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The main aim of this study was to estimate the relative influence of genes and
environment on fasting insulin levels, which were considered a proxy of insulin
resistance. Possible sex differences in genetic and environmental influences, and
the origin of the covariance between fasting insulin and glucose were investi-
gated. Subjects were 209 pairs of middle-aged twins, divided into 5 sex-by-zy-
gosity groups. A general bivariate model and a reciprocal causation model
including fasting insulin and glucose were used in the analyses. For both quanti-
tative genetic models, a model specifying additive genetic and unique environ-
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20–25% of the variance in fasting insulin, and around 50% of the variance in
fasting glucose levels could be attributed to genetic factors. The two models
could not be discriminated on the basis of their fit to the data. A submodel of the
general bivariate model suggested that the covariance between glucose and insu-
lin has a unique environmental basis, whereas for the reciprocal causation model
both causal paths were needed to explain the phenotypic correlation between
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INTRODUCTION

Resistance to insulin-stimulated glucose uptake, also called insulin resistance or
impaired insulin sensitivity, is considered a major risk factor for progression to both
coronary heart disease (CHD) and non-insulin-dependent diabetes mellitus (NIDDM)
[Reaven, 1988; Groop and Eriksson, 1992; Beck-Nielsen and Groop, 1994; Pierce et
al., 1995]. At first, insulin-resistant individuals are able to keep a normal glucose
homeostasis by developing hyperinsulinemia [Reaven, 1988]. This compensatory re-
sponse of the endocrine pancreas is not without its price, however. Insulin resistance
and its resulting hyperinsulinemia may lead to a cluster of metabolic abnormalities,
which comprise a syndrome of interrelated risk factors for cardiovascular disease.
This syndrome is known as “syndrome X” [Reaven, 1988, 1993, 1994] or “insulin
resistance syndrome” [Haffner et al., 1992; Wajchenberg et al., 1994; Grootenhuis,
1994]. Insulin resistance is most accurately measured by the euglycemic hyperin-
sulinaemic clamp technique. This method is, however, laborious and therefore not
easily applicable in epidemiological studies. The best estimate of insulin resistance
in population studies is fasting insulin level [Laakso, 1993]. Elevated fasting insulin
precedes other features of the insulin resistance syndrome like hypertension, low
HDL cholesterol, and high triglyceride concentrations [Reaven, 1990, 1991; Haffner
et al., 1992; Reaven et al., 1996]. Moreover, evidence from large prospective studies
shows that hyperinsulinemia is an independent predictor of ischemic heart disease in
men [Fontbonne and Eschwège, 1991; Fontbonne, 1993; Deprés et al., 1996].

A number of studies have shown that insulin resistance and hyperinsulinemia
are familial characteristics, which may point to a genetic basis of insulin resistance [Lillioja
et al., 1987; Haffner et al., 1988; Bogardus et al., 1989; Erikkson et al., 1989; Gulli et al.,
1992; Martin et al., 1992; Schumacher et al., 1992; Vaag et al., 1992; Mitchell et al.,
1996; Sakul et al., 1997]. However, the search for the genetic basis of insulin action via
candidate genes and linkage analyses has, to date, been only minimally positive, leaving
most insulin resistance unexplained [Flier, 1992; Hansen, 1993; Raffel et al., 1994]. A
number of factors are held responsible for this result. First, insulin resistance may have a
polygenic basis: multiple loci with small effect may be involved [Rich, 1990; Groop and
Eriksson, 1992; Beck-Nielsen and Groop, 1994]. Furthermore the penetrance is depen-
dent on age and on lifestyle factors like smoking [Facchini et al., 1992; Attvall et al.,
1993], diet [Lovejoy and DiGirolamo, 1992; Sharma, 1992; Mayer et al., 1993], and
physical exercise [Laws and Reaven, 1991; Lampman and Schteingart, 1991; Mikines,
1992; Perseghin et al., 1996].

Quantitative genetic approaches enable estimation of the relative importance of ge-
netic and environmental influences on a phenotype, provided that the data are collected
in genetically informative subjects like, for example, nuclear families or twins. The rela-
tive influence of genes can be expressed as heritability, which is defined as the propor-
tion of population variance attributable to genetic factors. A number of studies have
estimated the heritability of fasting insulin. Iselius et al. [1982] applied a path analytic
model to data from 155 nuclear families and reported a heritability of fasting insulin of
.40 in both children and adults. Evidence was found for the effect of a single major locus
in a segregation analysis of fasting insulin on data from 16 pedigrees ascertained through
siblings with NIDDM [Schumacher et al., 1992]. A third of the variance in fasting insulin
levels was attributed to this major locus and 11.4% to polygenic inheritance. In total,
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44.5% of the variance was due to genetic factors. More recently, heritability estimates of
fasting insulin were reported in Mexican Americans (44%) [Mitchell et al., 1996] and
Pima Indians (65%) [Sakul et al. 1997]. Two twin studies, one in 178 adult women twin
pairs [Mayer et al., 1996] and one in 248 middle-aged and elderly twin pairs of both
sexes [Hong et al., 1996], rendered similar heritability estimates for fasting insulin of
0.53 and 0.48, respectively.

In normal circumstances, the concentration of blood glucose is regulated within
close boundaries [Brück, 1983]. Insulin plays an important role in blood glucose
homeostasis by stimulating the uptake of glucose in the cell. This homeostatic regu-
lation can be represented by a feedback loop between glucose and insulin. Further-
more, fasting glucose and insulin levels tend to show a positive correlation in
population samples of older age, which is probably a reflection of a weakening ho-
meostatic control of the blood glucose concentration with aging [Grootenhuis, 1994;
Beck-Nielsen and Groop, 1994].

The principal aim of this study was to estimate the relative influence of genes
and environment on fasting insulin levels, considered as a proxy for insulin resis-
tance. Sex differences in genetic and environmental estimates were investigated and
the covariance between fasting insulin and glucose was modeled. Specifically, it was
tested whether the origin of the covariance between fasting glucose and insulin lev-
els could best be explained by correlated latent factors (genetic or environmental) or
a reciprocal causation of insulin and glucose (i.e., a feedback loop on a phenotypic
level). To resolve these questions, we measured levels of fasting insulin and glucose
in middle-aged twins and used a general bivariate model and a reciprocal causation
model to quantify the contributions of genes and environment to the variance and the
covariance of these variables.

METHODS
Subjects

This study is part of a project in which cardiovascular risk factors were studied
in 213 unselected middle-aged Caucasian twin pairs aged between 34 and 63 [Snieder
et al., 1995, 1997a, 1997b; van Doornen et al., 1998]. Twins were recruited by a
variety of means, including advertisement in the media, advertisement in the infor-
mation bulletin of the Netherlands Twin Registry, and solicitation through the Dutch
Twin Club. In addition, a small number of twins who heard from the study in an-
other way volunteered to participate. Participating twins were unaware of the spe-
cific hypotheses tested and informed consent was obtained from all subjects. Data
from 4 subjects were excluded from the sample. In one subject no blood could be
obtained. Two subjects were dropped because they were insulin-dependent diabetics,
and one subject was discarded because of a glucose value higher than 7.8 mmol/l,
which is an indication of NIDDM according to WHO criteria [WHO report, 1985].
One (monozygotic) triplet was included in the sample by discarding the data from
the second born subject. In total, 204 males (age: 43.7 ± 6.5) and 218 females (age:
44.7 ± 6.8) were included in the study. In all twin pairs, zygosity was determined by
DNA fingerprinting [Jeffreys et al., 1985]. Grouped according to their zygosity and
sex, the sample consisted of the following number of twin pairs: 43 pairs of monozy-
gotic males (MZM), 39 pairs of dizygotic males (DZM), 49 pairs of monozygotic
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females (MZF), 39 pairs of dizygotic females (DZF), and 39 dizygotic pairs of op-
posite sex (DOS).

Blood Sampling and Biochemical Assays

Twins arrived at the laboratory at about 10:00 a.m. They were requested to fast,
refrain from smoking and the use of alcohol, coffee, and tea after 11:00 p.m. the
preceding night. Blood was collected by venipuncture and sampled in EDTA tubes.
The tubes were placed on ice and centrifuged promptly (30 minutes, 2,000g) at 4oC
to separate plasma from cells. Aliquots of plasma were snap-frozen using liquid ni-
trogen and stored at –20oC until processing. Fasting insulin levels were measured by
a commercial radioimunoassay kit (INS-RIA-100, Medgenix diagnostics, Brussels,
Belgium). Intra- and interassay coefficients of variation were 4.7 and 6%, respec-
tively, with a lower limit of sensitivity of 3.0 mU/L. Fasting glucose levels were
determined with a Dimension clinical chemistry system (DuPont, Wilmington, DE).
Intra- and interassay coefficients of variation were 2.6 and 2.8%, respectively. Each
time a substantial number of samples had been collected, plasma samples were sent
to the laboratory and analyzed subsequently. Analyses took place on 8 different oc-
casions in 8 different assay batches. Assays were done at the laboratory of the Uni-
versity Hospital, Leiden, The Netherlands [Nijs et al., 1990], which participates on a
regular basis in the proficiency schemes of the Dutch Foundation of Quality Control
in Clinical Chemical Hospital Laboratories. Assays are standardized with in-house,
external, and international controls and drift is tracked.

Twin Methodology

Quantitative genetic model fitting of twin data allows the separation of the ob-
served phenotypic variance into its genetic and environmental components [Neale
and Cardon, 1992]. This variance can be decomposed into several contributing fac-
tors. Additive genetic variance (G), dominance genetic variance (D), shared (com-
mon) environmental variance (C), and specific (unique) environmental variance (E).
A general univariate genetic model can be represented by the following linear struc-
tural equations:

1) Pi = hGi + dDi + cCi + eEi

2) VP = h2 + d2 + c2 + e2

where P is the phenotype of the ith individual, scaled as a deviation from zero. G, D,
C, and E can be conceived of as uncorrelated latent factors with zero mean and unit
variance. h, d, c, and e are factor loadings of the observed variable on the latent
factors and VP is the phenotypic variance. Squaring of the factor loadings yields the
different components of variance. Extension of this univariate to a bivariate model
allows exploration of the origin of the covariance between the two phenotypes [Neale
and Cardon, 1992; Falconer, 1989].

Genetic Analysis of Fasting Insulin and Glucose Levels

Thirty of the 204 males (14.7%) and 53 of the 218 females (24.3%) had fasting
insulin values below the detection limit of the assay (3 mU/L). Though it was certain
that these subjects had a measured value below 3 mU/L, which is informative from a
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clinical-diagnostic point of view, the exact value of their fasting insulin thus remained
unknown. A simple solution to this problem would be to assign a fixed value (e.g., 2
mU/L) to those subjects. This, however, leads to a truncated, and thus non-normal,
distribution of fasting insulin for both males and females, which may adversely af-
fect the quantitative genetic modeling. We, therefore, decided to account for the trun-
cation problem more accurately, within the genetic model fitting (see Appendix).

Analysis of the data of one randomly chosen member of each twin with ANOVA,
showed a significant influence of the assay batch on both fasting insulin and glucose
levels. As two members of a twin pair were always measured within the same batch,
this effect could spuriously induce an increase in twin correlation. This assay batch
effect was accounted for in the model fitting by estimating separate means for each
assay batch.

Prior to all data analysis and model fitting, fasting insulin and glucose levels
were transformed by natural logarithm to obtain a normal distribution.

Model fitting was done with Mx [Neale, 1995], a computer program specifi-
cally designed for the analysis of genetically informative data. Parameters were esti-
mated by normal-theory maximum-likelihood, where the models were fitted to the
raw data [Lange et al., 1976]. Initially, a saturated model was defined, which ac-
counted for both truncation and assay batch, and in which the initial 4 × 4 variance-
covariance matrices of glucose and insulin were estimated freely for each of the 5
sex-by-zygosity groups. Also, the initial means of glucose and insulin were esti-
mated for each sex separately. The 4 × 4 variance-covariance matrices in each of the
5 zygosity groups were expressed in terms of a bivariate genetic model. Model fit-
ting provided parameter estimates (h, d, c, e) and was done by a user defined fit
function. Submodels were compared by hierarchic χ2 tests, as the difference between
the function value for a reduced model and that of the full model (∆ 2lnL) is χ2

distributed. The degrees of freedom (df) for this test are equal to the difference be-
tween the df for the reduced and the full model.

Bivariate Genetic Models

A general bivariate model with glucose entered as the first and insulin as
the second variable and a reciprocal causation model, which is a submodel of the
general bivariate model [Heath et al., 1993], were fitted to the data. The general
bivariate model is presented in Figure 1, the reciprocal causation model in Fig-
ure 2. In both models, the observed phenotypes for twin 1 and twin 2 are shown
in squares, and latent factors are shown in circles. Of all possible latent factors,
only G and E are shown for reasons of clarity. Factor loadings of observed vari-
ables on the different latent factors are depicted beside the arrows. Correlations
between the latent genetic factors in both models are 1 in MZ twins and 0.5 in
DZ twins.

In the general bivariate model, latent factors are subdivided into genetic and
environmental factors common to glucose and insulin (Gc and Ec), and genetic and
environmental factors specific to insulin (Gs and Es). The total additive genetic vari-
ance components for insulin and glucose are VG ins = h′c2+ hs

2 and VGglu = hc
2 re-

spectively. Similar formulae apply to the total unique environmental variance
components (VE ins = e′c2+ e s

2 and VE glu = ec
2). The covariance between glucose

and insulin consists of a genetic part (hc * h′c) and an environmental part (ec * e′c).
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hc * h′c divided by the square root of the product of VGglu and VGins yields the
genetic correlation between glucose and insulin. Accordingly, ec * e′c divided by the
square root of the product of VEglu and VEins yields the environmental correlation
between glucose and insulin. Within the general bivariate model, the genetic and/or
environmental origin of the covariation between insulin and glucose can be tested by
successively setting the respective connecting paths (h′c and e′c) to zero. Total (stan-
dardized) heritability of insulin is calculated as:

h2 = (h′c 2 + hs
2)/VP ins.

Fig. 1. General bivariate model with glucose entered as the first and insulin as the second variable.
Observed phenotypes for twin 1 and twin 2 are shown in squares. Latent factors are shown in circles.
Gc and Ec reflect genetic and environmental influences common to glucose and insulin. Gs and Es

reflect genetic and environmental influences specific to insulin. Factor loadings of observed variables
on the different latent factors are depicted beside the arrows: h′c = additive genetic influence common
to glucose and insulin; hs = additive genetic influence specific for insulin; e′c = unique environmental
influence common to glucose and insulin; es = unique environmental influence specific for insulin; hc

= additive genetic influence on glucose; ec = unique environmental influence on glucose. Correlations
between the latent genetic factors are 1 in MZ twins, 0.5 in DZ twins. Although models including C
(ACE) and D (ADE) were also tested, C and D are not shown in the figure for reasons of clarity.
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Fig. 2. Reciprocal causation model for glucose and insulin. Observed phenotypes for twin 1 and twin
2 are shown in squares. Latent factors are shown in circles. G and E reflect genetic and environmental
influences on glucose and insulin. Factor loadings of observed variables on the different latent factors
are depicted beside the arrows: hins = additive genetic influence on insulin; eins = unique environmental
influence on insulin; hglu = additive genetic influence on glucose; eglu = unique environmental influ-
ence on glucose; × = causal path from insulin to glucose; y = causal path from glucose to insulin.
Correlations between the latent genetic factors are 1 in MZ twins and 0.5 in DZ twins. Although
models including C (ACE) and D (ADE) were also tested, C and D are not shown in the figure for
reasons of clarity.
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Homeostatic mechanisms can be represented by a reciprocal causation model [Turner
and Stevens, 1959]. In this case, the physiological feedback loop between glucose and
insulin, responsible for the maintainance of a constant glucose concentration in the blood
plasma [Brück, 1983], was modeled. For the reciprocal causation model, it is assumed
that the correlations between the genetic and environmental determinants of glucose with
those of insulin are all zero, which implies that the association between glucose and
insulin arises solely because of the reciprocal causal influences of insulin on glucose (x)
and glucose on insulin (y). By setting x (or y) to zero within the reciprocal model it can
be tested whether a unidirectional causation from insulin to glucose (or vice versa) is
sufficient to explain the covariation between the two variables.

As the reciprocal causation model is a submodel of the general bivariate model
[Heath et al., 1993], the fit of the two models can be compared using hierarchic χ2

tests. However, at least three “sources of variation” (G, D, C, or E) are needed to test
the reciprocal model against the general bivariate model [Neale and Cardon, 1992;
Heath et al., 1993]. If there are only two “sources of variation,” the reciprocal causa-
tion model will have the same degrees of freedom and, for models without sex dif-
ferences, will give the same fit as the general bivariate model, which means that in
that case a test of the model is not available.

Under the model as presented in Figure 2, total phenotypic variances (VP) of
insulin and glucose are equal to:

VPins = ((h2ins + e2ins) + y2(h2glu + e2glu)) / (1 – xy)2

VPglu = ((h2glu + e2glu) + x2(h2ins + e2ins)) / (1 – xy)2

These formulae show that VPins consists of a part due to variation in insulin and a
part due to variation in glucose mediated through y, the path from glucose to insulin.
The same reasoning applies to VPglu. From these formulae it follows that the addi-
tive genetic component of variance (VG) for insulin and glucose is equal to:

VGins = (h²ins + y²h²glu) / (1 – xy)²
VGglu = (h²glu + x²h²ins) / (1 – xy)²

Standardized heritabilities (h ²) for insulin and glucose can be calculated from VG

and VP: h²= VG/VP.
Sex differences in components of variance were examined by comparing gen-

eral bivariate or reciprocal models in which parameter estimates are allowed to differ
in magnitude between males and females, with a reduced model in which parameter
estimates are constrained to be equal across the sexes. In a similar way, heterogene-
ity of the means of glucose and insulin was tested across males and females. This
was done within the full model in which variances and covariances were estimated
freely for each sex-by-zygosity group.

RESULTS

In Table I, means before truncation correction and after truncation correction of
fasting insulin and glucose are shown for males and females. By hierarchic χ² tests a
significant sex difference was found for insulin (χ²[8] = 21.41, P < .01) but not for
glucose (χ²[8] = 9.07, n.s.). Insulin levels being higher in males than in females (see
Table I). In subsequent model fitting, estimates of mean insulin levels were allowed
to be different in males and females.



434 Snieder et al.

The effect of the correction for truncation only, and the correction for both trun-
cation and assay batch on the twin correlations of fasting insulin and glucose levels
in the 5 different zygosity groups can be seen in Table II. The corrections hardly
affected the twin correlations of glucose. Only after correction for both effects, cor-
relations showed the expected slight decrease. For fasting insulin, corrections had a
substantial influence on the twin correlations. Especially the correction for assay
batch induced a decrease in twin correlations. In general, after correction for trunca-
tion and assay batch, MZ correlations were larger than DZ correlations for both in-
sulin and glucose, indicating a genetic influence. For insulin, however, MZ correlations
were only slightly higher than DZ correlations, which implies that the proportion of
variance due to genetic influences on fasting insulin levels is small.

Table III shows function values (-2lnL), and hierarchic χ² tests of submodels of
the general bivariate model. In the upper part of Table III, models are shown, in
which parameter estimates are allowed to be different between the sexes. The model
estimating only additive genetic (G) and unique environmental (E) factors fitted best.
In the lower part of Table III, estimates of variance components are set equal for
males and females. Comparing the GE model without sex differences with the GE
model that included sex differences showed that parameter estimates for males and
females could be set equal without a significant loss in fit [∆(2lnL) = 9.337, df = 6].
This means that the GE model without sex differences in these variance components
offers the most parsimonious solution. The lower part of Table III also shows vari-
ous submodels of the GE model without sex differences: the origin of the covariance
between glucose and insulin was tested by successively setting the connecting paths

TABLE I. Means Before Truncation Correction and After Truncation Correction of Fasting
Insulin and Fasting Glucose for Males and Females*

Insulin (mU/l) Glucose (mmol/l)

n Before corr. After corr. Before corr. After corr.

Males 204 5.45 5.65 6.12 6.11
Females 218 4.49 4.46 5.98 6.03

*n = number of subjects. Means of fasting insulin before truncation correction were calculated after all
values below the detection limit were assigned a value of 2 mU/l. For insulin and glucose, antilogs are
reported.

TABLE II. Twin Correlations of Fasting Insulin and Glucose Levels Before Correction and After
Correction for Truncation Only (Trunc corr.), and After Correction for Both Truncation and
Assay Batch Effect (Both corr.)*

Insulin Glucose

Before Trunc. Both Before Trunc. Both
N corr. corr. corr. corr. corr. corr.

MZM 43 .41 .28 .15 .56 .54 .48
DZM 39 .10 .19 .04 .02 .02 –.03
MZF 49 .38 .44 .45 .72 .73 .61
DZF 39 .42 .45 .29 .27 .27 .19
DOS 39 .25 .21 –.06 .19 .18 .17

*N = number of twin pairs; MZF = monozygotic females; MZM = monozygotic males; DZF = dizy-
gotic females; DZM = dizygotic males; DOS = dizygotic opposite sex.
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between glucose and insulin (h′c and e′c) to zero. h′c could be set to zero without a
significant loss in fit. The best fitting general bivariate model suggests therefore, that
the covariance between glucose and insulin has a unique environmental basis.

Table IV shows function values (-2lnL), and hierarchic χ² tests of submodels of
the reciprocal causation model. Just as in Table III, the upper part of the table pre-
sents models in which parameter estimates are allowed to be different between the
sexes, and the lower part shows models in which estimates of variance components
are set equal between the sexes. Just like for the general bivariate model, a GE model
without sex differences in variance components offered the most parsimonious solu-
tion. Submodels of the GE model without sex differences, testing whether the recip-
rocal paths (x or y) could be set to zero are also shown. None of these paths could be
set to zero without a loss in fit, implicating that both causal paths are needed to
explain the phenotypic correlation between insulin and glucose.

As expected [Neale and Cardon, 1992; Heath et al., 1993], GE models without
sex differences in the general bivariate and the reciprocal causation case showed
exactly the same fit and the same degrees of freedom (compare Tables III and IV).
This means that there is no test available to compare the fit of the best fitting general
bivariate and reciprocal causation model, because such a test requires at least three
“sources of variation.”

Table V shows (unstandardized) parameter estimates and their likelihood based
95% confidence intervals for GE models with and without sex differences for both

TABLE III. Function Values (–2lnL) and Hierarchic c2 Tests of Submodels of the General
Bivariate Model, With and Without Sex Differences†

Model –2lnL df ∆df ∆(2lnL) P

Sex differences
GCE 2,661.425 961
GDE 2,660.851 961
GE 2,666.284 967 6 5.433 ns*
CE 2,677.533 967 6 16.682 <.025*

No sex differences
GCE 2,675.514 970
GDE 2,674.429 970
GE 2,675.621 973 3 1.192 ns**
CE 2,688.867 973 3 14.438 <.001**

GE
Full model 2,675.621 973
h′c=0 2,676.874 974 1 1.253 ns***
e′c=0 2,706.085 974 1 30.464 <.001***
h′c=0 & e′c=0 2,712.317 975 2 36.696 <.001***

†Submodels of the GE model without sex differences, testing for the origin of covariance between
glucose and insulin, are also shown. –2lnL = minus twice the log-likelihood; df = degrees of freedom;
∆df = (df submodel) - (df full model); ∆(2lnL) = (2lnL submodel) – (2lnL full model), P = probability;
ns = non-significant; G = additive genetic influence; D = dominance genetic influence; E = unique
environmental variance; C = shared environmental variance; h′c = additive genetic factor loading com-
mon to glucose and insulin; e′c = unique environmental factor loading common to glucose and insulin.
Most parsimonious solution is printed in boldface type.
*Compared to GDE (sex diff).
**Compared to GDE (no sex diff.).
***Compared to GE (no sex diff.).
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the general bivariate and the reciprocal causation model. Models including C or D
were not presented as the hypothesis testing showed (Tables III and IV) that they
added very little to the models.

Table VI presents standardized parameter estimates of the best fitting general
bivariate and reciprocal causation model. Heritability estimates were similar in both
models. As expected from the twin correlations heritabilities for fasting insulin lev-
els were relatively small; 20–25% of the variance in fasting insulin could be ex-
plained by genetic factors. Heritabilities for glucose levels were higher (around 50%).
In the general bivariate model the covariance between glucose and insulin could be
explained by unique environmental factors only; therefore, the genetic correlation
between insulin and glucose equaled zero (rg = 0). In the causation model reciprocal
paths were of opposite sign, which indicates a negative feedback loop.

The predicted phenotypic correlations between glucose and insulin within the
best fitting general bivariate and reciprocal causation model were .26 and .23, re-
spectively. Computed for uncorrected values, this correlation was .15 for males and
.10 for females.

DISCUSSION

This study investigated the relative contribution of genes and environment to
individual differences in fasting insulin levels, and tested for possible sex differ-
ences in estimates of these contributions. A general bivariate and a reciprocal causa-
tion model including fasting insulin and fasting glucose were used to analyze the
data. Comparison of these models enabled us to test whether the origin of the covari-
ance between fasting glucose and fasting insulin could best be explained by corre-

TABLE IV. Reciprocal Causation Models, With and Without Sex Differences†

Model –2lnL df ∆df ∆(2lnL) P

Sex differences
GCE 2,661.391 963
GDE 2,661,436 963
GE 2,664.896 967 4 3.505 ns*
CE 2,678.493 967 4 17.102 <.0025*

No sex differences
GCE 2,675.596 971
GDE 2,674.666 971
GE 2,675.621 973 2 0.025 ns**
CE 2,688.867 973 2 13.271 <.0025**

GE
Full model 2,675.621 973
x = 0 2,688.606 974 1 12.985 <.001***
y = 0 2,680.802 974 1 5.181 <.025***
x & y = 0 2,712.317 975 2 36.696 <.001***

†Submodels of the GE model without sex differences, testing whether x or y can be set to zero, are also
shown. x = causal path from insulin to glucose; y = causal path from glucose to insulin. Most parsimo-
nious solution is printed in boldface type. For further abbreviations see Table III.
*Compared to GCE (sex diff.).
**Compared to GCE (no sex diff.).
***Compared to GE (no sex diff.).
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TABLE V. Parameter Estimates (Unstandardized) and 95% Confidence Intervals for GE Models With and Without
Sex Differences for Both the General Bivariate and the Reciprocal Causation Model*

General bivariate model Reciprocal causation model

Sex difference No sex No sex diff Sex difference No sex
Males Females difference and h′c=0 Males Female difference

hc 0.72 1.07 0.90 0.94 hglu 0.89 1.14 1.03
(0.34,0.98) (0.85,1.28) (0.72,1.07) (0.77,1.09) (0.63,1.12) (0.89,1.38) (0.86,1.21)

h′c –0.23 –0.02 –0.13 fixed to 0 hins –0.24 0.83 0.60
(–0.53,0.01) (–0.28,0.23) (–0.37,0.09) (–0.74,0.76) (0.35,1.34) (0.20,0.90)

hs 0.29 0.77 0.57 0.63 eglu 0.93 0.81 0.88
(–0.49,0.67) (0.48,0.98) (0.20,0.77) (0.41,0.79) (0.77,1.15) (0.60,1.02) (0.76,1.07)

ec 1.07 0.84 0.96 0.94 eins 1.45 1.17 1.31
(0.90,1.27) (0.69,1.02) (0.85,1.10) (0.83,1.07) (1.18,1.89) (0.81,1.49) (1.09,1.69)

e′c 0.60 0.41 0.52 0.46 x 0.55 0.62 0.58
(0.37,0.82) (0.18,0.64) (0.34,0.70) (0.31,0.61) (0.28,0.87) (0.33,0.94) (0.31,0.91)

es 1.07 0.90 0.99 1.00 y –0.35 –0.36 –0.35
(0.90,1.24) (0.76,1.08) (0.88,1.13) (0.89,1.13) (–0.81,–0.04) (–0.75,–0.07) (–0.81,–0.05)

–2lnL 2666.284 2675.621 2676.874 –2lnL 2,664.896 2,675.621
df 967 973 974 df 967 973

*For abbreviations see Figures 1 and 2 and Table III.
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lated latent factors (genetic and/or environmental) or by a reciprocal causation of
insulin and glucose (a feedback loop). Before we were able to explore these issues,
we had to account for two effects within the model fitting: a truncation effect on
fasting insulin and an effect of the assay batch on both fasting glucose and insulin.

Plasma samples were analyzed on 8 different occasions using 8 different assay
batches, which had a significant influence on the means of both fasting insulin and
glucose. As two members of a twin pair were always measured in the same assay
batch, this effect could thus induce a spurious increase in twin correlations. Account-
ing for the assay batch effect in the model fitting, indeed, decreased twin correla-
tions of especially fasting insulin. For the determination of fasting insulin levels, an
assay was used with a lower detection limit of 3.0 mU/L. Thirty males (14.7%) and
53 females (24.3%) had values below this detection limit. Within the quantitative
genetic model fitting, the bivariate distribution of glucose and insulin was corrected
for this truncation effect. The combination of both the correction for truncation and
assay batch turned out to have a considerable impact on the twin correlations of
fasting insulin. This suggests that, in case variables are truncated and/or show an
assay batch effect, these corrections are highly important in order to obtain unbiased
quantitative genetic parameters estimates.

Within the general bivariate as well as the reciprocal model fitting, a model
specifying the same additive genetic and unique environmental variance components
in males and females (but allowing for a sex difference in the mean of fasting insulin
levels) gave the best explanation of the data. Heritability estimates were highly simi-
lar in both models: 20–25% of the variance in fasting insulin levels and around 50%
of the variance in fasting glucose levels could be attributed to genetic factors. The
rest of the variance could be attributed to unique environmental factors. As both the
best fitting general bivariate model and its reciprocal causation counterpart contained
only two “sources of variation” (G and E), they could not be discriminated on the
basis of their fit to the data. A submodel of the general bivariate GE model suggested
that the covariance between glucose and insulin has a unique environmental basis.
Submodels of the reciprocal causation model showed that neither of the reciprocal
paths could be set to zero without a loss in fit. Both causal paths are thus needed to
explain the phenotypic correlation between insulin and glucose. Estimates of recip-
rocal paths were of opposite sign, which indicates that the covariation between insu-
lin and glucose can be described by a negative feedback loop.

The heritability of fasting insulin levels in our study is somewhat lower com-
pared to other studies that reported on the heritability of fasting insulin. Two family

TABLE VI. Standardized Parameter Estimates From the Best Fitting General Bivariate and
Reciprocal Causation Model*

Insulin Glucose Covariation
h2 e2 h2 e2 (insulin and glucose)

General bivariate model 0.25 0.75 0.50 0.50 rg = 0.00 re = 0.42
Reciprocal causation model 0.21 0.79 0.47 0.53 x = 0.57 y = –0.35

*h2 = additive genetic variance; e2 = unique environmental variance; rg = genetic correlation between
insulin and glucose; re = environmental correlation between insulin and glucose; x = causal path from
insulin to glucose; y = causal path from glucose to insulin.
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studies in Caucasians observed values of .40 [Iselius et al., 1982] and .44 [Schumacher
et al., 1992], whereas family studies in Mexican Americans [Mitchell et al., 1996]
and Pima Indians [Sakul et al., 1997] found heritability estimates of 44 and 65%,
respectively. Similar values were found in two recently published twin studies. Mayer
et al. [1996] reported a heritability of .53 in a study of 178 adult women twin pairs,
and Hong et al. [1996] observed a value of .48 for both males and females in a
sample of 248 middle-aged and elderly twin pairs. Although the estimate of genetic
influence was higher in this last study, the lack of a sex difference in heritability of
fasting insulin is in accordance with our findings. Using a more sophisticated method
to measure insulin resistance (the hyperinsulinaemic euglycemic clamp) in Pima In-
dians, Sakul et al. [1997] found heritabilities between 38 and 61% depending on the
insulin dose and covariate adjustment. Differences in methodology, subject ascer-
tainment, and ethnicity may explain the larger heritability estimates in above-men-
tioned studies.

Insulin resistance is more prevalent and may, therefore, be more heritable in spe-
cific ethnic subgroups like the Pima Indians and Mexican Americans. Further, Schumacher
et al. [1992], only found evidence for a major gene affecting insulin levels if the variance
in insulin values attributable to body mass index (BMI) was removed. When segregation
analysis was done on the unadjusted fasting insulin values, the data were best explained
by an environmental model. The use of a supposedly environmental index in the path
model applied by Iselius et al. [1982], may have led to biases in their heritability estimate
[Rao and Vogler, 1994; Vogler et al., 1987, 1989], whereas the selection of genetically
susceptible subjects through family members with NIDDM may have led to higher heri-
tability estimates in the latter two studies.

Twins in the studies of Mayer et al. [1996] and Hong et al. [1996] were older
and less healthy compared to the twins in our study. Both studies, for example, in-
cluded subjects with NIDDM, whereas our study comprised non-diabetic twins only.
This difference in age and health may have increased heritability estimates of fasting
insulin in the previous studies. The underlying inherited susceptibility for insulin
resistance may be reflected by disproportionally high values of fasting insulin at an
older age, when environmental exposures have had the chance to fully induce the
expression of the genotype. This would imply that total variance of fasting insulin
and its genetic part, expressed as heritability, increases with age. The absence of
correlations between age and fasting insulin levels for both males (r = .004) and
females (r = –.052) in our study of relatively healthy middle-aged twins indicates
that a rise in insulin levels is more probably due to a deterioration of health with age
than to the effect of age alone. This is in accordance with a recent study from
Ferrannini et al. [1996] on the association between age and insulin resistance in 1,146
men and women, in which it was concluded that age per se is not a significant cause
of insulin resistance in healthy Europeans. Findings from Oppert et al. [1995] offer
support for above ideas. In a group of 12 healthy monozygotic twin pairs (mean age
21), a low intraclass correlation of .13 was found for fasting insulin. However, the
increase in fasting insulin in response to a long-term overfeeding protocol was highly
similar within the pairs (.71), which indicates that the insulin response to this unhealthy
environmental change is highly genetically determined.

The above considerations indicate that a low heritability of fasting insulin as
found in our study of non-diabetic middle-aged twins, does not neccesarily imply
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that heritable influences on insulin resistance are unimportant. Although genes may
not explain a large part of the variance of fasting insulin in a relatively healthy popu-
lation, a subgroup of people may be genetically susceptible to environmental influ-
ences, like a high-fat, low-fiber diet [Lovejoy and DiGirolamo, 1992; Sharma, 1992;
Mayer et al., 1993], a lack of physical activity [Laws and Reaven, 1991; Lampman
and Schteingart, 1991; Mikines, 1992; Perseghin et al., 1996], and smoking [Facchini
et al., 1992; Attvall et al., 1993], which are known to trigger development of insulin
resistance and subsequent hyperinsulinemia. Our finding that no less than 75–80%
of the variance in fasting insulin could be explained by unique environmental factors
emphasizes the importance of environmental factors. Whatever the identity of the
environmental influences on insulin resistance may be, this study shows that these
influences are not shared by family members but are specific to an individual.

Fasting insulin is an adequate surrogate for direct measurement of insulin resis-
tance in persons with normal glucose tolerance only [Laakso, 1993; Anderson et al.,
1995]. As our sample consisted of middle-aged twins, it is certainly possible that
several subjects may have had impaired glucose tolerance [Mooy, 1995]. Future studies
on the genetics of insulin resistance may want to use measures that give a good and
consistent approximation of this phenotype, even in people with impaired glucose
tolerance [Anderson et al., 1995].

Future data on the genetics of insulin resistance may provide more insight into
the causes of two major diseases of the western world: non-insulin-dependent diabe-
tes and coronary heart disease. Evidence for a genetic basis of both NIDDM [Newman
et al., 1987; Beck-Nielsen and Groop, 1994; Pierce et al., 1995; Todd, 1996; McCarthy
et al., 1994; Hanis et al., 1996] and (risk factors for) CHD [Marenberg et al., 1994;
Vogler et al., 1997] is manifold. Carmelli et al. [1994] observed that the common
latent factor mediating the clustering of hypertension, NIDDM and obesity was in-
fluenced by both genetic (59%) and environmental (41%) effects. Although the iden-
tity of this factor could not be determined from the available data, insulin resistance
was proposed by Carmelli et al. [1994] as a possible candidate. Both Mitchell et al.
[1996] and Hong et al. [1997] analyzed a number of indicators of the insulin resis-
tance syndrome in a multivariate way and concluded that there probably is a com-
mon set of genes influencing those traits. However, traditional linkage approaches to
locate the underlying genes are inappropriate for a complex trait like insulin resis-
tance [McCarthy et al., 1994]. One solution may be to measure, in addition to fast-
ing insulin, a number of other insulin-resistance-syndrome-traits in a large numbers
of unselected sib-pairs or DZ twins for use in a genome screen. The finding that
there probably is a common set of genes influencing the multiple traits of the insulin
resistance syndrome offers prospects for gene finding as Boomsma [1996] and Mar-
tin et al. [1998] have shown that multivariate genetic modeling increases the power
to locate pleiotropic quantitative trait loci. If we know which genes underlie the
insulin resistance syndrome in the normal population, we might also gain more in-
sight in possible pathophysiological mechanisms that lead to insulin resistance, CHD,
and NIDDM.

In conclusion, the low heritability of fasting insulin levels we found need not imply
that genetic influences on insulin resistance are unimportant. The importance of genetic
influences may be restricted to a subgroup of people with a genetically determined sus-
ceptibility to develop insulin resistance and subsequent hyperinsulinemia. Future studies
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on the genetics of insulin resistance also have to apply measures that show a greater
correspondence to this phenotype or analyze multiple indicators of the insulin resistance
syndrome. The substantial influence of unique environmental factors on fasting insulin,
may offer a hopeful perspective for the treatment and prevention of insulin resistance.
This is all the more important as insulin resistance is regarded a primary factor in the
development of both NIDDM and CHD.
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APPENDIX

The analysis of truncated data requires careful specification of the likelihood
[Kendall and Stuart, 1977; Rao and Wette, 1987]. If we assume that both the natural
logarithm of insulin (I) and glucose (G) are normally distributed (see, e.g., Ferrannini
et al. [1990]), then the likelihood of a pair of twins (1 = twin 1, 2 = twin 2) measured
on these two variables may be written as:

L I I G G I I G G( , , , ) ( , , , )1 2 1 2 1 2 1 2= φ (1)

where is φ the multivariate normal probability density function (pdf), given by

φ πΣ µ µ( ) det( ) exp . ( ) ( )/ /x x xm= − − −− −2 52 1Σ

in which Σ is the covariance matrix of the vector of m observed variables x, whose
mean vector is µ.

The software package Mx [Neale,1995] allows computation of truncated multi-
variate normal integrals. It also computes the likelihood under the multivariate nor-
mal pdf of a vector of observed scores (the normal-theory maximum-likelihood method
for rectangular or variable length raw data files). Third, it will compute the moments
of the truncated normal distribution. It does not have any direct computation of the
above multivariate normal functions truncated and integrated over a subset of the
dimensions. In a large sample, such computations would be cpu-intensive, requiring
separate integrations for each pair in the sample. Instead, we can rearrange the above
expressions to reduce them to forms that can be computed efficiently within Mx.

Pairs concordant for being above the detection limit present no special problem;
we can use equation 1 above. In the remaining cases, we would like to find the
likelihood of the Glucose measures and any Insulin measures above the detection
limit. We can find the conditional distribution of the Glucose observations from the
moments of the truncated normal distribution [e.g., Neale et al., 1989]. A computa-



Genetics of Fasting Insulin 445

tionally efficient way to obtain this is to compute the moments of the truncated (be-
low limit) Insulin measures, and then use the Pearson-Aitken-Lawley selection for-
mula [Aitken, 1934–35] to obtain the moments of the not-selected variables. The
justification for this approach lies in a rearrangement of Bayes’ theorem:

p A B
p A B

p B
( )

( & )

( )
| =

so

P A B p A B p B( & ) ( | ) ( )= (2)

in our case, we seek p(A&B) where A is the Glucose measures and above-detection-
limit Insulin measures and B is the below-detection-limit Insulin measures. The mo-
ments of B may be obtained from Mx’s momnor function, and the Pearson-Aitken
formula gives us the the moments of the conditional distribution A|B. We then com-
pute the likelihood in the usual way (a reduced form of equation 1) for the observa-
tions under this conditional distribution to obtain p(A|B). The probability of observing
B [p(B) in equation 2] is simply the multivariate normal integral from minus infinity
to the detection limit over all variables below the limit. Thus in the case where only
Insulin on twin 1 is below the limit,

p B I dI
t

( ) ( )=
−∞
I φ 1 1

and where both twins are below the limit we have:

p B I I dI dI
tt

( ) ( , )=
−∞−∞
II φ 1 2 2 1

These terms differ according to whether the subjects are MZ or DZ, but otherwise
would be expected to be the same for all subjects, in the absence of assay batch
effects (see below). Writing the m dimensional integral from –∞ to t asI

B
, the log

likelihood for all pairs is
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where the second term is constant for all pairs of a given zygosity. Thus we have

log( ) log( ) log( ( | ))L n A B
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=
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1

so that only one integration step is required per zygosity group, instead of for every
subject.
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Assay batch effects on the sample resulted in different means for each batch.
These in turn affect the amount of truncation represented by an absolute detection
limit of 3 mU/L. Therefore separate terms of the form   are needed for the
assay batches.

I
–∞

φ(Bk)dBk

t
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