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Abstract

Background: Applying good data management and FAIR (Findable, Accessible, Interoperable, and Reusable) data principles in re-
search projects can help disentangle knowledge discovery, study result reproducibility, and data reuse in future studies. Based
on the concepts of the original FAIR principles for research data, FAIR principles for research software were recently proposed.
FAIR Digital Objects enable discovery and reuse of Research Objects, including computational workflows for both humans and
machines. Practical examples can help promote the adoption of FAIR practices for computational workflows in the research
community. We developed a multi-omics data analysis workflow implementing FAIR practices to share it as a FAIR Digital
Object.

Findings: We conducted a case study investigating shared patterns between multi-omics data and childhood externalizing be-
havior. The analysis workflow was implemented as a modular pipeline in the workflow manager Nextflow, including contain-
ers with software dependencies. We adhered to software development practices like version control, documentation, and licens-
ing. Finally, the workflow was described with rich semantic metadata, packaged as a Research Object Crate, and shared via
WorkflowHub.

Conclusions: Along with the packaged multi-omics data analysis workflow, we share our experiences adopting various FAIR practices
and creating a FAIR Digital Object. We hope our experiences can help other researchers who develop omics data analysis workflows
to turn FAIR principles into practice.

Keywords: multi-omics, workflow, metadata, FAIR, RO-Crate, FDO

Background

Key Points: o .
The FAIR principles for research data [1] were proposed to guide

researchers to create research data that is Findable, Accessible,
Interoperable, and Reusable (FAIR). Since these guidelines aim to
enable researchers handling and navigating through the rapidly
increasing amounts of data, special emphasis was put on con-
cepts to make data not only usable by humans but also machine-
actionable. In the past years, various standards [2, 3] and imple-
mentations [4-7] of the FAIR principles have been introduced, and
ithas been demonstrated that FAIR data are beneficial to research
and patients [8-10]. Reuse of research data and reproducibility
of research results [11] are facilitated by good data provenance,
and this requires not only the data but also the data processing
and analysis workflows to be FAIR. Consequently, guidelines and

® The FAIR4RS principles provide guidelines to enhance
the discovery and reuse of research software.

® FAIR Digital Objects support Findability, Accessibility, In-
teroperability, and Reusability by both humans and ma-
chines.

® We here demonstrate an implementation of a multi-
omics data analysis workflow and share it as a FAIR Dig-
ital Object.
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Table 1: Overview of recommended FAIR practices for research data and software

Open-source software

FAIR guiding principles [1] recommendations [12]

Recommendations for FAIR FAIR principles for research software [14,
software [13] 18]

Findable

F1. (Meta) data are assigned globally
unique and persistent identifiers.

F2. Data are described with rich metadata.

F3. Metadata clearly and explicitly include
the identifier of the data they describe.

F4. (Meta)data are registered or indexed in
a searchable resource.

R2. Make software easy to
discover by providing software
metadata via a popular
community registry.

F. Software, and its associated metadata, is
easy for both humans and machines to
find.

F1. Software is assigned a globally unique
and persistent identifier.

F1.1. Components of the software
representing levels of granularity are
assigned distinct identifiers.

F1.2. Different versions of the software are
assigned distinct identifiers.

F2. Software is described with rich
metadata.

F3. Metadata clearly and explicitly include
the identifier of the software they

describe.
#3 Register your code in a F4. Metadata are FAIR, searchable, and
community registry. indexable.

Accessible R1. Make source code publicly

accessible from day 1.

Al. (Meta)data are retrievable by their
identifier using a standardized
communication protocol.

A1.1. The protocol is open, free, and
universally implementable.

A1.2. The protocol allows for an
authentication and authorization
procedure where necessary.

A2. Metadata should be accessible even
when the data are no longer available.

#1 Use a publicly accessible
repository with version
control.

A. Software, and its metadata, is
retrievable via standardized protocols.

Al. Software is retrievable by its identifier
using a standardized communications
protocol.

A1.1. The protocol is open, free, and
universally implementable.

A1.2. The protocol allows for an
authentication and authorization
procedure, where necessary.

A2. Metadata are accessible, even when the
software is no longer available.

Interoperable

I1. (Meta)data use a formal, accessible,
shared, and broadly applicable language
for knowledge representation.

I12. (Meta)data use vocabularies that follow
the FAIR principles.

13. (Meta)data include qualified references
to other (meta)data.

Software interoperates with other
software by exchanging data and/or
metadata, and/or through interaction via
application programming interfaces
(APIs), described through standards.

I1. Software reads, writes, and exchanges
data in a way that meets
domain-relevant community standards.

12. Software includes qualified references
to other objects.

Reusable R4. Define clear and transparent
contribution, governance, and

communication processes.

R1. (Meta)data are richly described with a
plurality of accurate and relevant
attributes.

R1.1. (Meta)data are released with a clear
and accessible data usage license.

R3. Adopt a license and comply
with the license of third-party
dependencies.

R1.2. (Meta)data are associated with
detailed provenance.

R1.3. (Meta)data meet domain-relevant
community standards.

#4 Enable citation of the
software; #5 Use a software
quality checklist.

R. Software is both usable (can be
executed) and reusable (can be
understood, modified, built upon, or
incorporated into other software).

R1. Software is described with a plurality of
accurate and relevant attributes.

#2 Add a license. R1.1. Software is given a clear and
accessible license.

R1.2. Software is associated with detailed
provenance.

R2. Software includes qualified references
to other software.

R3. Software meets domain-relevant
community standards.

practices for FAIR research software have been proposed [12-14]
(see Table 1), and the special case of computational workflows has
been discussed [15, 16]. These guidelines aim to increase repro-
ducibility not only at the experimental level but also at the data
analysis level. It has been shown that the availability of data and
code alone is not sufficient. They both need to be provided in an
open and interoperable format and described by metadata [17].
Several practices recommended for research software develop-
ment originate from general software engineering practices [12,
15, 19], which include version control, documentation, and licens-
ing. Version control of source code facilitates collaborative devel-

opment and monitoring changes [13]. Additionally, making the
code publicly available on dedicated software repositories that
support version control such as Git-based [20] GitHub [21], Git-
Lab [22], or BitBucket [23] contributes to findability [24], acces-
sibility [12], and reusability [13]. The documentation of research
software includes multiple levels. First, a comprehensive end-user
documentation and usage examples enable reusability by other
researchers [17, 24-26]. It should also include the documentation
of workflow parameters [16, 17]. Second, source code documenta-
tion enables other developers to understand and build upon the
software [17]. Documentation of code changes via a version con-
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trol system helps document the development process [19, 25], and
documentation of dependencies is prerequisite for software inter-
operability [24] and reusability [18]. Adding a clear and machine-
readable [16] license is essential to allow for software reuse. It
is recommended to choose a widely used and preferably open-
source license that is compatible with licenses of the dependen-
cies [12-14, 18, 19, 24, 25]. Examples of open-source licenses with
few restrictions are the Apache License 2.0 [27] and the MIT Li-
cense [28].

There are differences between research software that imple-
ments a specific method as a standalone tool or a software li-
brary and complex analysis workflows [16]. Computational anal-
ysis workflows can comprise numerous steps that are integrated
into pipelines [16] and are often developed in a specific project [19,
29]. With a multitude of analysis steps being combined into com-
plex workflows, the documentation of the individual analyses and
their dependencies can become challenging. To facilitate the au-
tomation of analysis tasks and their documentation, workflows
can be described using workflow management systems such as
Nextflow [30] or Snakemake [31]. Workflow managers that support
the creation of reusable modules can help reduce complexity and
promote the reuse of workflows or workflow modules [15, 16, 32].
Additionally, notebooks can apply the concept of literate program-
ming and are a useful tool to add human-readable documentation
next to code blocks [19]. Interoperability and reusability of work-
flows can be achieved using portable software containers such as
Apptainer/Singularity [33] or Docker [34] that capture the runtime
environment of a workflow or a workflow module [15, 16, 26, 35].

Computational workflows can be regarded as digital objects.
The concept of FAIR Digital Objects (FDOs) was introduced to
make digital objects fully FAIR [36]. FDOs comprise, among oth-
ers, the digital object, a persistent identifier (PID), and metadata
(title, authors, licenses, etc.) describing the object. The RO-Crate
approach was specified to package digital research artifacts or Re-
search Objects (ROs) such as computational workflows [37]. The
RO-Crate contains a PID that links to an RO, which is described
by a structured JSON-LD RO-Crate metadata file. It contains all
contextual and noncontextual related data to rerun the workflow.
In case the actual data cannot be publicly shared due to privacy
reasons, synthetic data can complement analysis workflows to
demonstrate the computational procedure [16, 38]. To make an
RO-Crate findable, it needs to be registered at a registry such as
WorkflowHub [39, 40]. The WorkflowHub RO-Crate represents an
approach to implementing the FDO concept [41,42].

We here demonstrate the development of a FAIR Digital Ob-
ject comprising a computational workflow that analyzes and in-
tegrates multi-omics and phenotype data and is associated with
rich human and machine-readable metadata.

Findings
Workflow implementation

To develop a reusable workflow, our input data and intermediate
files were largely based on open and widely used formats or com-
munity standards. For the metabolomics data and metadata, we
adopted practices of the MetaboLights database [43] of the Eu-
ropean Bioinformatics Institute (EBI) of the European Molecular
Biology Laboratory (EMBL). Metabolite levels and annotations are
reported in metabolite annotation/assignment files (MAFs). The
experimental metadata for omics measurements are reported us-
ing the Investigation/Study/Assay (ISA) metadata framework [44].
We employed Jupyter [45] and the Python ISA API [46] to create
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ISA-Tab and ISA-JSON files [47]. For machine-readable descrip-
tions of the experiments, ontology terms were used. Ontologies
are standardized taxonomies of entities of a specific subject (do-
main), including definitions of relationships between these enti-
ties. Ontology terms refer to these entities [48]. Based on recom-
mended standards from FAIRgenomes [3] and Metabolights [43],
we preferably employed the following ontologies: National Can-
cer Institute Thesaurus (NCIT) [49], Experimental Factor Ontol-
ogy (EFO) [50], Ontology for Biomedical Investigations (OBI) [51],
Metabolomics Standards Initiative Ontology (MSIO) [52], Chemical
Methods Ontology (CHMO) [53], and Chemical Entities of Biologi-
cal Interest (ChEBI) [54]. The DNA methylation levels and associ-
ated metadata, behavioral data, and additional information about
phenotypes or technical and biological covariates are stored as
comma-separated value (CSV) files. This allows our computa-
tional workflow to be easily reusable and adaptable for other
datasets. The workflow documentation [55] describes all input
files used in the workflow and provides human-readable descrip-
tions of every step of the workflow processing and integrating in-
dividual input data types. Each of these analysis steps (see Figure
1) is implemented in Python or R and added as a module to the
workflow. We employ Jupyter and R notebooks for implement-
ing downstream analyses and visualization of results. We chose
Nextflow as our workflow management system, since it allows
flexible development, can be run on different platforms, supports
containers, is well documented, and is already widely adopted by
the bioinformatics community [32]. Each module of the workflow
is provided with their own Docker container to ensure portability
and eliminate the need for local software installations.

Finally, the Nextflow workflow is packaged as an RO-Crate.
In addition to the workflow and a synthetic dataset, it contains
a structured metadata file with machine-readable descriptions
of input files and analysis steps (ro-crate-metadata.json).
We preferably used EDAM-Ontology of bioscientific data anal-
ysis and data management [56] as it is recommended for
workflow RO-Crates [37]. For terms that were not available in
EDAM, alternative ontologies such as NCIT [49], OBI [51], or
the Semanticscience Integrated Ontology (SIO) [57] were used.
We employed the Python package ro-crate-py [58] to create
the RO-Crate metadata file. The RO-Crate further contains an
image with an overview of the analysis steps. For findabil-
ity, the packaged workflow (see Fig. 2) is registered on Work-
flowHub [39] and provided with a Digital Object Identifier (DOI)
(https://doi.org/10.48546/workflowhub.workflow.402.8).

Case study

Our workflow was developed to analyze and integrate DNA
methylation and urine metabolomics profiles with behavioral
data originating from the ACTION Biomarker Study (ACTION, Ag-
gression in Children: Unraveling Gene-Environment Interplay to
Inform Treatment and Intervention strategies) [59-61] (see “Case
Study” in the Methods section). Within ACTION, urine and buccal
cell samples were collected in a twin cohort from the Netherlands
Twin Register (NTR) and in a cohort of children referred to an aca-
demic center for child and youth psychiatry in the Netherlands
(LUMC-Curium). These children were also characterized for be-
havioral problems, and here we look at externalizing problems.
We purposely selected a case of complex human behavioral phe-
notype thatis typically not caused by a single well-defined molec-
ular defect but originates from changes in multiple factors and as
such would benefit from a multi-omics analysis. Since we con-
sider these data to be potentially personally identifiable informa-
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Figure 1: Overview of analysis steps.

tion, we share a synthetic dataset to demonstrate the workflow.
The goal of the analysis is the identification of substructures in
the multi-omics data and to determine if they correlate with be-
havioral data (see “Unsupervised Data Analysis”). A team com-
prising members of the Netherlands X-omics Initiative [62] in col-
laboration with the NTR [63] developed the computational work-
flow. To uncover possible relationships between the multi-omics
data and the behavioral data, we applied different unsupervised
data-driven methods followed by downstream analyses, including
determining the effect of possible confounding factors of sex and
age. An overview of the main analysis steps is shown in Fig. 1. An
overview of data dimensions and types during different steps of
the workflow is provided in Additional File 10.

To identify underlying patterns in childhood externalizing be-
havior, we applied multiple correspondence analysis (MCA) [64,
65] to the parent-rated responses on the externalizing behavior
items of the Child Behavior Checklist (CBCL) of the Achenbach
System of Empirically Based Assessment (ASEBA) [66] in both co-
horts. In NTR participants, the first 3 MCA dimensions jointly ex-
plain 30% of the variation in 26 externalizing behavior items of the
ASEBA CBCL (see Additional File 1). Additional dimensions each
explain <5% of the variation. The presence rather than the ab-
sence of externalizing behaviors characterized all of the first 3 di-
mensions, which reflects the answer options to items (a problem
behavior is not present, a little, or a lot). Variables that contributed
most to the first dimension, which explained 16% of the variation,
represent temperamental behavior (frequent temper tantrums,
stubbornness, screaming, and arguing). Variables contributing to
the second dimension, which explained 9% of the variation, rep-
resent hostile aggressive behaviors (frequent vandalism, bullying,
and cruelty). In LUMC-Curium participants, the first 2 MCA di-
mensions suffice to explain 30% of the variation in 18 items of
the ASEBA CBCL (see Additional File 2). Similar to NTR, these first
dimensions in LUMC-Curium are characterized by the presence of
aggressive behaviors.

We applied multi-omics factor analysis (MOFA) [67] in both
cohorts to obtain 10 factors to describe the buccal DNA methy-
lation (Illumina EPIC array) and urine metabolomics data. For
this analysis, we selected the top 10% most variable probes from
DNA methylation data. Cumulatively, the 10 factors explained

Phenotype latent
dimensions / biological

22.5% and 74.9% of variation in the DNA methylation data and
0.001% and 1.89% in the urine metabolomics data in NTR (see
Additional File 3) and LUMC-Curium (see Additional File 4), re-
spectively. We observed no evidence that any of the factors cap-
tured sources of variation in both the DNA methylation and urine
metabolomics data in NTR and LUMC-Curium. In particular, fac-
tors 1 and 2 in NTR and factor 1 in LUMC-Curium were specific to
the DNA methylation data. To help elucidate the etiology of the 10
MOFA factors, we selected for each factor the top 100 CpGs with
the largest weights and performed enrichment analyses within
the Epigenome-Wide Association Study (EWAS) atlas [68]. Mul-
tiple factors in both cohorts (see Additional File 5 for ACTION-
NTR and Additional File 6 for LUMC-Curium cohort) showed en-
richment of CpGs associated with glucocorticoid exposure (i.e.,
administration of corticosteroid medication [69]), CpGs asso-
ciated with aging, and CpGs associated with immune-related
traits, such as psoriasis. Apart from these robustly enriched
traits, additional significant enrichments were found but were
often based on <5 overlapping CpGs between the factor results
and the original studies. A limitation of the enrichment anal-
ysis is that the most previous EWAS studies included in this
analysis were conducted on blood samples from adult popula-
tions with the Illumina 450K BeadChip. In the factor weights
for metabolites, we observe that for both NTR (Additional File
3) and LUMC-Curium (Additional File 4), many of the factors
are characterized by only 1 or few metabolites. We note that
in both cohorts, the factors explained only a small amount of
variation in the metabolomics data. To investigate whether the
omics factors were associated with behavioral dimensions (MCA),
we ran generalized estimation equation (GEE) models adjusting
for relatedness in NTR and correlation analyses in Curium (see
Additional File 3 for ACTION-NTR and Additional File 4 for LUMC-
Curium cohort). None of the omics factors were significantly asso-
ciated with the behavioral dimensions in NTR or LUMC-Curium,
nor did we observe significant associations of sex- and age-specific
T-scores for aggressive behavior with the omics factors. In pre-
vious multi-omics analyses of high versus low levels of child-
hood aggression [70] and attention-deficit/hyperactivity disorder
(ADHD) [71], we applied supervised analyses in these cohorts
while applying unsupervised analyses here. In these previous su-
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Figure 2: Schematic overview of packaged workflow.

pervised analyses, where we also included an additional omics
layer—polygenic scores—we found that although multi-omics
models had low predictive value, they revealed some connections
of omics traits with externalizing problems, which suggested bio-
logical plausibility.

We also constructed integrated similarity networks with Sim-
ilarity Network Fusion (SNF) [72] to identify subgroups of
individuals based on omics data. In both NTR and LUMC-Curium,
we defined integrated similarity networks based on 2 and 4 clus-
ters. The 2 clusters in NTR were characterized by differences in
age, whereas the 2 clusters in LUMC-Curium were characterized
by differences in the proportion of boys and girls. To investigate
whether the omics clusters were associated with externalizing be-
havior, we compared the behavioral dimension scores from MCA
between children in the different clusters. In both NTR and LUMC-
Curium, we observed no significant differences in the behavioral
dimensions across the 2 omics clusters after correction for mul-
tiple testing (see Additional File 7 for NTR and Additional File
8 for LUMC-Curium cohort). Similarly, no differences in behav-
ioral dimensions were observed between the 4 omics clusters in
NTR, but in LUMC-Curium, behavioral dimension 6 differed sig-
nificantly between the 4 omics clusters. In LUMC-Curium, dimen-

Containerized environments

DockerHub

sion 6 explained 3.9% of the variance in childhood externalizing
behavior, and the strongest contributors to this dimension com-
prised higher frequencies of parent-rated tendencies to be suspi-
cious and loud. Such forms of direct aggressive behavior, particu-
larly physical aggressive behavior, are common in early childhood
in both boys and girls, and while overall levels of aggression de-
cline with age and are roughly similar for boys and girls [73], boys
are more likely to engage in direct and physical forms of aggres-
sion by age 11 [74]. Thus, this finding aligns with the observation
that the 2 omics clusters differ in the proportion of males and fe-
males and in the age composition.

Our data-driven approach to identifying possible relationships
between multi-omics and behavioral data did not reveal signifi-
cant findings that could not also be explained by potential con-
founding factors of sex or age. Since we here focused on latent
dimensions representing the largest variations between individu-
als (after correcting for known confounders), it is possible that re-
lationships between omics and aggressive behavior can be found
in lower dimensions that reflect only a small amount of variation
in the cohorts. However, including more (latent) variables in the
correlation analysis will also increase the chance of false-positive
findings.
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Discussion

In this collaborative research project, partners from the Nether-
lands X-omics Initiative codeveloped a workflow to analyze a
complex multimodal dataset. Developing workflows with partners
across multiple institutions can pose a challenge, and we experi-
enced that a secure shared computing environment was key to
the success of this project. Additionally, practices aiming to in-
crease FAIRness of the shared workflow such as version control
with Git and a modular workflow structure allowed for transpar-
ent and target-oriented workflow development. Therefore, while
the use of technologies like Git or workflow management systems
might require initial training of researchers, we believe this to be
worthwhile not only for future reuse but also during workflow de-
velopment.

To make the workflow findable, we registered it in Work-
flowHub [39], which is part of the European Open Science Cloud
(EOSQ) [75]. Since this was the first workflow we registered in
WorkflowHub, we profited from its documentation and active
community. The registry allowed us to assign a globally unique
and persistent identifier to the workflow [76] and its versions.
Metadata could be added using the open RO-Crate standard and
are searchable in the registry. The workflow page [76] links to
the publicly accessible and version-controlled source code on
GitHub [77].

Several FAIR practices for workflows include existing best prac-
tices of software development, for example, version control and
good documentation. Adoption of these practices, along with the
use of workflow managers and software containers, aims to con-
tribute to better interoperability, reusability, and reproducibility
of analysis workflows and research results. While we experienced
the adoption of these technologies to be straightforward, fully
FAIR, and especially interoperable, data or software requires also
machine-understandable semantic metadata. Specifications like
the ISA metadata framework and RO-Crate allow ontology-based
annotations of omics experiments and analysis workflows, re-
spectively. Our choice of ontologies was mainly guided by the
documented submission requirements or recommendations pro-
vided by services such as the MetaboLights archive or Work-
flowHub. However, when recommended ontologies do not com-
prise suitable terms, choosing appropriate ones from ontologies
can be challenging. For example, no exact match to the generic
term sample collection that is part of the ISA schema can be found in
any ontology available in EBI's Ontology Lookup Serivce (OLS) [78].
To describe workflow steps in RO-Crate with unsupervised learning,
we had to employ the eNanoMapper Ontology [79] as no matching
term was available in the recommended EDAM ontology. Conse-
quently, we recognize the importance of teams dedicated to ontol-
ogy curation, active user communities, and training of researchers
in using semantic technologies. This is especially important for
multi-omics research that spans multiple research domains.

While machine actionability supported by standardized meta-
data is relevant for interoperability, the workflow also needs to be
usable and reusable by humans. We added software containers
that are referenced by the workflow metadata. They enable porta-
bility and thereby reusability. A user documentation was added to
help understand the workflow steps and facilitate reuse. Enabling
richer workflow annotation with RO-Crate in combination with
additional tooling that enable automated generation of user doc-
umentation could potentially reduce the efforts of manual work-
flow documentation in the future.

For reproducibility of research results, it is essential that data
are shared along with the workflow. However, privacy regulations

prohibit sharing of potentially personally identifiable data such as
omics measurements or clinical information. To demonstrate the
functionality of the workflow, we shared a synthetic dataset that
emulates the structure of the case study dataset. Current devel-
opments in the areas of federated data storage and analysis such
as Federated European Genome-Phenome Archive (EGA) [80] and
the Personal Health Train [81] have the potential to allow fully
FAIR and reproducible data analysis workflows while maintaining
privacy regulation compliance.

Implementing these FAIR practices required us to use various
tools, some of which we used for the first time. While this re-
quired some time and openness to getting familiarized with these
tools, we experienced that the tools were generally well docu-
mented and could quickly be adopted. Open online resources such
the ELIXIR's [82] community-driven FAIR Cookbook [83, 84] pro-
vide guides and examples that can help researchers implement
FAIR practices. Existing Python libraries such as the ISA API[46]
and ro-crate-py [58] were very useful when implementing meta-
data standards as they can help ensure compliance with the stan-
dards as well as automating creation of metadata files. However,
it would have been useful if more use cases implementing FAIR
practices for scientific computational workflows were available as
examples or tutorials. We experienced that implementing FAIR
practices from the start helped us create a transparent multi-
omics analysis workflow. Additionally, we are convinced that FAIR
workflows are key to not only reproducible but also efficient re-
search as workflows or subworkflows can be reused in new con-
texts, thereby saving time. Therefore, we hope our experiences
help other researchers who develop multi-omics data analysis
workflows choosing and implementing practices that makes their
research more FAIR.

Data and Methods

Case study

Our case study comprises data from 2 cohorts that took partin the
ACTION Biomarker Study [59-61]. The ACTION Biomarker Study
collected buccal DNA samples for large-scale genome-wide and
epigenome-wide association studies [85, 86] and first-morning
urine samples to investigate the association of urine biomark-
ers and metabolites with childhood aggression [61]. These urine
and buccal cell samples were collected in a twin cohort from the
NTR [87], where twin pairs were selected on their longitudinal
concordance or discordance for childhood aggression, and in a co-
hort of children referred to an academic center for child and youth
psychiatry in the Netherlands (LUMC-Curium). The DNA methyla-
tion, genotype, metabolomics, and behavioral data from these co-
horts were previously used for multi-omics analyses of aggressive
behavior [70] and ADHD [71]. Detailed information on the study
populations and study protocol is available at protocols.io [88].

Data

Genome-wide DNA methylation data in buccal DNA samples were
measured on the Infinium MethylationEPIC BeadChip kit (Illu-
mina [89]) by the Human Genotyping Facility (HuGe-F) of Eras-
musMC (the Netherlands [90]). The ZymoResearch EZ DNA Methy-
lation kit (Zymo Research Corp) was used for bisulfite treatment
of 500 ng enomic DNA obtained from buccal swabs. The In-
finlum HD Methylation Assay was performed according to the
manufacturer’s specification. Good Biomarker Sciences Leiden
measured the specific gravity (by refractomertry), levels of cre-
atinine (by colorimertry), blood traces, markers of leukocytes,
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proteins, glucose, and nitrites (the latter 5 by dipstick) of each
urine sample. The Metabolomics Facility of the University of
Leiden quantified urine metabolites using 3 platforms: a liquid
chromatography-mass spectrometry (LC-MS) platform targeting
amines (66 biomarkers), an LC-MS platform targeting steroid hor-
mones (13 biomarkers), and a gas chromatography-mass spec-
trometry (GC-MS) platform targeting organic acids (21 biomark-
ers). Behavioral data comprise the 115 items of the Dutch version
of the ASEBA CBCL for school-aged children (6-18 years) [66]. For
participants of the NTR cohort, we used the mother-rated CBCL as
completed at the time of biological sample collection, and for par-
ticipants of the LUMC-Curium cohort, we used the parent-rated
(90% mother ratings) CBCL as completed in a 6-month window
surrounding the biological sample collection. Again, details on the
data generation are available in [88].

Synthetic data and metadata

The purpose of the synthetic dataset that is part of the RO-Crate
is to demonstrate how the workflow can be run. It resembles the
structure of the files of the cohort data. The values were randomly
sampled from the observed values in the NTR cohort without pre-
serving any correlations. While creation of ISA metadata is not
part of this workflow, we share the Jupyter notebook employing
the Python ISA API [46] that was used to create the metadata for
the synthetic dataset [47].

Data processing

To ensure the urine sample metabolic integrity and to minimize
bias contributed by health conditions, we excluded samples from
the metabolomics data from (1) subjects who have started men-
struating, (2) subjects in whom the time between urine sample
collection and storing in the freezer was >2 hours, (3) subjects
in whom severe violations to the sampling protocol occurred (e.g.,
not putting a lid on the container), (4) subjects in whom the leuko-
cyte count was above trace, (5) subjects in whom the nitrites level
was “positive high,” (6) subjects in whom the protein level was
>0.3, (7) subjects with glucose levels above trace, (8) subjects with
blood levels above trace, (9) subjects having the flu, (10) subjects
reporting inflammation, (11) subjects reporting vomiting, (12) sub-
jects reporting abdominal pain, and (13) subjects reporting gen-
eral health problems. Note that the above criteria 4-8 are based
on the dipstick marker estimation performed separately from the
metabolomics measurements on the same samples [88], while the
other criteria are based on questionnaire data at the time of sam-
pling.

The metabolomics features were filtered based on missing val-
ues. Missing values were reported for cases where the metabolite
concentration is below the limit of quantification. Samples and
metabolites with 15% or more of missing values were discarded.
Sample-wise normalization to correct for urine concentration was
conducted by adjusting metabolite intensities to the sample cre-
atinine levels [88]. This was followed by metabolite-wise Pareto
scaling [91] to statistically account for large differences in re-
ported values.

Quality control (QC) and normalization of the DNA methy-
lation array data have been previously described [85] and were
carried out with a pipeline developed by the Biobank-based In-
tegrative Omics Study (BIOS) consortium [92]. From the 787,711
autosomal methylation probes that survived QC, the top 10%
most variable probes were included in the analyses. Cellular
proportions of buccal samples were predicted with Hierarchical
Epigenetic Dissection of Intra-Sample-Heterogeneity (HepiDISH)
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with the reduced partial correlation (RPC) method, as described
Zheng et al. [93] and implemented in the R/Bioconductor package
EpiDISH. Median imputation was carried out on the epigenetics
data. Residual methylation levels were obtained by regressing the
effects of percentages of epithelial and natural killer cells, EPIC
array row, and bisulfite sample plate from the methylation beta-
values.

Missing values in the externalizing behavior items were im-
puted with the nonparametric random forests method from the R
library missForest (1.4) [94].

Unsupervised data analysis

Each cohort was analyzed separately. We applied MOFA using the
R/Bioconductor library MOFA2 (1.3.4) [67, 95] to obtain factors for
the buccal DNA methylation and urine metabolomics data and
applied MCA [65] using the R library FactoMineR (2.4) [64] to obtain
factors for the behavioral data.

To identify subgroups of individuals based on their buccal DNA
methylation and urine metabolomics data, we constructed inte-
grated similarity networks with SNF [72]. The optimal numbers of
clusters were determined using a built-in function of the Python
library SNFpy [96] that uses the eigengap method [97] to find the
optimal number of clusters. SNF first constructs sample similarity
networks for each available data type and then fuses these into a
single network comprising both the shared and unique informa-
tion from each data type. The final fused network thus captures
how each data type contributes to the similarity among the sam-
ples. We tested whether the behavioral dimension scores from
MCA differ between children in the different SNF clusters, using
Mann-Whitney U tests (2 clusters) or Kruskal-Wallis tests (four
clusters) in the Curium cohort, and with GEE models (with cluster
as predictor and behavioral dimension score as outcome) in NTR.

We determined correlations among the obtained factors cap-
turing the omics and behavioral data, respectively, using Spear-
man’s rank correlation and additionally in the NTR cohort using
GEE models. All GEE models were fitted with the R package GEE,
with the following specifications: Gaussian link function (for con-
tinuous data), 100 iterations, and the “exchangeable” option to ac-
count for the correlations in twin pairs. Statistical tests were ad-
justed for multiple testing using the false discovery rate [98].

Availability of source code and
requirements

® Project name: X-omics ACTION demonstrator multi-omics
analysis workflow

® Project homepage: [77]

® Operating system(s): Platform independent

® Programming language: Python, R

® Other requirements: Nextflow (22.04.0), Docker (19.03.1), Sin-
gularity (3.8.0)

® License: MIT

® SciCrunch: RRID:SCR_024719

Data Availability

Details on data availability can be found in Additional File 10. The
data of the Netherlands Twin Register (NTR) ACTION Biomarker
Study may be accessed, upon approval of the data access commit-
tee, through the NTR [99].

A synthetic dataset representing the structure of the ACTION
Biomarker Study dataset is available as part of the workflow RO-
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Crate available at WorkflowHub [76]. An archival copy of the work-
flow is also available via the GigaScience database, GigaDB [100].

Additional Files

® File name: Additional File 1

® File format: .html

¢ Title: Multiple Correspondence Analysis of CBCL Behavioral
Data

® Description: Overview of externalizing behavior items of the
Child Behavior Checklist (CBCL) of the Achenbach System of
Empirically Based Assessment (ASEBA) in the ACTION-NTR
cohort before and after imputation of missing values using
random forests and results and visualizations of multiple cor-
respondence analysis (MCA).

® File name: Additional File 2

® File format: .html

* Title: Multiple Correspondence Analysis of CBCL Behavioral
Data

® Description: Overview of externalizing behavior items of the
Child Behavior Checklist (CBCL) of the Achenbach System of
Empirically Based Assessment (ASEBA) in the LUMC-Curium
cohort before and after imputation of missing values using
random forests and results and visualizations of multiple cor-
respondence analysis (MCA).

® File name: Additional File 3

® File format: .html

® Title: MOFA Downstream Analysis Report

® Description: Visualizations of multi-omics factor analysis
(MOFA) of buccal DNA methylation (Illumina EPIC array) and
urine metabolomics data of the ACTION-NTR cohort. Also, as-
sociations between the MOFA factors and phenotypic data are
tested with GEE models.

® File name: Additional File 4

® File format: .html

® Title: MOFA Downstream Analysis Report

® Description: Visualizations of multi-omics factor analysis
(MOFA) of buccal DNA methylation (Illumina EPIC array) and
urine metabolomics data of the LUMC-Curium cohort.

® File name: Additional File 5

® File format: .xlsx

® Title: EWAS Atlas Enrichment Analysis

® Description: Enriched traits for CpGs with top 100 largest
weights of ACTION-NTR MOFA factors 1 to 10.

® File name: Additional File 6

® File format: .xlsx

® Title: EWAS Atlas Enrichment Analysis

® Description: Enriched traits for CpGs with top 100 largest
weights of LUMC-Curium MOFA factors 1 to 10.

® File name: Additional File 7

® File format: .html

® Title: Similarity Network Fusion Downstream Analysis

® Description: Visualizations of similarity network fusions
(SNFs) and subsequent spectral clustering of buccal DNA
methylation (Illumina EPIC array) and urine metabolomics
data of the ACTION-NTR cohort.

® File name: Additional File 8
® File format: .html
e Title: Similarity Network Fusion Downstream Analysis

® Description: Visualizations of similarity network fusions
(SNFs) and subsequent spectral clustering of buccal DNA
methylation (Illumina EPIC array) and urine metabolomics
data of the LUMC-Curium cohort.

® File name: Additional File 9

® File format: .html

e Title: Similarity Network Fusion Downstream Analysis With
GEE models

® Description: Associations between the similarity network fu-
sion (SNF) clusters and phenotypic data are tested with GEE
models in the ACTION-NTR cohort.

® File name: Additional File 10

® File format: .pdf

¢ Title: Overview of Data Dimensions for ACTION-NTR and
LUMC-CURIUM Cohort

® Description: Table with dimensions (variables by observa-
tions) of input and intermediate data types.
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