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32.1  Introduction
The “-omics” suffix denotes a discipline in biology, while the related suffix “-ome” 
signifies the object of study in this field.1 Genomics, transcriptomics, proteomics, and 
metabolomics, referring to the study of the genome (DNA), transcriptome (RNA), 
proteome (proteins), and small molecules involved in metabolism, respectively,2 cover 
the core molecules in the central dogma of biology.3 The central dogma of biology 
describes how proteins are formed by the transcription and translation of genetic 
information (genomics → transcriptomics → proteomics).3 Metabolomics, the study 
of the metabolites, that is, all small-molecules in an organism,2 and the central 
dogma together describe the omics cascade from genes to metabolites (Fig. 32.1).4 
In addition to the linear, unidirectional oriented connections in the omics cascade, 
more complex relationships exist between and within the different omics  layers, 
including feedback loops among omics levels.3 Increasingly, other omics layers, such 
as the epigenome, microbiome, glycome, phosphoproteome, lipidome, fluxome, or 
exposome, are added to the omics cascade.5 Many of these, such as the glycome or 
phosphoproteome, reflect regulatory and modulatory processes,5 others, such as the 
exposome, reflect exposures to the environment.6

Large-scale omics studies are often carried out in cohorts of unrelated individu-
als. This is, in part, because many statistical models originally designed to study 
omics data rely on standard techniques for association and regression. In the field of 
genomics, particularly for genome-wide association (GWA) studies, it was quickly 
recognized that leveraging the information contained within the many twin registries 
around the world would result in many advantages, if we properly account for the 
clustering of observations.7 This recognition spurred efforts to apply approaches, 
such as mixed models and generalized estimating equations, to account for related-
ness among participants in twin and family studies.8 Approaches that allow for the 
inclusion of related individuals led to the inclusion of large numbers of samples of 
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well-phenotyped participants from twin registries in e.g., GWA studies of migraine, 
major depression, educational attainment.9–11 However, twin designs themselves are 
powerful analytical tools for omics data beyond contributing to association studies.12 
In this chapter, we will first introduce some often studied omics domains: genomics, 
epigenomics, transcriptomics, and metabolomics. Next, for each of these domains, 
we outline the contributions made by twin studies and consider the added value of 
twin research in omics. We illustrate some designs such as the discordant twin de-
sign, in some detail and consider a combination of the classical twin design with 
genome-wide genotype data.

Genomics

Transcriptomics

Proteomics

Metabolomics

Phenotype

Transcription

Translation

FIG. 32.1  The omics cascade—the omics cascade describes the cascade from genotype to 
phenotype.
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32.2  Genomics
32.2.1  What is genomics and how do we measure the genome?
Deoxyribonucleic acid (DNA) polymer molecules contain the hereditary information 
of the organism. DNA consists of two polynucleotide chains (“strands”) that 
form a double-helical structure that is stabilized by hydrogen bonding between 
the nucleotides of both strands. These hydrogen bonds are formed between 
complementary nucleotides. There are four nucleotide types, where adenine (A) pairs 
with thymine (T) and guanine (G) pairs with cytosine (C). Segments of DNA contain 
genes, that consist of a few hundred to more than two million base pairs.13 Genes 
consist of multiple long noncoding regions called introns and shorter coding regions 
called exons.14 By coding, we mean coding for a function in the next omics layer(s). 
Originally it was believed that all genes contain the instructions to encode proteins, 
however, we now know that many genes are not protein coding. Almost all DNA 
molecules are contained in the nucleus of each cell. The cell nucleus is approximately 
5–8 µm in diameter. By contrast, unfolded human DNA is approximately 2 m in 
length. To fit DNA in the cell nucleus, DNA is packed into highly condensed structures 
called chromosomes, each of which comes in two copies (one inherited from each 
parent). Humans have 23 pairs of chromosomes: 22 autosomal chromosome pairs 
and a sex chromosome pair.13

With genome we refer to the complete set of hereditary information, where the 
word “genome” is a conjunction “gene” and “chromosome.” Therefore, genomics 
has been coined to refer to the study of the structure, function, and mapping of ge-
nomes.15 In this chapter, we focus on genomic studies characterizing the DNA se-
quence variants between individuals. We can distinguish various types of sequence 
variants, spanning from a single nucleotide to dozens of base pairs and even entire 
chromosomes. The single nucleotide variants (SNVs), also called point mutations, 
are variations (substitutions, insertions, or deletions) in a single base pair. When 
these occur in more than 1% of individuals we refer to them as single nucleotide 
polymorphisms (SNPs). Small insertions or deletions that affect several2–50 base 
pairs are called indels and substitutions of several base pairs are called block substi-
tutions.16 Differences in copy number (deletions, insertions, duplications), orienta-
tion (inversions; i.e. stretches of flipped DNA sequence), or location (translocations, 
i.e., stretches of DNA that have migrated within the genome) between individuals 
that span more than 50 base pairs are called structural variants (SVs).17 The largest 
SVs can affect whole chromosomes, as such, they are also referred to as chromo-
somal aberrations.

To characterize nucleotide sequence variations in DNA, two techniques are 
commonly used: DNA microarrays and sequencing. Microarrays typically measure 
up to 1 million SNPs, while whole-genome sequencing yields nearly 100% of the 
(structural) information of the genome. Due to the correlation structure of the DNA 
sequence, the genomic information in DNA microarray data often suffices when 
studying the relation between the genome and biological (dys)function. DNA micro-
arrays use a technology comprised of a collection of single-stranded oligonucleotide 
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probes covalently linked to a flat surface, often times on a medium analogous to a 
microscope slide. For these probes, their locations in the genome are known. Syn-
thetic oligonucleotide probes interact with highly specific genomic sequences via 
complementary base pairing (hydrogen bonding between the probe and target DNA 
sequences) in a process termed hybridization. The probes are typically designed to 
hybridize to the target sequence immediately upstream of the polymorphic nucleo-
tide. Following hybridization, fluorescently labeled nucleotides are utilized in an ex-
tension or ligation reaction to discriminate between the different alleles known to oc-
cur at that locus and are subsequently imaged utilizing a laser-powered scanner. After 
the raw intensity data for samples processed on the DNA microarray are generated; 
next steps involve genotype calling, quality control of genotypes, including tests of 
Hardy–Weinberg (HE) equilibrium of alleles, of Mendelian transmission (in family 
data), and comparison of allele frequencies to reference sets.24 DNA microarrays can 
be designed to target SNPs, either in small numbers for dedicated purposes such as 
arrays targeting (rare) exonic variants,20 or SNPs of interest for particular traits21 or 
contain genome-wide common genetic variants, such as present on the global screen-
ing array or the Axiom UK Biobank Array.22,23

DNA sequencing technologies allow for the measurement of most variants in the 
genome. DNA sequencing was first developed by Sanger in 1975, and this technique 
is now referred to as Sanger sequencing. Sanger sequencing has high accuracy, low 
throughput (it only produces a single DNA fragment at a time), the maximum se-
quence length is 1000 base pairs, is relatively expensive, and is not suitable for large-
scale sequencing projects.25 Because of its high accuracy, it is often used as a follow-
up of findings that result from other sequencing techniques. Several technological 
advances have contributed to the development of high-throughput sequencing. One 
advance was the development of polymerase chain reaction (PCR), which allows 
for massive amplification of small DNA samples, a development that improved the 
scalability of sequencing as this could be applied in multiwell plates.26 These and 
other developments led to the newer next-generation sequencing (NGS) techniques. 
A complete overview of all types of NGS techniques is outside the scope of this 
chapter, the reader is referred to, for example, a review by Goodwin, McPherson, 
and McCombie.27

32.2.2  Sequence differences between monozygotic twins
Because monozygotic (MZ) twins arise from one fertilized oocyte they are taken to 
be genetically identical; a key assumption in the classic twin design.28 While MZ 
twins are genetically identical at conception, somatic mutations can arise during cell 
division (mitosis).29 Such somatic mutations cause differences in the DNA sequence 
across different cells of the body. An individual with different populations of cells 
with different DNA sequences originating from the same zygote is called a mosaic29 
and mosaic mutations can differ between MZ twins from the same pair. Mutations 
can also arise in germ cells (germline mutations), and be transmitted to the offspring 
resulting in a constitutional mutation that is present in all cells.30 Germline mutations, 
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or pretwinning de novo mutations, are therefore shared between MZ twins, but not 
between the twins and their parents. By contrast, somatic mutations, or post-twinning 
de novo mutations, are present in only one MZ twin or even only in some of the cells 
of one twin (mosaicism). The genetic (dis)similarity of MZ twins, therefore, depends 
on the moment in life at which mutations occur. Multiple genetically different cell 
lineages within one person can also originate from different zygotes. This is referred 
to as chimerism and can arise for example if dizygotic (DZ) twin zygotes merge early 
in development.29 In contrast to gross chimerism, which is present in the majority of 
the cells in the total population of cells of a particular cell type, microchimerism is 
present in less than 1% of the total cell population. It occurs frequently, for example 
as a result of the passage of blood between mother and child during pregnancy, with 
twin chimerism as a special case and can be a source of discordance in MZ twin 
pairs.31

DNA sequencing studies suggest that the de novo SNV mutation rate in somatic 
cells is approximately 0.82 × 10−8 to 1.70 × 10−8 mutations per base per genera-
tion.32–34 Study designs utilizing MZ twins allow for distinguishing between prezy-
gotic (present in both twins of a pair) and postzygotic (present in only one twin of 
a pair) de novo mutations and to estimate the postzygotic mutation rate. A whole-
genome sequencing study of a healthy MZ twin pair and their parents obtained a rate 
of 0.97 × 10−8 per base per generation for de novo SNVs shared by the twin pair. 
For twin-specific de novo SNVs, rate of 0.34 × 10−8 base pair per generation was 
calculated for one twin and 0.04 × 10−8 base pair per generation for the other twin,34 
that is, an overall de novo SNV rate of 1.01 and 1.31 × 10–8. A comparison of whole-
genome DNA sequence data of two monozygotic twin pairs, 40 and 100 years old, 
was carried out to detect somatic mosaicism and identified 1720 putative postzygotic 
mutations in blood cells from the 40-year-old MZ twin pair and 1739 in the 100-year-
old pair.35 The identified postzygotic mutations were nonrandomly distributed across 
the genome, with enrichment for regulatory elements such as coding exons or genes 
involved in GTPase activity.

Discordances in MZ twin pairs have also been reported for chromosomal abnor-
malities, particularly for aneuploidy, where one or more chromosomes are missing 
or present in an extra copy,29 such as monosomy X (missing sex chromosome; e.g., 
Turner Syndrome), or trisomy 21 (gain of extra chromosome 21, e.g., Down Syn-
drome).36 Postzygotic de novo CNVs have been observed in for example a sample 
of 1097 unselected MZ twin pairs. One hundred fifty-three putative de novo CNVs 
were detected in peripheral blood and buccal epithelium cells, of which 58.8% were 
located in the same 15q11.2 region.37 Replication of 20 candidate CNVs with qPCR 
validated two CNVs in the same 13-year-old MZ twin pair. The twins had no large 
phenotypic discordances. The twin with three copies of both CNVs outperformed its 
cotwin (with 1 and 2 copies, respectively, for each of the CNVs) on school achieve-
ment. This study also compared CNVs derived from peripheral blood or buccal epi-
thelium cells in the complete group of 1097 MZ twin pairs. While more CNVs were 
found in DNA from blood, buccal epithelium DNA CNVs had higher concordance 
rates per twin pair.
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As de novo postzygotic mutations may arise at each cell division, it is believed 
that somatic mutations accumulate with age and that aging might even be a conse-
quence of the accelerated accumulation of somatic mutations.38 A study of twins 
and singletons investigated CNV accumulation with age.39 In a healthy cohort of 
159 MZ twin pairs and 296 singletons, CNVs were compared in a younger (≤55) 
and older (≥60) age group. In contrast to the younger group, where no large CNVs 
were detected, 3.4% of subjects in the older age group had large CNVs, indicating a 
relationship between age and CNV occurrence in peripheral blood DNA. In addition, 
for 18 MZ twin pairs (50.7–72.6 years of age at baseline), data on small CNVs were 
available longitudinally, measured ten years apart. The longitudinal data showed that 
both increases and decreases in the number of CNVs can be observed. Thus, CNVs 
appear to accumulate with age, but the populations of peripheral blood cells with 
CNVs are not stable.

The discordant MZ design also is a tool to identify trait- or disorder-associated 
genetic variants. An early study of whole-genome sequencing in MZ discordant 
twins was published in 2010.40 In addition to whole-genome DNA sequencing, this 
study also included data on mRNA sequencing, genome-wide SNP microarrays, and 
DNA methylation profiles with the objective to identify genetic, transcriptomic, and 
epigenetic differences between CD4+ T cells of three pairs of MZ twins discordant 
for multiple sclerosis (MS). Differences in SNPs, indels, CNVs, viral genome se-
quences, gene expression levels and CpG methylation levels could not be reproduc-
ibly detected in CD4+ T cells to explain MS discordance. While this early study on 
MS showed no clear differences within the MZ discordant pairs, this design has been 
applied with clearer results for CNVs. For example, comparison of CNVs in periph-
eral blood in a sample of 19 adult MZ twin pairs, of which 9 pairs were discordant 
for neurodegenerative disorders and 10 pairs were phenotypically unselected, found 
a larger number of CNVs in the disease discordant than in the other MZ twin pairs.41 
While some of the CNVs reported in the discordant MZ twins might be pathogenic 
for the neurodegenerative disorders, the authors stressed that replication in larger 
samples across multiple (relevant) tissues is necessary. As the last example, a study 
investigating the contribution of the number and the size of CNVs in attention prob-
lems identified 8 pre- and 18 post-twinning CNVs in 50 MZ twin pairs. In this group, 
for 25 MZ pairs both parents were genotyped so that pretwinning de novo CNV 
events could be detected.42 Of the three possible pretwinning de novo CNVs that 
were included in a qPCR replication study, one pretwinning de novo CNV mutation 
was confirmed, where both MZ twins had a duplication on chromosome 15q11.2. 
This region contains the gene HERC2P3, which is expressed in the human brain. 
However, both twins scored in the normal range for attention problems.

32.2.3  Sequence differences between dizygotic twins
Classical twin models assume that MZ twins are genetically identical and that 
dizygotic (DZ) twin pairs and full siblings share on average 50% of their DNA 
sequence.28 This last assumption can be tested empirically by estimating the amount 
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of genetic material that DZ twins or full siblings have inherited identical-by-descent 
(IBD). DNA segments are IBD if they are inherited from a common ancestor without 
recombination. This is in contrast to identity-by-state sharing, where DNA segments 
are identical between pairs of individuals, but do not need to derive from a common 
ancestor.43 Genome-wide microsatellite markers data and SNP data indicated that the 
proportion of IBD sharing between DZ twins and full siblings ranges from 42% to 
58%, and confirmed that the average is indeed close to 50%.44,45

32.3  Epigenomics
32.3.1  What is epigenomics and how do we measure the 
epigenome?
With the exception of de novo somatic mutations, all cells in the body have the same 
DNA sequence (except for red blood cells that do not contain DNA), and differences 
between cell functions are mainly due to differences in which parts of the DNA 
sequence are expressed in different cells. Gene expression also is modified in response 
to developmental and environmental cues46 and is under tight control through multiple 
regulating mechanisms.47 Gene expression occurs in regions of the DNA where the 
chromatin permits transcription.48 Chromatin is the macromolecular complex that 
is responsible for condensing DNA into smaller packages of chromosomes and is 
built up of nucleosomes; a segment of DNA wound around eight histone proteins.13 
Approximately 99% of a cell’s genome is located in so-called heterochromatin, a 
highly compact state where the DNA is not accessible for transcription.48 At present, 
15 distinct chromatin states have been characterized.49

Epigenomics is the comprehensive study of the mechanisms that control gene ex-
pression by influencing the accessibility of the genome for transcription and/or the abil-
ity of the transcription machinery to adhere to accessible DNA segments.48 Multiple 
systems cooperate in epigenetic control: DNA methylation (addition of a methyl group 
to DNA), histone modification (e.g., methylation or acetylation of histone proteins), 
nucleosome remodeling (change the position of the DNA wrapped around the nucleo-
somes), and noncoding RNAs (ncRNAs; which are functional RNA molecules that are 
transcribed from DNA but not translated into proteins and which can influence DNA 
methylation and histone modifications).46 Here our focus is mainly on DNA methyla-
tion, which is the best-studied epigenomic mechanism in human studies including twin 
studies and is currently the only one that is suited for assessment in large-scale human 
epidemiological studies. The relationship between DNA methylation and transcription 
depends on the genomic context: whereas DNA methylation at gene promoters is usu-
ally associated with transcriptional repression, gene body methylation is a feature of 
actively transcribed genes. Methylation occurs at the C5 position of the aromatic rings 
of cytosines (5-methylcytosine). This can occur at any cytosine, but in humans, DNA 
methylation happens almost exclusively at regions of DNA where a cytosine nucleo-
tide is followed by a guanine nucleotide (CpGs). CpG sites tend to cluster in so-called 
CpG-islands, regions of at least 200 base pairs consisting of 55% or more CG sites.50
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Several methods for the analysis of epigenomics are available, of which microar-
rays and sequencing are the main ones. The most frequently used technologies make 
use of a bisulfite treatment step of the DNA. Unmethylated cytosines are converted 
to uracil by sodium bisulfite treatment.51 In PCR amplification uracil is recognized as 
thymine, as methylated cytosines are immune to the bisulfate conversion they remain 
cytosines, therefore methylated cytosines can be distinguished from unmethylated 
cytosines.52 The bisulfite-treated DNA is then introduced to a methylation microar-
ray which typically includes several hundreds of thousands of probes. The most com-
monly used Illumina microarrays return, for each interrogated site, the methylation 
level (proportion of methylated alleles).53,54 In DNA that is derived from a mixture 
of cells, such as found in whole blood, the methylation level represents a continuous 
variable with values that may range between zero and one. For example, a methyla-
tion level of 1 means that all DNA strands had a methyl group attached at this posi-
tion and a value of 0.5 that 50% of all DNA strands had a methyl group attached at 
this position. Intermediate values arise when a position is methylated in a fraction of 
cells or on one of the two chromosomes.

32.3.2  Causes of epigenetic variation
The epigenome is often discussed in the context of environmental explanations 
for diseases, but the epigenome is also shaped by genetic influences. In fact, the 
epigenome may be a key mediator of the effects of common genetic variants on 
complex traits and disease, because these variants usually reside in regulatory 
regions (rather than protein-coding regions) of the genome.55 Disease-associated 
SNPs are often associated with expression levels of transcription factors, which in 
turn drive variation in the DNA methylation level of distal binding sites.56 Large-
scale methylation Quantitative Trait Loci (mQTL) analyses can map associations 
between genetic variants (typically, SNPs) and DNA methylation levels across 
the genome.57 As MZ twins share their genomes, such mQTLs contribute to their 
epigenetic similarity. In 49 MZ twin pairs from the Netherlands Twin Register,58 
DNA methylation was measured at ∼850.000 sites in the genome with the Illumina 
EPIC array in buccal samples, which consist for about 80% of epithelial cells 
and about 20% of white blood cells. After adjusting for cellular composition, the 
methylation levels of MZ twins were more similar at CpG sites whose methylation 
level was strongly influenced by SNPs than at CpG sites for which no significant 
mQTLs were detected.

DNA methylation profiles can be seen as complex traits, or phenotypes, and dif-
ferences between individuals may be analyzed by the classical twin design to esti-
mate heritability. Data from a large cohort of twins and family members from the 
Netherlands Twin Register were analyzed to estimate the overall heritability for DNA 
methylation levels at multiple sites. As the participants were genotyped, the variance 
explained by genome-wide SNPs could also be estimated. In follow-up analyses, in-
teractions of genetic and environmental influences with age and sex were examined.59 
All results are described in a catalog (http://bbmri.researchlumc.nl/atlas/). In 2603, 
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genotyped adult individuals (mean age 37.2, sd = 13.3, 66% females), DNA methyla-
tion was measured at ∼450.000 sites in the genome with the Illumina 450 k array. 
Based on the twin data, the total heritability was 19% on average across the genome. 
On average 7% (s.d. = 12%) of the variance of DNA methylation was explained by 
common genetic variants in the genome (hSNPs

2 ). Thus, the proportion of the total heri-
tability that can be explained by SNPs, i.e., h2

SNPs/h
2 was 0.37 (s.d. = 0.40).

Epigenetic differences between MZ twins are observed in tissues collected at 
birth,60 but may also emerge postnatally: results from both cross-sectional studies 
and longitudinal studies of adult twins suggest that the epigenomes of MZ twins 
diverge as they age.59,61,62 This means that the differences between individuals 
in a population become larger as a function of age; older individuals show more 
variation in DNA methylation level at these loci. With data from MZ and DZ twins, 
the causes of age-related changes in variance (genetic and environmental) can be 
examined by adding a moderator variable to the classical twin model63 to test the 
interaction between age and the genetic and environmental effects. Such models 
have found that age-interaction effects were widespread: 10.4% of all measured 
sites showed a significant interaction effect of age and genetic or environmental 
effects on DNA methylation level.59 At 82% of sites, the unique environmental 
variance changed with age. These sites typically showed an increase in the unique 
environmental variance and total variance with age, and a decrease of the heritabil-
ity. At 90% of sites with significant age interaction, the heritability was lower at 
age 50 than at age 25, although the difference in heritability between younger and 
older people was usually modest.

The average heritability of DNA methylation in blood is almost the same in males 
(mean h2 = 0.199) and females (mean h2 = 0.198), but a small percentage (0.7% of 
all measured sites) showed a significant interaction effect of sex and genetic or envi-
ronmental effects on DNA methylation level. At 59% of these sites, the heritability 
was lower in women. At 76% of all sites with significant sex interaction, the unique 
environmental variance (rather than the additive genetic variance) differed between 
the sexes. At sites with a lower heritability in females, the variance of DNA methyla-
tion due to environmental influences was usually larger in females. Such methyla-
tion sites with sex-specific variation in epigenetic regulation can be studied in future 
epigenetic studies of diseases with a sex-specific etiology.

32.3.3  MZ discordant design applied to epigenomics studies
Differences in DNA methylation and histone modifications within MZ twin pairs 
have been reported for multiple tissues and cell types, including blood cells, buccal 
cells, and fat.64 The distinct methylomes of MZ twins are even studied by forensic 
scientists to develop tools to distinguish MZ twins in forensic settings.65–70 Epigenetic 
differences between MZ twins can arise from stochastic (random) events, different 
environmental exposures of cotwins, and genetic mutations. Here, we highlight a few 
studies investigating epigenetic differences in (MZ) twins, for more detail, we refer 
the reader to review articles on this topic.64,71,72



556 CHAPTER 32  Twins and omics: the role of twin studies in multi-omics

Stochastic variation can result from the imperfect molecular control of gene 
expression. For example, the maintenance of DNA methylation in dividing cells 
by DNA methyltransferases (DNA MTase, DNMT) enzymes is not 100% accurate. 
Differences in exposures and lifestyle, such as smoking behavior impact of on the 
epigenome of circulating cells. MZ twin pairs who are discordant for smoking show 
DNA methylation differences at several loci in white blood cells.73 This study of 
20 MZ pairs of which one twin smoked regularly and the cotwin never smoked 
or had stopped smoking more than 10 years ago confirmed several loci identified 
previously in epigenome-wide association studies (EWAS) that compared unrelated 
smokers to nonsmokers. Note that a key strength of the MZ twin design is that many 
alternative explanations are ruled out, because MZ twins are genetically identical. 
For example, one of the most strongly associated genetic variants for nicotine de-
pendence is located in the DNA methyltransferase gene DNMT3B,74 which might 
lead to differences in genome-wide DNA methylation between people with differ-
ent genotypes at this gene, regardless of their smoking behavior. This would be an 
example of a pleiotropic genetic effect, where a genotype influences genome-wide 
DNA methylation as well as smoking behavior. Because MZ twins carry the same 
genetic predisposition for nicotine dependence, potential pleiotropic effects of ge-
netic variants that influence multiple traits independently are not an issue in MZ 
twin studies.

Epigenetic differences between MZ twins may cause different usage of the identi-
cal DNA code. This can lead to extreme phenotypic differences,36 as illustrated by 
the study of one MZ pair, in which one twin had a severe congenital caudal duplica-
tion malformation and the other did not.75 There was a very strong candidate gene 
for the disorder, for which no DNA sequence differences were found. However, this 
gene showed strong epigenetic differences between the two girls.

Not all epigenetic differences that are observed in monozygotic twin pairs lead 
to phenotypic discordance. If the two twins are measured on, for example, different 
days, on different arrays, technical variation can lead to dissimilarity. Differences 
between twins in the cellular composition of blood samples can also contribute to 
differences in DNA methylation between MZ twins. Epigenetic differences can of 
course arise as a result of a disease of one twin, can represent a marker of a disease-
causing event, or can be caused by medication use of the affected twin. This opens up 
possibilities for the identification of dynamic epigenetic biomarkers (those that indi-
cate the emergence and progression of a disease or that indicate current exposure to 
a risk factor) and persistent epigenetic biomarkers of environmental exposures in the 
past.76 A study of 45 MZ twin pairs discordant for MS measured genome-wide DNA 
methylation in peripheral blood mononuclear cells and identified disease-associated 
methylation sites, loci where differences between twins in methylation level reflect 
whether a person is currently receiving interferon-beta treatment, and a locus whose 
methylation level reflected prior glucocorticoid treatment.77 Epigenomic studies in 
MZ twins can have more power than traditional case-control EWA studies78 and can 
contribute to our understanding of the underlying pathways and consequences of 
disease and to the identification of biomarkers.
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32.4  Transcriptomics
32.4.1  What is transcriptomics and how do we measure the 
transcriptome?
The mechanism by which cells copy DNA information into ribonucleic acid (RNA) is 
called transcription. In contrast to DNA, RNA is single-stranded and it contains uracil 
(U) bases instead of the thymine (T) bases found in DNA.14 During transcription one 
of the two DNA strands acts as a template for RNA synthesis. The sequence of the 
RNA is synthesized complementary to the nucleotides of the antisense DNA strand 
and is therefore a copy of the sense strand (with exception for the substitution of 
U for T). The entire length of a gene, both introns and exons, is transcribed. Next, 
RNA splicing removes the introns and combines the exons. Not all exons of a gene 
need be included in the final RNA transcript. Through alternative splicing, different 
combinations of exons allow for the production of different proteins from the same 
gene.14 Such protein-encoding RNA transcripts are referred to as messenger RNA 
(mRNA). Other types of RNA include ribosomal (rRNA; which forms the core of 
ribosomes where mRNA is translated to proteins), transfer RNA (tRNA; which 
is involved in the process of translation of mRNA into proteins by connecting 
amino acids for incorporation into the protein), and microRNA (miRNA; which 
is involved in regulation of gene expression).14,79 The analysis of the complete set 
of transcripts (RNAs) in a cell or the study of RNA or RNA variants is known as 
transcriptomics, often also referred to as gene expression studies. Similar to other 
omics, two techniques are common to study the transcriptome: microarrays and RNA 
sequencing (RNA-Seq).19

32.4.2  Causes of variation in gene expression levels
Like DNA methylation profiles, transcriptome profiles can be regarded as complex 
phenotypes, and differences between individuals may be analyzed by the classical 
twin design to decompose variation into genetic and nongenetic variance components. 
These analyses provide heritability estimates of gene expression which gives an 
indication of the extent to which the DNA sequence regulates its own expression. 
Below we give two illustrations of how twin studies shed light on the causes of 
variation in gene expression. Both studies derive from the Netherlands Twin 
Register. Wright et al. (2014) employed several methods to analyze variation in RNA 
microarray data. These included a classical twin design with MZ and DZ twin pairs, 
and a design with genotyped DZ twin pairs to obtain SNP-heritability estimates.80 
Gene expression of 18,392 genes was assessed in peripheral blood samples obtained 
from 2752 twins, including 690 complete MZ and 618 complete DZ twin pairs. 
Twin-based heritability across all RNA probes was 0.10 (sd = 0.14). To assess the 
contribution of heritability attributable to local genetic variation, SNPs were selected 
that were located 1 mega base upstream of a transcription start site and 1 mega base 
downstream of a transcription end site. Estimates of IBD sharing in DZ-twin pairs 
for these SNPs were used to estimate the ratio of h2

local IBD (that is, the variance in 
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gene expression level explained by all local genetic variants; both common and rare) 
to overall narrow-sense heritability of gene expression levels. The mean and median 
for the h2

local IBD/h2 ratio were 0.11 and 0.30, respectively, across all RNA probes. 
Second, local r2

Socal SNP (that is, the variance in gene expression level explained by 
most significant local SNP within 1 Mb) was estimated in unrelated participants 
using the GCTA software.82 The ratio of r2

local SNP to h2 had a mean = 0.04 and 
median = 0.09. These 2 sets of estimates are consistent with a higher explained 
variation from the total local contribution of a region.

The second study by Ouwens et al. (2020) focused on RNA sequence data and 
included a subsample of these same twin pairs. Classical twin and GRM- (Genetic 
Relatedness Matrices, based on SNP data) approaches were used to decompose tran-
scriptome variation from RNA sequence data into genetic and nongenetic variance 
components.81 Peripheral blood gene expression was obtained for 52844 genes in 
1497 twins, including 459 complete MZ and 150 complete DZ twin pairs.81 Herita-
bility of gene expression profiles based the classic twin design, was 0.20 on average. 
The mean contribution of the shared environment was 0.05 and the mean contribu-
tion of the unique (unshared) environment was 0.75. Next, this total (twin-based) 
heritability was compared to the heritability which could be attributed to genome-
wide SNP data. This was accomplished by creating two GRMs: one GRM containing 
all SNPs in a 250 kb window of a gene (referred to as cis), and one GRM including 
all autosomal SNPs for closely-related individuals in the dataset. Because of the 
large number of related individuals this last GRM captures genetic variance tagged 
by substantial IBD sharing, with the sum of the two effects being roughly equal to the 
total heritability, which contains the genetic variation in the cis-window a gene (h2

cis) 
and the residual heritability (h2

res). With this approach, an average total heritability 
of 0.26 was found, which correlated 0.98 with the h2 estimate obtained from twin 
modeling. The mean cis-heritability (h2

cis; that is, the variance in gene expression 
level explained by local SNPs) was 0.06, and a mean residual heritability of 0.20.

Both these studies were conducted in peripheral blood samples; however, gene 
expression can be tissue specific.83 For example, a study in 856 female twins (154 
complete MZ and 232 complete DZ twin pairs) investigated the heritability of ex-
pressed transcripts and performed cis- and trans-eQTL analysis of adipose and skin 
tissue and lymphoblastoid cell lines (LCL).84 Average heritability for these three 
tissue-types was 0.26 for adipose, 0.16 for skin, and 0.21 for LCL-based gene ex-
pression. The study also reported 3529, 2796, and 4625 adipose, skin and LCL cis-
eQTLs, and 639, 609, and 557 adipose, skin and LCL trans-eQTLs, respectively.

Multivariate extensions of the classic twin design are valuable to characterize the 
genetic and environmental correlations between multiple outcome traits, for example, 
between expression levels of different genes, or between gene expression levels and 
complex traits or diseases. A significant genetic correlation between multiple out-
come traits indicates that the observed phenotypic correlation between those traits 
is to a significant extent caused by overlapping genetic influences. An array-based 
transcriptome-wide analysis of blood pressure in peripheral leukocytes for 391 twins 
(193 complete same-sex pairs) identified that expression of the MOK gene was 
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significantly associated with systolic blood pressure and this finding was replicated in 
an independent population cohort.85 Additionally, out of 40 genes whose expression 
levels were previously associated with blood pressure, this study replicated the effects 
of 12 genes. Heritability for the expression levels of these 12 genes ranged from 6% to 
65%. Bivariate models estimated the contribution of genes and environment to the as-
sociation of blood pressure and gene expression levels. The association of blood pres-
sure with CD97, TIPARP, and TPP3 expression levels was determined completely by 
shared genetic factors. By contrast, the association with LMNA, SLC31A2, TSC22D3, 
and TAGLN2 expression levels was determined completely by the environment. The 
association of CRIP1, F12, S100A10, TAGAP, and MOK expression levels with blood 
pressure were determined by both genetic and environmental factors.

After the successes of GWA studies for complex traits and disorders, it became 
clear that common genetic variants often did not fully account for the heritability of 
these traits as observed in twin-family studies.86,87 Gene finding for omics pheno-
types have been very successful, but for these traits we also observe a gap between 
the variance explained by omics QTLs and twin-based heritability estimates. Sev-
eral explanations for the “missing heritability” problem have been proposed.88 Most 
omics QTL studies have focused on common SNPs, while it is likely that rare genetic 
variants also contribute to the heritability of omics phenotypes. Gene–gene (GxG, or 
epistasis) and gene–environment (GxE) interactions have also been listed as possible 
reasons for “missing heritability.”88 With twin designs, both GxG and GxE effects 
have been identified for gene expression levels.89 For example, gene-by-body mass 
index (GxBMI) interactions on gene expression regulation were identified in a cohort 
of 856 female twin individuals with multitissue RNA sequencing data.90 In adipose 
tissue, this study found 16 cis and 53 trans GxBMI interactions. However, recent 
findings now strongly suggest that the “still missing heritability” of complex pheno-
types is accounted for by rare variants, in particular those in regions of the genome 
of low linkage disequilibrium.91

32.4.3  MZ discordant design applied to transcriptomics studies
The MZ discordant design has been frequently used to identify differentially 
expressed genes for various traits and disorders. Such differentially expressed genes 
may provide insight in the underlying biology of traits and disorders and could 
shed light on disease mechanisms. Below, we give two examples to illustrate the 
strength of the MZ discordant design for transcriptomics studies. Examples of other 
traits and diseases for which gene expression has been investigated in discordant 
MZ twin pairs include Type I Diabetes,92,93 Rheumatoid Arthritis,94 treatment of 
Childhood Primary Myelofibrosis,95 hormone replacement therapy,96 Parkinson’s 
Disease,97 Schizophrenia and Schizophrenia treatment,98,99 Bipolar Disorder,100 
sleep duration,101 and neurodevelopmental disorders due to trisomy’s, such as Down 
Syndrome.102,103

Our first example concerns obesity. A study of mitochondrial DNA gene ex-
pression in subcutaneous fat and peripheral leukocytes in 14 obesity-discordant 
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MZ twin pairs detected upregulation of genes involved in inflammatory pathways 
and downregulation of genes in mitochondrial branched-chain amino acid catabo-
lism in obese twins as compared to their lean cotwins.104 Additional evidence that 
obesity is associated with dysregulation of cellular metabolism and mitochondrial 
function comes from a BMI-discordant MZ study on the role of sirtuin (SIRT) 
and NAD+ biosynthesis gene expression pathways in obesity.105 The NAD+/SIRT 
pathway is involved in sensing energy levels within cells, with the SIRT proteins 
involved in, for example, mitochondrial oxidation, lipid oxidation, lipolysis, and 
adipogenesis. This study found that, compared to their leaner cotwins, heavier MZ 
twins had reduced expression of genes involved in mitochondrial unfolded protein 
responses and SIRT and NAD+ biosynthesis and increased poly-ADP ribose poly-
merase (PARP) activity in subcutaneous adipose tissue (SAT). Transcriptomics 
studies in obesity-discordant MZ twins also identified obesity subtypes based on 
transcriptomic profiles and correlations with clinical characteristics. A study in 26 
BMI-discordant MZ twin pairs revealed three distinct subgroups based on their 
molecular profiles and showed that for subgroup one the transcriptional differences 
between the heavy and leaner cotwins were benign, transcriptional differences be-
tween the MZ twins in subgroup two appeared to be characterized by downregula-
tion of mitochondrial function in the heavy twins, and subgroup three showed a 
clear inflammation pattern in addition to the downregulated mitochondrial function 
in the heavy twins.106

The second example of the MZ discordant design involves multiple pheno-
types. In order to identify differentially expressed genes for multiple phenotypes 
and integrate mean expression differences across phenotypes, Tangirala and Patel 
(2018) performed a meta-analysis of MZ discordant studies for seven phenotypes, 
based on studies from public repositories including ten or more MZ twin pairs.107 
These studies focused on ulcerative colitis, chronic fatigue syndrome, physical 
activity, intelligence quotient (IQ), intermittent allergic rhinitis, major depressive 
disorder (MDD), and obesity, with gene expression data measured in different tis-
sues, including peripheral blood, lymphoblastoid cell lines, adipose tissue, muscle 
tissue, and colon tissue. For each of the seven phenotypes, differential gene ex-
pression analysis was performed and results were meta-analyzed per phenotype 
at the gene level. In total, 5% of the genes in the datasets were significantly dif-
ferentially expressed between discordant MZ twins across all phenotypes. Little 
overlap in the differentially expressed genes was observed among the phenotypes, 
with an average overlap of 0.009%. Meta-analysis of each gene across the seven 
phenotypes identified no genes that were both overall significant and significant 
for the individual phenotypes. Differential gene expression for most genes was not 
heterogeneous across the multiple phenotypes. Overall, this study found a small 
common gene expression signature across the seven phenotypes, where 0.08% of 
the full list of differentially expressed genes (across all seven phenotypes) were in 
fact differentially expressed across all seven phenotypes in discordant MZ twins. 
The study concluded that the majority of differentially expressed genes are pheno-
type specific.
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32.4.4  Other applications of twin research in transcriptomics studies
The discordant MZ design is often expanded to include discordant DZ twin pairs 
or case-control groups of unrelated individuals. Effects in this last group represent 
associations at the population level. A comparison between the unaffected MZ twins 
from discordant pairs with healthy unrelated controls provides information regarding 
whether these two groups have comparable transcription levels, or whether unaffected 
twins exhibit a disease-related profile that is more similar (although perhaps milder) 
to that of their affected cotwin. Gene expression studies in peripheral blood samples 
for systemic autoimmune diseases, such as rheumatoid arthritis or systemic lupus 
erythematosus, reported 92–537 differentially expressed genes between probands and 
unrelated matched controls.108,109 They also reported that both human and viral gene 
expression levels of the unaffected twins were intermediate between the expression 
levels of their affected cotwin and the healthy unrelated controls. Therefore, they 
concluded that the unaffected MZ twins may be in a transitional or intermediate state 
of immune regulation.108

MZ twin pairs concordant for a disorder may still present discordant phenotypes 
with unique transcriptomics profiles. For example, miRNA expression of placenta 
samples in mono-chorionic twin pairs with (N = 17) and without (N = 16) selec-
tive intrauterine growth restriction (sIUGR) identified seven upregulated and seven 
downregulated miRNAs among the larger sIUGR twins as compared to their smaller 
cotwins.110 This study showed that pathogenesis of sIUGR is associated with miR-
NA pathways involved in organ size, cell differentiation, cell proliferation, and cell 
migration. Longitudinal designs can be strengthened by inclusion of MZ twin pairs, 
as these designs are robust for changes in gene expression profiles due to genetic li-
abilities. A longitudinal MZ design in 235 MZ twin pairs was used to assess the tran-
scriptional changes in the blood associated with cognitive ability differences over a 
10-year interval.111 While this study found no significant transcripts associated with 
cognitive level or cognitive change over time, it reported two suggestive transcripts; 
POU6F1 was negatively associated with cognitive level and MAD2L1 was positively 
associated with cognitive change. In addition, gene set enrichment analyses indi-
cated that genes involved in protein metabolism, translation, RNA metabolism, the 
immune system, and infectious diseases were correlated with lower cognitive levels 
and cognitive decline. Similar results had previously been observed in individuals 
with cognitive impairments, indicating these pathways could play a role in aging and 
cognitive aging in general.

The discordant MZ twin pair design is a valuable tool to examine causality,112 as 
illustrated by an example study that aimed to identify gene expression profiles for 
smoking behavior and to elucidate whether such gene expression profiles are cause 
or consequent of smoking.113 In two Dutch population-based cohorts peripheral 
gene expression microarray data were available for 743 current smokers, 1686 never 
smokers, and 890 former smokers (age range: 18–88 years). The study identified 
220 gene expression probes (of 132 genes) differentially expressed between current 
and never smokers, that were enriched for immune system, natural killer cells, blood 
coagulation, and cancer pathways. The expression levels of the 132 smoking-related 
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genes were compared between current and former smokers and between former and 
never smokers, as this comparison informs on the reversibility of gene expression 
levels. Six out of 132 smoking-related genes smoking had irreversible effects on gene 
expression levels, 31 out of 132 genes were slowly reversible (expression patterns 
differ between current and former smokers and between former and never smokers) 
and 94 out of 132 were reversible. Comparisons of gene expression levels of the 132 
smoking-related genes in MZ twin pairs discordant for smoking behavior (N = 56 
pairs) identified 6 differentially expressed genes, indicating these expression levels 
changed as a consequence of smoking behavior. Successful look-up of cis-eQTLs 
of the smoking-related genes in a GWA for number of cigarettes smoked per day 
suggested that GPR56 and RARRES3 expression are causative for smoking behavior. 
Thus, the majority of gene expression differences in smoking behavior are a conse-
quence rather than a cause of smoking, which can be largely reversed after cessation 
of smoking.

32.5  Metabolomics
32.5.1  What is metabolomics and how do we measure the 
metabolome?
Metabolites are the small molecules, with low molecular weight (<1 kDa), that 
are involved in cellular metabolism.114 In the human body, metabolites have 
numerous functions, including structure formation, signaling, and energy storage.115 
Metabolites can be endogenous (i.e., originate from within an organism) or 
exogenous (i.e., originate from outside of an organism, e.g., toxins, drugs, and 
nutrients)116 and are a highly diverse set of molecules that include amino acids, keto 
acids, sugars, and lipids.117 The metabolome is the complete set of metabolites that 
can be measured within a specific biofluid (e.g., serum, plasma, urine, cerebrospinal 
fluid, or saliva) or tissue sample.118 Metabolomics is the study of the metabolome of 
a biological system, for example, a tissue, cell, or entire organism.119 As the field of 
metabolomics includes a broad spectrum of molecular species of different (physical) 
chemical nature, many metabolomics subtypes focusing on specific molecule types 
have arisen. One can think of subtypes that are aimed at exogenous molecules taken 
up by the organism (drugs, nutrients), or molecules involved in specific biological 
pathways or systems (hormones, lipids). Among the most studied metabolomics 
subtypes is lipidomics, the study of lipids.120 Metabolomics strategies focusing 
on known metabolites, often of similar chemical structures, are called targeted 
metabolomics and are common in hypothesis testing. Nontargeted metabolomics 
aims for global detection of a wide range of metabolites and are commonly used to 
identify changes in metabolites between conditions without a priori knowledge of 
relevant biological pathways.121 The number and variety of measured metabolites for 
targeted and nontargeted strategies depend on the sensitivity of the chosen analytical 
chemical technology.
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Different combinations of separation and detection methods are applied in metab-
olomics.116 Nuclear magnetic resonance (NMR) spectroscopy, liquid-chromatogra-
phy mass spectrometry (LC-MS), and gas-chromatography mass spectrometry (GC-
MS) are the most widespread platforms.122 Most NMR metabolomics studies focus 
on proton (1H) NMR spectroscopy, because it has higher sensitivity then carbon 
(13C) NMR spectroscopy due to the low natural abundance of carbon (∼1.1%).123 
The identification of metabolites with 1H-NMR is based on the so-called “chemi-
cal shifts” of the signals and the relative intensity of these signals. The chemical 
shift in NMR is the variation in resonance frequencies of protons due to different 
compositions of the surrounding molecules, with respect to a reference frequency 
or sample.124 Like in nuclear magnetic imaging (MRI), an NMR signal is produced 
by aligning the spin states of all protons via a strong magnetic field. Next, an elec-
tromagnetic pulse in the radio frequency range is applied to the sample, causing the 
proton spin states to resonate. The energy emitted from the protons as they relax from 
the excited spin state to the one before the pulse is measured.125

MS determines the molecular weight of metabolites by measuring the mass to 
charge ratio (m/z).126 Prior to MS, separation is important to separate analytes with 
identical m/z values, to prevent high-abundance metabolites to dominate the MS 
spectrum, or to select which metabolites may pass into the mass spectrometer. GC- 
and LC-MS are most commonly applied in metabolomics studies. In GC-MS, metab-
olites injected into the chromatographic device are heated to approximately 300°C to 
convert them to a gaseous state. Separation of the metabolites depends on their vola-
tility, as more easily evaporated metabolites are driven through the chromatographic 
column, and subsequently to the detector, faster than less volatile metabolites.127 
LC-MS setups can be distinguished by separation on hydrophobicity or polarity. In 
reversed-phase chromotography, dissolved metabolites bind to the column (the sta-
tionary phase) based on their hydrophobic interactions with the hydrophilic liquid 
(the mobile phase) in the column. By making the mobile–mobile phase more hydro-
phobic, the metabolites are eluded from the column, toward the entrance of the mass 
spectrometer, by use of a strong hydrophobic solvent.128,129 Normal phase LC-MS 
is based on the polarity of the metabolites rather than their hydrophobicity.130 After 
separation metabolites are destructed into charged fragments. The fragment compo-
sition after destruction serves as a fingerprint for the molecule type and hence enables 
identification of a given metabolite. The gas-phase ionic fragments are generated by 
the mass spectrometer at its ionization source where molecules are charged by the re-
moval of electrons. After ionization, the ions enter the mass analyzer through which 
the ions travel based on its m/z ratio. The ionized sample hits the detector, where the 
number of separated ions with particular m/z values is recorded (mass spectrum).128

32.5.2  Causes of variation in metabolite levels
Differences in metabolite levels among individuals reflect individual differences in 
genetic make-up, physiology, lifestyle, and behavior or responses to environmental 
factors.131 Similarities in genetic and environmental backgrounds between individuals 
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result in more similar lipid profiles, as shown through hierarchical clustering of 
plasma lipids (LC-MS) in young adult twins and nontwin siblings.132,133 Twin-
family studies estimated the heritability of metabolite levels from approximately 0% 
to 80%.134–139 The average heritability observed for metabolite levels differs among 
metabolites classes. For example, one study estimated the total and SNP-based 
heritability of 1097 metabolites (UPLC-MS/MS) in plasma for 1111 individuals, 
and reported that the median total heritability for lipids was 37% and for amino acids 
40%.140 This is in contrast to heritability estimates derived from a study in 221 MZ 
and 340 DZ twin pairs, that found higher heritability estimates for NMR-measured 
lipids (range: 0.48–0.62) and lipoproteins (range: 0.50–0.76) than for amino acids 
and other small molecules (range: 0.23–0.55).141 A higher heritability for LC-MS 
measured amino acids than lipids was also seen in a family cohort.142 The same study 
reported higher heritability levels for essential amino acids than for nonessential 
amino acids. Heritability differences among lipid species were also found in twin and 
family studies of lipidomics data that reported that sphingolipids and glycerolipids 
tended to have higher heritability estimates than phospholipids.140,143,144

The influence of genetic factors on metabolites levels has also been substantiated 
through genetic association studies that successfully identified metabolite QTLs.145 
For example, in serum samples from 79 MZ twin pairs, 215 DZ twin pairs, and 413 
unrelated individuals, the genetic influence on metabolite levels as obtained from 
two metabolomics platforms were compared,146 with 160 metabolites measured on 
a targeted platform (FIA-MS/MS) and 488 metabolites on a nontargeted platform 
(combination UHPLC-MS and GC-MS), with 43 metabolites measured on both plat-
forms. The mean correlation between these 43 overlapping metabolites was 0.44, 
and 29 of these 43 metabolites were heritable on both platforms, with heritability 
estimates ranging from 0.29 to 0.72. For all metabolites on both platforms, GWA 
identified 61 significant metabolite-SNP associations at 26 independent loci. Of 
these 26 loci, 19 loci were associated with metabolites measured on one platform, 
and 7 loci were associated with six metabolites measured on both platforms. This 
study observed moderate heritability (h2 > 0.26) and correlation (r > 0.38) among 
five of the metabolites associated with the seven loci. Here, the main message is that 
genetic influences on metabolite concentrations can be observed from data generated 
by different platforms, possibly utilizing different techniques (NMR vs MS). Even 
when concentrations of the same metabolite measured by different platforms corre-
late only moderately (due to e.g. experimental differences) and have only moderate 
heritability, the interaction with genetic variants may remain detectable. This enables 
combining/extending studies based on different platforms.

Metabolite QTL information can be used to obtain additional insights into the 
genetic architecture of metabolite classes. A recent study investigated the heritability 
of 361 metabolites, in a cohort of 5117 twin-family members (mean age: 42.1), with 
an extended GRM-based approach.147 Four GRMs were obtained based on twin and 
SNP information: two GRMs defined the total (h2

total) and SNP-based heritability 
(h2

SNP), and two GRMs defined the contribution of metabolite QTLs of the same or 
of different metabolite classes. These last two GRMs included all loci from GWA and 
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(exome-) sequencing studies published between November 2008 and October 2018, 
which identified >800 loci associated with metabolite levels. In this study, the 361 
metabolites could be classified as 309 lipids and 52 organic acids and were measured 
on four different metabolomics platforms (NMR and MS). The mean and median h2

total 
for lipids both were 0.47. For the organic acids mean and median heritability were 0.41 
and 0.40. The median heritability captured by all metabolite QTLS (h2

metabolite-hits) was 
0.06 for lipids and 0.01 for organic acids and was mainly attributable to with class-
specific hits. Differences in heritability estimates among subclasses of organic acids, 
lipids, and among lipid species were investigated with mixed-effect meta-regression 
models. These analyses demonstrated that subclasses of lipids and organic acids dif-
fered significantly in h2

metabolite-hits and that higher degrees of unsaturation in phos-
phatidylcholines is associated with higher estimates of h2

metabolite-hits.
Unlike the influence of genetic factors on metabolite levels, contributions of the 

environment shared by family members has been less well characterized and here 
the classical twin design is of substantial value. An NMR metabolomics twin study 
in 221 MZ and 340 DZ twin pairs (aged 22–25 years) for 216 metabolites reported 
that a model including shared environment was the best one for only 31 metabolites 
(variance explained by shared environment ranged between 15% and 38%).141 For 
6 of these 31 metabolites shared environment explained all familial resemblance. 
Thus, shared environment influences metabolite levels for a minority of metabolites 
in a young adult population. In contrast, a family-based FIA-MS/MS metabolomics 
study in 48 individuals from 16 families (12 parents [mean age = 42] and 26 chil-
dren aged 8–18 years) reported shared environmental influences for 55 out of 147 
measured metabolites.148 A study from the Netherlands Twin Register estimated the 
contribution of genetic and shared environmental influences on 237 metabolite levels 
measured on three platforms (NMR, FIA-MS/MS, and LC-MS) in 886 MZ and 601 
DZ adult twin pairs (mean age = 35).149 A significant contribution of shared envi-
ronment was reported for 6 out of 237 metabolites (25% explained variance, range 
17%–43%) only. Together these studies indicate that the common environment does 
not play a large role in adult metabolite levels and that substantial effects are mostly 
found in studies that include younger participants or small sample sizes.

The value of multivariate extensions of the classic twin design for multiple me-
tabolites was highlighted in a study of 221 MZ and 340 DZ young adult twin pairs 
that explored the association of serum n-6 and n-3 polyunsaturated (PUFAs), mono-
saturated (MUFAs), and saturated (SFAs) fatty acids with NMR-measured lipopro-
tein particle concentrations.150 Bivariate models were applied to those metabolites 
with a phenotypic correlation of ≥0.3. The bivariate analysis of total n-6 PUFAs and 
Linoleic Acid (LA) with triglyceride and VLDL particles showed that approximately 
half (44%–56%) of the phenotypic covariance between the metabolites pairs was due 
to genetic factors. For MUFAs genetic factors explained more than half of the pheno-
typic variance between the metabolites, with bivariate heritability estimates of ∼80% 
of MUFAs and HDL-related metabolites and of 58% to 66% for MUFAs and triglyc-
eride and VLDL subclasses. Thus, shared genetic factors play a large role in explain-
ing the associations of PUFAs and MUFAs with lipoprotein particle concentrations.
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32.5.3  MZ discordant design applied to metabolomics studies
In contrast to epigenomics or transcriptomics studies, in metabolomics studies 
the MZ discordant design is less frequently applied. One example concerns an 
application to schizophrenia. An 1H-NMR metabolomics study in plasma samples 
of 21 schizophrenia discordant MZ pairs and 8 pairs of matched unaffected MZ 
pairs showed that signals for VLDL and LDL lipoproteins and aromatic metabolites 
were the most important to differentiate affected, unaffected and control twins.151 
The differentiation between affected and unaffected twins was more pronounced 
for female twin pairs. In discordant pairs, MZ twins with schizophrenia had a 23% 
increase in plasma VLDL signals and a 14% reduction in plasma aromatic metabolites 
as compared to their unaffected cotwin.

While the MZ discordant design has not often been applied as the main analysis in 
metabolomics studies, a design with discordant MZ twin pairs to test for replication 
has gained popularity. Examples include blood metabolomics profiles of food prefer-
ence and nutrition136,152–154 and a recent study of urinary metabolites and neurotrans-
mitter ratios, as measured with LC-MS and GC-MS, and childhood aggression.155 The 
discovery sample in the aggression study had 783 MZ and DZ twins, the replication 
sample 189 MZ twin pairs discordant for aggression, and had an additional validation 
sample of 183 unrelated children who had been referred to a child psychiatry clinic. 
Positive associations were reported for two metabolites and childhood aggression in 
the discovery phase. The study did not replicate or validate its findings, but provided 
suggestive evidence linking childhood aggression to metabolic dysregulation in en-
ergy metabolism, oxidative stress, and neurotransmission pathways.

32.5.4  Other application of twin research in metabolomics studies
Discordant DZ twin pairs control for shared environmental factors and partially for 
genetic factors. While such a design weakens the ability to control for genetic factors, 
inclusion of DZ pairs would increase statistical power as discordant MZ twin pairs, 
particularly longitudinally discordant MZ twin pairs, are relatively scarce. A study 
investigating the long-term effect of physical activity on the serum NMR metabolome 
selected 16 same-sex twin pairs (7 MZ and 9 DZ pairs; age range: 50–74 years) 
longitudinally discordant (32 years) for leisure-time physical activity in addition 
to three independent population cohorts with longitudinally (>5 years) active and 
inactive participants (N = 1037, mean ages: 31–52 years).156 Compared to persistently 
inactive individuals, the serum metabolome of persistently active individuals was 
characterized by lower concentrations of very-low-density lipoprotein particles, 
α1-acid glycoprotein, glucose, isoleucine, and polyunsaturated fatty acids and by 
higher concentrations of large and very large high-density lipoprotein particles and 
saturated fatty acids.

A discordant MZ twin pair design is suited for dichotomous traits such as pres-
ence or absence of disorders. For continuous traits, paired differences between MZ 
twins also inform about associations of omics profiles with such traits, adjusted for 
shared genetic, and environmental factors. A recent paper incorporated this strategy 
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to elucidate plasma metabolite profiles for metabolic risk factors.157 For 40 MZ twin 
pairs (mean age 30.7 years) 111 plasma UPLC-MS metabolites were measured as 
well as blood lipids, fasting glucose, fasting insulin, C-reactive protein (CRP), adi-
posity measures and homeostasis model assessment (HOMA). First, the 93 metabo-
lites that survived quality control were regressed against the adiposity and blood 
biochemistry measures, while accounting for twin relatedness. After correction for 
multiple testing, 18 metabolites were significantly associated with adiposity measures 
(BMI, percentage of body fat, abdominal visceral adipose tissue, and liver fat) and 
24 with blood biochemistry measures (HOMA, CRP, triglycerides, and high-density 
lipoprotein cholesterol [HDL-C]). Next, follow-up with within-twin pair moderated 
t-tests (this type of t-tests uses the square root of the moderated variance as the SD 
instead of the sample variance) showed that the associations of 9 metabolites with 
adipose measures and of 10 with blood biochemistry measures (only HDL-C) were 
independent of confounding factors shared by twins.

32.6  Twin studies in other omics domains
We have considered in some detail the value of twin studies in genomics, epigenomics, 
transcriptomics, and metabolomics, but other omics domains also benefited from 
twin research. Proteomics is the large-scale study of the entire range of proteins, the 
vital molecules that have direct involvement in cellular function,158 in a cell type 
(proteome).159 Protein synthesis is accomplished by converting the information 
contained in the mRNA sequence to amino acids, a process called translation. Decoding 
of mRNA is done by the ribosomes where mRNA travels through the ribosome to 
translate one codon (block of three mRNA nucleotides) at a time to an amino acid, 
in this process, tRNA is responsible for forming the covalent peptide bonds between 
the amino acids.14 As proteins are three-dimensional structures, folding forms the 
final protein structure. Some proteins fold spontaneously while they are released 
from the ribosome, while most others require molecular chaperones to help them fold 
correctly.160 Large-scale high-throughput proteomics studies predominantly employ 
two types of analytical strategies. The first uses analytical protein microarrays that 
rely on antigen-antibody pairing.161 While protein microarrays have good sensitivity 
and reproducibility,161 they are limited in the number of proteins, and the specific 
group of proteins or molecular pathways they can assess. Therefore, MS-based 
proteomics provides a more versatile analytical strategy.

Regardless of the analytical strategy, sample preparation for proteomics experi-
ments are labor-intensive, often involving multiple steps such as purification, enzy-
matic digestion, cell lysis, and solid-phase extraction.162 The challenges in sample 
preparation, combined with those in protein and peptide identification, means that 
large-scale proteomics studies remain relatively expensive and proteomics has not 
been as extensively studied in twins. The discordant MZ design has been applied 
to characterize proteomic profiles for BMI,163 ischemic stroke,164 bipolar disor-
der,165 fatigue,166,167 hormone replacement therapy,168 strabismus,169 and multiple 
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autoimmune disorders.170 Twin studies using various other designs have also been 
applied to proteomics studies. For example, in 15 pairs of opposite-sex DZ twins, 
sex-specific differences in LC-MS proteins of human endothelial cells were investi-
gated.171 This study reported small (average fold difference of 1.1–1.2) sex-specific 
differences in protein levels for approximately 10% of the measured proteins.

Another omics type that has benefitted from twin studies is the microbiome, 
which is the total ecological community of microorganism such as bacteria, fungi, 
and viruses that live on and inside our body.172 Techniques to examine the human 
microbiome assess both structure and function of the microbiome. The most com-
mon application is structural, aimed at cataloging which microbes are present and 
what their relative abundance is.173 This can be done by sequencing the gene that 
encodes the RNA component of the small ribosomal subunit (16S rRNA), followed 
by taxonomy of the 16S rRNA sequences.174 Twin studies suggest a greater similar-
ity for measures of relative abundance in MZ than in DZ twins.175–178 Environmental 
factors, ranging from pre- and perinatal conditions to household sharing, may be 
important contributors to the microbiome composition.178 Twin studies confirm that 
cohabiting MZ twin pairs have more similar microbiota communities than nonco-
habiting MZ twin pairs,179 and that cohabitation can make microbial strains more 
similar between twins.180 Rare SNVs in a fecal metagenomes sequencing study were 
assessed in a cohort of family members, including some twin families.181 Strain per-
sistence and within-family strain transmissions were analyzed from birth into adult-
hood. Strong evidence of transmission of maternal strains was seen for vaginally 
born infants. Later in childhood there was replacement by strains from the envi-
ronment, including those from family members, with fathers appearing to be more 
frequently donors of novel strains to other family members. Twins generally did not 
have more similar rare SNV profiles than nontwin siblings, consistent with findings 
from abundance studies.

Other omics domains can often be considered subtypes of the traditional omics 
domains. Subtypes of proteomics include for example glycomics (i.e., the study of 
glycosylation, or the attachment of glycans or carbohydrates to proteins),182 or phos-
phoproteomics (i.e., the study of proteins containing a phosphate group as a post-
translational modification).183 Fluxomics (i.e., the study of the rate of metabolite 
conversion or transportation in biochemical reaction networks),184 can be seen as a 
subtype of metabolomics. Many of these subtypes currently are not optimized for 
application on a large scale, and twin studies are scarce.

Finally, the exposome has been defined as the totality of exposure individuals 
experience over their lives.185 The exposome “summarizes” all environmental influ-
ences and is the accumulation of a person’s environmental exposures from concep-
tion onward. It characterizes the environmental exposures in space and time on omics 
and on other phenotypes or phenotypic development. The exposome comprises of 
three domains: (1) internal, (2) specific external, and (3) general external.6 The inter-
nal exposome refers to processes within the body, for example, body morphology or 
physical activity, but also encompasses the other omics layers such as the interactions 
between host and (gut) microflora (i.e., the microbiome). Specific external exposures 
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are the target of classic epidemiology studies and include exposure to environmental 
pollutants, diet, or lifestyle. General external exposures may include more general 
economic or social influences. An overview of twin studies in this research domain 
would go beyond the scope of the current chapter, but we note that twin studies indi-
cate that exposures that are commonly labeled “environment” may show substantial 
heritability.186,187

32.7  Discussion
We have considered and reviewed the value of multiple twin analytical designs in 
omics research, from the classical twin design which relies on the comparison of 
resemblance in mono- and dizygotic twin pairs to the discordant twin design. The 
classic twin design is still invaluable to determine the contribution of genetic and 
environmental factors on variation in omics levels, with one of its strengths being 
the possibility to distinguish shared and unique environment. The classic twin 
design can be extended in multiple ways. A particular strength is combining the twin 
design with genome-wide SNP data. A recent example of such a combined analysis 
investigated the heritability of blood metabolites.147 Based on the twin and SNP 
information, four genetic relatedness matrices (GRMs) among participants were 
obtained. Two GRMs defined the total and the SNP heritability. With the addition of 
two extra GRMs a distinction was made in the contribution of metabolite SNPs of 
the same or of different metabolite classes. Thus, this method relies on four GRMs: 
(1) a GRM including all autosomal SNPs for all closely-related individuals in the 
pedigree (h2

ped); (2) a GRM including all autosomal SNPs (excluding all metabolite 
QTLs ± 50 kb) for all individuals in the dataset (h2

g); (3) a GRM including the 
metabolite QTLs of a specific metabolite class for all individuals in the dataset (h2

class-

hits); and (4) a GRM including all metabolite QTLs (excluding all QTLs ± 50 kb 
as included in the third GRM) for all other metabolite classes for all individuals in 
the dataset (h2

notclass-hits). In this model, the total heritability (h2
total) is obtained by 

summing across all four heritabilities, SNP-based heritability is obtained by summing 
across the variance components obtained from the other 3 GRMs and the variance 
explained by all metabolite QTLs (h2

metabolite-hits) can be obtained by summing 
h2

class-hits and h2
notclass-hits. By specifying separate variance components for h2

class-hits 
and h2

notclass-hits metabolite QTLs of the same metabolite class were found to have 
higher heritability than metabolite QTLs of all other metabolite classes. The study 
reported nonzero median h2

notclass-hits estimates, suggesting that metabolite QTLs 
of other metabolite classes contribute to variance in metabolite levels. This may 
mean that more powerful GWA or sequencing studies will find associations of these 
QTLs for the relevant metabolites or this could be a reflection of metabolic networks 
which can span across distinct metabolite classes. This example and similar studies 
demonstrate the versatility of combining twin data with genome-wide SNP data. 
Thus, joining new omics analytical strategies with twin data will be of great benefit 
to omics research.
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Multiple popular analytical strategies in omics research may benefit from includ-
ing twin data. First, GWA studies have demonstrated that most complex traits and 
disorders have a highly polygenic nature. To capture polygenic signatures at the indi-
vidual level, polygenic scores can be constructed.188 Polygenic scores are calculated 
by computing the sum of the risk alleles an individual carries at a particular locus, 
weighted by the locus effect size, as obtained from a GWA. Similar scores can now 
be constructed from other omics data, for example, DNA methylation scores,76,189 
the epigenetic equivalent of polygenic scores. DNA methylation scores have been 
explored for traits such as BMI190 and smoking.191 DNA methylation scores hold 
promise as disease biomarkers that, in contrast to polygenic scores, can capture the 
cumulative and long-term effects of lifetime environmental exposures and the dis-
ease process itself. The MZ twin design offers a unique opportunity to examine if 
prediction of disease risk can be improved by combining polygenic scores with epi-
genetic scores. MZ twins have identical polygenic scores, yet their discordance rate 
for many diseases is high, illustrating that the accuracy of polygenic scores will never 
be perfect. Future studies can examine if epigenetic scores can aid further stratifica-
tion of disease risk in individuals with identical polygenic scores.

Second, omics data can be used to construct predictors of biological aging and 
mortality. Well-established predictors rely on epigenetic markers to create the so-
called epigenetic clocks.192 Epigenetic clocks have also been investigated in twins. 
These studies indicated that the rate of epigenetic aging of MZ cotwins age tends to 
be similar but is often not identical and these differences in epigenetic aging between 
MZ cotwins have been associated with traits such as the cerebroplacental ratio (re-
flects fetal adaptation to hypoxic conditions),193 and grip strength.194 No differences 
in epigenetic aging between MZ cotwins were reported for studies investigating, for 
example, the association with leisure-time physical activity,195 depression symptom-
atology in elderly twins,196 or cognitive functioning.197 While epigenetic clocks are 
frequently used to determine biological aging, clocks based on data from other omics 
domains are also being developed. For example, with microarray gene expression 
of T cells in a sample of 27 MZ twins (age range: 22–98) a transcriptomic signa-
ture of 125 genes could be constructed to estimate chronological age.198 This gene 
expression clock could be replicated in gene expression datasets of T cells, but had 
poor performance when calculating it using gene expression data of human muscle, 
indicating that the gene expression clock is likely tissue-specific. Similarly, a me-
tabolomics predictor for chronological age has been constructed using 56 1H-NMR 
blood metabolites as measured in 22 cohorts (N = 18,716).199 A large, positive, dif-
ference between an individual’s metabolomic and chronological age (ΔmetaboAge) 
indicates that, for a given chronological age, this individual has a relatively “old” 
blood metabolome. This has been associated with poor cardio-metabolic health in 
Dutch BBMRI (Biobanking and BioMolecular Resources Research Infrastructure) 
cohorts, and with an increased risk for future cardiovascular disease, higher mortality 
and lower functionality in independent cohorts of older individuals.

Third, in order to establish causal relationships randomized controlled trials of-
ten are the preferred method. However, for many research questions RTCs are not 
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feasible or ethical. Twin models, such as the discordant MZ twin design or methods 
investigating intra-pair differences, may serve as alternatives to assess causality.112 
Yet, the MZ discordant design does have a caveat, as de novo sequence differences 
between MZ twin pairs can occur. Furthermore, differences between MZ twins could 
be inflated by measurement error, as this introduces random divergence within twin 
pairs.

Based on cross-sectional data from MZ and DZ pairs the direction of causation 
between two traits can be assessed (Direction of Causation model) if the pattern 
of heritability and shared environmental influences is not too similar for the two 
traits.200,201 Mendelian randomization (MR) employs genetic variants as instru-
mental variables to detect a causal effect of a risk factor on a complex trait or 
disease.202 MR requires strong instrumental variables, and as most genetic vari-
ants have small effect sizes it has been proposed to combine them into polygen-
ic scores. However, many genetic variants are pleiotropic, and polygenic scores 
may violate the “no pleiotropy” assumption (instrumental variables may not have 
direct effects on the outcome) of MR. Several methods are available to include 
multiple genetic variants that are robust for the “no pleiotropy” assumption.203 
When integrating MR with the Direction of Causation twin model (MR-DoC), 
the “no pleiotropy” assumption can be relaxed and polygenic scores can serve as 
instrumental variables.204

Twin studies are also valuable in providing information on the reliability of omics 
traits and profiles, as illustrated by a study of DNA methylation profiles.205 Reli-
able methylation probes, defined as probes with a large correlation between replicate 
measures of the same DNA, have a higher heritability. In general, unreliable traits 
cannot be highly correlated in monozygotic twin pairs, and therefore the MZ correla-
tion offers a lower bound for the reliability of a trait.

The majority of the twin omics studies described here tended to focus on a single 
omics domain. However, while each of the different omics layers provides us with 
a unique picture of the underlying biology of complex traits and disorders, this is 
an incomplete picture.206 Because the multiple omics domains are interrelated and 
interact, we need to study the omics domains collectively to fully understand bio-
logical processes.207 Studies combining multiple omics domains are becoming more 
frequent, often including multiple omics layers with the purpose of providing bio-
logical or functional interpretation of the results for the first omics domain through 
study of a second (or more) omics domain. Such a strategy is applied in many GWA 
or EWA studies, were follow-up analyses investigate colocalization of the top SNPs/
CpGs with eQTLs. This type of multiomics integration is called sequential integra-
tion, when simultaneously analyzing multiple omics domains this is called parallel 
integration.208 Many methods for parallel integration of multiomics data have been 
developed in order to aid in disease classification or subtyping, biomarker prediction, 
or obtaining insight into disease biology. Most of the studies in twin samples to date 
have focused on sequential integration of multiomics data. We anticipate that com-
bining twin designs with parallel multiomics integration strategies will be of benefit 
in disease classification or subtyping and biomarker prediction.
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32.8  Conclusion
We have described the value of twin studies in genomics, epigenomics, transcriptomics, 
and metabolomics. We have discussed the application of the classical twin design 
and highlighted the benefits of the MZ discordant twin design for identifying 
omics profiles for complex traits and disorders and to inform on the causal role of 
omics domains. Much of the twin research has focused on elucidating the causes of 
variation in omics data, demonstrating the strength of the classical twin design. We 
also provided a brief overview of other omics domains that can benefit from more 
twin research in the future and have suggested analytical designs for omics studies 
that may benefit from the inclusion of twin data. Due to the wide availability of 
omics data and the methodological advances in multiomics analyses, twin studies 
with multiomics designs will likely see substantial growth in the coming years.
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