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The pubertal height growth spurt is a distinctive feature of childhood growth reflecting both the central onset of
puberty and local growth factors. Although little is known about the underlying genetics, growth variability during
puberty correlates with adult risks for hormone-dependent cancer and adverse cardiometabolic health. The only
gene so far associated with pubertal height growth, LIN28B, pleiotropically influences childhood growth, puberty
and cancer progression, pointing to shared underlying mechanisms. To discover genetic loci influencing puber-
tal height and growth and to place them in context of overall growth and maturation, we performed genome-wide
association meta-analyses in 18 737 European samples utilizing longitudinally collected height measurements.
We found significant associations (P < 1.67 3 1028) at 10 loci, including LIN28B. Five loci associated with puber-
tal timing, all impacting multiple aspects of growth. In particular, a novel variant correlated with expression of
MAPK3, and associated both with increased prepubertal growth and earlier menarche. Another variant near
ADCY3-POMC associated with increased body mass index, reduced pubertal growth and earlier puberty.
Whereas epidemiological correlations suggest that early puberty marks a pathway from rapid prepubertal
growth to reduced final height and adult obesity, our study shows that individual loci associating with pubertal
growth have variable longitudinal growth patterns that may differ from epidemiological observations. Overall,
this study uncovers part of the complex genetic architecture linking pubertal height growth, the timing of puberty
and childhood obesity and provides new information to pinpoint processes linking these traits.
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INTRODUCTION

Postnatal height growth is a heritable complex process
characterized by rapid infant growth, slowly diminishing
mid-childhood growth and a distinct pubertal height growth
spurt. Whereas the genetics of adult stature has been evaluated
in large-scale genome-wide association (GWA) analyses (1),
few studies have addressed the molecular underpinnings of
distinct growth phases. Moreover, specific growth patterns
during childhood correlate with both altered pubertal timing
and adult health risks. For example, increased height and
body mass index (BMI) prior to puberty correlate with
advanced pubertal onset (2–4), and early puberty associates
with increased risk of adult obesity and related metabolic
traits (5–7). Still, the specific mechanisms linking these
traits remain elusive.

To elucidate part of the genetic architecture impacting
adolescent growth, we focussed primarily on the dynamic
and highly variable pubertal growth spurt that reflects both
the activation of central puberty and local growth factors
(8,9) while accounting for up to 15–20% of adult stature
(10). Narrow-sense heritability estimates place the genetic
contribution to variation in pubertal growth between 60 and
90% (11–13), and twin studies suggest a substantial propor-
tion of shared genetic variance with other phases of child-
hood growth (13). Specifically, we aimed to (i) identify
genetic variants associated with the onset, total magnitude
and tail end of the pubertal growth spurt and (ii) investigate
these variants’ longitudinal effects on overall childhood
growth and the timing of puberty (study design outlined in
Fig. 1).

Due to large variation in the timing and rate of the pubertal
growth spurt (shown schematically in Fig. 2), an accurate
model typically requires frequent height measurements span-
ning a large age range, often difficult to obtain. Furthermore,
girls enter puberty and, thus, begin their growth spurt, an
average of 2 years earlier than boys. Taking these challenges
into consideration, we aimed to characterize loci influencing
growth during puberty by leveraging heterogeneous height
measurements taken at varied ages throughout childhood
across participating cohorts to maximize statistical power.
Therefore, we modelled the pubertal height growth spurt for
GWA using three partially correlated simple measures (Sup-
plementary Material, Table S1; Fig. 2) that also partly
reflect the timing of puberty (14). In Analysis I, we targeted
the take-off phase of the growth spurt [height standard devi-
ation score (SDS) at 10 years in girls and 12 years in boys)
by reasoning that increased height relative to the population
mean in early puberty reflects either overall genetic height po-
tential or entrance into the pubertal growth spurt. Because a
large proportion of adult stature is achieved prior to the
onset of puberty, we expected a significant part of the detected
variants to associate with overall height growth potential,
whereas a minority would have specific pubertal timing
effects. In Analysis II, we assessed the overall contribution
of growth across puberty to adult height (height change SDS
between 8 years and adult) that reflects the total magnitude
of growth during the pubertal growth spurt. Finally, in Ana-
lysis III, we approximated the timing of peak height velocity
by looking at the height change SDS between age 14 years

and adult because early maturing individuals grow less
during late adolescence than late-maturing individuals, who
still have much of their remaining growth to achieve after
age 14. Similar simple height measurements across puberty
have previously proven robust in the GWA setting for detect-
ing common genetic variation influencing both height growth
and pubertal timing (15).

RESULTS

Discovery and follow-up meta-analyses reveal 10
genome-wide significant loci associated with
pubertal growth

Nine cohorts contributed partly overlapping population-based
samples (Supplementary Material, Table S2) with childhood
height measurements and approximately 2.5 million directly
genotyped or imputed SNPs to three discovery GWA analyses
(Supplementary Material, Table S3), in which we
meta-analysed data from males and females both separately
and combined for the three models. We observed significant
deviation from the expected distribution of P-values for all
three combined-gender analyses (I, II and III), males and
females separately for Analysis I and females only for Ana-
lysis II (Supplementary Material, Fig. S1A).

All three models resulted in genome-wide significant loci,
although we had most power (Supplementary Material,
Table S4) to detect loci for Analysis I (height SDS at age
10 years in girls and 12 years in boys) (Table 1). In total,
nine loci contained markers that reached P-values below the
genome-wide significance threshold corrected for testing
three primary phenotypes (P , 1.67 × 1028, after genomic
control). Of these, only rs7759938 nearby LIN28B was previ-
ously known to influence pubertal growth (15,16).

Due to the requirement of Analyses II and III to have
both childhood and adult height measurements for the same
individuals, there were no additional samples available for
follow-up of suggestive signals for these analyses. Thus, we
only performed follow-up for Analysis I. An additional
6 cohorts comprising up to 9710 samples were available for
follow-up of the 22 suggestive signals (P , 1 × 1025) for
Analysis I (Supplementary Material, Table S5). Joint analysis
of discovery and follow-up stages for Analysis I robustly con-
firmed a single novel variant, rs4788196 (P ¼ 9.49 × 10211,
n ¼ 18 737; Table 1), thus bringing the number of loci reach-
ing the genome-wide significance threshold to 10, of which 7
were associated with Analysis I.

Expression quantitative trait loci (eQTL) analysis links
rs4788196 (G) to decreased expression of nearby gene
MAPK3 and pathway analyses highlight the TGF-beta
signalling pathway and pathways in cancer

To link the identified association signals with putative bio-
logical processes, we tested all significantly associated gene
regions for association with leukocyte gene expression
levels and performed gene pathway analyses. Expression
quantitative trait loci (eQTL) analysis in whole blood (17)
linked rs960273 with the gene GNA12, as previously
reported (1), as well as highlighting a previously unknown

Human Molecular Genetics, 2013, Vol. 22, No. 13 2737

 at V
rije U

niversiteit A
m

sterdam
 on June 11, 2013

http://hm
g.oxfordjournals.org/

D
ow

nloaded from
 

http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddt104/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddt104/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddt104/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddt104/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddt104/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddt104/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddt104/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddt104/-/DC1
http://hmg.oxfordjournals.org/


role for the extracellular signal-regulated kinase 1 (MAPK3,
also known as ERK1) in prepubertal height growth (Supple-
mentary Material, Table S6). More specifically, the adoles-
cent height-increasing allele (G) at rs4788196 on 16p11.2
(Analysis I) correlated with decreased expression of
MAPK3, consistent with previous studies linking deactivation
of the gene with increased bone growth in mice (18). We
subsequently performed pathway analyses using the g:Profiler
Gene Group Functional Profiler tool [g:GOSt (19); Supple-
mentary Material, Table S7A] and MAGENTA Gene Set En-
richment Analyses [GSEA (20); Supplementary Material,
Table S7B] that commonly highlighted the TGF-beta signal-
ling pathway and pathways in cancer for loci identified in
Analysis I. Whereas g:Profiler identified the MAPK-pathway,
the GSEA showed enrichment of lower than expected
P-values for genes belonging to the TOB1 pathway, although
the individual implicated gene regions were only suggestive-
ly associated in Analysis I.

The novel locus near MAPK3 associates transiently with
height growth in childhood and earlier menarche

Although there are no published studies implicating MAPK3 in
human height growth, rare recurrent CNVs near MAPK3 on
chromosome 16p11.2 have been shown to associate with
early onset obesity (21,22). Nonetheless, the adolescent
height effect that we observed did not appear to be
CNV-mediated (Supplementary Material, Table S8). To char-
acterize the MAPK3 variant in more depth, we evaluated the
longitudinal height and BMI effects of rs4788196. We
plotted the effect size (beta) against six age bins across
puberty from 8 years to adult (Fig. 3A) and investigated
early height yearly from ages 1 to 4 (Supplementary Material,
Table S9). These analyses revealed a transient effect on height
growth for the G allele from age 4 in both males and females
that was diluted by adulthood, with no apparent effect on BMI
(Supplementary Material, Fig. S2). Finally, because rapid

Figure 1. Study design. We performed a two-stage study to detect and characterize loci influencing the pubertal phase of childhood growth. Stage 1 consisted of
locus mapping using a GWA approach on three related simple measurements of the pubertal growth spurt and joint analysis of discovery and follow-up studies of
novel variants for height SDS at age 10 years in girls and 12 years in boys (Analysis I). Validated loci were then characterized using a variety of methods in Stage
2, including genetic characterization (conditioned analysis on previously reported nearby SNPs in low or partial pairwise linkage disequilibrium with pubertal
growth signals), functional characterization (eQTL analysis of pubertal growth SNPs on the expression levels of nearby genes and pathway analysis on biological
pathways using g:Profiler and MAGENTA), characterization of the growth and maturational effects of the identified loci (on height and BMI across puberty, on
the timing of menarche for those signals not previously associated with AAM and on early height from 1 to 4 years for loci that influence the timing of menarche
and pubertal growth) and the association between BMI-increasing alleles and total pubertal growth.
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growth during childhood and early adolescence may correlate
with early timing of sexual maturation (8), we also tested
rs4788196 for association with age at menarche (AAM) (23)
and found that the height-increasing allele associated with
earlier AAM (P ¼ 1.42 × 1024, surpassing the significance
threshold of 0.007, that corresponds to a Bonferroni-correction
accounting for follow-up of seven loci not previously asso-
ciated with AAM; Supplementary Material, Table S10).

Five of the discovered pubertal growth loci are also
associated with pubertal timing, eight are adult stature
loci and one is a BMI locus

Even though the MAPK3-locus associated with both prepubertal
height growth and the timing of puberty, it showed little evi-
dence for association with adult anthropometric traits
(Table 2). Nonetheless, epidemiological data support phenotyp-
ic correlations between earlier pubertal timing, increased adult
obesity and decreased final height. To better understand how
the loci we detected contribute to a genetic link underlying
these traits, we performed a systematic analysis of all leading
SNPs significantly associated with pubertal height and growth
and noted substantial evidence for overlap (Fig. 4). Assessing
the pubertal timing effect, both based on published GWA of
AAM (23) and by in silico meta-analysis of leading signals
not previously implicated in the timing of menarche, as
described above, showed that all three discovery analysis
approaches detected pubertal timing loci (near MAPK3,
PXMP3, VGLL3, ADCY3-POMC and LIN28B). Moreover,

eight signals overlapped with adult stature loci (1), of which
ADCY3-POMC has further been implicated in childhood (24)
and adult obesity (25). However, two of our signals within
1 Mb of reported height loci showed partial linkage disequilib-
rium (r2 , 0.6) with previously published SNPs. Conditioning
for the previously reported marker revealed evidence for a
further independent association nearby CABLES1 (rs6507528;
P ¼ 0.00011) (Supplementary Material, Table S11). This
variant may represent allelic heterogeneity or partially tag the
same causative variant (26).

Longitudinal analyses across puberty show that the
identified pubertal growth loci represent both overall
growth potential and pubertal timing

To further evaluate the leading signals, we compared their
height effects longitudinally across puberty, revealing multiple
distinct growth trajectories. This approach divided the loci
associated with various measures of pubertal height and
growth into two groups based on association with pubertal
timing. One group of loci (near ZBTB38, EFEMP1,
CABLES1, ADAMTSL3 and GNA12), not associated with pu-
bertal timing, all impacted height SDS across multiple
growth phases, strongly and steadily from prepuberty to adult-
hood (Fig. 3C). Thus, these loci likely reflect overall growth
potential, rather than puberty-specific effects. In contrast, the
five pubertal timing-associated variants displayed diverse
effects on the timing and tempo of growth, both before and
during puberty (Table 2; Fig. 3A and B).

Figure 2. Schematic picture of postnatal height and the three partly correlated GWA phenotypes describing pubertal growth. Childhood and pubertal growth
rates at the 3rd, 50th and 97th percentile are shown for girls in the left panel and boys in the right panel. Growth rates during puberty vary as a consequence
of variable timing of the growth spurt. The black growth curves illustrate a growth pattern representing the mean timing of the pubertal growth spurt, whereas two
SDs early (22 SD) and late (+2 SD) timing of the pubertal growth spurt are shown in dark versus light orange in girls and dark versus light blue in boys. The
three genome-wide analysis strategies are illustrated in the bottom of each panel. Analysis I aims at capturing the take-off phase of the pubertal growth spurt and
includes a single height measurement relative to the population mean (height SDS) at age 10 years in girls and 12 years in boys. Analyses II measures the change
in relative height between age 8 years and adulthood and targets the total magnitude of pubertal growth. Analysis III, measuring the relative height change
between age 14 years and adult, targets the late end of the pubertal spurt in height growth that varies depending on the timing of peak height velocity of the
growth spurt.
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Table 1. Pubertal growth loci reaching genome-wide significance (P , 1.67 × 1028)

Discovery Follow-up Joint Discovery + Follow-up
SNP Nearby gene(s) Previously

associated
related traita

Chromosome Position
(bp)b

Effect
allele/
other
alleleb

Effect
allele
frequency

Relative height
change b (SE)c

Pd Phet Psex-het
e Relative

height change
b (SE)c

P Relative
height change
b (SE)c

P n

Analysis I: single height
Height SDS at age 10 in females and age 12 in males combined

rs6764769 ZBTB38,

RASA2

H 3 142 582 970 G/A 0.45 0.08 (0.012) 4.6 × 10210 0.52 0.35 13 960

rs7846385 PXMP3, PKIA H, AAM 8 78 322 734 C/T 0.26 0.09 (0.014) 5.27 × 10210 0.13 0.13 13 942
rs1346789 EFEMP1 H 2 55 945 556 C/T 0.22 20.08 (0.015) 1.15 × 1028 0.41 0.85 13 960
rs6507528 CABLES1 H 18 19 025 578 G/A 0.55 20.09 (0.016) 1.31 × 1028 0.44 0.2 13 160
rs1365198 ADAMTSL3 H 15 82 189 907 G/T 0.76 0.08 (0.014) 1.5 × 1028 0.66 0.41 13 946
rs4788196 MAPK3 Novel 16 29 874 935 G/A 0.44 0.06 (0.012) 6.38 × 1027 0.51 0.43 0.08 (0.021) 4.25 × 1025 0.07 (0.011) 9.49 × 10211 18 737

Height SDS at age 12 in males only
rs960273 GNA12 H 7 2 824 402 C/T 0.32 20.1 (0.018) 2.51 × 1028 0.96 5.17 × 1024 6986

Analysis II: pubertal growth
Height change SDS (8 adults) in females and males combined

rs1172294 ADCY3,

DNAJC27,

POMC

H, BMI 2 25 022 704 G/A 0.45 20.08 (0.014) 1.02 × 1028 0.87 0.92 10 799

Height change SDS (8 adults) in females only

rs7628864 VGLL3 AAM 3 86 933 308 G/A 0.38 20.11 (0.019) 3.17 × 1029 0.76 6.83 × 1026 5756

Analysis III: late pubertal growth
Height change SDS (14 adults) in females and males combined

rs7759938 LIN28B H, AAM 6 105 485 647 C/T 0.32 0.11 (0.016) 3.87 × 1029 0.23 0.23 8863

aPreviously associated related traits are adult stature (H), AAM or BMI.
bMarker position reported according to Build 36 and allele coding based on the positive strand.
cEffect sizes are change in height or growth SDS score.
dP-value adjusted for genomic control.
eP-value assessed by t-test for sexual heterogeneity.
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The locus associating with increased childhood BMI also
associates with decreased pubertal growth but not with
prepubertal height

Of the pinpointed loci associating with pubertal growth and
timing, only one had previously been associated with BMI
(Supplementary Material, Fig. S2). The strong correlation
between childhood obesity and prepubertal height (2–4) and
between prepubertal height and AAM (27) predicts that the
BMI-associated marker, rs1172294 (ADCY3-POMC), would
associate with increased prepubertal stature. However, the
variant showed no association with stature before puberty
(Fig. 3B). Nonetheless, the BMI-increasing allele (G) was
associated with earlier menarche (P ¼ 8.64 × 1026) and a
decline in pubertal growth in both males and females, as
expected. Consistently, other variants previously associated
with childhood obesity (24) showed a parallel between ele-
vated BMI and diminished growth across puberty (Supplemen-
tary Material, Table S12). We also found that rs3817334

(MTCH2), previously associated with adult (25) but not child-
hood BMI, also associated with the same decrease in overall
pubertal growth.

DISCUSSION

Taken together, the simple approach used in this study to
model the pubertal growth spurt for GWAS in more than
18 000 study subjects of European descent identified 10 sig-
nificantly associated pubertal growth loci. Utilizing unique
longitudinal childhood measurements, we described the dis-
tinct height growth and BMI effects of these variants across
puberty and noted significant longitudinal associations at
each locus. More specifically, half of the identified loci also
associated with pubertal timing and provided evidence
linking a robust novel growth and menarche locus with
MAPK3 expression levels. Despite prior association between
several genes in the MAPK-pathway and skeletal growth

Figure 3. Height across multiple growth periods for 10 pubertal growth loci. The effect size of linear regression of height SDS against genotype at six age bins
from prepuberty to adulthood was plotted longitudinally across adolescence for males (blue) and females (red). (A) MAPK3 (B) Pubertal growth loci not asso-
ciated with the timing of menarche are shown for the height-increasing allele. All these variants are also associated with adult stature. (C) Pubertal growth loci
associated with pubertal timing, shown for the menarche-advancing allele. These loci show divergent association with prepubertal growth. The x-axis represents
age and the y-axis is the effect size (beta) of the association between the indicated allele and relative height at each age. ∗P , 0.002.
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Table 2. Association of pubertal growth variants with height growth across puberty

Prepubertal height Height at early puberty Total pubertal growth Late adolescent growth Adult heightb GIANT heightc

Height SDS at 7–8 years Analysis I height SDS at
10 years in females and 12 years
in males

Analysis II height SDS change
8 years in adult

Analysis III height SDS change
14 years in adult

Adult stature SDS

SNP (allele)
nearby gene

Beta SE P Beta SE Pa Beta SE Pa Beta SE Pa Beta SE P P, N

rs7846385 (C) PXMP3
Females 0.090 0.016 3.73 3 1028 0.096 0.018 8.71 3 1028 20.057 0.021 0.006 20.043 0.023 0.068 0.03 0.019 0.114
Males 0.058 0.016 0.031 0.067 0.019 5.46 3 1024 20.009 0.009 0.696 20.068 0.026 0.008 0.038 0.02 0.055
Combined 0.074 0.012 1.48 3 10210 0.082 0.013 3.04 3 10210 20.035 0.015 0.022915 20.054 0.017 0.002 0.034 0.014 0.014 2.988 3 10210,

133 772
rs7628864 (G) VGLL3

Females 0.051 0.015 0.001 0.044 0.016 0.007 20.112 0.019 3.17 3 1029 20.059 0.021 0.006 20.029 0.017 0.087
Males 0.009 0.015 0.549 0.023 0.018 0.201 0.011 0.020 0.578 20.001 0.022 0.969 0.028 0.017 0.113
Combined 0.030 0.011 0.004 0.035 0.012 0.004 20.054 0.014 9.41 3 1025 20.031 0.015 0.043 0.00 0.012 0.967 0.6118, 133 795

rs7759938 (T) LIN28B
Females 20.042 0.014 0.003 0.004 0.017 0.792 20.027 0.020 0.169 20.112 0.022 2.89 3 1027 20.054 0.018 0.002
Males 20.046 0.014 0.001 20.011 0.018 0.547 20.020 0.021 0.327 20.074 0.023 0.002 20.045 0.018 0.011
Combined 20.044 0.010 8.80 3 1026 20.003 0.012 0.804 20.024 0.014 0.097 20.094 0.016 3.87 3 1029 20.05 0.013 1.0 3 1024 8.691 3 10218,

133 774
rs4788196 (G) MAPK3

Females 0.047 0.015 0.001 0.059 0.017 8.72 3 1024 20.0003 0.018 0.958 20.025 0.021 0.231 0.03 0.017 0.081
Males 0.061 0.015 4.51 3 1025 0.066 0.017 1.49 3 1024 0.003 0.02 0.867 20.046 0.023 0.04 0.039 0.017 0.023
Combined 0.054 0.011 3.56 3 1027 0.063 0.012 6.38 3 1027 0.001 0.014 0.921 20.035 0.015 0.023 0.035 0.012 0.004 0.003336,

133 818
rs1172294 (G) ADCY3

Females 20.001 0.013 0.945 20.006 0.017 0.718 20.078 0.019 3.16 3 1025 20.046 0.021 0.028 20.047 0.017 0.005
Males 20.016 0.014 0.246 20.045 0.017 0.01 20.08 0.02 5.97 3 1025 20.01 0.023 0.673 20.045 0.017 0.008
Combined 20.008 0.01 0.404 20.026 0.012 0.04 20.079 0.014 1.02 3 1028 20.02 0.015 0.184 20.046 0.012 1.3 3 1024 1.7 3 10213,

133 780

aP-values taken from GWA discovery analyses, genomic-control corrected.
bMeta-analysis of association results for adult stature taken from the cohorts participating in the longitudinal analyses.
cAssociation to adult stature taken from publically available results of the GIANT Consortium adult height meta-analysis (http://www.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data
_files.) Beta estimates were not available for public download.
All effect sizes are given for the menarche-advancing allele. In bold are associations reaching a P-value threshold of 0.002 (Bonferroni-corrected threshold accounting for follow-up analysis of five markers in
five analyses).

2
7

4
2

H
u

m
a

n
M

o
lecu

la
r

G
en

e
tics,

2
0

1
3

,
V

o
l.

2
2

,
N

o
.

1
3

 at Vrije Universiteit Amsterdam on June 11, 2013 http://hmg.oxfordjournals.org/ Downloaded from 

http://hmg.oxfordjournals.org/


syndromes (28–31), MAPK3 has not been associated with
human height before. Interestingly, gonadotropin-releasing
hormone, crucial for regulating the onset of puberty, activates
MAPK3 (32), providing a putative biological link between
rs4788196 and pubertal timing.

This study has several strengths. It is based on a large
dataset of rather unique longitudinal height data from multiple
well-characterized study cohorts. The two-stage approach
applied in this study enabled wide-ranging characterization
of growth and maturation phenotypes associated with the 10
leading association signals. Nonetheless, one limitation is
that the height data available for analysis varied among the
cohorts. Furthermore, the height measurements available in
most of the cohorts were not frequent enough to allow detailed
modelling of the pubertal growth spurt. To overcome the lack
of very frequent height measurements and the variability of
height assessments between cohorts, we chose to adopt an ana-
lysis strategy aiming to maximize the number of study sub-
jects. By utilizing three simple and robust height growth
estimates to model the pubertal growth spurt, in addition to ap-
plying rigorous statistical significance thresholds, we were
successfully able to identify and characterize novel loci sig-
nificantly associated with pubertal height growth. As expected,
a proportion of these loci also associated with pubertal timing,
as assessed by age of menarche, and with adult height.

In fact, our data affirm a complex genetic architecture
underlying growth, pubertal timing and adiposity. In particu-
lar, specific genetic effects may contradict epidemiological
correlations. Epidemiological studies have observed a devel-
opmental pattern linking taller prepubertal stature to earlier
puberty, accelerated skeletal maturation and short adult
stature due to early cessation of growth (2,3). Although the
majority of loci we assessed showed the expected parallel as-
sociation between early menarche and decreased overall

pubertal height growth, their prepubertal height effects
varied. Three variants (near MAPK3, PXMP3 and VGLL3) fol-
lowed the expected pattern, linking taller prepubertal stature
with earlier AAM, whereas the early puberty-associated
allele (T) at rs7759938 (LIN28B) correlated with shorter pre-
pubertal childhood height, as reported previously (15).

The relationship between puberty and adult stature is simi-
larly complex, whereas epidemiological studies show a correl-
ation between early puberty and reduced adult height (3), and
a genetic association study found that early puberty alleles
may associate with either increased or decreased adult
stature (23). An example is rs7846385 (PXMP3), for which,
contradictory to the predicted pattern, the early menarche
allele associates with increased adult height. Our results
show that tall adult height is achieved because the early-
menarche allele (C) also influences tall childhood height and
a limited reduction in total pubertal growth. These data,
thus, agree with a recent candidate gene study suggesting
that loci associated with adult height may have a stronger in-
fluence on prepubertal growth than during the pubertal growth
spurt (16). However, utilizing a genome-wide approach with
greater sample sizes, our study identifies loci previously
missed that specifically target pubertal growth, and we find
that they are associated with diverse and unique longitudinal
growth patterns. We also find that not all loci influencing pu-
bertal growth also impact adult stature.

Additionally, epidemiological studies link increased child-
hood adiposity with advanced puberty and increased prepuber-
tal height. Although all childhood BMI-increasing alleles
assessed in this study also showed an association with
decreased overall pubertal growth, at the ADCY3-POMC
locus, the same allele associated with both earlier puberty
and increased childhood BMI, but not with prepubertal
stature. The correlation between obesity and pubertal growth
may be consequential of hormonal changes associated with
childhood adiposity. However, because the same association
pattern was also present at a locus uniquely associated with
adult BMI (MTCH2), an underlying shared genetic effect
remains likely.

Given the complexity of the relationships between these de-
velopmental traits, tracking unique gene effects across mul-
tiple growth periods may help to elucidate specific pathways
linking childhood events to adult outcomes, as illustrated
here with height growth, pubertal timing and adult stature.
While epidemiological studies have described correlations
between distinct childhood growth events and adult health,
genetically defined association patterns may pinpoint molecu-
lar processes linking these traits. Characterization of these
pathways may thus provide new insight towards a better
understanding of the relationships between early growth pat-
terns, pubertal timing and adult disease risk.

MATERIALS AND METHODS

Phenotypes and study subjects

Discovery study subjects were included from cohorts partici-
pating in the Early Growth Genetics Consortium (43),
namely the Avon Longitudinal Study of Parents and Children
(ALSPAC), 1958 British Birth Cohort (BC58-T1DGC and

Figure 4. Loci associated with pubertal height and their overlap with partially
correlated phenotypes. The 10 genome-wide significant loci were assessed for
their association with the correlated traits adult stature, pubertal timing (AAM)
and adiposity (BMI) by examining previously published literature. Additional-
ly, for loci not previously associated with pubertal timing, we queried the
leading SNPs in GWA data of AAM by the ReproGen Consortium. All the pu-
bertal growth loci showed pleiotropic associations with one or more related
phenotype.
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BC58- WTCCC), Cardiovascular Risk in Young Finns Study
(YFS), Helsinki Birth Cohort Study (HBCS),
Lifestyle-Immune System-Allergy Plus Environment and Gen-
etics Study (LISAplus), Northern Finland Birth Cohort 1966
(NFBC1966), Queensland Institute of Medical Research and
Western Australia Pregnancy Study (RAINE). Cohort-specific
details for all analyses can be found in Supplementary Mater-
ial, Table S3. The data annotation, exchange and storage have
been facilitated by the SIMBioMS platform (33).

Three primary phenotypes were analysed that were defined
as follows.

Analysis I: single height: girls with height measurements
available at age 10 (+1 year) and boys with height measured
at age 12 (+1 year) were included. Sex-specific SDSs for
each individual were calculated within each study by dividing
the difference between the individual’s measured height and
the within-population height mean by the population standard
deviation (SD). A total of 14 040 samples (7161 males and
6879 females) from 9 contributing cohorts were included.

Analysis II: total pubertal growth: individuals with a child-
hood height measurement at age 8 (+1 year) and at adulthood
(≥18 years of age) were included. Height difference was cal-
culated between the two measurements, and sex-specific SDSs
of this difference were calculated within each study as
described above. Six cohorts with up to 10 799 samples
(5043 males and 5756 females) contributed to the analysis.

Analysis III: late pubertal growth: subjects with a height
measurement in adolescence at age 14 (+1 year) and at
adulthood (≥18 years of age) were included. Height differ-
ence was calculated between the two measurements, and
logarithm-transformed sex-specific Z-scores were calculated
within each study. Log tansformation was performed prior to
SDS calculation. Five cohorts with up to 9228 subjects
(4282 males and 4946 females) were included in this analysis.

Genotyping and quality control

Genome-wide genotypes were obtained using high-density
SNP arrays on Illumina and Affymetrix platforms. Before im-
putation, SNPs with minor allele frequency of ,1%, call rate
,95% or Hardy–Weinberg equilibrium P,1 × 1026 were
excluded. Samples were also excluded if they contained
duplicates, excess heterozygosity, non-European ancestry or
ambiguous gender. Imputation was performed using
IMPUTE (34) or MACH (35) for roughly 2.5 million SNPs
against HapMap Phase II (release 21 of 22). Imputed SNPs
were filtered prior to meta-analysis to exclude poorly
imputed SNPs (IMPUTE filter PROPER INFO ,0.4,
MACH filter r2 , 0.3).

GWA analyses

Within each cohort, association analyses were performed by
linear regression using an additive model across genotyped
and imputed SNPs (dosages), for males and females separate-
ly. For all analyses, age at adolescent measurement was
included as a covariate where available, and the first two prin-
cipal components were adjusted within each study sample if
necessary. For the association tests, PLINK (36), ProbABEL
(38), SNPtest (34) or MACH2QTL (35) was used.

Meta-analyses

A fixed effects inverse-variance meta-analysis model was used
to test the effect of each variant on height, total pubertal
growth or late pubertal growth separately for males and
females. Sex-specific results from each study were also
meta-analysed for each phenotype in three combined-gender
analyses. The R package MetABEL (37) (v.2.11.1) was
used to perform all meta-analyses. MetABEL corrects each
individual result for its respective genomic inflation factor
(l) according to the genomic control method for population
stratification. Subsequently, an additional genomic control
correction was applied using the overall genomic inflation
factor calculated for each of the nine meta-analysed results.
The threshold for genome-wide significance was set at a con-
servative Bonferroni-corrected threshold of P , 1.67 × 1028,
accounting for testing three primary phenotypes. A further
significance threshold of 0.002 (accounting for examining
10 loci in males and females) was applied to all follow-up ana-
lyses unless otherwise stated.

Conditional analyses

To determine whether our signals represent independent
effects on growth during puberty from previously reported
related phenotypes, we performed linear regression using an
additive model on the primary pubertal growth phenotypes,
adjusting each of the six markers (imputed genotype dose)
for the previously reported marker nearby our signal. As in
the primary analysis, age at adolescent measurement (where
available) and optional adjustment for population substructure
were included as covariates (Supplementary Material, Table S3).

Follow-up analyses of suggestive association signals

Genetic markers yielding association P-values of 1 × 1025 to
1.67 × 1028 in Analysis I and not previously associated with
related traits adult stature, AAM or BMI were selected for
follow-up genotyping (n ¼ 22). Additional cohorts partici-
pated in the follow-up analyses, including in-silico analyses
by ALSPAC (follow-up sample), Children’s Hospital of Phila-
delphia (CHOP), Finnish Twin Cohort Study, Genome-Wide
Population-Based Association Study of Extremely Overweight
Young Adults and Lifestyle- Immune System- Allergy
study & German Infant Study on the influence of Nutrition
Intervention plus environment and genetics (GINIplus; follow-
up sample). Association results for a marker showing border-
line significance, rs281379, were also provided by Netherlands
Twin Registry (NTR). De novo genotyping was done for
selected markers (success rate .98%) from Northern
Finland Birth Cohort 85–86 (NFBC8586) with TaqMan
Pre-Designed SNP Genotyping Assays on LightCycler
480 Real-Time PCR System (Roche) according to the manu-
facturer’s instructions at the Finnish Genome Center (Helsinki,
Finland).

Statistical analysis in replication samples was performed
similarly as in the discovery analyses with PLINK (36), Pro-
bABEL (38) or SNPtest (34), using linear regression models
for each of the 22 markers under an additive model, with
age at adolescent measurement and correction for population
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substructure as optional covariates. Genomic control-corrected
discovery results were meta-analysed together with the indi-
vidual linear regression results from contributing cohorts for
each SNP, using the MetABEL (37) package of R (v.2.11.1).

CNV analysis of 16p11.2

CNVs were genotyped using signal intensity distributions and
B-allele frequency of the genotyping probes with PennCNV
software (39) and adjusted for genomic waves according to
genomic GC content, as previously described (40). The
CNV scan was completed for 2310 individuals in YFS and
4931 in NFBC1966 (41).

Expression quantitative trait loci

We queried significant SNPs from the Dietary, Lifestyle, and
Genetic determinants of Obesity and Metabolic syndrome
study, an extension of FINRISK 2007. The eQTL methods
are previously published (17). Briefly, whole blood was
extracted from 518 unrelated individuals and genotyped on
the Ilumina 610-Quad SNP array. In parallel, mRNA expres-
sion was quantified with Illumina HumanHT-12 Expression
BeadChips. Linear regression was used to test association
between transcript expression levels and each SNP.

Pathway analyses

We entered the nearest gene to all signals at P , 1 × 1024

(one per locus) into the g:Profiler Gene Group Functional
Profiler tool (g:GOSt) (19), a webtool that, briefly, queries
databases of biological pathways for enrichment of user-
entered genes. For Analysis I, we also entered MAPK3
because the gene was implicated by eQTL evidence to be
functionally relevant (n ¼ 93, corresponding to 0.0003% of
all discovery signals for Analysis I). We also ran GSEA
using MAGENTA (20), a program that calculates a P-value
for each gene in the genome based on GWA results and
then searches biological databases for pathways showing
an enrichment of genes with lower than expected P-values.
Analysis II and III data are not reported here due to the lack
of significant findings.

Association analyses of age of menarche

To assess the relevance of the pubertal growth-associated var-
iants for pubertal timing, leading signals not previously impli-
cated in the timing of menarche were queried from in silico
meta-analysis data of 87 802 women published by the Repro-
Gen Consortium (23).

Cross-sectional height and BMI analyses

Height or BMI measurements from childhood to adulthood
were divided into six age bins: (i) prepuberty (6.5–8.5 years
old), (ii) early puberty (8.6–10.5 years old), (iii) mid-puberty
for females (10.6–12.5 years old), (iv) mid-puberty for males
(12.6–14.5 years old), (v) late puberty (14.6–17.5 years old)
and finally (vi) adult (.17.6 years old). In each cohort, each
marker of interest (imputed genotype dosage) was tested for

association with sex-specific height or BMI SDS for all age
bins available, using linear regression assuming an additive
model and adjusting for exact age at measurement (to the
nearest month), along with optional correction for population
stratification. A single measurement was included per study
subject per bin, with the age closest to the mean used when
more than one measurement was available. Altogether 23
SNPs were analysed for height and BMI across pubertal
growth (only significantly associated markers are reported
here). Summary statistics were meta-analysed like the
primary analyses in each age bin, separately for males and
females, for both height and BMI distinctly. Effect sizes
were plotted versus age.

Early growth analyses

Cohorts with height measurements available at 1, 2, 3 or
4 years were included, namely the CHOP, Copenhagen
Study on Asthma in Childhood, Generation R Study (Gener-
ation R), HBCS, INfancia y Medio Ambiente (Environment
and Childhood) Project (INMA), LISAplus&GINIplus, NTR,
Northern Finland Birth Cohort 1966 (NFBC1966), Prevention
and Incidence of Asthma and Mite Allergy birth cohort study
and Western Australian Pregnancy study (RAINE). Length
was measured at 12 months (range 6–18 months) and
height at 24 (range 18–30), 36 (range 30–42) and 48 (range
42–54) months. If multiple measurements per individual
were available, those closest to 12, 24, 36 or 48 months
were used. Sex- and age-adjusted SDSs were calculated
using Growth Analyser 3.0 (Dutch Growth Research Founda-
tion, Rotterdam, The Netherlands) in each study separately
(42). The sex-specific association between each marker geno-
type and length or height SDS was assessed using linear
regression, assuming an additive model. Imputed genotypes
were used, where directly assayed genotypes were unavail-
able. We meta-analysed the within-cohort sex-stratified
linear regression results using the inverse-variance method.
A fixed-effects model was assumed, using RMeta in R
(v.2.7.0).

URLS

SIMBioMS, http://www.simbioms.org/; R, http://www.r-p
roject.org/; PLINK, http://pngu.mgh.harvard.edu/~purcell/p
link/; IMPUTE, http://mathgen.stats.ox.ac.uk/impute/impute.
html; MACH, http://www.sph.umich.edu/csg/abecasis/MACH/
index.html; The International HapMap Project, http://hapmap.
ncbi.nlm.nih.gov/; GenABEL, http://www.genabel.org/; SNP
test, https://mathgen.stats.ox.ac.uk/genetics_software/snptest/
snptest.html; g:Profiler, http://biit.cs.ut.ee/gprofiler/; MAGENTA,
http://www.broadinstitute.org/mpg/magenta/; Growth Analyser,
http://www.growthanalyser.org.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at HMG online.
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