australia (Nelson et al., 2002; Wray et al.,

2012), the psychiatric arm of the population-based CoLaus study

(PsyCoLaus) from Switzerland (Preisig et al., 2009) and the Bonn/

Mannheim study from Germany (BOMA) (Cichon et al., 2011). To

reduce the heterogeneity in our samples, we only included the five

studies that measured CT with the same standardized instrument

(CTQ). In addition, COFAMS was excluded from the analysis due to

the low number (N = 56) of MDD cases with available CTQ data.

2.2 | Childhood trauma questionnaire

The CTQ assesses CT, defined as trauma before the age of 16 (CTQ,

Table S1) (Bernstein et al., 2003), which covers three sub-scales of

abuse, sexual abuse, physical abuse and emotional abuse, as well as

two sub-scales of neglect, emotional neglect, and physical neglect, all

covered by five questions (range 1–5). This results in a score per

domain ranging from 5 to 25, and an overall CTQ continuous score

ranging from 25 to 125. Per domain, cutoffs from the CTQ manual

(Bernstein et al., 2003) were applied to get a broad definition of CT

separating no trauma from mild, moderatel, or severe trauma. CT

was transformed to a dichotomous abuse variable separating

childhood abuse in any of the three domains (1 = Yes) from no

abuse in all domains (0 = No) to address the skewness of the CTQ

score.

2.3 | Genotyping, quality control, and imputation

The cohorts were genotyped following their local protocols, after

which quality control and imputation to the 1000 genomes reference

panel (Abecasis et al., 2010) was conducted through the standardized

PGCpipeline (see SchizophreniaWorking Group of the PGC, 2014) per

cohort (PGC MDD: wave two GWAS results, In preparation). For

details see supplemental material.

2.4 | Statistical analysis

We performed these analyses in three steps: 1) Power calculation and

selection of candidate SNPs/genes for GxE analyses, 2) Analysis of the

candidate variants and genes in GxE, and 3) Analysis of the genome-

wide GxE GWAS results.
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2.4.1 | Different methodological approaches

Ourmain analytic models assuming additive genetic effects include (i) a

standard GxE analysis with a multiplicative interaction term and a

dichotomous environmental exposure (abuse 0/1) and (ii) case-only

analyses, recommended by VanderWeele (Explanation in Causal

Inference, 2015; VanderWeele, Hernández-Díaz, & Hernán, 2010),

with the dichotomous abuse 0/1 variable as well as the continuous

CTQ score as outcome (for overview see Figure 1). Case-only analyses

have a higher statistical power to detect GxE effects (Gauderman,

Zhang, Morrison, & Lewinger, 2013) than case-control GxE models

with a multiplicative interaction term and circumvent the statistical

difficulties of the low robustness of interaction terms. But these

models require that no gene-environment (G∼ E) correlation is present

(VanderWeele, 2015; VanderWeele et al., 2010). For all case-only

models G∼ E correlation in MDD negative controls was analyzed. We

usedMDD negative controls because these constitute of roughly 85%

of the population and can thus be used as an approximation for the full

population.

(1) GxE case-control (CC) interaction analyses included a

multiplicative interaction term between the SNPs and abuse 0/1

assessing the p-value for the interaction term. Analyses were

controlled for sex, the first three genetic principal components as

well as all SNPxCov and ABUSExCov interaction terms as recom-

mended by Keller (2014).

logit(MDD)∼ SNP + ABUSE + SNPxABUSE + sex + PC1 + PC2 +

PC3 + SNPxSEX + SNPxPC1 + SNPxPC2 + SNPxPC3 + ABUSEx-

SEX + ABUSExPC1 + ABUSExPC2 + ABUSExPC3

(2) MDD case-only (CO) analyses with abuse 0/1 as dependent

variable assessed the SNP p-value:

logit(abuse)∼ SNP + sex + PC1 + PC2 + PC3 if MDD= 1

(3) MDD CO analyses with CTQ score as dependent variable

assessed the SNP p-value:

(4) CTQ∼ SNP + sex + PC1 + PC2 + PC3 if MDD= 1

These three approaches enable the comparisons between CC GxE

and COy analysis as well as between dichotomous and continuous

measurement of CT (abuse 0/1 vs. CTQ-score).

As a sensitivity analysis, the CO analyses were also performed

assuming a dominant and recessive SNP effect (see supplement). This

analysis was empirically driven by the fact that in many candidate

studies for GxE in MDD dominant or recessive effects were found

(Mandelli & Serretti, 2013).

2.4.2 | GWAS and meta-analyses

For each of the four cohorts (SHIP-0, SHIP-TREND, NESDA, Radiant-

UK) GWAS have been performed as described above. A logistic

regressionmodelwas used for a binary outcome and a linear regression

model for a continuous outcome using PLINK (Chang et al., 2015).

Quantile-quantile (QQ) and Manhattan (MH) plots were generated

using R (https://cran.r-project.org/). The finalmeta-analysis comprised

N = 3944 individuals (N = 1891 MDD cases and N = 2053 controls).

The results were combined using an inverse variance-weighted fixed

effects meta-analysis in METAL (Willer, Li, & Abecasis, 2010) with the

following QC parameters; MAF > 0.05, info score > 0.6, HWE > 0.001

and including only SNPpresent in at least three of the four cohorts. The

genomic inflation factor λ for each study was calculated, and genomic-

control (GC) correction was applied when λ > 1. The I2 statistic was

used to evaluate between-study heterogeneity.

3 | RESULTS

The number of MDD cases and controls with and without CT are

summarized in Table 1. In each of the four cohorts the CTQ total score

as well as the abuse 0/1 variable were highly associated with MDD,

adjusted for sex and age.

3.1 | Power calculation and selection of candidate
genes/SNPs

The software Quanto (vs. 1.2.4) was used to determine the interaction

effect size we would be able to detect as genome-wide significant

given our sample (see Table S2). In the case-control GxE model with

N ≈ 1900 MDD cases, we would only be able to detect large effects

(OR ≥ 2.5) with a power of 80% for SNPswith highMAF (MAF ≥ 0.2). In

the case-only model with N ≈ 2000 MDD cases, we would be able to

detect large effects (OR ≥ 2.4) for SNPs with low MAF (5%), and

medium effects (OR > 1.5) with SNPswith largeMAF (50%). Because in

GWAS small effects (OR < 1.5) are observed, we assumed that with our

current sample size we were underpowered to detect genome-wide

interaction signals. Thus, we will focus on candidate SNPs and genes

for GxE in MDD.

Since the literature on candidate genes for MDD and GxE

interaction in MDD is very broad, we focused on papers that reviewed

the previous work in the field. The candidate list comprises SNPs/

genes that were taken from two major reviews (Mandelli & Serretti,

2013 forGxE interaction inMDD; Luo et al., 2016 for candidate genes/

SNPs in MDD). These candidates cover genes from central monoam-

inergic systems such as serotonin, dopamine or noradrenalin, from the

FIGURE 1 Overview of the seven different models and
approaches for GxE. [Color figure can be viewed at
wileyonlinelibrary.com]
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glutamatergic system, corticotrophin system, neurotropic system or

from inflammatory processes (e.g., SLC6A4, DRD2, COMT, NR1,

CRHR1, BDNF, FKBP5, NR3C1). We also included SNPs from recent

GWAS results for MDD or GxE interaction (Dunn et al., 2016; Hyde

et al., 2016; Otowa et al., 2016). The final list included 268 different

candidate SNPs (supplemental Table S4) and 27 candidate genes

(supplemental Table S6). From the candidate SNP list, 184 SNPs were

available in the meta-analyses after QC (most of these candidate SNPs

were excluded based on MAF < 0.05).

3.2 | Analysis of candidate SNPs/genes

The candidate genes/variants were analyzed using different method-

ological approaches. In the CO analyses the candidate SNPs revealed

no excess of G∼ E correlation (supplemental material, Table S7),

justifying continuation into case-only analyses. A full list of the results

from the candidate SNPs in all models is provided in supplemental

Table S4.

3.2.1 | Case-control GxE analysis with a multiplicative
interaction term

In the fully adjusted GxE model no candidate SNP reached statistical

significance after correcting for multiple testing (pcorrected set to 0.05/

184 ≈ 0.0003) and five SNPs showed nominal significance (p < 0.05),

which was fewer than expected by chance (expected N = 9):

rs2433320 (PDLIM5), rs1656369 (RSRC1), rs1539243 (IKBKE),

rs900144 (ARNTL), and rs6582078 (TPH2).

3.2.2 | Case-only approach on abuse 0/1 and CTQ
score

Abuse 0/1: From the candidate list, eight SNPs were at least nominally

significant in the additive SNP model: rs1656369 (RSRC1),

rs41423247/rs6191/rs33388 (NR3C1), rs1801262 (NEUROD1),

rs4763327 (EMP1), rs2433320 (PDLIM5). CTQ-score: Seven SNPs

from the candidate list were nominally significant in the additive SNP

model: rs909486 (CSF2RB), rs3754674 (NPAS2), rs9450282 (NT5E),

rs4244813/rs2279861 (SLC29A2), rs6191 (NR3C1), rs737865

(COMT). Results for the dominant/recessive case-only models can

be found in supplementary Table S4.

3.2.3 | Exploratory comparison of all three
approaches

Taking the CC GxE and CO GxE approaches, only 16 (≈9%) of the 184

SNPs showed nominal significance in at least one of the approaches

(Table S4), 13 of them with consistent directions of effects in all three

approaches. Some of them showed consistently significant associa-

tions across approaches. Two SNPs (rs33388 and rs6191) of NR3C1

(glucocorticoid receptor) which acts as a transcription factor and player

in the hypothalamic-pituitary-adrenal (HPA) axis could be supported

(Keller et al., 2016) in both case-only models but not in the direct GxE

interaction. Rs2433320 in PDLIM5 (PDZ and LIM domain containing 5)

and rs16566369 in RSRC1 (arginine and serine rich coiled-coil 1)

showednominal significant results in at least two different approaches.

3.3 | GWAS to identify GxE interaction loci

Meta-analysis of all four cohorts included nearly 4.3 million

variants. An overview of the top loci in all three models, assuming

an additive SNP-effect, is given in Table 2. In all three meta-

analysis no SNP achieved genome-wide significance (all p > 5E-8).

The top SNPs from the genome-wide CO approaches revealed no

excess of gene-environment correlation (supplemental material,

Table S7).

Manhattan-plots for all three models are given in supplemental

Figure S1. The quantile-quantile plots showed a deflation of the

observed results to those expected by chance (supplemental Figure S2)

and the λs were between 0.96 and 0.99. A full list of SNPs with p < 1E-

5 in all different approaches is given in supplemental Table S3.

The top-hit in the case-control GxE approach on abuse 0/1 assuming

an additive SNP effect was the variant rs7128637 near the ARHGAP20

gene, a Rho GTPase activating protein, with p= 4.4E-6. The top hit in the

case-only analysisonabuse0/1was rs17578476 (p = 3.3E-6) harboringat

LRRIQ3 Locus, a locus previously implicated as one of the 108 Loci

associated with schizophrenia (Schizophrenia Working Group of the

Psychiatric Genomics Consortium, 2014). In the case-only analysis for

CTQscore theminimum p-valuewas achieved for rs3214187 (p = 7.4E-7)

near theNPY (neuropeptideY)gene.Another topvariant fromthis analysis

was rs75184661 (p =4.1E-6), intronic of CACNA1C (subunit of calcium

voltage-gated channel). Results for the dominant/recessive case-only

models can be found in supplementary Table S3.

TABLE 1 Sample description and descriptive statistic of the four samples included in the meta-analysis

MDD cases Controls MDD ∼ abuse

N No abuse Abuse No abuse Abuse Odds ratio p-value Abuse prevalence (%)

SHIP-0 1505 239 117 921 171 2.55 7.6E-11 19

SHIP-TREND-0 665 114 46 428 59 3.06 1.5E-6 16

NESDA/NTR 1396 500 627 208 61 4.19 1.1E-19 49

Radiant UK 525 85 175 199 66 6.09 2.6E-20 46

Total 4091 938 965 1756 357 – – –
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3.3.1 | Exploratory comparison of all three
approaches

The correlation between effect estimates (betas and log(OR)) of all

three genome-wide approaches assuming an additive SNP effect was

highest between both CO approaches on abuse 0/1 and CTQ-score

(r = 0.58), medium between both analyses on abuse 0/1 (CC and CO)

(r = 0.54) and lowest between the dimensional CO approach using CTQ

score and the GxE interaction approach using abuse 0/1 (r = 0.33). The

overlap between SNPs with a notable p-value <0.001 is given in the

Venn diagram (supplemental Figure S3). Although in theory all

approaches were applied to measure GxE interaction for CT in

MDD, the overlap between all three analyses with p < 0.001 was only

one SNP (rs10504767) on chromosome eight with no known gene

nearby.

3.3.2 | Lookup of candidate genes

We performed a gene-based test using VEGAS2 (Mishra &Macgregor,

2015) on the genome-wide summary statistics of the three main

TABLE 2 List of top independent signals from the three meta-analyses (case-control GxE, case-only with abuse 0/1 and case-only with CTQ-
score) assuming an additive SNP effect (p < E-5); * log(OR); **beta

RSID MAF p-value Effect Genes nearby Alleles CHR I2 Sirection

Gene information from NCBI

resource

Case-only analysis (dichotomous childhood abuse 0/1)*

rs17578476 0.27 3.3E-6 −0.368 LRRIQ3 AC chr1 0.0 − − − − A SNP at the LRRIQ3 Locus has

been associated

with SCZ

rs6553019 0.40 5.1E-6 0.321 FAT1 AG chr4 46 + + + + Probable function as an adhesion

molecule or signaling receptor,

and is likely to be important in

developmental processes and

cell communication; cadherine

gene

rs10846719 0.49 5.6E-6 0.335 SCARB1, NCOR2 TC chr12 0.0 + + + ? plasma membrane receptor for

high density lipoprotein

cholesterol (HDL)

rs10504765 0.39 9.5E-6 −0.547 – AG chr8 0.0 − − ? −

Case-only analysis (dimensional CTQ score)**

rs3214187 0.13 7.4E-7 −3.443 NPY D_I3 chr7 48 − − − − Widely expressed in the central

nervous system and influences

many physiological processes,

including cortical excitability,

stress response, food intake,

circadian rhythms, and

cardiovascular function

rs199719135 0.09 1.5E-6 6.044 SH3BP4 D_I11 chr2 62 + + ? + Involved in cargo-specific control

of clathrin-mediated

endocytosis

rs75184661 0.06 4.1E-6 5.479 CACNA1C (intronic) TC chr12 0.0 ? + + + Mediate the influx of calcium ions

into the cell upon membrane

polarization

rs6822352 0.34 6.8E-6 2.291 KDR AG chr4 16 + + + ? VEGF receptor

rs6997589 0.26 7.7E-6 -3.575 SH2D4A (intronic) AG chr8 0.0 − − ? −

rs200510841 0.23 9.9E-6 3.787 SEMA6D D_I2 chr15 0.0 + + ? + Mediates transport to and from

the nucleus

GxE analysis (dichotomous childhood abuse 0/1)*

rs7128637 0.26 4.4E-6 −0.880 ARHGAP20 CG chr11 0.0 − − ? −

rs10772578 0.06 6.0E-6 1.268 CREBL2 TC chr12 45 + + + + Suggestions that CREBL2 encodes

a protein with DNA binding

capabilities and has tumor-

suppressor properties

rs10808504 0.44 7.9E-6 0.755 ENPP2 TC chr8 0.0 + + ? + Regulating myelin formation

I2 as measurement of heterogeneity between studies. Direction reporting the direction of effects in SHIP-0, TREND, NESDA, Radiant-UK.
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analyses assuming additive SNP-effects. The gene definitionwas set to

±10 kb and all SNPs per gene were used for analysis. No gene was

significant after correction for multiple testing and the top results

contained no gene previously associated with a psychiatric phenotype

(supplemental Table S5). Also our list of candidate genes revealed not

even a nominally significant (p < 0.05) hit in the VEGAS2 results

(supplemental Tables S6).

4 | DISCUSSION

This is the first genome-wide GxE interaction GWAS for depression

andCT in subjects of European ancestry. The aims of this studywere to

validate candidate SNPs and genes for GxE in MDD while applying

different model assumptions to acknowledge the variety of GxE

models in previous candidate gene studies. Our methods included

standard case-control GxE analysis with a multiplicative interaction

term as well as case-only analyses with two different parametrizations

of CT (dichotomous childhood abuse 0/1 and a continuous CT score)

assuming an additive SNP-effect.

Two published GxE studies on depressive symptoms reported

genome-wide significant SNPs inAfricanAmericanwomen (rs4652467)

(Dunn et al., 2016) and in a Japanese population (rs1051057) (Otowa

et al., 2016).Wewere not able to replicate these findings as rs4652467

only has a MAF < 0.001 in populations of European ancestry and was

therefore excluded from our analyses. The association between

rs1051057 and MDD in this sample was non-significant, even at a

nominal level. One explanation for our failure to replicate this finding

could be due to the different phenotype definition, as we used lifetime

MDD and not current depressive symptoms. As expected, due to the

limited number of subjects, we were underpowered to identify robust

genome-widesignificant interactioneffects in3944 individuals.Noneof

the genome-wide approaches suggested an inflation of the p-values in

the QQ-plots (supplemental Figure S2).

Overall, the candidate variants could not sufficiently be supported

by our analyses; only 9% of the SNPs revealed a nominally significant

effect in at least one of the three main approaches. Also the

introduction of dominant and recessive SNP models led to no

association with p < 0.0003. Subsequent gene-based analyses on the

summary statistics using VEGAS2 allowed for no biologically

meaningful interpretation. These findings are also consistent with

recent large-scale efforts to validate candidate genes, especially the 5-

HTTLPR variant (Culverhouse et al., 2017). With such limited

validation of candidate variants it seems questionable if the current

approaches of candidate gene studies are the right tool to gain insights

into the biology of gene-environment interactions inMDD.Our results

suggest that published studies on candidate variants in GxE for MDD

are in part likely subject to publication bias.

4.0.3 | Methodological limitations and challenges

GxE studies face even larger methodological challenges than genetic

association studies looking for main effects of SNPs.

1. Power: Our main limitation was the lack of power due to the limited

sample size in our analysis which only allows for the robust

identification of huge genetic effects which are not expected when

analyzing common variants. We tried to circumvent this limitation

by focusing on previously reported candidate variants.

2. Assumptions behind GxE models: The methodological approaches

that have been performed are based on different assumptions. In

case-only analysis, independence between the genetic signal and

the environmental factor is required. This might be a problem as

studies suggest a significant heritability of childhood adversity

through inherited ways of behavior. Nevertheless, as previously

shown for the MDD PGC wave2 data, SNP heritability for CT was

estimated to be not significantly different from 0.00 in GRM based

analyses (Peyrot et al., 2017). Because of limited sample size,

estimating the proportion of variance attributable to the interaction

betweenCT and genome-wide genetic effectswas not possible. But

we also found no evidence for a gene-environment correlation for

the top hits of our meta-analyses.

3. Heterogeneity across samples: The samples used in these analyses

were taken from different settings, general population and clinical

patients. Although this might have biased the results, all subjects

were of European ancestry, all subjectswere screened forMDDwith

the same instrument, all controls were also screened for absence of

MDD and CT was assessed using the same instrument (CTQ).

4. Childhood trauma measurement: As with many other measures for

CT, the CTQ is a retrospective self-report measure and thus reports

are likely to be influenced by recall bias and particularly depressive

state. One solution would be to control for mood at the time of

reporting in the analyses (Fisher et al., 2013). But other groups have

found that depressive symptoms do not result in exaggeration of

retrospectively recalled stressful events (Brewin, Andrews, &

Gotlib, 1993; Fisher et al., 2011) and thus the use of retrospective

self-reports is likely to have had only a minimal impact on these

results. Nevertheless, this could be a source of bias leading to false

positive results in our analyses.

5. GxE models: Although a number of different model assumptions

were tested in this study, there are other models that need further

investigation like the distinction between additive and multiplica-

tive interaction models which is circumvented in the case-only

approach as this method is assuming a multiplicative interaction.

Also environmental factors different from CT such as social status

or BMI could exhibit a GxE interaction as these are also risk factors

for depression (Mansur, Brietzke, & McIntyre, 2015; Schlossberg,

Massler, & Zalsman, 2010).

6. Lack of replication samples: We had no independent replication

samplesbutweuseddifferentmodels to assess the robustnessof the

results. Unfortunately, no consistency between models was found.

7. Coverage of genetic variants: A GWAS approach does not cover all

possible genetic variants that could contribute to depression, for

example, insertions, deletions or rare genetic variants. One of the

most prominent examples is the serotonin-transporter polymor-

phism (Caspi et al., 2003).
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Nevertheless, our analyses may provide some insights into GxE

analyses and the genetic underpinning of gene-environment inter-

actions in MDD as some of the top signals in the three main analyses

involved genes previously implicated in psychiatric phenotypes (Table

2) like ENPP2 (Aston, Jiang, & Sokolov, 2007) the LRRIQ3 Locus

identified in the latest GWAS for schizophrenia (Schizophrenia

Working Group of the Psychiatric Genomics Consortium, 2014),

FAT1 (Abou Jamra et al., 2008; Light et al., 2005),NPY (Nakhate, Yedke,

Bharne, Subhedar, Kokare, 2016; Soleimani et al., 2014) and

CACNA1C, a candidate gene in depression that also shows pleiotropic

effects on other major psychiatric disorders (Cross-Disorder Group of

the PGC, 2013; Rao et al., 2016). Although some of these genes are

well known in psychiatric research, the significant SNPs from the

analyses showed no overlap with previously identified candidate SNPs

of these genes.

Finally, we can say that with the current sample size we were not

able to detect a robust genome-wide significant interaction with

childhood trauma and depression and most of the candidate variants

and genes could not be supported when utilizing different methodo-

logical approaches. An important point of this analysis is the lack of

replication, even if only nominal p-values are considered. Moreover,

the analyses showed a lack of stability of findings in the different

methodological approaches.

It will be necessary to collect more data on CT in MDD samples to

validate our top hits and achieve a higher power to detect robust

genome-wide significant findings. Also it might be prudent to at least

partially question some of the former candidate SNP results for MDD

as these could be attributed to publication bias and inconsistent

models. One approach could be to harmonize the different CT

measures throughout all of the PGC cohorts and perform the analyses

with amuch larger sample size.We also recommend reconsideration of

the differentmodels currently performed inGxE analyses forMDDand

to perform consistent analyses in samples large enough to identify

robust GxE interaction signals. Our next steps will be to perform the

GxE analyses on single sub-dimensions of abuse where we have more

data within the PGC as well as performing the analysis under the

assumption of an additive interaction effect.
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