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The object of  this paper is to indicate that the Pea r son- -Lawley  selection rules form a 
plausible general theory for the simultaneous genetic analysis of means and covariance 
structure. Models  are presented based on phenotypic selection and latent selection. Pre- 
viously presented quantitative genetic models  to decompose means and covariance struc- 
ture simultaneously are reconsidered as instances of latent selection. The selection rules 
are very useful in the context of  behavior genetic modeling because they lead to testable 
models and a conceptual framework for explaining variation between and within groups 
by the same genetic and environmental factors. 
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I N T R O D U C T I O N  

To decompose differences in means between groups 
into genetic and environmental components re- 
quires certain knowledge of the genetic and envi- 
ronmental influences present in each of the groups. 
When a difference in mean is observed with respect 
to a polygenetic character in human samples, such 
knowledge amounts to a detailed catalog of the ge- 
netic and environmental influences active in the 
groups under consideration. As this knowledge is 
typically absent or, at best, incomplete, quantitative 
genetic studies of human polygenetic phenotypes 
are limited to the sources of within-group variation. 
The sources of within-group variation can be iden- 
tified and their contributions estimated using indi- 
v iduals  in known genet ic  and envi ronmenta l  
relationships (Neale and Cardon, 1992; Plomin et 
al.,  1990). 

That the sources of between-group variation, 
in the circumstances mentioned, are not identified 
does not mean, however, that one cannot consider 
mean differences in the light of various assumptions 
and (or) circumstantial evidence. It does mean that 
the hypotheses following from such considerations 
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cannot be tested rigorously and thus remain spec- 
ulative. One assumption, which has been employed 
by Jonson (1973), is that the sources of between- 
group variation and the sources of within-group 
variation are identical. We refer to this assumption 
conveniently as the assumption of common causa- 
tion. Recently Turkheimer (1991) has employed this 
assumption to model mean differences in IQ be- 
tween adoptees and their parents. Both Jensen (1973, 
p. 135) and Turkheimer (1991, p. 393) emphasize 
the plausibility of this assumption without discount- 
ing its speculative nature. Jensen (1973, p. 134) 
states clearly, "The simple fact is that one cannot, 
in any strict formal sense, infer between-groups 
heritability from a knowledge of within-groups her- 
itability. This is true even when the heritability ... 
of the trait is perfect." If the assumption of com- 
mon causation holds, the mean phenotypic differ- 
ence between the groups under consideration can 
be directly related to the decomposition of the within- 
group phenotypic variation (see Turkheimer, 1990, 
1991; Furby, 1973; Jensen, 1973, Chap. 5; Dolan, 
1992). This implies that the between-group varia- 
tion can be modeled using information derived from 
the analysis of within-group variation. 

In the present paper we indicate that the Pear- 
son-Lawley selection rules provide a useful frame- 
work for the simultaneous genetic analysis of means 
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and covariance structure. The Pearson-Lawley se- 
lection formulas (Lawley, 1943) can be used to as- 
sess the changes in covariance and means structure 
of a set of variables following selection on the basis 
of one or more selection variables under the as- 
sumption that the regression of the selection vari- 
ables on the set is homoscedastic and linear. These 
formulas have proven to be useful in covariance 
structure modeling generally (Thomson, 1945; 
Meredith, 1964; J6reskog, 1971; S6rbom, 1974, 
1976; Muth6n, 1989), but also in genetic covari- 
ance structure modeling, for instance, of assortative 
mating (Fulker, 1988) and ascertainment bias (Neale 
e t a l . ,  1989; Neale and Cardon, 1992, pp. 360- 
361). The application of the selection rules to the 
simultaneous quantitative genetic modeling of means 
and covariance structure provides an explicit mech- 
anism that leads to a situation where between-group 
variation and within-group variation are attributable 
to the same latent factors. This mechanism consti- 
tutes a useful conceptual framework for thinking 
about common effects on means and variance which 
can be evaluated on both theoretical and statistical 
criteria. A model presented previously by Dolan et  

aL (1992) is considered in the light of selection by 
positing a process of group selection on the basis 
of criteria related to the latent variables, i.e., the 
environmental and genetic factors. A second case 
that leads to a simultaneous genetic analysis of mean 
variation and individual differences is based on a 
process of phenotypic selection (Muth6n, 1989; 
Thomson, 1945). 

APPLICATION OF THE PEARSON- 
L A W L E Y  SELECTION RULES IN 
COVARIANCE STRUCTURE MODELING 

In the present section we summarize published 
results obtained by applying the selection rules within 
the context of the common factor model. These 
results are subsequently applied to metric characters 
characterized by a simple genetic model. Meredith 
(1964) considered the consequences of selection 
based on the latent variable(s) and Muthdn (1989; 
see also Thomson, 1945) recently considered the 
consequences of selection based on the observed 
variable(s) for the common factor structure. The 
former is referred to as latent selection; the latter, 
as phenotypic selection. The common factor model, 
which includes various genetic covariance structure 
models as special cases (Martin and Eaves, 1977; 
Neale and Cardon, 1992), is described briefly. Sub- 

sequently, the selection rules are applied to the fac- 
tor model. 

Let y denote a p-dimensional vector of mul- 
tinormal observed variables with mean E[y] = v. 
Let ~ denote a zero-mean q-dimensional vector of 
common latent variables and e a zero-mean p-di- 
mensional vector of residuals. In quantitative ge- 
netic applications the components of ~q may include 
additive genetic, dominance, and environmental 
factors. The relationship between these variables in 
given by Eq. (la), where A is a ( p  x q) matrix 
containing the regression coefficients of the regres- 
sions of y on -q. 

y = v + A-q + e (la) 

E[y] = v (lb) 

E[(y - v)(y - v)'] = Ey e = A'trA ' + (9 (lc) 

The mean vector and the covariance matrix of the 
observed variables expressed as a function of the 
latent and residual variables are given in Eqs. ( lb)-  
(lc). In Eq. (lc), we define E [ e e t ]  = O and E[~]~I t] 
= ~ .  In view of Eq. (lb), finally, E[e] = El'q] 
= 0 .  

We may select a subsample from a well-de- 
fined reference population on the basis of a (pos- 
sibly multivariate) metric criterion s, a predictor of 
x. The regression of x on s is linear and homos- 
cedastic. A case is selected if the score s exceeds 
(c.q. lies below) some predetermined cutoff score. 
Under the assumption of linearity and homoscedas- 
ticity, we deduce the covariance and means struc- 
ture in the phenotypically selected sample using the 
selection formulas. The selection formulas are 

E[x]* = e[x] + ExsE~,-'(E[s]* - E[s]) (2a) 

E,=* = E,= + Ex~s,-l(E~, * - Y.~3E~s-IE., ' (2b) 

E~* = E~E~-~E~ * (2c) 

where Zx~ is the covariance matrix of x and s, E[s] 
is the mean of the criterion variable s ,  etc. The sym- 
bols with a superscript asterisk represent values in the 
selected sample; e.g., E[s]* is the mean of the cri- 
terion variable in the selected group, Z,~,* is the co- 
variance matrix of x in the selected sample, etc. 

La ten t  Se lec t ion .  Meredith (1964; Lawley and 
Maxwell, 1971; Muth6n and JOreskog, 1983) ap- 
plied the Pearson-Lawley selection formulas to in- 
vestigate the effects of latent selection in the context 
of the common factor model. We reproduce his 
results by introducing s as an r-dimensional random 
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variable such that the regression of each component 
of "q on s is homoscedastic and linear: "q = as + 

(Fig. 1). The (q x r) matrix a contains regression 
coefficients, and g is a q-dimensional vector of re- 
siduals. The regression of y on -q is given above. 

It follows from the Pearson-Lawley selection 
formulas that the covariance matrix of y in a group 
i ,  derived from the reference population by selec- 
tion on s, equals 

~i = E + Aa(E~i - E~)a~A t (3a) 

and the means 

E[y~] = E[y] + Aa(E[s~] - E[s]) (3b) 

where Z is the covariance matrix of y in the ref- 
erence population, Gs and E[s] are the covariance 
matrix and mean of s in the reference population, 
and ~ and E[si] are the covariance matrix and 
mean of s in the selected subsample, respectively. 
Similarly, 

xIti = air + a ( E s  i - -  E s ) a  t ( 4 a )  

E[~qe] = E[rl] + a(E[s~] - E[s]) (4b) 

So we can write 

~ = A'#N + Aa(E~i - E~)aW+ @ 
= A[~ + a(Z~i - 2~)a']A' + 19 

Efyi] = v + AE['ql + Aa(E[si] - e[s]) 
= 1, + + a ( e [ s , ]  - e [ s ] ) ]  

or, in view of Eqs. (4a) and (4b), 

Zi = A ~ i A '  + 0 (5a) 
E[y,] = v + a E[%] (5b) 

in the selected sample i compared to Eqs. (lb) and 
(lc) in the original sample. Thus given selection 
on a variable related directly to -q, the matrices A 
and O and the vector v remain invariant, while 

Fig.  1. The  relat ionship be tween  the select ion var iable  s and 
the var iables  in the factor model  in the case of  latent  selection.  

changes are expressed in the covariance matrix, ~ ,  
and the mean vector E[;q]. 

Meredith (1964, pp. 184-185) points out that 
it is not necessary actually to know the selection 
variable, as it does not appear in Eqs. (5a) and (Sb). 
This implies that one need not identify one group 
as the original (reference) population and one as 
the selected sample. The parameters of the model 
for the phenotypic means equals p + q (dimension 
of v plus dimension of E['qi]), whereas the number 
of means equals the number of groups, n g ,  times 
the number of variables: n g * p .  Thus multiple con- 
generic indicators of a given phenotype are required 
[i.e., ( p+q)<2*p]  for the means model to be test- 
able. This is by no means a trivial requirement, as 
in genetic covariance structure modeling test-spe- 
cific variance is often found to contain systematic 
environmental and genetic components (Martin and 
Eaves, 1977; Neale and Cardon, 1992). 

P h e n o t y p i c  S e l e c t i o n .  So far we have consid- 
ered selection based on a possibly unknown varia- 
ble which is directly related to the latent variables. 
We now consider phenotypic selection. In the con- 
text of factor analysis, this was considered by 
Thomson (1945) and more recently by Muth6n 
(1989). Fulker (1988) reached similar results in 
modeling the effects of phenotypic assortative mat- 
ing on the genetic and environmental covariance 
between spouses. 

Muth6n (1989) demonstrates how the mean and 
covariance structure of the latent variables "n ob- 
served in a reference sample change following se- 
lection of individuals on the bases of a phenotypic 
variable representing a linear combination of the 
observed variables: s = w~y, where w is a vector 
of known weights. In the selected group, indicated 
by the subscript j ,  we have 

E['qj] = ~A'wKj (6a) 

E[ej] = OwK~ (6b) 

E['qj ~qj.'] = g~ + ~A'woJjw'A~ (6c) 

and phenotypically 

E[yj]  = + 5;wKj 

The symbols ~j and •j represent 

~oj = var[s] -I  {var[sj] - var[s]}var[s] -1 

Kj = v a r [ s ] - l ( E [ s j ]  - E[s]) 

(7a) 

(7b) 
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where var[s] and E[s] are the variance and mean of 
the selection variables in the reference sample (var[sj] 
and E[sj] defined analogously in the selected sam- 
plej) .  Note that the error terms in the selected sam- 
ple, in contrast to those in the reference group, no 
longer have zero means, i.e., E[ei] # 0. This is 
taken up below. 

Thus phenotypic selection leads to a multi- 
group model: Eqs. (7a) and (7b) in the phenotypi- 
cally selected subsample and Eqs. ( la ) - ( lc )  in the 
representative reference sample. Here, in contrast 
to latent selection, we must identify the samples 
explicitly and distinguish between the selected and 
the reference sample. 

A Special Case Where Phenotypic and Latent 
Selection Are Indistinguishable. Before considering 
simple quantitative genetic applications, we note 
that the models following from latent and pheno- 
typic forms of selection are indistinguishable when 
the vector w equals the factor score regression matrix. 
Because the linear combination vCy yields factor scores 
in this special case, phenotypic selection will coincide 
with latent selection. The factor score regression ma- 
trix calculated according to the regression method 
(Lawley and Maxwell, 1971, Chap. 8) equals ~A's  
Substituting ~At1~-1 for w t, we arrive at the follow- 
ing expression for the covariance matrix and mean 
vector in the selected sample: 

Ej = E + E(X-IA~o)j'trA ' E-~)Z (8a) 

= A~A t + O + A~o)jgrA t 

= A (,I, + �9 %.,~)A' + o 

E[y j ]  = v + ~-lhxI"Kj (8b) 

= v + A~Kj 

Substituting Wj for (W + 'I r o~j xlr), we obtain the 
Merdith-J6reskog-S6rbom model Ej = AxIrjA t + 
t9. Other methods of constructing factor scores yield 
a similar reduction of Ej = E + E wcojwtZ to Ej 
= A~jA t + | For instance, in the case of the 
Bartlett method of calculating factor scores (Lawley 
and Maxwell, 1971, Chap. 8), (A ' |  t | 
is subs t i t u t ed  for  w t. We f ind ~ j  = 
[xI* + W + [At| -~ + ~ ]  so that 
again we may write Ej = A~iA t + 19. The means 
are then modeled as E[yj] = v + A ( ~  + 
(At19-1A) -1) Kj. This result holds for the various 
other methods of calculating factor scores. The reader 
is referred to Saris et aL (1978) for a review of 
methods  for factor  scores  ca lcula t ion and to 

Boomsma et aL (1990) for a quantitative genetic 
application of factor scores. 

That the effects of latent and phenotypic se- 
lection converge as the vector w approaches one of 
the factor score matrices has two implications. First, 
it implies that processes that are modeled by means 
of either latent or phenotypic selection may be hard 
to distinguish empirically. One such process is as- 
sortative mating, which, depending on the theory 
of assortment, can be modeled as either a pheno- 
typic selection process (Fulker, 1988) or a latent 
selection process (Falconer, 1990, page 176). Sec- 
ond, it implies that a multigroup factor model (e.g., 
SSrbom, 1974), which usually involves fitting Eqs. 
(lb) and (lc) in one group and Eqs. (5a) and (5b) 
in the other, can be specified more parsimoniously. 
Specifically one can retain Eqs. (lb) and (lc) for 
one group and fit li;j = A Wj A t + O in the other, 
with xI*j constrained to equal ( ~  + W o~ixtr ). A clear 
advantage of this approach is the reduction in pa- 
rameters from q*(q+ 1)/2 parameters [i.e., xtri in 
Eq. (5a)] to a single parameter (viz., ~oj; of course 
this applies only if q > 1). As a test of strict latent 
selection, this approach is more parsimonious and 
therefore more powerful (see Dolan and Molenaar, 
In Press). 

S IMPLE QUANTITATIVE GENETIC 
APPL IC AT IONS 

Biometric Decomposition of Phenotypic Means 
Following Phenotypic Selection. The application of 
the selection rules to the common factor model has 
an important consequence for quantitative genetic 
modeling of continuously varying characters in hu- 
man samples. We arrive at models which incor- 
porate the notion of common causation of within- 
and between-group variation in a precise and em- 
pirically testable manner. In the present section, 
phenotypic selection is applied and the resulting 
biometric decomposition of mean variation [i.e., 
Eqs. ( la) - ( lc)  vs. Eqs. (7a) and (7b)] explicated. 

We assume that the environmental and genetic 
sources (G and E) of individual differences in a 
phenotypic variable y are known: y = v + hg G 
+ k e E o r y  = v + A ' q w i t h A  = [XgXe],'qt = 
[G,E] and E[v] = v. The variance is decomposed 
as follows: E[(y-v)(y-v) t] = N~ = A T A  t, where 
'I t equals a 2 x 2 identify matrix I. Independence 
of the latent variables G and E is not a necessary 
assumption, but we do assume that genotype • 
environment interaction is absent. We simply select 
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individuals directly on the basis of their observed 
scores (i.e., w = 1) on the basis of some cutoff score, 
say E[y] +sd. The difference between the mean in 
the population and that in the phenotypically se- 
lected sample can then be expressed as a function 
of the differences in latent means in the represent- 
ative sample, i.e., E[G] and E[E], and the latent 
means in the selected sample j, E[Ej] and E[Gj]. 
Applying Eqs. (6a) and (6b), we thus find that 

E[G/] = var [s] -1 Xg (E[sj] - E[sj]) 

= var[s]-lXg E [sj] 
E[Ej] = vat [s] -1 Xe (E[sj] - E[s]) 

= var[sl-lXe E [sj] 

and 

E[yj] = v + xez[cA + XeE[Ej] 

while in the reference sample we have simply E[G] 
= E[E] = 0. The covariance matrix in the selected 
sample, finally, is a matrix that will certainly no 
longer be orthogonal: gtj = I+AteojA. As men- 
tioned above, an error term can no longer be ex- 
pected to have a zero means [see Eq. (6b)] following 
phenotypic selection. In the present simple quantita- 
tive genetic model, the error term is not defined expl- 
icity; rather it features implicitly as a part of the 
unshared environmental variance (Neale and Cardon, 
1992, p. 14). It is important to realize therefore that 
the term X~E[Ej] will be biased by the contribution of 
the nonzero mean of the error variance. Correction 
can be made if an estimate of the error variance in 
the reference population is available. 

Explicit phenotypic selection leads to a bio- 
metric decomposition of phenotypic means based 
on knowledge of the biometric decomposition of 
individual differences, i.e., a situation where the 
decomposition of individual differences is inform- 
ative for the decomposition of group differences. 
Muth6n (1989) derived Eqs. (6a)-(7b) as a means 
to investigate the factor structure in samples se- 
lected on the basis of a linear combination of test 
scores on, for instance, an admission test. The fac- 
tor structure in the selected group is of interest be- 
cause it reveals the effect of selection: "'...  If a 
certain factor mean increases relatively little when 
moving from the general population to the top group, 
this indicates that the items measuring the factor 
have little power in discriminating between average 
and successful testers" (Muth6n, 1989, p. 82). 
Clearly, if the genetic covafiance structure is known 
in the reference population, the mean differences 

between the reference population and any pheno- 
typically selected group can be broken down into 
genetic and environmental components. 

We have considered the most simpte case with 
one phenotypic variable and direct selection (w = !). 
In the case of a multivariate phenotype, one can 
use Eqs. (16a)-(17b) to study the effects of phe- 
notypic selection on the basis of a variety of phe- 
notypic criteria such as the average of the phenotypes 
or a single component of the phenotypic vector. In 
the latter case, the indirect effects of the selection 
on a second correlated phenotypic component can 
be evaluated. 

Biometric Decomposition of Phenotypic Means 
Based on Latent Selection. A model based on the 
Meredith-J6reskog-S6rbom application of the se- 
lection rules is presented by Dolan et aL (1992) to 
obtain a decomposition of gender-related variation 
in phenotypic mean blood pressure into genetic and 
environmental components. In that application, the 
model deviates slightly (for details see Dolan et aL, 
1992) from the model following from a strict ap- 
plication of latent selection, i.e., the model given 
by Eqs. (5a) and (5b). In the present section we 
consider the latter model. 

In Fig. 2, the (at least) trivariate phenotype y 
is regressed on an additive genetic and environ- 
mental factor, denoted G and E. The variables G 
and E in turn are regressed on the selection variable 
s, which may be univariate, combining both the 
additive genetic and the environmental factors (Fig. 
2B), or multivariate (Fig. 2A). The covariance 

E E 

A, B. 
Fig. 2. The relationship between the selection variables s and 
the variables in a simple genetic model in the case of latent 
selection. The phenotype y is multivariate; the symbols Ag and 
A~ represent vectors containing factor loadings. 
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structure of y is • = AIA t + | where A = [Ag, 
A,] and 19 = [var(e)]. Let Ely] = v, so that prior 
to selection E[G] = E[E] = 0. We assume that 
the variables G and E are orthogonal. 

Applying the selection rules as given above 
[Eqs. (4a) to (5b)], we find the covariance and mean 
structure of y in following selection of the basis of 
s. For Fig. 2A, we have 

a =  [ ;g  aO], N~= [ o r  [sg] 01 
var[s~] ] '  

~si = [ ;  ar[sg/] Oar[sej]] 

and 

Wi = I + a(X~j - X~)a t 

[ 1 +,V(varlsA - (varI~,,l/ o]  
= [0  l+aeZ(var[seA - (var[Se])J 

where var[sg] and var[sw ] represent the variance of 
sg in the selected sample and the reference popu- 
lation, respectively (var[se] and vat[s4] are defined 
analogously). The phenotypic means in the selected 
sample equal E[yj] = v + AgagE[sw ] + Ae aeE[Sej]. 
For Fig. 2B, we have a t = [ag, ae]. Assuming that 
they were in the original or reference population, 
the factors G and E in group j are no longer or- 
thogonal in the case of Fig. 2A: 

~j -- I + a(var[sj] - var[s])a t 
[ 1 + agZ(var[sj] - var[s]) agae(var[sj] - var[s]) ] 

= Lagae(var[sj] - var[s]) 1 + ae z (var[sj] - var[s])J 

The expression for the means is E[yj] = v + [Agag 
+ h~ae] E[sj]. 

How reasonable it is to assume that either ag = 0 
or at = 0 depends on the nature of the groups and 
the phenotypes under consideration. For instance, 
the hypothesis that differences in mean IQ between 
offspring and their adopted siblings is due to dif- 
ferences in environment would imply that a g =  0 
(e.g., Turkheimer, 1990, 1991; Jensen, 1972, p. 
15). When comparing parents and their offspring 
with respect to mean blood pressure, on the other 
hand, the constraint ag = 0 may be unacceptable be- 
cause it implies that the same genes are operating 
in the same manner regardless of the difference in 
age (e.g., Hewitt, 1990). It appears to us that many 
hypotheses concerning differences between groups 
in genetic and/or environmental influences become 
explicit and empirically testable when formulated 
in terms of latent selection. 

DISCUSSION 

The multigroup covariance structure model of 
J6reskog and S6rbom (J6reskog, 1971, 1977; S6r- 
born, 1974, 1976) includes the model based directly 
on latent selection as a special case. Their ap- 
proach, however, offers many more possibilities than 
follow strictly from latent selection [i.e., Eqs. (5a) 
and (5b)]. As J6reskog (1971, p. 410) states, 
"'Firstly, the method may be used regardless of 
whether the populations are derived by selection or 
not. The only requirement is that the populations 
be clearly defined and the samples independent. 
Secondly, the method is capable of dealing with 
any degree of invariance .... " Thus the mechanism 
of a strict selection process can be abandoned while 
retaining testable models (see, e.g., Dolan et  a L ,  
1991). The assumption of common causation of 
within-group and between-group variance of course 
remains crucial. Comparing Eqs. ( la) - ( lc)  to Eqs. 
(5a) and (5b), we find that latent selection leads to 
differences between the groups with respect to the 
factor means and variances (E['q/] and ~i)- Using 
programs that fit multigroup covariance structure 
models such as LISREL VII (J6reskog and S6rbom, 
1988) and Mx (Neale, 1991), one may investigate 
differences between the groups with respect to any 
parameters in the covariance structure model as long 
as the matrix A, which forms the link between the 
phenotypes and the latent variables, remains invar- 
iant over the groups. For instance, one may inves- 
tigate the the proposition that, in addition to 
parameters contained in E[~qi] and ~i ,  the error var- 
iances in 19 [in Eq. (lc)] are of a different magni- 
tude in the groups under consideration. This is the 
case given by Dolan et  al. (1992), where gender- 
related mean differences in blood pressure are de- 
composed into genetic and environmental compo- 
nents in a sample of twin data. The reader is referred 
to Byrne et  aL (1989) for an extensive discussion 
and illustration of such possibilities in the common 
factor model. 

In presenting the various simple quantitative 
genetic models above, we have assumed tactily that 
genotype-environment (G x E) interaction is ab- 
sent. The method suggested by Molenaar et  al. 
(1990) based on fourth-order statistics of the ge- 
netic and environmental factor scores can be ap- 
plied in the case of latent selection, as the method 
of Molenaar et  al. (1991), like the model for latent 
selection presented above, requires multiple indi- 
cators. A second approach to the detection of G • E 
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interact ion is p rov ided  by  Molenaa r  and B o o m s m a  
(1987).  In this approach ,  interact ion be tween  the 
unshared  env i ronmen t  fac tor  and the addit ive ge-  
netic factor  gives  rise, at the level  o f  the covar iance  
structure,  to a second  unshared  env i ronment  factor .  
H o w  exact ly  such a second  fac tor  contr ibutes  to the 
pheno typ ic  means ,  g iven  the assumpt ion  o f  c o m -  
m o n  causat ion,  and whe the r  such a contr ibut ion can 
be est imated wil l  be invest igated in the future.  

The  central  assumpt ion  o f  c o m m o n  causat ion 
can be tested by  means  o f  a l ikel ihood-rat io  test 
g iven mul t inormal  data.  Meredi th  and Tisak (1990) 
g ive  a derivat ion o f  the m a x i m u m - l i k e l i h o o d  func-  
t ion wi th  s tructured means .  The  covar iance  struc- 
ture mode l  wi th  s tructured means  [see Eqs.  (5a) and 
(5b)] is nested under  the mode l  wi th  uncons t ra ined  
pheno typ ic  means  E[yi]  --- v i. Such  a test o f  the 
mode l  for  the mean  structure,  regardless  o f  the na-  
ture o f  the appl icat ion,  is crucial  because  it relates 
di rect ly  to w h a t  w e  have  cal led the assumpt ion  o f  
c o m m o n  causat ion.  To  be sure,  there are potent ial  
causes o f  between-group variation imaginable which  
are comple te ly  unrela ted to sources  o f  wi th in -g roup  
var ia t ion.  S o m e  o f  the causes  m a y  be  quite trivial 
(see C o o k  and Campbe l l ,  1979,  Chap.  2).  
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