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indicate that the genetic variance decomposition of growth 
factors is, however, not biased due to measurement non-
invariance across age, provided the phenotype is measure-
ment invariant across birth-order and zygosity in twins.

Keywords  Sum scores · Growth curve models · Twin 
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Introduction

The analysis of longitudinal data from relatives provides 
two important research opportunities: the opportunity 
to structure repeated measurements of a phenotype into 
growth trajectories, and the opportunity to investigate the 
genetic and environmental contributions the parameters 
that govern these trajectories (McArdle 1986; Neale and 
Maes 2004; Neale and McArdle 2000; Prescott and Kend-
ler 1996). In longitudinal settings, however, the meaning of 
a measurement instrument may change over time, and dif-
ferent questions may be asked to address age-appropriate 
expressions of the same behavior (Achenbach and Res-
corla 2000, 2001; Edwards and Wirth 2009; Hudziak et al. 
2003; Rutter and Sroufe 2000). When constructing a simple 
phenotype to analyze across multiple time points or ages, 
a common practice is to use a sum score or mean score 
that aggregates individual questionnaire items (e.g., Fors-
man et al. 2010; Hudziak et al. 2003; Wang et al. 2013; van 
Beijsterveldt et  al. 2003). Although these scores are easy 
to compute and use, they are based on the assumption that 
all items are equally relevant indicators of the phenotype 
of interest, and they ignore the possibility that items can 
change in relevance over age. The aim of this paper is to 
investigate the consequences of analyzing simple aggre-
gate scores as longitudinal phenotypes. More specifically, 

Abstract  To study behavioral or psychiatric phenotypes, 
multiple indices of the behavior or disorder are often col-
lected that are thought to best reflect the phenotype. Com-
bining these items into a single score (e.g. a sum score) is 
a simple and practical approach for modeling such data, but 
this simplicity can come at a cost in longitudinal studies, 
where the relevance of individual items often changes as a 
function of age. Such changes violate the assumptions of 
longitudinal measurement invariance (MI), and this vio-
lation has the potential to obfuscate the interpretation of 
the results of latent growth models fit to sum scores. The 
objectives of this study are (1) to investigate the extent to 
which violations of longitudinal MI lead to bias in param-
eter estimates of the average growth curve trajectory, and 
(2) whether absence of MI affects estimates of the herit-
ability of these growth curve parameters. To this end, we 
analytically derive the bias in the estimated means and var-
iances of the latent growth factors fit to sum scores when 
the assumption of longitudinal MI is violated. This bias is 
further quantified via Monte Carlo simulation, and is illus-
trated in an empirical analysis of aggression in children 
aged 3–12  years. These analyses show that measurement 
non-invariance across age can indeed bias growth curve 
mean and variance estimates, and our quantification of this 
bias permits researchers to weigh the costs of using a sim-
ple sum score in longitudinal studies. Simulation results 
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we provide a quantification of the bias in structured growth 
curve estimates resulting from the use of sum scores in lin-
ear growth curve models (McArdle 1988; Singer and Willet 
2003), and we evaluate the impact this bias has on genetic 
variance decomposition of the growth trajectories.

Ideally, the trait of interest is measured perfectly across 
different instruments and ages. Identical measurement 
across ages is not easily accomplished in practice because 
longitudinal studies may include age-appropriate versions 
of a questionnaire at different measurement occasions. 
This is especially common when measuring psychologi-
cal outcomes or childhood psychopathology over many 
ages, such as in the study of aggression across childhood 
and adolescence (Edwards and Wirth 2012; Hudziak et al. 
2003; Kan et  al. 2013). Items in a measurement tool that 
change in meaning or content over time imply violations of 
measurement invariance (MI). Longitudinal MI means that 
each item’s relationship to the scale’s underlying construct 
is constant across repeated measurements and ensures that 
the underlying construct has the same meaning across 
measurement occasions (Meredith 1993; Meredith and 
Horn 2001; Widaman et  al. 2010). If the observed items 
are measurement invariant over time, then changes across 
time can be confidently interpreted as longitudinal develop-
ment of the latent trait. From a statistical perspective, viola-
tions of MI make it difficult to disentangle true growth in 
the latent trait from changing characteristics in the meas-
urement instrument. A natural application (in which this 
challenge is especially relevant) is assessing the behavior 
of children over multiple ages as they develop and change.

A common practice in the assessment of childhood psy-
chopathology is to ask parents or teachers to rate a child’s 
behavior across a number of items and to form a sum, mean, 
or other aggregate score based on these items (Achenbach 
and Rescorla 2001; Goodman 1997; Grimm et  al. 2013). 
These aggregate scores are easy to compute, and they can 
be a reliable measure if the number of items is sufficiently 
large (Carmines and Zeller 1979). For example, more than 
20 items are needed to ensure a Cronbach’s .....at least 
0.8, considered to indicate “good” reliability of a scale, if 
the items have 70% measurement error (Cronbach 1951; 
George and Mallery 2005). In behavioral applications, the 
number of items in a sum score is usually much smaller. 
As a consequence, the measurement error of the composite 
items does not cancel out in the formation of the aggregate 
score, leading to low reliability. In addition, scores on the 
items are commonly summed with all items receiving the 
same weight, implying that all items are equally important 
indicators of the construct. If the true measurement model 
relating the items to the underlying trait is not the same at 
each time point, the estimated average growth curve of the 
phenotype may be biased using this approach (Leite 2007; 
Wirth 2009).

It is therefore important to test for longitudinal MI before 
fitting growth models to a phenotype that is measured with 
multiple items. Violations of MI cannot be detected using 
a simple aggregate score, but MI can be investigated if a 
latent variable measurement model is fitted to the item-
level data. In particular, longitudinal MI can be assessed 
with a second-order latent growth model (SLGM), which 
was developed to study longitudinal change in a latent 
phenotype that is measured by multiple items at each time 
point (Hancock et  al. 2001; McArdle 1988). The SLGM 
permits estimation of the measurement properties of the 
items at each occasion and consequently allows the inves-
tigation of potential violations of MI, such as changes in 
factor loadings over time.

In addition, the measurement portion of the SLGM can 
also be used to investigate a priori hypotheses in which 
violations of MI might be expected due to theoretical or 
substantive knowledge about the phenotype. For example, 
researchers may expect a certain item to be more salient at 
later ages and therefore fit a model allowing the particular 
item to increase in its importance (i.e., factor loading) over 
time. It has been argued that if one has hypotheses as to 
how and why MI would not hold, a model that relaxes MI 
constraints accordingly will provide a better fit to the data, 
and the construct can be considered consistent over time 
(Byrne et  al. 1989). The decision to allow for non-invari-
ance should be guided by theory, but it can also be evalu-
ated by comparing model fit because the model imposing 
MI is nested within a less restricted model allowing time-
specific loadings. In a study of childhood aggression, for 
instance, an item asking if a child threatens others is likely 
to be more salient for older children due to an increase in 
cognitive and/or verbal skills as children age. If item load-
ings change in an a priori formulated way, and model fit is 
improved, it is possible to argue that the differences in load-
ings might be due to changes in the behavioral expression 
of the same underlying construct. In other words, it can be 
argued that the construct is measured age-appropriately.

Previous research has demonstrated that modeling a 
latent phenotype with sum scores can introduce bias in twin 
model estimates when measurement non-invariance is pre-
sent across grouping variables such as gender, environmen-
tal exposure group, or twin zygosity (Lubke et  al. 2004; 
Neale et al. 2005; Slof-Op’t Landt et al. 2009). Particularly, 
using sum scores with measurement non-invariance across 
gender can lead to the incorrect conclusion of sex limita-
tion in cross-sectional estimates of heritability (Lubke et al. 
2004). If and how violations of longitudinal MI impact 
genetic variance components have yet to be explored. With 
genetically informative longitudinal data, there are two 
main options. A popular approach is to fit a genetic sim-
plex model to the data (Boomsma and Molenaar 1987). 
The simplex involves decomposing the observed variance 
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at each measurement occasion into genetic and environ-
mental components. These components are autoregressive 
in the simplex model, meaning that the source of variation 
at a given time point is causally related to the previous time 
point, reflecting the degree to which genetic and environ-
mental influences are transmitted from one occasion to the 
next. Unique variance at each occasion is also decomposed 
into meaningful genetic and environmental components, 
corresponding to genetic or environmental innovations in 
phenotypic variance. This framework informs about the 
degree to which the specific variance components are sta-
ble, via a high degree of transmission, or changing, via a 
high degree of innovation.

An alternative approach, which is the emphasis of this 
paper, is to specify a particular growth structure in the 
phenotype, such as a latent growth model (LGM), which 
permits decomposing the variance of the latent variables 
that account for the growth structure into genetic and envi-
ronmental components (Neale and McArdle 2000). Spe-
cifically, LGMs summarize the covariance among repeated 
measures into latent variables that correspond to an inter-
cept factor and one or more change factors, most commonly 
involving a slope factor that parameterizes linear change in 
the phenotype across time. The variance decomposition is 
carried out at the level of these growth factors. The simplex 
model provides an indication of the stability of heritability 
from time point to time point, whereas the LGM decom-
poses the variation of linear or curvilinear phenotypic tra-
jectories into genetic and environmental contributions. The 
intercept factor, which summarizes the degree of stability 
over the repeated measurements, has corresponding genetic 
and environmental components, and the slope factor, sum-
marizing a specified change trajectory, has its own variance 
components (e.g., Finkel et al. 2015; Lubke et al. 2016; see 
McArdle and Hamagami 2003, for related models). How-
ever, any bias from non-invariance is expected to be real-
ized in the estimates of these structured growth factors. 
Here, we extend previous research to investigate whether 
or not the variance decomposition of growth factors is 
affected by longitudinal violations of MI.

The first aim of this paper is to provide analytic and 
simulation-based quantifications of bias due to using 
sum scores in growth models when measurement proper-
ties change over time. The second aim of the paper is to 
investigate, through simulation, how bias in the variance 
parameters of the growth model may affect genetic and 
environmental variance decompositions in longitudinal 
twin analyses. The results can be used to assess if the ben-
efits of using a convenient and simple phenotype definition 
(i.e., a sum score) in a given analysis outweigh the costs. 
The paper is organized as follows. The LGM for a single 
observed variable and its extension to accommodate mul-
tiple items are briefly presented. The model notation is 

then used to derive the bias in the estimated growth fac-
tors if MI over time is violated and sum scores are used as 
scores on the phenotype. We present the bias derivations, 
give three hypothetical demonstrations of deviations from 
MI over time that could occur in real data (e.g., individual 
items change in relevance across age), and confirm our ana-
lytic results with Monte Carlo simulations. The derivations 
of the bias are then illustrated in an exploratory subsample 
of data concerning the development of aggression during 
childhood in Dutch twins. Finally, based on the parameters 
from the empirical illustration, twin data are simulated to 
investigate potential bias in the heritability estimates of the 
growth factors.

Latent growth model

The linear LGM is a widely applied model for longitudi-
nal data. It can be used to model univariate observations 
(e.g., answers to a single question) measured at 3 or more 
time points (McArdle 1988; Singer and Willet 2003). The 
linear LGM features two latent variables that represent the 
intercept and slope of the individuals’ linear change tra-
jectories over time, respectively. Let �i = (yi1, yi2,… , yiT )

� 
denote subject i’s scores (i = 1,… , n) on a single variable 
of interest measured at occasions t = 1,… , T , where t can, 
for instance, indicate the different ages at which children’s 
behaviors have been rated. The linear growth model for the 
trajectory of individual i measured at T time points can be 
represented as,

where � is a T × 2 matrix of loadings that are fixed to cor-
respond to linear growth, �i =

[
�i �i

]
 is a 2 × 1 vector of 

factor scores for individual i on intercept (�) and slope (�)  
growth factors, and �i is a T × 1 vector of residuals for 
individual i’s observations at the T  time points (Hancock 
et al. 2001). The loadings onto the intercept factor are fixed 
to one, and the loadings onto the slope factor are fixed to 
values corresponding to the time intervals between meas-
urement occasions (e.g., the number of years between 
time points). The average growth curve is described by the 
means of the intercept and slope factors.

When the outcome at each time point is measured by 
multiple items, researchers can either aggregate items at 
each occasion into a single score and then use the LGM 
presented above, or they can use the SLGM (Hancock et al. 
2001; McArdle 1988; Sayer and Cumsille 2001). In the 
SLGM, a single factor is modeled from the multiple items 
at each time point, and this factor is simultaneously fitted 
to a linear growth model, replacing the univariate outcome 
presented in Eq. (1).

(1)�i = ��i + �i
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The factor model for the p items1 (j = 1,…, p), measured 
on individual i at time point t is given by,

where �jt represents the intercept for item j at time t, �jt is 
the item loading relating item j to the single latent con-
struct �it at time t, and �ijt is the item residual for individual 
i on item jat time t. Note that this model formulation cor-
responds to a single phenotype or construct measured by 
multiple items. However, the factor model can be extended 
to incorporate a multi-dimensional phenotype or even mul-
tiple phenotypes by including more �’s. Using vector nota-
tion, �i =

(
yi11, … , yip1, … , yi1T , … , yipT

)�

 is now a 
(T ∗ p) × 1 vector whose elements are the p items meas-
ured at each time t. Equation (2) can therefore be rewritten 
as,

where �i is a T × 1 vector of latent factor scores for sub-
ject i at each measurement occasion, � is a (T ∗ p) × 1 
vector of intercepts for the items comprising �i, and �i is a 
(T ∗ p) × 1 vector of residuals for the ith individual on the 
items comprising �i. The (T ∗ p) × T  matrix � contains 
the p item loadings at each time t. Equation  3 represents 
the common factor model for p items measured at T time 
points.

In the SLGM, the factors �i are then subjected to the linear 
growth model:

where the notation is equal to Eq. (1). Combining Eqs. (3) 
and (4) and fixing the item intercepts � to zero (without 
loss of generality)2 gives,

where � =
[
�� ��

]� is a 2 × 1 vector of the intercept 
and slope factor means, � = ���

�

+� is the (co)vari-
ance matrix of the measurement constructs �i, � is the 
(co)variance matrix of the intercept and slope factors �i, 
� is the residual (co)variance matrix of the measurement 

(2)yijt = �jt + �jt�it + �ijt

(3)�i = � + ��i + �i

(4)�i = ��i + �i

(5)�i = �(��i + �i) + �i

(6)E
[
�i
]
= ���

(7)
cov

[
�i
]
= �y = ���

�

+ � = �
(
���

�

+ �
)
�

�

+ �

constructs, and � is the residual (co)variance matrix of 
the questionnaire items. Commonly, it is assumed that the 
items have independent and identically distributed errors, 
i.e., � = σ2

ε
�T, and σ2

ε
 is the residual variance of the obser-

vations. The intercept and slope factor means (�) determine 
the average growth trajectory in a sample. A path diagram 
of a general SLGM is presented in Fig. 1

Note in Eq. (2) the t subscript for �jt. corresponding to 
time-specific item loadings. The time-specific loadings 
allow the items to relate to the underlying measurement 
factor differently across time, which would indicate a vio-
lation of MI. The SLGM allows tests of MI over time by 
specifying models in which �j1 = �j2 = … = �jT, i.e., esti-
mating only one �j which is equal across t. Constraining the 
item loadings and item intercepts to be time-invariant for 
the repeated items constitutes “strong MI” (Meredith 1993; 
Widaman and Reise 1997). Strong MI is generally consid-
ered to be the minimum level that should be established 
to ensure that the factors have the same interpretation and 
same scale across different ages (Ferrer et al. 2008; Wida-
man et al. 2010). If parameters of the measurement model 
are age-specific, the interpretation of the factors is not the 
same over a developmental span, which in turn makes the 
interpretation of the growth curve unclear.

Sum or aggregate score models

Sum scores based on multiple items carry the implicit 
assumption of MI, because the unweighted sums of the 
items implies that all of the loadings in � presented in 
Eq. (3) are all fixed to 1 at each age. Importantly, summing 
a small number of items also can leave considerable meas-
urement error in the aggregate score. In what follows, we 
evaluate the bias in estimates of growth means and vari-
ances in LGMs when sum scores are analyzed. Evaluat-
ing the bias is necessary to understand the costs of using 
sum scores in twin models (Neale et al. 2005; van den Berg 
et al. 2007).

To assess the bias in variance and mean parameters 
of the growth model when sum scores are analyzed, it is 
assumed that the SLGM presented in Eq.  (5) is the true 
underlying data-generating process. Using the notation of 
the SLGM, the yijt’s are summed over all p items at each 
time point t. Specifically, for the means given in Eq.  (6), 
the equation can be written to show the result of summing 
over all items at each time point:

In matrix notation, this can be rewritten as a diagonal 
matrix of the summed factor loadings at each time point, 

(8)

p∑
j=1

E[yijt] =

p∑
j=1

�jt�� +

p∑
j=1

�jt�t�� = (�� + �t��)

p∑
j=1

�jt

1  The observed scores in this derivation are assumed to be (multivari-
ate) normally distributed.Categorical outcomes can be dealt with by a 
superseding threshold model (Agresti 2002), whichis omitted here to 
avoid unnecessary complexity.
2  The item intercepts are fixed at zero to set them equal over time and 
also allow for the estimation of the intercept factor mean. Another 
option for SLGMs is to estimate item means and constrain them to 
equality over time while setting the intercept mean to zero.
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denoted ��, multiplied by the growth loadings and the true 
growth means,

Summing the items therefore results in a vector of T  
total sum scores, called ��i. An explicit presentation of the 
sum score loading matrix is presented in “Appendix 1”. To 
achieve the first aim of the paper, bias derivations based on 
these estimates are presented below.

Bias derivations

Bias is first evaluated in the means of the growth factors. 
From Eq.  (6), matrix operations are used to solve for �. 
Detailed derivations are available in “Appendix  2”, and 
Table  1 defines the matrices used in these models. This 
gives the expression for the growth factor means,

Equation (10) can be used to obtain estimates μ̂ for any 
set of values for �, �, or E[�i]. Of particular interest in this 
investigation is a given constrained measurement loading 
matrix, which will be generally referred to as 𝚲̃. Equa-
tion (6) provides the expectation of �i, E

[
�i
]
= ��μ, which 

is invariant to the constraints of 𝚲̃, so estimates are calcu-
lated under this measurement model by modifying (10) to:

The bias can be evaluated in the mean growth factors for 
incorrect measurement models by calculating μ − μ̂ and the 
relative bias by

Similarly, an expression that calculates the variance of 
the parameter estimates from constrained measurement 
models can be derived. Equation (9) can be used to solve 

(9)E
[
��i

]
= ���μ

(10)μ̂ =
(
𝚪

�

𝚲
�

𝚲𝚪
)−1

𝚪
�

𝚲
�

E
[
𝐲i
]

(11)𝛍̂ =
(
𝚪

�

𝚲̃
�

𝚲̃𝚪
)−1

𝚪
�

𝚲̃
�

𝚲𝚪𝛍

(12)biasr =
μ̂ − μ

μ

for �, the variance–covariance of the growth parameters. 
This result gives

Equation (12) can be used to obtain estimates for 𝚽̂ 
by replacing � with the constrained loading matrix 𝚲̃ and 
using Eq. (9) for �y,

Notice that the �’s in the middle parentheses are not 
the constrained 𝚲̃’s. These represent the population-level 
covariance structure, just as the known expected value of 
�i was used for the means above. Then, 𝚽 − 𝚽̂ gives the 
bias in the variance–covariance of the growth parameters 
and the relative bias is given by

If these biased values are proportional to the true 
parameters, then the bias is a trivial scaling issue. If, 
however, is not proportional to �, then systematic bias 
is present, which can lead to misleading results in prac-
tice. Furthermore, an estimated 𝚽̂ can be found for any 
constrained loading matrix 𝚲̃, and bias can be evaluated 
thusly. Again, further details of the derivations are out-
lined in “Appendix 2”.

Now consider fitting a univariate LGM to unweighted 
sums of items at each time point, that is, to standard sum 
scores computed at each measurement. The sum score 
model fits a univariate LGM to the��i. This model treats 
the constrained loading matrix 𝚲̃ essentially as an identity 
matrix because each item is equally weighted. This can be 
written,

where ��i is the aforementioned vector of sum scores for 
individual i and μ� is a vector of intercept and slope means 
when the univariate model is fitted to the sum scores. The 

(13)
𝚽̂ =

(
𝚪

�

𝚲
�

𝚲𝚪
)−1

𝚪�𝚲�(𝚺y − 𝚲𝚿𝚲
�

−𝚯)𝚲𝚪
(
𝚪

�

𝚲
�

𝚲𝚪
)−1

(14)𝚽 =
(
𝚪

�

𝚲̃
�

𝚲̃𝚪
)−1

𝚪�𝚲̃’
(
𝚲𝚪𝚽𝚪

�

𝚲
�
)
𝚲̃𝚪

(
𝚪

�

𝚲̃
�

𝚲̃𝚪
)−1

(15)biasr =
𝚽̂ −𝚽

𝚽

(16)E[��i] = �μ�

Table 1   Definitions of SLGM 
notation

Matrix Definition Matrix Definition

� Growth loadings η Measurement factor scores
ξ Growth factor scores ε Item-level residual
μ Growth factor means � Construct factor covariance matrix
ζ Growth model residuals � Construct-level disturbances
� Observed variable covariance matrix SS Sum scores of items at each time point
� Growth factor covariance matrix �� Sum of item factor loadings at each time point
� Residual covariance matrix μ� Growth factor means fitted to sum scores
� Item factor loadings �� Growth factor covariances fitted to sum scores
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estimated intercept and slope means for the sum score then 
have the form,

with E[��i] given by Eq.  (9). The estimated intercept and 
slope covariance matrix is similarly derived for sum scores, 
where 𝚲̃ is treated as identity from Eq.  (13) and �� from 
Eq. (9) is the population-level � for the summed items, giving,

Practically speaking, the estimates of the growth means 
and variances using a sum score are a function of the sums 
of the true underlying item-level factor loadings. What 
remains to be seen is whether or not the growth parameter 
estimates are simply rescaled or are systematically biased 
under violations of MI. In the next section we therefore use 
the derived expressions to calculate the bias in growth fac-
tor means and variances for different violations of MI, and 
we validate the analytic results in a simulation study.

Calculation of bias for three different violations 
of MI

Conditions

Three hypothetical scenarios were used to illustrate the 
results of the above derivations. In all three examples, there 
were 4 time points with 6 items at each time point. The 
population values remained consistent across conditions, 
and are presented below:

where �24 is a 24 × 24 identity matrix,3 and � = σ2�24 
indicates that the items have independent and identical 
error variances. For ease of presentation, assume that error 
variances are invariant across item and across time. The 
only manipulation across the three conditions involved the 
factor loading matrix �. The bias estimates were calculated 

(17)μ̂𝐬 =
(
𝚪

�

𝚪
)−1

𝚪
�

E[𝐒𝐒i]

(18)𝚽̂𝐬 = (𝚪�𝚪)−1𝚪�(𝚲𝐬𝚪𝚽𝚪�𝚲�
𝐬
)𝚪(𝚪�𝚪)−1

� =

�
1

1

�
� =

⎡⎢⎢⎢⎣

1 0

1 1

1 2

1 3

⎤⎥⎥⎥⎦
� = �2�

24
�2

= 1

� =

�
.5 .2

.2 .5

�
� =

⎡⎢⎢⎢⎣

.5 0 0 0

0 .5 0 0

0 0 .5 0

0 0 0 .5

⎤⎥⎥⎥⎦

based on the bias derivation presented above, and Monte 
Carlo simulations were then conducted to support these 
results empirically.

The three item conditions are as follows: (1) item loadings 
are not all equivalent within a particular time point, but MI 
holds over age; (2) MI does not hold over age as certain items 
decline in their relation to the factor after the second time-
point; and (3) MI does not hold, but 2 items decrease system-
atically in their loadings while 2 increase systematically, such 
that the changes essentially balance out. The explicit form of 
the �’s for the demonstrations is presented in “Appendix 3”. 
These three loading matrices could correspond to three dif-
ferent conditions that might occur in practice in an investi-
gation of aggression in children. In the first condition, the 
items are not all equally important in how well they measure 
aggression, but their importance is consistent over time. In 
the second condition, items 5 and 6 become less important 
as children age, corresponding to a particular behavior that 
is relevant for aggression in young children but not in older 
children. The third condition reflects a situation in which 
some items are highly related to aggression at a younger age 
only to decrease in importance over development, while oth-
ers are not important for the youngest children but become 
more important as children age.

Bias calculations

Using the information above, the sum score estimates were 
calculated under Condition 1, in which MI holds but the items 
do not have consistent weights. From Eq.  (9), the expected 
values of the sum scores are known to be E

[
��i

]
= ���μ,  

which were obtained with the sum of the item loadings at 
each time point, ��,

Growth factor estimates for the sum scores were calculated 
by applying these expected sum scores to Eq. (15):

From Eq.  (16) the growth factor covariance matrix was 
calculated:

(19)�� =

⎡⎢⎢⎢⎣

4.4 0 0 0

0 4.4 0 0

0 0 4.4 0

0 0 0 4.4

⎤⎥⎥⎥⎦

(20)μ̂𝐬 = (𝚪�𝚪)−1𝚪�𝚲𝐬𝚪μ =

[
4.4

4.4

]

(21)μ =

[
1

1

]
; biasr(μ̂𝐬) =

[
3.4

3.4

]

(22)

𝚽̂𝐬 = (𝚪�𝚪)−1𝚪�(𝚲s𝚪𝚽𝚪�𝚲�
s
)𝚪(𝚪�𝚪)−1 =

[
9.680 3.872

3.872 9.680

]
3  As discussed above, the dimensions of � are (T ∗ p) × (T ∗ p); in 
this case, (4 ∗ 6) × (4 ∗ 6), hence the need for a 24 × 24 identity 
matrix here.
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The estimates are proportional to true parameters, that 
is, the bias terms are all the same, and the relative bias is 
constant across the sets of parameters. Therefore, when 
MI holds, the sum score estimates are simply weighted or 
rescaled values of the true parameters. In other words, the 
bias is due to scaling, and is therefore inconsequential.

The same procedure was repeated for Condition 2, 
where the only change was the manipulation of the item-
level loading matrix �. Here, some items decreased in their 
true loadings over time. Again, as demonstrated in Eq. (9), 
the item loadings were summed at each time point to obtain 
the sum scores computed from the SLGM generation,

The matrix of summed loadings is applied to Eqs. (15) 
and (16):

In this condition, it is apparent that the estimates of the 
growth factor means are systematically biased. Instead of 
the intercept and slope means having a 1-to-1 relationship 
as when they are generated, estimates from a univariate 
sum score lead to an intercept mean that is 1.27 that of the 
slope means. In other words, the average growth trajec-
tory is underestimated, whereas the average baseline level 
is overestimated. Similarly, the variance for the intercept is 
proportionally larger than the variance of the slope, though 
they have the same value in the population.

The calculations for Condition 3 again followed the 
same procedure, but in this condition the loadings increased 
for two items from time 1 to time 4 and decreased for two 
other items from time 1 to time 4. These items increased 
and decreased in a reciprocal pattern. From the true loading 
matrix, sum scores were created, resulting in the following 
loading matrix,

(23)𝚽 =

[
.5 .2

.2 .5

]
; biasr(𝚽̂𝐬) =

[
18.360 18.360

18.360 18.360

]

(24)�� =

⎡⎢⎢⎢⎣

4.5 0 0 0

0 4.3 0 0

0 0 3.9 0

0 0 0 3.9

⎤⎥⎥⎥⎦

(25)μ̂𝐬 = (𝚪�𝚪)−1𝚪�𝚲𝐬𝚪μ =

[
4.64

3.64

]

(26)μ =

[
1

1

]
; biasr(μ̂𝐬) =

[
3.64

2.64

]

(27)

𝚽̂𝐬 = (𝚪’𝚪)−1𝚪’(𝚲s𝚪𝚽𝚪’𝚲s’)𝚪(𝚪’𝚪)
−1 =

[
10.335 3.268

3.268 7.134

]

(28)𝚽 =

[
.5 .2

.2 .5

]
; biasr(𝚽̂𝐬) =

[
19.670 15.338

15.338 13.269

]

Although the item loadings for some items changed 
across measurement occasions, the sum of the item load-
ings at each time remained constant. The growth estimates 
were obtained from Eqs. (15) and (16),

These results demonstrate that there was no bias in the 
growth factor estimates based on sum scores, even though 
the items themselves were not perfectly invariant. Clearly, 
this is due to the fact that in this particular scenario the sum 
of the item loadings remains constant over time.

Verification with simulated data

Monte Carlo simulations were conducted to validate the 
results of the analytic derivations. Using the population 
values given above, response data were generated using the 
SLGM. Data were simulated with a mean structure given 
by inserting population values into Eq. (9), and the covari-
ance structure was given by Eq. (14). One thousand simula-
tions were conducted for each condition with a sample size 
of N = 1000 each. Data were simulated using R (R Devel-
opment Core Team, 2014). Sum scores of the item-level 
data were calculated and LGMs were fit to the sum scores 
using the lavaan package in R (Rosseel 2012; R Core Team 
2017).

The results of the 1000 Monte Carlo simulations were 
directly compared to the analytic estimates for the means 
and covariance matrix of the intercept and slope factors. 
The average estimates and empirical standard errors are 
presented side-by-side with the analytic results in Tables 2 
(means) and 3 (covariance matrices) below. The average 
values from the Monte Carlo simulations were consistent 
with the analytic calculations for all conditions for both the 
means and covariance matrix.

(29)�� =

⎡⎢⎢⎢⎣

3.5 0 0 0

0 3.5 0 0

0 0 3.5 0

0 0 0 3.5

⎤⎥⎥⎥⎦

(30)μ̂𝐬 = (𝚪�𝚪)−1𝚪�𝚲𝐬𝚪μ =

[
3.5

3.5

]

(31)μ =

[
1

1

]
; biasr(μ̂𝐬) =

[
2.5

2.5

]

(32)

𝚽̂𝐬 = (𝚪’𝚪)−1𝚪’(𝚲s𝚪𝚽𝚪’𝚲s’)𝚪(𝚪’𝚪)
−1 =

[
6.125 2.450

2.450 6.125

]

(33)𝚽 =

[
.5 .2

.2 .5

]
; biasr(𝚽̂𝐬) =

[
11.250 11.250

11.250 11.250

]
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Summary of bias calculation

The calculations from the three hypothetical conditions 
analytically quantified the bias in growth factors that results 
from a violation of MI in the item loadings. The first condi-
tion, in which item weights were not equal across all items, 
resulted in growth factor estimates proportional to the true 
estimates because the pattern of item loadings was consist-
ent across measurement occasion. In this case, using a sum 
score would lead to the correct inference on the intercept 
and slope means. Additionally, the estimated intercept-
slope covariance matrix was proportional to the true covar-
iance matrix.

In Condition 2, MI was violated in two of the six items, 
which were characterized by declining factor loadings over 
time. Fitting a LGM to sum scores from Condition 2 results 
in systematic bias of the intercept and slope factor means 
and covariances. In particular, the population means stipu-
lated that the intercept and the growth means were equal to 
each other; the estimates from the Condition 2 resulted in a 
slope mean that is approximately 78% of the intercept esti-
mate. Additionally, the amount of variance in the intercept 

and slope factors, which was equal in the data generating 
model, was drastically different in the sum score estimates. 
Inference is often made on the slope means relative to 
the baseline level in a growth model. Condition 2 reveals 
a case in which this inference would be particularly mis-
guided. Condition 3 represents a case in which MI did not 
hold because item loadings were consistently increasing for 
some items and decreasing for others, yet the sum of the 
items at each time remained the same. This reflects a sce-
nario in which individual items may shift to accommodate 
age-salient changes in behavior, but the underlying behav-
ior itself remains constant, and the overall aggregate of the 
instrument consistently measures the construct of interest.

Empirical illustration

In support of the bias derivation and simulations, an 
application illustrating how to understand sum score bias 
in growth parameters due to longitudinal non-invariance 
is presented. The application assesses the costs and ben-
efits of using a univariate phenotype in the “ACTION: 

Table 2   Calculated and 
simulated growth factor means

Analytic and empirical estimates of growth factor means. �
s
 refers to analytic derivations, and 𝜇̂

s
 refers to 

the averaged empirical estimates, �� and �� are the intercept and slope factors, respectively. The relative 
bias of estimates and proportions of true parameters to the estimates are also presented

Cond. True � �� 𝛍̂𝐬 SE (𝛍̂𝐬) bias
r
(��) �∕��

1 �� 1.0 4.40 4.3939 0.1426 3.40 0.2272
�� 1.0 4.40 4.3979 0.1133 3.40 0.2272

2 �� 1.0 4.64 4.6343 0.1456 3.64 0.2158
�� 1.0 3.64 3.6347 0.1002 2.64 0.2751

3 �� 1.0 3.50 3.4951 0.1200 2.50 0.2857
��. 1.0 3.50 3.4983 0.0926 2.50 0.2857

Table 3   Calculated and 
simulated growth factor 
variances and covariances

Analytic and empirical estimates of growth parameter covariances. �
s
 refers to analytic derivations, and 𝚽̂

s
 

refers to the averaged empirical estimates. The relative bias of estimates and proportions of true parameters 
to the estimates are also presented

Cond. � �
s 𝚽̂

s SE (𝚽̂s) Biasr (�s
) �∕�

s

1 �2

�
0.5 9.680 9.5684 1.1489 18.360 0.0517

�2

�
0.5 9.680 9.6630 0.5949 18.360 0.0517

��� 0.2 3.872 3.8772 0.5158 18.360 0.0517
2 �2

�
0.5 10.3347 9.9368 1.1636 19.6694 0.0484

�2

�
0.5 7.1343 7.0610 0.4841 13.2686 0.0701

��� 0.2 3.2675 3.3927 0.5562 15.3375 0.0612
3 �2

�
0.5 6.125 6.0413 0.8339 11.250 0.0816

�2

�
0.5 6.125 6.1133 0.4025 11.250 0.0816

��� 0.2 2.450 2.4578 0.4225 11.250 0.0816



524	 Behav Genet (2017) 47:516–536

1 3

Aggression in Children: Unraveling gene-environment 
interplay to inform Treatment and InterventiON strate-
gies” consortium. ACTION was formed to investigate 
genetic and environmental contributions to the develop-
ment of aggression throughout childhood and adoles-
cence (Boomsma 2015). Aggression in childhood is her-
itable (e.g. Eley et al. 1999; Hudziak et al. 2003; van der 
Valk et al. 1998). Literature suggests that physical aggres-
sion maintains a consistent level as children develop, 
though overall aggression may decline across childhood 
on average (Burt 2009; Tremblay 2003). Genetic factors 
have been shown to account for individual differences in 
childhood aggression at specific ages and longitudinally 
across development (Porsch et al. 2016; van Beijsterveldt 
et  al. 2003). Given the goal of ACTION to unravel the 
environmental and genetic contributions to the develop-
ment of aggression, the construction of an aggression 
phenotype is critically important to provide the basis for 
accurate inferences concerning aggression trajectories.

The Young Netherlands Twin Register (YNTR) is a pop-
ulation-based sample of Dutch twins observed from ages 
2 to 16 (van Beijsterveldt et al. 2013). From 1986 to 2011, 
families with newborn twins were recruited to participate in 
the YNTR, and most families (89%) were registered within 
12 months of birth. This illustration uses a small subsample 
of the NTR data that was previously set aside for exploratory 
data analyses of the aggression factor structure (Lubke et al. 
in press). This subsample consisted of 591 male individuals 
and 1009 female individuals. Due to established gender dif-
ferences in aggressive behaviors, the growth parameter bias 

calculation was carried out for males and females separately 
(Bartels et al. 2003; Hudziak et al. 2003).

At age 3, children’s aggressive behaviors were meas-
ured by mother report of the aggressive behaviors subscale 
of the Child Behavior Checklist (CBCL) 1.5-5 (Achen-
bach and Rescorla 2000), a version of the CBCL adapted 
for preschool-aged children. The CBCL 1.5–5 contains 
19 items rated on a 3-point likert scale (0 = “not true”, 
1 = “somewhat/sometimes true”, 2 = “very/often true of 
my child in the past six months”). At ages 7, 10, and 12, 
mother-reported data were collected with the aggressive 
behaviors subscale of the CBCL 6–18 (Achenbach and 
Rescorla 2001). The CBLC 6–18 contains 18 items rated 
on the same likert scale as the CBCL 1.5–5. Exploratory 
Factor Analysis of these data identified 5 items for each 
CBCL version that loaded onto a physical aggression factor 
(detailed in Lubke et al. in press). The illustration presented 
in this paper will focus on the physical aggression pheno-
type. Confirmatory Factor Analysis (CFA) was conducted 
to establish a factor structure at each age. Table 4 contains 
the items included and their factor loadings at each age.

Table 4 shows that the physical aggression items identi-
fied from the CBLC 1.5–5 are not exactly the same as the 
physical aggression items for the CBCL 6–18. In fact, there 
are three consistent items and two unique items across sur-
vey form. Two physical aggression items are removed and 
two new items are added in the different versions of the 
CBCL. Additionally, the consistent item “destroys others’ 
things” increases in its item loading from around 0.58 to 
greater than 0.9 after age 3. In practice, researchers have 
a few options on how to proceed: using all available items 

Table 4   CBCL items and 
respective factor loadings by 
age and gender

Physical aggression items identified, and their corresponding factor loadings for both males and females. 
Notice that the items “destroys own things” and “threatens people” were not administered at age 3, while 
“hits others” and “hurts others without meaning to” were only administered at age 3

Item Age 3 Age 7 Age 10 Age 12

Females
 Destroys things belonging to his/her family or other children 0.57 0.95 0.92 0.93
 Gets in many fights 0.74 0.65 0.64 0.65
 Physically attacks others 0.73 0.64 0.66 0.72
 Hits others 0.82 – – –
 Hurts animals or children without meaning to 0.60 – – –
 Destroys his/her own things – 0.90 0.92 0.90
 Threatens people – 0.37 0.44 0.58

Males
 Destroys things belonging to his/her family or other children 0.59 0.94 0.91 0.91
 Gets in many fights 0.74 0.63 0.70 0.72
 Physically attacks others 0.77 0.70 0.77 0.81
 Hits others 0.83 – – –
 Hurts animals or children without meaning to 0.62 – – –
 Destroys his/her own things – 0.89 0.86 0.88
 Threatens people – 0.64 0.70 0.76
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at each time point in a sum score, using all available items 
in an SLGM (thus allowing for the non-overlapping items 
to have different loadings at age 3), or using only the three 
consistent items in a sum score or SLGM.

The illustration presented below uses a sum score of all 
available items because both versions of the CBCL sub-
scale aim to measure the same underlying construct of 
physical aggression across all ages and because compos-
ite scores of slightly varying item sets are often used in 
practice (Forsman et al. 2010; Wang et al. 2013; van Bei-
jsterveldt et  al. 2003). To assess the consequences of this 
approach, the bias attributable to using a sum score of all 
available items is calculated for hypothetical growth param-
eters in an LGM. The CFA results (Table  4) are used as 
the factor structure for each measurement occasion. Pre-
vious literature has indicated that physically aggressive 
behaviors in children are best characterized by multiple 
trajectories: starting low and increasing, starting low and 
remaining low, starting high and decreasing, or remain-
ing high (Burt 2009; Cui et  al. 2016; NICHD 2004). For 
simplicity in this illustration, and because our simulations 
had a positive slope, this example posits the low-increasing 
trajectory of aggression, with growth parameters specified 
as E

[
ξ
]
=

[
�� ��

]�
=
[
1 0.2

]�. This represents a slight 
increase over age, with the rate of growth modest relative 
to the initial level (intercept to slope ratio of 5  to 1). The 
slope loadings in �differ from the simulation above to cor-
respond to the appropriate age intervals in this example; 
namely, the vector of slope loadings is 

[
0 4 7 9

]′. The 
other population values from the simulation are used to fill 
in the remaining parameters, in order to simply evaluate the 
bias in growth parameter estimates due to forcing measure-
ment non-invariant items into a sum score.

Empirical results

The estimates for μ̂𝐬 and 𝚽̂𝐬 are calculated based on sum 
scores formed from the items with the factor structure 
described in Table 4. The results for aggression based on 
the data from females are presented first:

(34)
μ̂𝐬 = (𝚪�𝚪)−1𝚪�𝚲𝐬𝚪μ =

[
3.336

0.781

]

biasr(μ̂𝐬) =

[
2.336

2.905

]

(35)

𝚽̂𝐬 = (𝚪�𝚪)−1𝚪�(𝚲s𝚪𝚽𝚪�𝚲�
s
)𝚪(𝚪�𝚪)−1 =

[
5.358 1.804

1.804 7.052

]

biasr(𝚽̂𝐬) =

[
9.717 8.018

8.018 13.104

]

It is clear that the intercept and slope estimates under of 
the sum score model are biased. Importantly, the relative 
bias does not indicate the bias is a trivial scaling issue. This 
is apparent when we consider that the ratio of the intercept 
to slope means should be 5 to 1, but it is closer to 4.25 to 1, 
indicating that the slope estimate resulting from the use of 
sum-scores would imply a faster rate of growth relative to 
the intercept than is stipulated in the population. The esti-
mated variance in the slope is also upwardly biased relative 
to the intercept variance. The intercept-slope correlation is 
0.29 in these calculations, but it is 0.4 in the population.

The results for the males are similar:

The pattern of results is the same as the females, with 
non-ignorable bias introduced into the intercept and slope 
means and variances due to sum score measurement model. 
The estimated slope mean shows upward bias relative to 
the intercept, as the ratio of the intercept to the slope is 4 
to 1 rather than 5 to 1, and the estimated slope variance is 
disproportionately large compared to the estimated inter-
cept variance. These results imply that a univariate LGM 
fit to sum scores of the identified physical aggression items 
would result in biased growth estimates.

Implication of bias for variance decomposition

An effective longitudinal twin modeling strategy is to fit 
an LGM to data collected on a longitudinal phenotype and 
decompose the variance in the intercept and slope factors 
(Finkel et  al. 2015; Lubke et  al. 2016; Neale and McArdle 
2000). This is often carried out with a genetic model, which 
decomposes the variance of a phenotype into portions due to 
additive genetic effects (A), common environment (C), and 
non-shared environment (E) components. The twin modeling 
framework estimates these variance components by modeling 
the expected relationships between pairs of twins. For exam-
ple, monozygotic (MZ) twins are genetically identical, but 
dizygotic (DZ) twins share on average 50% of their genetic 
information. The same model is fit to pairs of MZ twins and 

(36)
μ̂𝐬 = (𝚪�𝚪)−1𝚪�𝚲𝐬𝚪𝛍 =

[
3.468

0.870

]

biasr(μ̂𝐬) =

[
2.468

3.350

]

(37)

�̂s = (���)−1��(��������
�
)�(���)

−1
=

[
5.795 2.104

2.104 8.344

]

biasr(�̂s
) =

[
10.589 9.520

9.520 15.688

]
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DZ twins, but the A component is perfectly correlated among 
MZ twins and correlated 0.5 for DZ twins. The C component 
is perfectly correlated across twins of both zygosities to cap-
ture shared variance not found in the A component, and the 
unique component E is completely uncorrelated across twins 
of both zygosities. The E component includes all non-shared 
environmental effects as well as measurement error. In the 
aggression example above, the variances of the intercept and 
slope fitted to sum scores (denoted �̂s in Eq. 35) would be 
decomposed into the A, C, and E components. It was estab-
lished above that the use of sum scores when MI is violated 
over time leads to a biased variance–covariance matrix for 
the intercept and slope factors. We conducted a simulation to 
investigate if bias due to longitudinal non-invariance leads to 
biased variance decomposition.

Longitudinal twin data were simulated by gener-
ating growth factors under an ACE path coefficients 
model composing linear intercept and slope factors. 
Figure 2 depicts a linear LGM of sum scores for twin 1 
of a twin pair, and Fig.  3 depicts the ACE decomposi-
tion of intercept and slope factors. The variance of the 
intercept and slope factors were decomposed into A, C, 
and E components, where the path coefficients were set 
to a =

√
.5, c =

√
.25, and e =

√
.25. These path coeffi-

cients represent the proportion of the intercept and slope 
factors due to each component because the A, C, and E 
factors have unit variance. The correlations among the A, 

C, and E factors were all set to 0.5 to maintain a marginal 
correlation of 0.5 between the intercept factor and slope 
factor for a given individual. The zygosity coefficient, 
which we call z here,4 corresponds to the correlation of 

Fig. 1   Example of a second-
order latent growth model with 
j = 1, …, p items and t = 1, …, 
T time points. � = intercept 
and � = slope represent latent 
growth constructs that influence 
the latent phenotypes η which 
in turn define observed indica-
tors y 

Fig. 2   Linear LGM of sum scores for twin 1 in a twin modeling 
framework. “SS11” indicates the sum score at the first time-point for 
twin 1. The intercept and slope factors are denoted � and �

4  This “zygosity coefficient” is conventionally labeled �, but we use z 
so as not to confuse it with the label for the intercept factor.
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the A component between MZ twins or DZ twins. One 
thousand simulations were conducted per condition 
with N = 1000 twin pairs generated in each simulation 
(500 MZ and 500 DZ twins). All model parameters were 
set equal across twin pairs and MZ and DZ twins, with 
the exception of the z coefficient.

Data were generated in R (R Development Core Team 
2017), and the model fitting was carried in Mplus Ver-
sion 7.3 using the external Monte Carlo feature (Muthén 
and Muthén 1998–2015). Abbreviated Mplus code is 
available in “Appendix 4”. Data were generated under the 
three different conditions described above, varying only 
by the item-level measurement model. Sum scores of the 
items were computed at each time point, the LGM was 
fitted to the sum scores, and the growth factor variances 
were decomposed into ACE components. The ACE simu-
lations were evaluated on their proportional variance 
components estimates by dividing the squared path coef-
ficients that represent genetic and environmental variance 
components by the total variance. In other words, the her-
itability estimate of interest was a2

a2+ c2+ e2
 for both the 

intercept and slope variance. This provided the estimated 
proportion of the variance in the intercept or slope due to 
A, C, and E. Because the growth factors in the sum score 
model are on a different scale than the factors in the item 
level model, we consider proportional variance compo-
nents to be able to compare the results.

Variance decomposition results

The proportional path coefficient estimates corresponding 
to the intercept and slope are presented in Table 5, along 
with their empirical standard errors, mean squared error 
(MSE), coverage rates, and percentage significant across 
replications (power). The proportional decomposition of 
the intercept and slope factors was accurate for all three 
conditions, whether or not MI held over time. The com-
mon environment path coefficient for the intercept factors 
tended to have a larger standard error compared to the other 
estimates of interest, but the point estimates for all propor-
tional path coefficients were true to the population values. 
The estimated intercept and slope means were identical to 
the derivations above, as expected, indicating that there is 
bias in the average growth trajectories in Condition 2. The 
total variance of the intercept and slope is also biased in 
Condition 2, but the proportional decomposition in the 
ACE path coefficients is correct. The conditions each had 
convergence rates of 99.3, 99.7, and 98.9%, respectively.

Discussion

This paper had two aims: to calculate expected bias in the 
intercept and slope factors when MI of the items does not 
hold over time but sum scores are used for LGMs, and 
to investigate the consequences of this bias for variance 

Fig. 3   Path diagram of ACE 
decomposition of intercept 
and slope growth factors with 
intercept-slope correlation. r 
indicates correlation of intercept 
and slope in respective ACE 
factors; � and � subscripts 
indicate intercept and slope, 
respectively; 1 and 2 indicates 
twin 1 and twin 2 in a particular 
twin pair; z = 1 for MZ twins, 
0.5 for DZ twins



528	 Behav Genet (2017) 47:516–536

1 3

decomposition. To address the first aim, expressions for 
estimating the growth factor means and (co)variance matrix 
with a sum score (or other constrained measurement model) 
were derived. These derivations were used to calculate bias 
under conditions with and without MI. Results showed that 
using a sum score when MI does not hold over time can 
result in an incorrect interpretation of growth. In Condition 
2, for example, a subset of item loadings decreased over 
time. The resulting LGM fitted to the sum scores underes-
timated the true growth trajectory. This clearly illustrates 
how changes in the measurement model are confounded 
with the true change in the construct of interest. Condition 
3 represented the special case of measurement changes bal-
ancing out over time, resulting in correct growth estimates. 
The first simulation showed that our derived estimates were 
correct. The empirical illustration depicted an example of 
calculating expected bias in the growth factors due to lon-
gitudinal measurement non-invariance. In this case, the 
estimated growth trajectories would be incorrect, in that 
growth would be overestimated due simply to measurement 
changes. Fitting a second order growth model would permit 

the estimation of age-specific loadings. In case loadings in 
fact change over time as hypothesized a priori, this would 
then allow the interpretation of an age-appropriately meas-
ured aggression phenotype.

The second aim of the paper was carried out by conduct-
ing a variance decomposition of simulated twin data. This 
simulation study revealed that though the interpretation 
of growth may be altered by longitudinal non-MI in sum 
scores, the variance decompositions of the intercept and 
slope variances derived from the sum score model were cor-
rect. In other words, the growth factors were biased by lon-
gitudinal non-invariance, but the proportion of variation in 
the growth factors due to genetic and environmental influ-
ences remained the same, and was accurately estimated. 
These results can be understood as follows. The variance 
decomposition into genetic, shared and unique components 
depends on MI across twins in a pair and across MZ and 
DZ groups. The measurement model is assumed to be the 
same across twin groups in the simulation, so the growth 
factors are systematically biased by longitudinal non-MI 
in the same way for each twin and the MZ and DZ groups. 

Table 5   Results from simulated 
ACE decomposition of growth 
factor variances

Results of ACE decomposition for simulated longitudinal twin data. Reported estimates are proportions of 
intercept and slope variances due to A, C, and E components. cond, condition; pop., population value; MSE 
mean squared error; � and � subscripts indicate intercept and slope, respectively; cover., coverage; signif., 
significant

Cond. Pop. Avg. estimate Empirical SE MSE 95% cover. % signif.

1 a2
�

0.50 0.4948 0.1509 0.0023 0.943 0.904

c2
�

0.25 0.2555 0.1245 0.0155 0.935 0.521

e2
�

0.25 0.2497 0.0535 0.0029 0.937 0.997

a2
�

0.50 0.4969 0.0957 0.0092 0.941 0.999

c2
�

0.25 0.2517 0.0833 0.0069 0.944 0.843

e2
�

0.25 0.2514 0.0281 0.0008 0.944 1.000

2 a2
�

0.50 0.5072 0.1424 0.0203 0.951 0.935

c2
�

0.25 0.2542 0.1189 0.0141 0.953 0.522

e2
�

0.25 0.2387 0.0495 0.0026 0.943 0.997

a2
�

0.50 0.4991 0.1001 0.0100 0.942 0.997

c2
�

0.25 0.2528 0.0890 0.0079 0.936 0.807

e2
�

0.25 0.2481 0.0296 0.0009 0.947 1.000

3 a2
�

0.50 0.5038 0.1576 0.0248 0.939 0.866

c2
�

0.25 0.2452 0.1304 0.0170 0.937 0.402

e2
�

0.25 0.2510 0.0587 0.0034 0.958 0.993

a2
�

0.50 0.4972 0.0973 0.0095 0.952 1.000

c2
�

0.25 0.2508 0.0867 0.0075 0.944 0.814

e2
�

0.25 0.2519 0.00293 0.0009 0.948 1.000
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Estimating the genetic and environmental components is 
only possible by assuming that the model is the same across 
groups, with the only exception being the zygosity coeffi-
cient specifying different correlations of genetic effects for 
MZ and DZ groups. As a result, the proportion of variance 
due to the different ACE components is not biased, even if 
the variance estimate itself is biased. Violations of MI lon-
gitudinally do not change how the intercept and slope are 
related across twins, provided that the measurement of the 
construct is the same across twins and groups.

The longitudinal MI problem presented in this paper 
often arises in longitudinal studies spanning early child-
hood through adolescence and young adulthood, where 
questionnaires that measure behaviors in young children 
are no longer age-appropriate as participants grow older. In 
some cases, questionnaires are replaced to adapt to the age 
of participants, and the method of reporting can even switch 
from parent-report to self-reported surveys. Changes in the 
measurement instrument itself, such as including new items 
at different ages, are apparent to the researcher and can be 
incorporated in models fitted to the data. The simulations 
presented here demonstrate that ignoring such changes in 
a sum score introduce bias of longitudinal growth patterns. 
An alternative approach is fitting the previously described 
SLGM, in which age-specific measurement models are fit-
ted to the age-specific item sets.

Additionally, questionnaire items can be included at 
multiple ages and allowed to demonstrate non-invariance 
over time. An intuitive example of this is an item regard-
ing behaviors that have different meanings at different ages. 
In our study of childhood aggression, for example, the 
item “threatens others” increases in loadings from age 7 
to age 12. A 7-year-old child may not have the social tools 
or awareness to understand what a threat is and how to 
manipulate others by threats that a 12-year old has, mean-
ing that a child can have the same level of true aggression 
at age 7 and 12, yet the child will score higher at age 12. 
The SLGM also allows researchers to incorporate this 
hypothesis in the model by allowing the factor loading on 
the item to be freely estimated over time. Researchers can 
formally evaluate this specification by carrying out Chi 
square tests of model comparisons (Bollen 1989; Byrne 
et al. 1989). However, one should exercise caution in per-
mitting non-invariance over time simply to improve model 
fit. Questions remain regarding if the same construct is 
truly measured over time when MI fails to hold (Edwards 
and Wirth 2009, 2012; Meredith and Horn 2001; Widaman 
et  al. 2010). Without some degree of consistent measure-
ment over time, it is not possible to disentangle measure-
ment differences from true change in the construct, and it is 
recommended that a majority of overlapping items is fixed 
to invariance in SLGMs (Widaman et al. 2010).

It should be noted that the work presented here pertains 
to the modeling of a single construct, and it is assumed that 
all items are in fact indicators of the same common phe-
notype. In other words, the items should be at least conge-
neric, pertaining to the same underlying true trait. Though 
the measurement properties and content of the instruments 
can manifest age-specific changes, the same underlying 
construct is measured at all times. In practice, explora-
tory psychometric analyses could be carried out to assess 
dimensionality and identify items not loading onto a com-
mon phenotype.

Longitudinal models coupled with twin data can provide 
information about genetic and environmental contributions 
to a baseline measure and a growth trajectory of the phe-
notype. Measurement non-invariance over time leads to 
complications in modeling growth in the phenotype, but the 
genetic decomposition of the growth factors remains valid. 
This is because the measurement properties are invariant 
with respect to twin zygosity and across twins within pairs. 
Any bias introduced into the growth factors is the same 
for all twins participating in the study. Therefore, the vari-
ability in estimated phenotypic baseline and trajectory is 
still captured for all twins. The genetic and environmental 
contribution to the trajectory of the phenotype can then be 
accurately estimated in the presence of measurement non-
invariance over time, provided that MI is realistic across 
twins and other grouping variables. This result holds for 
the LGM framework, but it may not hold for other longi-
tudinal twin models, such as the genetic simplex model. 
The genetic simplex decomposes the phenotype at each 
measurement occasion and models transmission (autocor-
relation) and innovation (time-specific phenotypic variance 
not explained by prior measurements) of the ACE variance 
components. The simplex model provides an indication of 
the transmission of genetic and environmental effects over 
time, whereas the LGM estimates genetic and environ-
mental contributions to variation in a modeled phenotypic 
trajectory. With measurement non-invariance over time, 
which may indicate different degrees of measurement error 
at different time points, the E component could be inflated 
when invariance is imposed, thus shrinking proportional 
contribution of the A and C components. The LGM frame-
work does not encounter this problem because it captures 
the structural change of the phenotype over time in the 
latent growth factors. Future research is needed to evaluate 
the impact of measurement non-invariance on the variance 
decomposition in a genetic simplex.

In contrast to the possibility of age-specific measure-
ment across development, it is quite reasonable to assume 
the measurement model is the same across twin pairs and 
across MZ/DZ twin groups. The designation of twins 
in a pair as twin 1 and twin 2 is typically arbitrary, and 
there are limited cases where one might believe that twin 
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pairs are measured differently depending on if they are 
MZ or DZ twins (c.f., Neale et  al. 2005). Furthermore, 
MI across zygosity can be explicitly tested by comparing 
the fits of item-level factor models with and without MI 
constraints.

It is important to note, however, that unbiased ACE 
variance estimates can only be obtained in longitudinal 
sum score models if MI holds across zygosity and across 
twins within pairs. If, for instance, data from boys and 
girls are used in a joint analysis, then measurement non-
invariance across sex would lead to a spurious detec-
tion of sex limitation (Lubke et al. 2004). This problem 
can manifest in a longitudinal study in multiple ways: 
either through a scale that operates differently across 
males and females at all time points, or a scale that fol-
lows different patterns of longitudinal non-MI for males 
and females. Other researchers have extended the incor-
rect detection of genotype by environment interactions 
because of sum scores in other cases of measurement 
instrument issues, such as heterogeneous measurement 
errors or scaling problems (Molenaar and Dolan 2014; 
Schwabe and van den Berg 2014). Problems from these 
types of measurement issues would only be exacerbated 
in the longitudinal case. Careful consideration of these 
other measurement concerns must also be taken for lon-
gitudinal modeling.

The benefits of item-level measurement models for 
twin data are extolled in the literature (Molenaar and 
Dolan 2014; Neale et  al. 2005; Schwabe and van den 
Berg 2014; van den Berg et  al. 2007). This paper does 
not intend to downplay the importance or usefulness of 
testing for longitudinal MI when possible. On the con-
trary, this paper directly shows that the average growth 
trajectories will be misinterpreted when MI does not hold 
over time but sum scores are used. There are cases, how-
ever, in which sum scores or other summary data are the 
only pieces of information available, or computational 
constraints necessitate simpler measurement models. In 
the case of decomposing the variance of the intercept and 
the variance of the slope estimated from sum scores, con-
clusions about genetic and environmental proportional 
effects are still reasonable. Caution is necessary due to 
their oft-ignored assumptions, but sums scores are useful 
in these contexts.
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Appendix 1

Under the assumption that the SLGM is the true data-gen-
erating model, summing the individual items at each time 
point results in a score that is a function of underlying fac-
tor loadings as well as the proposed growth in the factor. 
As an example, consider sum scores of 4 time points. A 
more explicit formulation of Eq. (9) is then,

In practice, fitting a univariate LGM to the sum score 
results in,

where μ� is inflated relative to μ as a function of the 
summed factor loadings and ε�i is the sum of p item residu-
als at each measurement occasion.

Appendix 2

Bias derivations

Bias is first evaluated in the means of the growth factors. 
Although the focus is on linear growth, these derivations 
could be extended to curvilinear growth. Recall that Eq. (6) 
gives E

[
�i
]
= ��μ because the item intercepts ν are set to 

0 without loss of generality and E
[
ξi
]
= μ =

[
�� ��

]�. 
After pre-multiplying both sides of Eq. (6) with transposed 
loading matrices, the growth factor means can be isolated 
by pre-multiplying with 

(
�

�

�
�

��
)−1,

(38)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p∑
j=1

E[yij1]

p∑
j=1

E[yij2]

p∑
j=1

E[yij3]

p∑
j=1

E[yij4]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p∑
j=1

�j1 0 0 0

0
p∑
j=1

�j2 0 0

0 0
p∑
j=1

�j3 0

0 0 0
p∑
j=1

�j4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�μ

(14, repeated)��i = �μ� + ε�i
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As described in the text, a fitted model may include 
some constrained factor loading matrix 𝚲̃, but E

[
�i
]
is invar-

iant to the constraints of 𝚲̃, giving Eq. (11). This result gen-
eralizes to any form of 𝚲̃, and the bias can be computed for 
the comparison of any misspecified measurement model to 
a known population value of �.

Similarly, an expression that calculates the variance of 
the parameter estimates from constrained measurement 
models can be derived. Equation  (7) establishes that the 
variance in the SLGM model is �y = �(���� +�)�� +�. 
To solve for �, pre- and post-multiply both sides by the 
factor and growth loading matrices as follows,

By replacing � with the constrained loading matrix 𝚲̃, 𝚽̂ 
can be obtained,

Again, it is important to note that the �’s in the middle 
parentheses are not the constrained 𝚲̃’s. These represent 
the population-level covariance structure, which needs to 
be assumed or fixed to evaluate the bias of a misspecified 
measurement model.

Now consider the form of 𝚲̃ when fitting a univariate 
LGM to unweighted sums of items at each time point. The 
univariate model simply applies the linear growth function 
to one value at each time point, and the underlying indi-
vidual item loadings �jt are no longer considered once the 
items are summed to form ��i. Therefore, the univariate 
model treats the constrained loading matrix 𝚲̃ essentially 
as an identity matrix. This results in fitting the univariate 
growth model of Eq. (1) to the aggregated sums of multiple 
items at each time point,

(39)

E
[
�i
]
= ��μ

�
�

�
�

E
[
�i
]
= �

�

�
�

��μ
(
�

�

�
�

��
)−1

�
�

�
�

E
[
�i
]
= μ

(40)

�y = �
(
���� +�

)
�� +�

�y = ������� + ���� +�

(�y − ���� −�) = �������

����(�y − ���� −�)�� = �������������
(
������

)−1
����(�y − ���� −�)��

(
������

)−1
= �

(41)

(
𝚪�𝚲̃�𝚲̃𝚪

)−1
𝚪�𝚲̃�(𝚺y − 𝚲𝚿𝚲� −𝚯)𝚲̃𝚪

(
𝚪�𝚲̃�𝚲̃𝚪

)−1
= 𝚽̂

(42)

(
𝚪�𝚲̃�𝚲̃𝚪

)−1
𝚪�𝚲̃�

(
𝚲𝚪𝚽𝚪𝚲� + 𝚲𝚿𝚲� +𝚯 − 𝚲𝚿𝚲� −𝚯

)

𝚲̃𝚪
(
𝚪�𝚲̃�𝚲̃𝚪

)−1
= 𝚽̂

(43)𝚽̂ =
(
𝚪�𝚲̃�𝚲̃𝚪

)−1
𝚪�𝚲̃�

(
𝚲𝚪𝚽𝚪�𝚲�

)
𝚲̃𝚪

(
𝚪�𝚲̃�𝚲̃𝚪

)−1

where ��i is the aforementioned vector of sum scores for 
individual i and μ̂𝐬 is a vector of intercept and slope means 
estimated when the univariate model is fit to the sum 
scores. The derivation for the estimated intercept and slope 
means for the sum score then has the form,

with the true form of E[��i] given by Eq.  (9) under the 
assumption that the true data-generating process is actually 
the SLGM for the item-level data. The estimated intercept 
and slope covariance matrix is similarly derived for sum 
scores, where 𝚲̃ is treated as identity from Eq.  (13) and �� 
from Eq. (9) is the population-level � for the summed items, 
giving,

Appendix 3

The measurement loading matrices that were used in the ana-
lytic demonstrations are given below:

These correspond to the description of the three scenar-
ios described in the text.

(14, repeated)E[𝐒𝐒i] = 𝚪μ̂𝐬

(15, repeated)μ̂𝐬 = (𝚪�𝚪)−1𝚪�E[𝐒𝐒i]

(18, repeated)𝚽̂𝐬 =
(
𝚪�𝚪

)−1
𝚪�
(
𝚲𝐬𝚪𝚽𝚪�𝚲

�

𝐬

)
𝚪
(
𝚪�𝚪

)−1

�1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0

.7 0 0 0

.5 0 0 0

1 0 0 0

.7 0 0 0

.5 0 0 0

0 1 0 0

0 .7 0 0

0 .5 0 0

0 1 0 0

0 .7 0 0

0 .5 0 0

0 0 1 0

0 0 .7 0

0 0 .5 0

0 0 1 0

0 0 .7 0

0 0 .5 0

0 0 0 1

0 0 0 .7

0 0 0 .5

0 0 0 1

0 0 0 .7

0 0 0 .5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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0

1 0 0 0

.7 0 0 0

.7 0 0 0

.7 0 0 0

.7 0 0 0

.7 0 0 0

0 1 0 0

0 .7 0 0

0 .7 0 0

0 .7 0 0

0 .6 0 0

0 .6 0 0

0 0 1 0

0 0 .7 0

0 0 .7 0

0 0 .7 0

0 0 .5 0

0 0 .3 0

0 0 0 1

0 0 0 .7

0 0 0 .7

0 0 0 .7

0 0 0 .5

0 0 0 .3

⎤
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1 0 0 0

.7 0 0 0

.7 0 0 0

.3 0 0 0
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0 1 0 0
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0 .5 0 0

0 .5 0 0

0 .5 0 0

0 .5 0 0

0 0 1 0

0 0 .5 0

0 0 .5 0

0 0 .5 0

0 0 .5 0

0 0 .5 0

0 0 0 1

0 0 0 .3

0 0 0 .3

0 0 0 .7

0 0 0 .7

0 0 0 .5
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532	 Behav Genet (2017) 47:516–536

1 3

Appendix 4

TITLE: ACE SS sim MONTE CARLO cond 1
Model building step 5
Decompose growth params of a sum score model 

DATA: FILE = ACE_growth_sim_all.txt;
TYPE = MONTECARLO;

VARIABLE:
NAMES ARE  
zyg      ai_t1    ci_t1    ei_t1    as_t1    cs_t1    es_t1    ai_t2   
ci_t2    ei_t2    as_t2    cs_t2    es_t2     i_t1     s_t1     i_t2    
s_t2     m1_t1    m2_t1    m3_t1    m4_t1    m1_t2     m2_t2    m3_t2   
m4_t2    y1_m1_t1 y2_m1_t1 y3_m1_t1 y4_m1_t1 y5_m1_t1 y6_m1_t1 y1_m2_t1
y2_m2_t1 y3_m2_t1 y4_m2_t1 y5_m2_t1 y6_m2_t1 y1_m3_t1 y2_m3_t1 y3_m3_t1
y4_m3_t1 y5_m3_t1 y6_m3_t1 y1_m4_t1 y2_m4_t1 y3_m4_t1 y4_m4_t1 y5_m4_t1
y6_m4_t1 y1_m1_t2 y2_m1_t2 y3_m1_t2 y4_m1_t2 y5_m1_t2 y6_m1_t2 y1_m2_t2
y2_m2_t2 y3_m2_t2 y4_m2_t2 y5_m2_t2 y6_m2_t2 y1_m3_t2 y2_m3_t2 y3_m3_t2
y4_m3_t2 y5_m3_t2 y6_m3_t2 y1_m4_t2 y2_m4_t2 y3_m4_t2 y4_m4_t2 y5_m4_t2
y6_m4_t2
ss1_t1 ss2_t1 ss3_t1 ss4_t1 ss1_t2 ss2_t2 ss3_t2 ss4_t2
!names: t1 indicates twin 1, t2 indicates twin 2
! m1 indicates measurement factor at time 1, m1_t1: eta1 for twin 1
!       y1_m1_t1 = item 1 at time 1 for twin 1, eg y3_m2_t2 = itm 3 at time 2 on twin 2

;
USEVARIABLES = 
zyg      
ss1_t1 ss2_t1 ss3_t1 ss4_t1 ss1_t2 ss2_t2 ss3_t2 ss4_t2
;

GROUP = zyg(1=mz 2=dz);

MODEL:
! sum score measurement model 

!Factor Growth model
i_t1 s_t1 | ss1_t1@0 ss2_t1@1 ss3_t1@2 ss4_t1@3;
i_t2 s_t2 | ss1_t2@0 ss2_t2@1 ss3_t2@2 ss4_t2@3;

!SS variance equal across twins
ss1_t1-ss4_t1 (sig1-sig4);
ss1_t2-ss4_t2 (sig1-sig4);

!!!covariance structure

Ai1-Es2@1;
Ai1 WITH Ai2@1;
Ci1 WITH Ci2@1 ;
Ei1 WITH Ei2@0 ; 

As1 WITH As2@1;
Cs1 WITH Cs2@1 ;
Es1 WITH Es2@0 ; 
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Ai1 WITH As1*.5 (ra);
Ai2 WITH As2*.5 (ra);
Ai1 WITH As2*.5 (ra);
As1 WITH Ai2*.5 (ra);

Ci1 WITH Cs1*.5 (rc);
Ci2 WITH Cs2*.5 (rc);
Ci1 WITH Cs2*.5 (rc);
Ci2 WITH Cs1*.5 (rc);

Ei1 WITH Es1*.5 (re);
Ei2 WITH Es2*.5 (re);

Ai1 WITH Ci1-Es2@0;
Ai2 WITH Ci1-ES2@0;
As1 WITH Ci1-Es2@0;
As2 WITH Ci1-Es2@0;
Ei1 WITH Ci1-Cs2@0;
Ei2 WITH Ci1-Cs2@0;
Es1 WITH Ci1-Cs2@0;
Es2 WITH Ci1-Cs2@0;
Ei1 WITH Ei2-Es2@0;
Es1 WITH Ei2-Es2@0;
i_t1-s_t2@0;

!!!means 
[Ai1-Es2@0];
[i_t1*1 i_t2*1] (mui);
[s_t1*1 s_t2*1] (mus);
[ss1_t1-ss4_t2@0];

!ACE decomposition if I and S 
! all A's together, C's together etc. to facilitate setting cov's at zero
Ai1 BY i_t1*.7071 (ai);
Ai2 BY i_t2*.7071 (ai);
As1 BY s_t1*.7071 (as);
As2 BY s_t2*.7071 (as);

Ci1 BY i_t1*.5 (ci);
Ci2 BY i_t2*.5 (ci);
Cs1 BY s_t1*.5 (cs);
Cs2 BY s_t2*.5 (cs);

Ei1 BY i_t1*.5 (ei);
Ei2 BY i_t2*.5 (ei);
Es1 BY s_t1*.5 (es);
Es2 BY s_t2*.5 (es);

!need to specify that means are same across group
!Grouping  

MODEL dz: 
!Factor Growth model

i_t1 s_t1 | ss1_t1@0 ss2_t1@1 ss3_t1@2 ss4_t1@3;
i_t2 s_t2 | ss1_t2@0 ss2_t2@1 ss3_t2@2 ss4_t2@3;

!SS variance equal across twins
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ss1_t1-ss4_t1 (sig1-sig4);
ss1_t2-ss4_t2 (sig1-sig4);

Ai1 BY i_t1*.7071 (ai);
Ai2 BY i_t2*.7071 (ai);
As1 BY s_t1*.7071 (as);
As2 BY s_t2*.7071 (as);

Ci1 BY i_t1*.5 (ci);
Ci2 BY i_t2*.5 (ci);
Cs1 BY s_t1*.5 (cs);
Cs2 BY s_t2*.5 (cs);

Ei1 BY i_t1*.5 (ei);
Ei2 BY i_t2*.5 (ei);
Es1 BY s_t1*.5 (es);
Es2 BY s_t2*.5 (es);

!!!covariance structure

Ai1-Es2@1;
Ai1 WITH Ai2@.5;
Ci1 WITH Ci2@1 ;
Ei1 WITH Ei2@0 ; 

As1 WITH As2@.5;
Cs1 WITH Cs2@1 ;
Es1 WITH Es2@0 ; 

Ai1 WITH As1*.5 (ra);
Ai2 WITH As2*.5 (ra);
Ai1 WITH As2*.25 (dzra);
As1 WITH Ai2*.25 (dzra);

Ci1 WITH Cs1*.5 (rc);
Ci2 WITH Cs2*.5 (rc);
Ci1 WITH Cs2*.5 (rc);
Ci2 WITH Cs1*.5 (rc);

Ei1 WITH Es1*.5 (re);
Ei2 WITH Es2*.5 (re);

Ai1 WITH Ci1-Es2@0;
Ai2 WITH Ci1-ES2@0;
As1 WITH Ci1-Es2@0;
As2 WITH Ci1-Es2@0;

Ei1 WITH Ci1-Cs2@0;
Ei2 WITH Ci1-Cs2@0;
Es1 WITH Ci1-Cs2@0;
Es2 WITH Ci1-Cs2@0;
Ei1 WITH Ei2-Es2@0;
Es1 WITH Ei2-Es2@0;
i_t1-s_t2@0;

!!!means
[Ai1-Es2@0];
[i_t1*1 i_t2*1] (mui);
[s_t1*1 s_t2*1] (mus);
[ss1_t1-ss4_t2@0];

MODEL mz: 
!Factor Growth model

i_t1 s_t1 | ss1_t1@0 ss2_t1@1 ss3_t1@2 ss4_t1@3;
i_t2 s_t2 | ss1_t2@0 ss2_t2@1 ss3_t2@2 ss4_t2@3;

!SS variance equal across twins
ss1_t1-ss4_t1 (sig1-sig4);
ss1_t2-ss4_t2 (sig1-sig4);

!ACE decomposition of I and S 
! all A's together, C's together etc. to facilitate setting cov's at zero
Ai1 BY i_t1*.7071 (ai);
Ai2 BY i_t2*.7071 (ai);
As1 BY s_t1*.7071 (as);
As2 BY s_t2*.7071 (as);

Ci1 BY i_t1*.5 (ci);
Ci2 BY i_t2*.5 (ci);
Cs1 BY s_t1*.5 (cs);
Cs2 BY s_t2*.5 (cs);

Ei1 BY i_t1*.5 (ei);
Ei2 BY i_t2*.5 (ei);
Es1 BY s_t1*.5 (es);
Es2 BY s_t2*.5 (es);

!!!covariance structure

Ai1-Es2@1;
Ai1 WITH Ai2@1;
Ci1 WITH Ci2@1 ;
Ei1 WITH Ei2@0 ; 

As1 WITH As2@1;
Cs1 WITH Cs2@1 ;
Es1 WITH Es2@0 ; 

Ai1 WITH As1*.5 (ra);
Ai2 WITH As2*.5 (ra);
Ai1 WITH As2*.5 (ra);
As1 WITH Ai2*.5 (ra);

Ci1 WITH Cs1*.5 (rc);
Ci2 WITH Cs2*.5 (rc);
Ci1 WITH Cs2*.5 (rc);
Ci2 WITH Cs1*.5 (rc);

Ei1 WITH Es1*.5 (re);
Ei2 WITH Es2*.5 (re);
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Ai1 WITH Ci1-Es2@0;
Ai2 WITH Ci1-ES2@0;
As1 WITH Ci1-Es2@0;
As2 WITH Ci1-Es2@0;
Ei1 WITH Ci1-Cs2@0;
Ei2 WITH Ci1-Cs2@0;
Es1 WITH Ci1-Cs2@0;
Es2 WITH Ci1-Cs2@0;
Ei1 WITH Ei2-Es2@0;
Es1 WITH Ei2-Es2@0;
i_t1-s_t2@0;

!!!means
[Ai1-Es2@0];
[i_t1*1 i_t2*1] (mui);
[s_t1*1 s_t2*1] (mus);
[ss1_t1-ss4_t2@0];

MODEL CONSTRAINT:
NEW(hi2 hs2 ci2 cs2 ei2 es2);
hi2 = ai**2/(ai**2 + ci**2 + ei**2);
ci2 = ci**2/(ai**2 + ci**2 + ei**2);
ei2 = ei**2/(ai**2 + ci**2 + ei**2);
hs2 = as**2/(as**2 + cs**2 + es**2);
cs2 = cs**2/(as**2 + cs**2 + es**2);
es2 = es**2/(as**2 + cs**2 + es**2);
dzra = ra*.5;
OUTPUT: TECH1 ;
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