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Abstract The often-used ACE model which decomposes

phenotypic variance into additive genetic (A), common-

environmental (C) and unique-environmental (E) parts can

be extended to include covariates. Collection of these

variables however often leads to a large amount of missing

data, for example when self-reports (e.g. questionnaires)

are not fully completed. The usual approach to handle

missing covariate data in twin research results in reduced

power to detect statistical effects, as only phenotypic and

covariate data of individual twins with complete data can

be used. Here we present a full information approach to

handle missing covariate data that makes it possible to use

all available data. A simulation study shows that, inde-

pendent of missingness scenario, number of covariates or

amount of missingness, the full information approach is

more powerful than the usual approach. To illustrate the

new method, we applied it to test scores on a Dutch

national school achievement test (Eindtoets Basisonder-

wijs) in the final grade of primary school of 990 twin pairs.

The effects of school-aggregated measures (e.g. school

denomination, pedagogical philosophy, school size) and

the effect of the sex of a twin on these test scores were

tested. None of the covariates had a significant effect on

individual differences in test scores.

Keywords Twin studies � Covariates � Missing data �
Educational achievement

Introduction

In the genomics era, twin studies remain useful to estimate

the relative importance of genetic and environmental

influences on individual differences. In the often-used ACE

model, the total variance of a trait (e.g. mathematical

ability) is decomposed into components due to additive

genetic (A) influences, common-environmental (C) influ-

ences that are shared by family members and unique-en-

vironmental (E) influences (Jinks and Fulker 1970). This

model can be extended to include covariates. Figure 1 is an

example of the structural equation model (SEM) for a basic

univariate twin analysis extended with three covariates

(denoted as x11; x12 and x13 for the first twin and x21; x22 and

x23) for the second twin of one family). The path coeffi-

cients b1; b2 and b3 represent regression coefficients that

express the estimated effect of the respective covariate.

This model implies that the ACE variance decomposition

takes place on the residuals of the phenotypic scores, after

the effects of the covariates have been partialled out.

Missing covariate data

The collection of covariate data however often leads to a

high amount of missingness. For example, when self-re-

ports (e.g. questionnaires) are used to gather information

on the environment of a family or an individual twin, they

are often not fully completed (e.g. the last items are skip-

ped) or items on sensitive topics (e.g. alcohol or drug use)

are not answered. Likewise, the linkage of two datasets

may lead to missing data. A twin researcher might want to
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link twin data from a twin registry to data from the same

twins from another (external) source. For example, an

environmental variable such as the socio-economic status

of a neighbourhood might not be available in the twin

registry, but there is a publicly available dataset from a

governmental or local organisation which includes the

desired variable. For the linking of the two datasets, usu-

ally, a common identifier such as the name or address of a

family or individual twin can be used. However, this

potentially leads to a lot of missing data, for example when

entities cannot be (uniquely) linked to the common iden-

tifier, as may be the case due to differences in record shape

or choice of identification variables.

We can distinguish between three different mechanisms

that describe relationships between measured variables and

the probability of missing data (Rubin 1976; Little and

Rubin 2002). Data are said to be missing completely at

random (MCAR) when the probability that a value is

missing is unrelated to both observed and unobserved data.

For example, a respondent might flip a coin to decide

whether to answer a questionnaire item or not. Note that

this is a rather strong assumption. A weaker assumption is

that covariates are missing at random (MAR), that is, the

probability that a covariate value is missing is unrelated to

its unobserved value, after controlling for other variables in

the analysis. For example, female twins might be more

likely to not give information on their income, but this

might be unrelated to the amount of income once one

controls for gender. Lastly, a covariate value can be

missing not at random (MNAR), that is, the probability that

it is missing is related to its unobserved value. In this case,

for example, twins with a lower income might be more or

less likely to reveal this information.

When there is (partly) missing data, complete-cases

analysis (also referred to as listwise deletion) can be used,

meaning that only twin pairs with complete data (e.g. data

of twin pairs with known values for all covariates) enter the

analysis. This certainly leads to reduced statistical power,

but might also introduce bias or affect the representative-

ness of the results (Allison 2001). Using OpenMx (Boker

et al. 2011), a SEM program often used to fit twin models,

twin researchers usually apply a strategy that minimizes the

loss of information by excluding phenotypic data of indi-

vidual twins with at least one missing covariate value. So,

when an individual twin has a missing covariate value, the

phenotypic (and covariate) data of his or her co-twin can

still be used for statistical inference (provided that the co-

twin does not have any missing data). This results in twin-

wise rather than twin pair-wise deletion of incomplete

cases.

In this paper, we present a full information approach to

handle missing covariate data. The new approach involves

including covariates in the expected covariance matrix.

While in the usual approach, the phenotypic and covariate

values of a twin with (at least) one missing covariate value

are completely ignored, the full information approach

models all data that is observed - including observed

phenotypic data as well as observed covariate data. The

new approach will be described in more detail in the

following.

Full information approach

In the traditional univariate ACE model, the phenotypic

variance is decomposed into variance due to additive

genetic influences, r2A, variance explained by common-

environmental influences, r2C, and variance due to unique-

environmental influences, r2E. Conditioning on the covari-

ate data, phenotypic data are assumed to be multivariate

normally distributed:
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RACE ¼
r2A þ r2C þ r2E qr2A þ r2C
qr2A þ r2C r2A þ r2C þ r2E
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and ly refers to the phenotypic mean. yi1 denotes the

phenotypic value of the first twin of family i and yi2 rep-

resents the phenotypic value of the second twin. xi1 and xi2

Fig. 1 Structural equation model (SEM) for a basic univariate twin

analysis (ACE model) extended with three covariates (denoted as

x11; x12 and x13 for the first and as x21, x22 and x23 for the second twin

of a family). Y denotes the phenotypic values of the first (Y1) and

second (Y2) twin and A refers to additive genetic influences for the

first (A1) and second (A2) twin, which are correlated 0.5 in dizygotic

twins and 1 in monozygotic twins. E1 and E2 denote unique-

environmental influences of the first and second twin respectively and

are assumed to be uncorrelated. C, common-environmental influ-

ences, are the same for all family members. Double-headed arrows

denote (co-)variances. The path coefficients, b1, b2, b3, a, c and

e represent regression coefficients that express the estimated effect of

the respective influences
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are covariate data vectors that include the values of the

covariates of the first and second twin respectively and the

vector b consists of the regression coefficients of the

covariates. RACE refers to total phenotypic covariance and

q is the correlation between the twins’ additive polygenic

factors, which is unity in monozygotic (MZ) twins and 1
2
in

dizygotic (DZ) twins. The phenotypic variance decompo-

sition takes place after the effects of the covariates have

been partialled out, but other than that the covariate data

are not part of the covariance model.

Here, we propose to model the covariance between all

observed variables - consisting of phenotypic data but also

covariate data. In twin data, it is reasonable to assume not

only covariance among the covariates of one twin (e.g.

correlations between covariates), but also covariance

among the values of the covariates of one twin and the

covariates of the co-twin. To incorporate this dependence

structure into the biometric model we decompose the

covariance structure of the values on the covariates of both

twins into covariance shared by twins from the same pair

and non-shared twin covariance. Covariate data were then

assumed to be multivariate normally distributed:

xi1

xi2
�MVN
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!
ð3Þ

where lx is a vector that contains of the means of the

covariates and
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Rcov denotes total covariate covariance. Rb denotes

between twin pair variance and Rw within twin pair vari-

ance. Thus, the covariance matrix for covariates of an

individual twin is decomposed into covariance shared with

the co-twin, Rb, and covariance not shared with the co-

twin, Rw.

By including covariate data in the expected covariance

matrix, the joint distribution of phenotypes and covariates,

ðyi1; yi2; xi1; xi2ÞT , is multivariate normal with the following

covariance structure:

where phenotypic variances are represented on the first two

elements of the diagonal and covariate data variances on

the remaining elements of the diagonal. Cross-phenotypic

and cross-covariates covariances and within twin covariate

covariances are contained on the off-diagonal elements.

ACE denotes r2A þ r2C þ r2E, AC refers to qr2A þ r2C and b is

a vector that includes the regression coefficients of the

covariates. A graphical representation of this model,

including ACE decomposition and the model for covariate

data, can be found in Fig. 2 (SEM notation). In the

example, answers to three different covariates are modelled

for the first (x11; x12 and x13) and second (x21; x22 and x23)

twin of one family. To model between twin pair variance

(i.e., Rb, covariance between the values of the first and

second twin on the same covariate but also cross-covari-

ance), we model latent variables for every covariate, w1;w2

and w3. To model within twin pair variance (i.e., Rw), we

use different latent variables for the first (c11; c12 and c13)
and second (c21; c22 and c23) twin.

Fig. 2 Structural equation model (SEM) of the full information

approach. Answers to three different covariates are displayed for the

first (x11; x12; x13) and second twin (x21; x22; x23) of one family. w is a

latent variable that is estimated for every covariate (w1;w2;w3) and

models covariance within families. The different latent variables for

the first (c11; c12 and c13) and second (c21; c22 and c23) twin model

within twin covariance

R ¼

ACE þ bTðRw þ RbÞb
AC þ bTRbb

ðRw þ RbÞb
Rbb

AC þ bTRbb

ACE þ bTðRw þ RbÞb
Rbb

ðRw þ RbÞb

bTðRw þ RbÞ
bTRb

Rw þ Rb

Rb

bTRb

bTðRw þ RbÞ
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2
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Benefits of the new approach

In the usual approach, the phenotypic score as well as the

covariate data of a twin with (at least) one missing value is

not used for statistical inference. Adopting the full infor-

mation approach, all observed data (including phenotypic

scores) can be used. This fact alone makes the full infor-

mation approach more powerful.

Furthermore, the usual approach may result in biased

estimates when covariate data were missing not completely

at random. Imagine for example that the probability that a

covariate value is missing depends on the phenotypic value

of an individual twin. For example, twins with a high score

on a depression assessment are less likely to give infor-

mation on their income. Using the usual approach, the

phenotypic values of these twins do not enter the analysis -

therefore, phenotypic variance is underestimated, which

might lead to biased estimates of variance components and

under- or overestimation of heritability.

The third advantage is that, by modelling the relation-

ships between data that are unobserved and data that are

observed, information on model parameters can be statis-

tically borrowed by information on data that are observed

and that is correlated with unobserved data - a principle

that is often referred to as borrowing strength. Borrowing

strength means that the inference of a parameter of interest

or unobserved data point can be improved by borrowing

from information on other related data also included in the

model. For example, imagine that we have measured one

environmental covariate, separately for the first and second

twin of every family. In one of the families, the covariate

value of the second twin is known whereas the value for the

first twin is missing. Based on covariance between the

observed values, our model can then borrow information

from the covariate value of the co-twin but also from the

phenotypic value of the twin with missing value and the

phenotypic value of his or her co-twin, which leads to

lower standard errors. Note that this is especially true when

the data are highly correlated, for example with high twin

correlations for a covariate, high correlations among the

covariates, or when there is a strong relationship between

phenotypic and covariate data.

In a simulation study, it is shown that the full infor-

mation approach is more powerful than the usual approach,

independent of missingness scenario, number of covariates

and amount of missingness. To illustrate the new approach,

it is applied to test scores on a Dutch national school

achievement test. Syntax to apply the full information

approach using the R package OpenMx (Boker et al. 2011)

can be found in the Appendix.

Simulation study

In order to show that the full information approach retrieves

parameters reliably and is more powerful than the usual

approach, a simulation study was conducted with a fixed

number of twin pairs and different number of covariates

(two, three, four and five) and percent of missing observa-

tions (2, 6 and 10 %). In each combination of these condi-

tions, 1000 datasets were generated consisting of 280 MZ

(28 % of all pairs) and 720 DZ pairs (72 % of all pairs). This

ratio reflects the usual ratio of MZ and DZ twin pairs in

European twin registers. The amount of missing observa-

tions for the different conditions (2, 6 and 10 %) was based

on the total number of covariate answers (e.g., in case of five

covariates: five � 2000 individual twins = 10,000). In all

conditions, additive genetic variance was assumed 0.5,

common-environmental variance was set to 0.3 and unique-

environmental variance was assumed 0.2. The data were

simulated with a phenotypic population mean of zero for all

twins (ly ¼ 0). In every condition, regression coefficients, b,

were chosen such that covariates explained 39 % of total

phenotypic variance, leading to a total variance of 1.64. A

multivariate normal distribution was used to simulate the

covariate data. The expectation of the multivariate distri-

bution was set to zero (lx = 0) and the covariance matrix was

based on Rw and Rb. The same values were used for the

diagonals and off-diagonals ofRw andRb in every condition.

For example for five covariates, Rw was equal to

1:1:1:1:1

:1 1:1:1:1

:1:1 1:1:1

:1:1:1 1:1

:1:1:1:1 1

0
BBBBBB@

1
CCCCCCA

andRb was equal to

1:5:5:5:5

:5 1:5:5:5

:5:5 1:5:5

:5:5:5 1:5

:5:5:5:5 1

0
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. This led

to following covariance matrix:

Rtot ¼

2 :6 :6 :6 :6 1 :5 :5 :5 :5

:6 2 :6 :6 :6 :5 1 :5 :5 :5

:6 :6 2 :6 :6 :5 :5 1 :5 :5
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The pattern of the missingness was generated under three

different scenarios. In the first setting, covariate data were

simulated to be missing completely at random (MCAR).

That is, every covariate value had the same probability of

being missing, independent of unobserved or observed

data. In the second scenario, it was assumed that the data

were missing at random (MAR). Here, the probability that

a covariate value was missing was dependent on the (ob-

served) phenotypic value of an individual twin. We mod-

elled the probability of missingness for every covariate xijk
as a logistic function of the respective phenotypic value of

every individual twin j from family i:

pðxijk is missingÞ ¼ 1

1þ expð2þ 1:7 yijÞ
ð7Þ

The resulting probabilities were then used in the R in-built

function sample() to control the overall proportion of

missing values. By using Eq. 7 to model missingness, the

probability that a covariate value was missing was higher

with decreasing phenotypic value. In the last scenario,

covariate data were assumed to be missing not at random

(MNAR). Here, the probability that a covariate value was

missing was dependent on its observed (simulated) value.

As the range of phenotypic values was similar to the range

of covariates values, the same logistic function was used as

in the MAR scenario, but the probability was dependent

on the observed value of the covariate (i.e.

pðxijk is missingÞ ¼ 1
1þexpð2þ1:7 xijkÞ). As in the MAR setting,

the resulting probabilities were used in the R in-built

function sample() to control the overall proportion of

missing values.

In every scenario, the remaining data were analysed

using 1) the usual approach and 2) the full information

approach. For the simulations, the software package R

(R Development Core Team 2008) was used. The models

were fit using the R package OpenMx (Boker et al. 2011).

The point estimates of the variance components and

regression coefficients were determined as were their

standard errors. Furthermore, narrow-sense heritability, h2,

was determined, which we defined here as
r2
A

r2
P

, where

r2P ¼ r2A þ r2C þ r2E.

Results

As estimates of regression coefficients were close to their

true values and very similar for both approaches under all

conditions, results are not displayed here but can be

obtained from the first author.

MCAR: Standard errors for r2A, r
2
C and r2E can be found

in Fig. 3. The standard errors were generally lower when

the full information approach was used compared to the

usual approach. Furthermore, while standard errors were

very similar under different amounts of missingness and

number of covariates when the full information approach

was applied, they increased with increasing number of

covariates when the usual approach was used. This effect

was the largest for the 10 % missingness condition. Com-

pared to the other variance components, standard errors of

r2E were, in general, small and only increased slightly with

increasing number of covariates when the usual approach

was used. For both approaches, estimates of r2A, r
2
C, r

2
E and

h2 were all very close to their true values and are therefore

not displayed here.

MAR: The standard errors for r2A, r
2
C and r2E can be

found in Fig. 4. The same pattern as for the MCAR con-

dition can be observed: Standard errors of the full infor-

mation approach were generally lower than the standard
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Fig. 3 MCAR: Standard errors for r2A, r
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C and r2E of both approaches when 2, 6 and 10 % of the covariate data were missing. Dotted lines full

information approach
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errors obtained with the usual approach. Furthermore,

while the standard errors of the usual approach increased

with increasing number of covariates, standard errors of the

full information approach were very similar across all

misisngness conditions. As in the first scenario, standard

errors for r2E were generally low and increased only

slightly with increasing number of covariates when the

usual approach was used. Figure 5 displays the estimates of

r2A, r
2
C and h2 for both approaches. It can be seen that the

variance components estimates of the full information

approach were all very close to their true values, inde-

pendent of amount of missingness and missingness sce-

nario. Using the usual approach, estimates were close to

their true values in the 3 % missingness condition, but

variance components were underestimated when the

amount of missignness increased. This bias further

increased with increasing number of covariates. Further-

more, the bias was generally more severe for estimates of

r2C than for estimates of r2A. This is also reflected in the

estimates for h2. Estimates of heritability were overesti-

mated, which systematically increased with increasing

number of covariates. However, we can also see that this

effect was negligible for the 3 and 6 % missingness con-

dition. Estimates of r2E were unbiased for the full infor-

mation approach as well as the usual approach and are

therefore not displayed.

MNAR: Figure 6 shows the standard errors for both

approaches for all variance components. Again, we can

observe the same pattern: the full information approach had

lower standard errors which were very similar under dif-

ferent conditions while standard errors increased with

increasing number of covariates when the usual approach
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Fig. 4 MAR: Standard errors for r2A, r
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was used. Similar to the MCAR and MAR scenario, the

standard errors of r2E only increased slightly with increas-

ing number of covariates and were generally low also when

the usual approach was used. Estimates of r2A, r
2
C and r2E

were all very close to their true values for both approaches

and are therefore not displayed here. Using the full infor-

mation approach, there was a negligible bias in the 10 %

missingness condition with estimates of r2E closer to 0.21

instead of the true value 0.20.

Application

To illustrate the full information approach, we applied it to

test scores on a Dutch national school achievement test in

the final grade of primary school. The effect of school-

aggregated measures (e.g. school denomination, pedagog-

ical philosophy, school size) and the effect of the sex of a

twin on these test scores was tested. These covariates were

a mix of continuous and categorical variables. Therefore,

due to its flexibility, it was chosen to use a Bayesian

parametrization of the model for this application. In

Bayesian analysis, statistical inference is based on the joint

posterior density of the model parameters, which is pro-

portional to the product of a prior probability distribution

and the likelihood function (for a general introduction to

Bayesian statistics see e.g. Bolstad 2007 and for Bayesian

analysis of twin models see e.g. Eaves and Erkanli 2003 or

van den Berg et al. 2006). A prior probability distribution

represents information about an uncertain parameter before

any data have been observed. In this application, uninfor-

mative prior distributions were chosen. That is, they

expressed only vague information about the parameters of

our model and therefore, posterior point estimates pre-

sented here are close to maximum likelihood estimates as

would be obtained by using for example OpenMx (Boker

et al. 2011).

Sample

The sample of this study originated in the Netherlands

Twin Register (NTR, Boomsma et al. 2002), which

includes approximately 40 per cent of all multiple births in

the Netherlands. If parents give their consent, teachers of

the children are approached with a survey when the twins

are 7, 9 and 12 years old. In 2000, the NTR started col-

lecting the results of a national test of educational

achievement (Eindtoets Basisonderwijs) from the parents

of all 12-year old twins. The Eindtoets Basisonderwijs test

is yearly administered in the final grade of primary school.

The present study analyzed data of 12-year-old twins

from birth cohorts 1997-2000 to determine the importance

of measured covariates for individual differences in Eind-

toets Basisonderwijs test scores. The sample included data

of children from 990 twin pairs, consisting of 340 MZ twin

pairs and 650 DZ twin pairs. Of the MZ twin pairs, 175

pairs were male and 165 female. 159 of the DZ twin pairs

were male, 167 female and 324 twin pairs were of opposite

sex. For 120 individual twins, the score on the Eindtoets

Basisonderwijs test was unknown. The reason that the

score was missing was either that the child had not reached

final grade yet (N twins = 66), the child was attending

special education (N twins = 33), a different test was used

at the school the twin was attending (N twins = 6), the child

did not attend the test (N twins = 2) or the reason was

unknown (N twins = 23).
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Measures

The items on the teacher report form that were used in this

paper are: The name, postal code, denomination and ped-

agogical philosophy of the school. The reported names and

postal codes were used to link the twin data from the NTR

with school-aggregated environmental measures obtained

from external sources such as official authorities. This was

only done with data for twins for which parents had given

written permission to link databases. Reported denomina-

tion and pedagogical philosophy of a school on the teacher

report were used to complement the retrieved data. The

Eindtoets Basisonderwijs test consists of 290 multiple

choice items in four different subjects (language, world

studies [optional], arithmetic and study skills). We used the

total score on the Eindtoets Basisonderwijs test, a stan-

dardized measure that ranges from 500 to 550. As admin-

istration of the questions concerning world studies is

optional, they were not included in the total score. Infor-

mation on the denomination of a specific school was

retrieved from the Dutch ministry of education (Dienst

Uitvoering Onderwijs, DUO). This information was sup-

plemented with information available from answers of the

teachers on the teacher report form. The variable was

measured in seven categories: Collaboration of Protestant-

Christian and Roman Catholic, Protestant-Christian, Re-

formed, Reformed liberated, Roman Catholic, Special and

State schools. Information on pedagogical philosophy was

retrieved online from a database that provides basic

information about Dutch primary education schools (http://

www.scholenopdekaart.nl). Again, this information was

supplemented with information available from answers on

the teacher report form. The variable was categorized into

five different categories: Regular education, Dalton plan

education, Jenaplan edcation, Montessori education, Spe-

cialised regular education and Specialised education. Data

on school size, measured in 2011, were retrieved from the

Dutch ministry of education (Dienst Uitvoering Onderwijs,

DUO). The data were linked to the postal codes of the

schools, retrieved from the teacher report form. An over-

view of all covariates that were used in this paper can be

found in Table 1.

Analysis

The analysis was done in the Markov chain Monte Carlo

(MCMC) sampling program JAGS (Plummer 2003). R (R

Development Core Team 2008) was used for further data

handling and as an interface from R to JAGS, the rjags

package (Plummer 2013) was used.

Prior to the analysis, c� 1 dummy variables were

created for the categorical variables Sex, School denomi-

nation and Pedagogical philosophy with c being the

number of categories and the largest category serving as

the reference group. For these covariates, the distribution

in Eq. 3 was used to model liabilities. The built-in

function step() of JAGS was then used to create a Boo-

lean variable V ¼ stepðxijk � tÞ that equals one if ðxijk �
tÞ� 0 and equals zero if ðxijk � tÞ\0 where t is a

threshold that was fixed to zero for identification pur-

poses. The phenotypic variable (Eindtoets Basisonderwijs

test scores) as well as the numeric covariate School size

were standardized to have an expected value of zero and a

variance of one. The missing Eindtoets Basisonderwijs

test scores (N twins = 120) were assumed missing at

random.

The mean and standard deviation of the posterior dis-

tribution were calculated for each parameter as was the 95

% highest posterior density (HPD, see e.g. Box and Tiao

1992) interval for variance components and the 99.6 %

Table 1 Overview of covariates for educational achievement

(Eindtoets Basisonderwijs test scores) that were used in the

application.

N

Sex

Boy 992 (50.10 %)

Girl 988 (49.90 %)

School size 1447 (73.08 %)

Missing 533 (26.92 %)

Pedagogical philosophy

Regular education 1467 (74.09 %)

Dalton 41 (2.10 %)

Jenaplan 12 (0.61 %)

Montessori 21 (1.06 %)

Specialised regular education 16 (0.81 %)

Specialised education 6 (0.30 %)

Missing 417 (21.10 %)

Denomination of school

Protestant-Christian (PC) 332 (16.77 %)

Reformed 22 (1.11 %)

Reformed liberated 8 (0.40 %)

Roman-Catholic (RC) 606 (30.61 %)

Collaboration of PC & RC 10 (0.51 %)

Special 59 (2.98 %)

State 461 (23.28 %)

Missing 482 (24.34 %)

N = total number of individual twins
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HPD interval for covariates. The HPD can be interpreted as

the Bayesian analog of a confidence interval (CI). When

the HPD does not contain zero, the influence of a parameter

can be regarded as significant.

Results

The posterior means for the variance components r2A, r
2
C

and r2E as well as the estimated heritability (h2, defined as
r2
A

r2
P

, where r2P ¼ r2A þ r2C þ r2E) for the fitted model are

displayed in Table 2. The results suggest that the largest

part of the variance could be explained by genetic influ-

ences, resulting in a relatively high estimate for heritability.

A substantial part of the phenotypic variance could be

explained by unique-environmental influences and a small

part by common-environmental influences.

The posterior means and HPD intervals of the regression

coefficients are displayed in Table 3. There was no

covariate that had a significant effect on individual dif-

ferences in Eindtoets Basisonderwijs test scores.

Discussion

The often-used ACE model can be extended to include

covariates. However, problems in the data collection or the

linking of two different datasets often leads to a high

amount of missing data. The usual approach to handle

missing data results in reduced power, because phenotypic

and covariate data of a twin with at least one missing value

cannot be used for statistical inference.

In this paper, we present a full information approach that

entails modelling covariance of all data, both phenotypic

data as well as covariate data. The covariance structure for

the covariates in a twin pair was decomposed into between

and within family covariance. This makes it possible, to

use all available data, which makes the new approach more

powerful than the usual approach.

In a simulation study, the performance of the full

information approach was compared to the usual approach

under different conditions. Independent of missingness

scenario (MCAR, MAR and MNAR), amount of missing-

ness (2, 6 or 10 % of the total number of covariate values)

and number of covariates (two, three, four and five),

standard errors for all variance components were lower for

the new approach than for the usual approach. Further-

more, standard errors of the full information approach were

constant while the power of the usual approach rapidly

decreased with increasing number of covariates. Note that

this pattern has to do with the fact that, in the usual

approach, twins with at least one missing value do not enter

the analysis. Therefore, although the percentage of miss-

ingness remained constant, the probability that a twin ends

up with at least one missing value was higher with

increasing number of covariates. This reduced the number

of twins that entered the analysis, resulting in decreasing

power with increasing number of covariates.

Note that we used the same covariance structure for MZ

and DZ twin pairs to model covariate covariance between

families (i.e., Rb) and covariance within families (i.e., Rw).

Therefore, the exact results of the simulation study are

restricted to this situation. But there is nothing against

specifying different covariance structures for MZ and DZ

twin pairs. Simulating and analysing covariate data with

different covariance structures among MZ and DZ twins

might lead to slightly different effects on power, as the

probability that covariate data are missing in both twins

might be different for MZ and DZ twins respectively.

Generally though the effects on power will be the same: the

full information approach is more powerful than the usual

approach. Depending on the particular application, it might

be more appropriate to use different covariance structures

for MZ and DZ twins when differences in the covariance

structure are expected a priori or when the data seem to

suggest it (i.e. twin correlations on the covariate data might

be higher in MZ twin pairs than in DZ twin pairs).

To illustrate the new approach, the effects of specific

covariates on the test scores of 990 12-year-old twin pairs

on a national Dutch educational achievement test (Eind-

toets Basisonderwijs) in primary school were investigated.

We used school-aggregated measures (school denomina-

tion, pedagogical philosophy, school size) and the sex of a

twin as covariates. Similar to earlier findings on Eindtoets

Table 2 Educational achievement (Eindtoets Basisonderwijs test

scores): Posterior means (SD) of the variance components

Posterior mean (SD) HPD

r2A 0.66 (0.05) [0.57;0.76]

r2C 0.16 (0.04) [0.09;0.24]

r2E 0.20 (0.02) [0.17;0.23]

h2 0.64 (0.04) [0.56;0.72]

HPD refers to the 95 % highest posterior density interval
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Basisonderwijs scores of a Dutch sample (Bartels et al.

2002), the results suggest that differences in test scores are

mainly due to genetic influences. There was no covariate

that had a significant effect on individual differences in test

scores. As, however, a substantial part of the phenotypic

variance could be explained by environmental variance,

this suggests that there are environmental influences that

were not investigated in this study that cause individual

differences in Eindtoets Basisonderwijs test scores. Vari-

ables that might be important but were not examined in this

paper might for example be resources the twins have (e.g.

libraries in the neighbourhood or books at home) or the

composition of their class (e.g. the IQ of their classmates).

Another explanation for the non-significant result could be

that environmental influences on students test scores are

highly multifactorial, meaning that there are a lot of

influences that each have small effects and contribute to

variance in test scores when they are combined.

In the application, 18 % of the total number of covariate

answers was missing (i.e., 1432/(four � 1980 individual

twins)). This shows that even the most extreme missing-

ness condition (i.e., 10 %) of the simulation study is real-

istic and to be expected in real data applications. When the

usual approach would be applied to the same data, this

would result in the loss of the phenotypic as well as

covariate data of in total 496 individual twins, reducing the

twin sample from 1980 individual twins to 1484 individual

twins (75 % of the original sample size). This highlights

the added value of the full information approach over the

usual approach in practical situations.

In conclusion, as it could be shown that the full infor-

mation approach is more powerful than the usual approach

deletion and can be easily applied in OpenMx (Boker et al.

2011) by using the syntax we provide here, we advise

researchers to use the new approach whenever (a) more

than 3 % of the total covariate data are missing and

(b) when more than two covariates are used in the analysis.
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Appendix

OpenMx script

#I n s t a l l OpenMx
source ( ’ http : //openmx . psyc . v i r g i n i a . edu/getOpenMx .R ’ )
in s ta l l . packages ( ”OpenMx” ) #I n s t a l l OpenMx package

#Load package
l ibrary (OpenMx)

#OpenMx ana l y s i s
ACE cov <− mxModel ( ”twinACE” ,

#Matrices X,Y,Z to s t o r e a , c , e path c o e f f i c i e n t s
nrow=1, ncol=1, f r e e=TRUE,

nrow=1, ncol=1, f r e e=TRUE,

nrow=1, ncol=1, f r e e=TRUE,

nrow=1, ncol=(2+Nvar∗2) ,

c ( ’ meanfeno ’ , ’ meanfeno ’ ,
rep ( ’mean ’ ,Nvar∗ 2 ) ) , name=”expMean” ) ,

nrow=Nvar , ncol=Nvar ,

nrow=Nvar , ncol=Nvar ,

expression=CholCovW %∗% t (CholCovW) ,

expression=CholCovB %∗% t (CholCovB ) ,

expression=CovB + CovW,

#Matrices A, C,E + compute var iance components
expression=X %∗% t (X) , name=”A” ) ,
expression=Y %∗% t (Y) , name=”C” ) ,
expression=Z %∗% t (Z) , name=”E” ) ,

#Declare a vec t o r f o r the r e g r e s s i on parameters
nrow=Nvar , ncol=1, f r e e=TRUE,

c ( ” beta1 ” , ” beta2 ” , ” beta3 ” ,
,)”5ateb”,”4ateb”

twin

mxMatrix ( type=”Ful l ” ,
va lue s =.6 , l a b e l=”a” , name=”X” ) ,

mxMatrix ( type=”Ful l ” ,
va lue s =.6 , l a b e l=”c” , name=”Y” ) ,

mxMatrix ( type=”Ful l ” ,
va lue s =.6 , l a b e l=”e” , name=”Z” ) ,

mxMatrix ( type=”Ful l ” ,
f r e e=TRUE, va lue s= 0 ,
l a b e l=

mxMatrix ( type =’Lower ’ ,
va lue s =0.5 , f r e e=TRUE, name=”CholCovW” ) ,

mxMatrix ( type =’Lower ’ ,
va lue s =0.5 , f r e e=TRUE, name=”CholCovB” ) ,

mxAlgebra (
name=”CovW” ) ,

mxAlgebra (
name=”CovB” ) ,

mxAlgebra (
name=”CovWplusB” ) ,

mxAlgebra (
mxAlgebra (
mxAlgebra (

mxMatrix ( type=”Ful l ” ,
va lue s= 0 ,
l a b e l=

name=”beta ” ) ,
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#Algebra f o r expec ted var iance/covar iance matrix
#in MZ twins

expression=rbind (cbind (
+A C+E+t (beta )%∗%CovWplusB%∗%beta ,
+A C+t (beta )%∗%CovB%∗%beta ,
t (beta )%∗%CovWplusB ,
t (beta )%∗% CovB) ,

cbind (
+A C+t (beta )%∗%CovB%∗%beta ,
+A C+E+t (beta )%∗%CovWplusB%∗%beta ,
t (beta )%∗%CovB ,
t (beta )%∗%CovWplusB) ,

cbind (
%BsulpWvoC ∗%beta ,

%BvoC ∗%beta ,
,)BvoC,BsulpWvoC

cbind (
%BvoC ∗%beta ,

%BsulpWvoC ∗%beta ,
,))BsulpWvoC,BvoC

,)”ZMvoCpxe”=eman

#Algebra f o r expec ted var iance/covar iance matrix
#in DZ twins

expression=rbind (
cbind (

+A C+E+t (beta )%∗%CovWplusB%∗%beta ,
+A%x%5.0 C+t (beta )%∗%CovB%∗%beta ,

t (beta )%∗%CovWplusB ,
t (beta )%∗%CovB) ,

cbind (
+A%x%5.0 C+t (beta )%∗%CovB%∗%beta ,

+A C+E+ t (beta )%∗%CovWplusB%∗%beta ,
t (beta )%∗%CovB ,
t (beta )%∗%CovWplusB) ,

cbind (
%BsulpWvoC ∗%beta ,

%BvoC ∗%beta ,
,)BvoC,BsulpWvoC

cbind (
%BvoC ∗%beta ,

%BsulpWvoC ∗%beta ,
,))BsulpWvoC,BvoC

,)”ZDvoCpxe”=eman

mxAlgebra (

mxAlgebra (

mxModel ( ”MZ” ,
mxData( observed=mzData , type=”raw” ) ,
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#Algebra f o r making the means a func t i on
#of the d e f i n i t i o n v a r i a b l e s

,”naeMpxe.ECAniwt”=snaem
dimnames=names(mzData ) ) ) ,

,”naeMpxe.ECAniwt”=snaem
dimnames=names( dzData ) ) ) ,

expression=MZ. ob j e c t i v e + DZ. ob j e c t i v e ,

mxFIMLObjective ( covar iance=”twinACE . expCovMZ” ,

mxModel ( ”DZ” ,
mxData( observed=dzData , type=”raw” ) ,
mxFIMLObjective ( covar iance=”twinACE . expCovDZ” ,

mxAlgebra (
name=”twin” ) ,

mxAlgebraObjective ( ” twin” )
)
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