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Parameter estimates obtained in the genetic analysis of longitudinal data 
can be used to construct individual genetic and environmental profiles 
across time. Such individual profiles enable the attribution of individual 
phenotypic change to changes in the underlying genetic or environmental 
processes and may lead to practical applications in genetic counseling 
and epidemiology. Simulations show that individual estimates of factor 
scores can be reliably obtained. Decomposition of univariate, and to a 
lesser extent of bivariate, phenotypic time series may yield estimates of 
independent individual G(t) and E(t), however, that are intercorrelated. 
The magnitude of these correlations depends somewhat on the autocor- 
relation structure of the underlying series, but to obtain completely in- 
dependent estimates of genetic and environmental individual profiles, at 
least three measured indicators are needed at each point in time. 

KEY WORDS: longitudinal genetic analysis; environmental profiles; genetic profiles; 
factor scores; Kalman filter. 

I N T R O D U C T I O N  

In multivariate designs where subjects are measured on more than one 
variable and where correlations between variables can be explained by  
their loadings on one or more common factors, scores on these latent 
common factors can be estimated for individual subjects (Lawley and 
Maxwell ,  1971). Estimation of  factor scores can be applied in multivar- 
iate genetic modeling such as developed by  Martin and Eaves (1977). In 

i Department of Psychology, Vrije Universiteit, De Boelelaan 1115, 1081 HV Amster- 
dam, The Netherlands. 

2 Department of Psychology, University of Amsterdam, Roeterstraat 15, 1018 WB Am- 
sterdam, The Netherlands. 

243 
0001-8244/91/0500-0243506.50/0 �9 1991 Plenum Publishing Corporation 



244 Boomsma, Molenaar ,  and Dolan 

such models multiple measures on genetically related persons provide 
information that is required for the estimation of individual genetic and 
environmental scores (Boomsma et  a l . ,  1990). As more or better indi- 
cators of the latent genetic and nongenetic factors common to a set of 
variables are available, individual factor scores can be obtained more 
reliably. Estimation of individual genetic and environmental scores is 
numerically also possible in univariate designs, but this gives intercor- 
related estimates of independent factor scores. In a univariate design, for 
example, MZ twins supply two observations (one on twinl and one on 
twin2). Even under a simple additive genetic model, this does not provide 
enough information to obtain independent factor scores, since we need 
to estimate three factor scores (one genetic and two unique environmental 
scores). In longitudinal studies where the same subjects are measured 
repeatedly a person's genetic and environmental factor scores at each 
occasion can be computed yielding genetic and environmental profiles 
across time. As with multivariate measures taken at a single occasion, 
information is obtained with respect to between-subject differences in 
genetic and environmental deviations. High phenotypic scores in one 
subject, for example, may be caused by high environmental deviations 
and in another subject by high genetic values. In addition, a longitudinal 
study yields information about changes in these individual scores over 
time, i.e., within individuals, so that an individual increase or decrease 
in phenotype can be attributed to changes in the genetic or environmental 
contributions. In this paper we explore through simulation of longitudinal 
twin designs how many measures are needed at each time point to esti- 
mate reliably individual genetic and nongenetic profiles and whether the 
answer to this question depends on the magnitude of the genetic and 
environmental autocorrelations across time. To obtain these individual 
profiles the Kalman filter is introduced in genetic modeling. 

MODEL AND METHOD 

At a single time point we have the basic genetic model (discarding 
the subject subscript to ease presentation): 

Pi  = ltl (g )G + h i ( e ) E  + Ei, i = 1 . . . .  , p ,  (1) 

where P is the observed phenotype, which can be univariate (p = 1) or 
multivariate (p = 2 or 3 in the simulations). G and E are additive genetic 
and environmental factor scores underlying the phenotype that are un- 
correlated. The k's are loadings of observed variables on latent factors 
and e represents measurement error and other influences unique to each 
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variable and each individual. For twin data the 2p x 2p covariance 
matrix of observations on twin1 and twin2 can be summarized as 

2 p  = AxI-rA ' + O, (2) 

where the prime indicates transpose. A contains the loadings on the 
genetic and environmental factors and is (2/) x 4) since there are four 
latent factors (G1, El ,  G2, E2), ",t r is the (4 x 4) correlation matrix of 
factor scores (e.g., �9 contains the genetic correlations of twin1 and 
twin2), and 0 (2p x 2p) is a diagonal covariance matrix of unique 
variances. A and e can be estimated without the need to know the in- 
dividual factor scores G and E. 

Across time a quasi-Markov simplex model for the latent variables 
G and E can be specified. This model describes the latent G and E time 
series as a first-order autoregressive model (e.g., Boomsma and Mole- 
naar, 1987; Eaves et al., 1988): 

Gt+x = El(g)Gt q- gt+l(g) (3) 

E,+I = 13,(e)E, + ~,+l(e), (4) 

where t = 1 . . . .  ,T are the number of time points that need not be 
equidistant. The 13's are autoregressive coefficients that describe the in- 
fluence of latent factors on subsequent latent factors. The ~t's are inno- 
vations of the latent processes representing new genetic and environmental 
influences that are expressed for the first time occasion t. An illustration 
of this model for p = 3 is given in Fig. 1. 

Equation (2) now can be written as 

~ e r  = A (I - B) -~ xI* (I - B')  -~ A' + O, (5) 

where B (4T • 4T) has the genetic and environmental autoregression 
coefficients on its first lower subdiagonal and zeros elsewhere. A now 
is (2pT • 4T), W is (4T • 4T), and 0 is (2pT x 2pT). In regular twin 
designs these parameter matrices can be estimated, for example, with 
the LISREL VII computer program (J6reskog and S6rbom, 1988). There 
are several ways to parameterize this model (see Boomsma et al., 1989). 
In the following section we assume that A (factor loadings), B (autore- 
gressive coefficients), and 0 (unique variances) are estimated and that 
(correlations between factors) is given. Genetic and environmental factor 
scores can then be computed for each subject by means of Kalman fil- 
tering. 

Let X, denote the (4 • 1) vector of estimates of Gt and E, at time 
t for twin1 and twin2 (discarding the subject subscript to ease presenta- 
tion), that is, X' t = [Glt, Elt ,  G2t, E2t]. In time-series analysis the most 
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Fig. 1. Decomposition of an observed time series with three measured variables (squares) 
at each occasion into an underlying first-order autoregressive genetic and an underlying 
first-order autoregressive environmental process, k's are factor toadings, ~'s are auto- 
regressive coefficients, and ~'s are innovations of the latent processes that represent new 
influences entering into the process. Measurement errors have been omitted. 

general approach to obtain Xt is by means of  Kalman filtering (Brown, 
1983) using, for example,  the IMSL subroutine F T K A L M  (IMSL, 1979): 

Xt + 1  = BtXt - Kt + 1  (At+ 1B~Xt - P,+ 1) (6) 

where B is the (4 • 4) matrix of autoregressive coefficients of  genetic 
and environmental factors at time t + 1 on these latent factors at t ime 
t, Pt+l  is the (2p x 1) vector  of  phenotypes of  twin1 and twin2, and A 
(2p x 4) contains the loadings of  the phenotypes at t ime t + i on the 
genetic and environmental factors. K is called the Kalman gain and is 
chosen in such a way  that the mean square estimation error is minimized: 

Kt+l = Pt+l A't+l  ( i t + t P t + l h ' t + l  -4:- Ot+~)-1, (7) 

where 

Pt+ ~ = B Y t B , '  + '~,,  (8) 

where ~I* is the (4 • 4) correlation matrix of  factor scores and V is the 
(4 x 4) covariance matrix of  the sampling distribution of  factor scores: 

Vt+l = Pt+a - Kt+IAt+IP't+I (9) 

The Kalman filter thus successively estimates Xt+l and V~+I. 
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S I M U L A T I O N S  

In total 27 data sets were simulated for 100 MZ and 100 DZ twin 
pairs with autoregressive coefficients [3(g) and [3(e) equal to 0, 0.4, and 
0.8. For each combination of [3(g) and [3(e) three data sets were simulated 
with one underlying genetic and with one underlying environmental se- 
ries according to Eqs. (1)-(4). 

1. Univariate: one indicator at each time point, h(g) = 10 and )~(e) 
= 10. 

2. Bivariate: two phenotypes at each time point, Xl(g) = 5, Xz(g) 
= 7, and Xl(e) = 8, Xz(e) = 6. 

3. Trivariate: three variables at each time point, Xl(g) = 5, Xz(g) 
= 7, X3(g) = 9, and Xl(e) = 8, X2(e) = 6, X3(e) = 4. 

At each time point the random variables G and E are constructed to have 
zero means and unit variance. In the bi- and trivariate series measurement 
error e is added to each indicator variable with var(r = 10. The uni- 
and bivariate series consist of 10 time points; the trivariate time series, 
of 8 points. Heritabilities are 0.5 at all time points in the univariate 
simulation series, 0.25 [i.e., 25/(25 + 64 + 10)] and 0.51 in the bivariate 
series, and 0.25, 0.51, and 0.76 in the trivariate series. Although in the 
simulations Xi and [3 are the same at each occasion, this time invariance 
does not represent a necessary restriction and no equality constraints of 
this kind were used in the model fitting reported below. 

R E S U L T S  

Model Fitting 

Table I gives • and probability levels that were obtained after 
fitting the true model to each simulated data set. For the univariate (one 
measured variable at each time point) and the bivariate (two measured 
variables at each time point) data sets, a good fit was obtained after 
fitting an autoregressive model consisting of  a genetic and environmental 
simplex process to the data. For the trivariate data sets (three measured 
variables at each time point), however, a significant • for all nine com- 
binations of [3(g) and [3(e) was found. The reason for this lack of  fit is 
that the determinant of the input matrices was very small. This does not 
influence parameter estimates (see Table II) but biases the • upward. 
For the trivariate data sets the determinants of the input matrices are in 
the order of  E-15 .  This situation often arises with repeated measures 
data. For one of the trivariate data sets [with [3(g)=0.8 and [3(e)= 0] 
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Table I. Chi-Square Statistics and Probability Levels for Simulated Data Sets 

Univariate Bivariate Trivariate 
fS(g) f3(e) (df= 182) (df= 780) (df= 1035) 

1 0 0 190.37 (.320) 805.28 (.266) a 1298.09 (.001) 
2 0.8 0 171.07 (.709) 816.05 (.187)" 1314.39 (.000) 
3 0 0.8 187.70 (.370) 795.30 (.344) 1256.92 (.006) 
4 0.8 0.8 182.41 (.477) 780.76 (.486) 1286.18 (.001) 
5 0.4 0 179.89 (.530) 806.99 (.252) a 1309.48 (.000) 
6 0 0.4 194.59 (.248) 810.11 (.221) 1303.82 (.000) 
7 0.4 0.4 188.89 (.348) 804.92 (.261) 1317.13 (.000) 
8 0.4 0.8 183.47 (.456) 784.27 (.450) 1270.14 (.003) 
9 0.8 0.4 177.08 (.589) 805.91 (.253) 1327.74 (.000) 

a Measurement errors for P1 and P2 constrained to be equal. When 13(e) equals zero, no 
distinction can be made between E1 influences and measurement error otherwise. 

Table II. Recovered Parameters, Trivariate Data 

True, Recovered 
al l t  t = l  t = 2  t=3 t = 4  t = 5  t = 6  t=7 t = 8  

13(g) 0.8 - -  .831 .856 .807 .822 .860 .827 .838 
13(e) 0.0 - -  .114 - .098  - . 090  - .025  - .036  - .033  - . 016  

Xl(g) 5.0 4.93 5.29 3.90 6.21 5.25 6.07 5.74 5.47 
X2(g) 7.0 6.43 7.03 6.24 8.33 7.63 8.16 7.77 7.42 
X3(g) 9.0 8.99 8.83 8.18 10.06 9.53 10.10 9.65 9.66 
Xl(e) 8.0 8.42 8.39 7.92 7.89 8.09 8.29 8.13 7.31 
X2(e) 6.0 6.54 6.19 6.23 6.21 6.16 6.18 6.21 5.53 
h3(e) 4.0 4.16 3.82 4.11 3.49 3.75 3.74 4.03 3.60 

var(el) 10.0 10.25 10.25 10.25 10.25 10.25 10.25 10.25 10.25 
var(~2) 10.0 9.62 9.62 9.62 9.62 9.62 9.62 9.62 9.62 
vat(e3) 10.0 10.17 10.17 10.17 10.17 10.17 10.17 10.17 10.17 

Tab le  II g ives  the recovered parameters .  In  spite of  the s ign i f ican t  X 2, 
these are close to the va lues  that were  used to s imula te  the data.  

F a c t o r  S c o r e s  

Est imates  of A,  B,  and O were  e m p l o y e d  in  K a l m a n  f i l ter ing of  the 

observa t ions  to obta in  gene t ic  and e n v i r o n m e n t a l  factor scores at each 
t ime poin t  for each subject  accord ing  to Eqs .  (6 ) - (9) .  Next  the es t imated  
series were  compared  with the true ( i .e . ,  s imula ted)  ind iv idua l  series.  
Tab le  III  g ives  corre la t ions  be tween  true and  es t imated  factor  scores for  
M Z  and  D Z  twins  separate ly .  For  each data set these corre la t ions  have  
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Table III.  Correlations of True and Estimated Factor Scores (MZ and DZ) Averaged 
Across Time Points for Each Data Set 

Univariate Bivariate Trivariate 
13(g) 13(e) G E G E G E 

MZ 
1 0 0 .80 .80 .84 .87 .95 .91 
2 0.8 0 .84 .83 .88 .89 .96 .92 
3 0 0.8 .83 .85 .87 .90 .96 .94 
4 0.8 0.8 .79 .80 .89 .90 .97 .94 
5 0.4 0 .82 .80 .85 .88 .96 .91 
6 0 0.4 .80 .81 .85 .88 .95 .92 
7 0.4 0.4 .80 .80 .86 .88 .96 .92 
8 0.4 0.8 .82 .82 .87 .90 .96 .94 
9 0.8 0.4 .81 .81 .88 .89 .96 .92 

DZ 
t 0 0 .74 .73 .78 .80 .91 .88 
2 0.8 0 .80 .78 .83 .83 .93 .89 
3 0 0.8 .79 .79 .81 .86 .92 .91 
4 0.8 0.8 .73 .73 .82 .86 .93 .91 
5 0.4 0 .75 .73 .79 .81 .91 .88 
6 0 0.4 .74 .75 .78 .82 .91 .89 
7 0.4 0.4 .73 .73 .79 .82 .91 .89 
8 0.4 0.8 .75 .76 .81 .85 .92 .91 
9 0.8 0.4 .76 .75 .81 .83 .93 .89 

been  a v e r a g e d  ac ross  t ime  po in t s ,  as there  w a s  no  d i f f e r ence  in the  
co r r e l a t i ons  for  ea r l i e r  and la te r  t ime  po in t s .  It is  c lea r  that  e s t i m a t e d  
G(t) and E(t) are  v a l i d  ind ica to r s  o f  the  a s soc i a t e d  true scores .  C o r r e l a -  
t ions  are  h ighe r  for  M Z  than for  D Z  tw ins  and inc rease  as the  n u m b e r  
o f  m e a s u r e s  t aken  at each  t ime  po in t  i nc rea se s .  E v e n  w h e n  o n l y  one  
m e a s u r e  is ava i l ab l e ,  h o w e v e r ,  t hey  are  qui te  h igh  a l r eady .  A s  the  n u m -  
be r  o f  v a r i a b l e s  at each  t ime  po in t  i nc rea se s ,  s t anda rd  er rors  b e c o m e  
s m a l l e r  for  bo th  M Z  and D Z  twin  g r o u p s ,  and  for  al l  da ta  sets  s t anda rd  
er rors  o f  e s t i m a t e d  fac tor  scores  are  s m a l l e r  for  M Z  than  for  D Z  twins .  
T a b l e  IV  s h o w s  the gene t i c  and  e n v i r o n m e n t a l  a u toc o r r e l a t i on  m a t r i c e s  
b a s e d  on the fac to r  s co res  c a l c u l a t e d  in a un iv a r i a t e  and a t r iva r i a te  da ta  
set  [where  ~ (g )  = 0 .8  and  [3(e) = 0] .  E v e n  in the  un iva r i a t e  ca se ,  the  
a u toco r r e l a t i on  s t ruc tures  for  the  g e n e t i c  and  e n v i r o n m e n t a l  se r ies  are  
c o r r e c t l y  r e c o v e r e d  and  the  d y n a m i c  s t ruc ture  o f  the  t rue G(t) and E(t) 
ser ies  is  a c c u r a t e l y  r e f l ec t ed  b y  the  i n d i v i d u a l  t r a j ec to r i e s .  F i n a l l y ,  T a b l e  
V g ives  the  i n s t an t aneous  c r o s s - c o r r e l a t i o n  b e t w e e n  i n d i v i d u a l  e s t ima te s  
o f  G and E (co r re l a t ions  are aga in  a v e r a g e d  ac ross  t ime  po in t s ) .  The  
e x p e c t e d  v a l u e  o f  this  c r o s s - c o r r e l a t i o n  is ze ro .  But  for  the  un i -  and  
b iva r i a t e  t ime  ser ies  this  co r re l a t ion  m a y  dev ia t e  f r o m  ze ro ,  b e c a u s e  the  
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Table  IV.  Recovered Autocorrelation Matrices Based on Individual Estimates of  G(t) 
and E(t): MZ Twins (Lower Half) and DZ Twins (Upper Half) 

UnHariate: Oneindica tor ,  B ~ ) = 0 . 8 ,  B ( e ) = 0  
G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 

G1 - -  .76 .63 .52 .45 .34 .23 .21 .18 .12 
G2 .76 - -  .79 .7i  .58 .49 .38 .31 .25 .18 
G3 .59 .79 - -  .83 .70 .59 .49 .40 .36 .25 
G4 .45 .63 .83 - -  .86 .75 .53 .48 .41 .26 
G5 .40 .53 .72 .86 - -  .86 .62 .56 .47 .33 
G6 .32 .44 .55 .72 .85 - -  .73 .62 .55 .47 
G7 .09 .19 .34 .47 .59 .73 - -  .84 .76 .65 
G8 .11 .17 .30 .40 .49 .61 .86 - -  .89 .71 
G9 .04 .10 .25 .35 .45 .59 .76 .89 - -  .84 
G10 .04 .09 ~18 .29 .38 .46 .58 .74 .83 - -  

E1 E2 E3 E4 E5 E6 E7 E8 E9 E l 0  

E1 - -  .09 - . 0 7  .01 - . 0 5  - . 0 4  - . 0 9  .04 - . 0 8  - . 0 5  
E2 - . 0 2  - -  - . 0 1  .08 .01 .14 .05 - . 0 0  - . 0 0  - . 0 1  
E3 - . 0 7  .00 - -  .05 .01 - . 0 3  .02 - . 0 4  .03 - . 0 3  
E4 .08 - . 0 8  .09 - -  .12 .02 - . 1 9  .15 - . 1 0  - . 1 8  
E5 - . 0 3  .03 .03 .05 - -  .05 .04 .05 .01 .07 
E6 .03 .11 - . 0 8  .09 .13 - -  .21 - . 0 3  .02 .07 
E7 - . 0 7  .02 .10 - . 0 5  .13 .17 - -  .04 .08 .14 
E8 - . 0 6  .00 .04 .07 .04 - . 1 0  .15 - -  - . 1 1  - . 2 2  
E9 .09 - . 0 3  .06 .04 .05 .18 - . 0 2  - . 1 4  - -  .12 
E l 0  .01 .10 .02 .04 .05 .01 .07 .05 .07 - -  

T r i v a r i a t e : T h r e e i n d i c a t o r s , ~ ) = 0 . 8 ,  ~(e)=0 
G1 G2 G3 G4 G5 G6 G7 G8 

G1 - -  .82 .68 .55 .50 .39 .26 .30 
G2 .83 - -  .85 .67 .57 .45 .25 .28 
G3 .72 .87 - -  .77 .65 .53 .34 .35 
G4 .64 .73 .83 - -  .85 .69 .55 .52 
G5 .57 .59 .63 .81 - -  .87 .69 .66 
G6 .42 .45 .50 .65 .84 - -  .83 .73 
G7 .45 .46 .49 .63 .72 .83 - -  .84 
G8 .37 .32 .38 .47 .55 .71 .85 - -  

E1 E2 E3 E4 E5 E6 E7 E8 

E1 - -  .09 .10 .04 .10 .08 .06 .02 
E2 .14 - -  - . 0 9  - . 0 1  .07 - . 1 3  - . 0 4  .01 
E3 .04 - - .09  - -  - . 0 9  .00 - - .01 .03 - - .06  
E4 .15 .02 - - .08  - -  .01 - - .02  - - .09  - - .04  
E5 .13 .03 - - .07  - - .05  - -  .04 - - .09  .03 
E6 .03 - - .04  .02 .04 .02 - -  - - .03  - - .03  
E7 .01 - - .05  - - .12  - - .02  - - .03  - . 0 3  - -  - - .01 
E8 .02 .04 .01 - . 0 5  .14 .15 - - .02  - -  
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Table V. Instantaneous Correlation Between Estimated G and Estimated E (Averaged 
Across Time Points for Each Data Set) 

Univariate Bivariate Trivariate 
B(g) [3(e) MZ DZ MZ DZ MZ DZ 

1 0 0 0.51 0.87 0.29 0.50 0.13 0.18 
2 0.8 0 0.35 0.58 0.21 0.33 0.10 0.15 
3 0 0.8 0.38 0.61 0.21 0.35 0.11 0.16 
4 0.8 0.8 0.49 0.80 0.21 0.34 0.12 0.13 
5 0.4 0 0.48 0.82 0.27 0.46 0.12 0.18 
6 0 0.4 0.48 0.80 0.27 0.47 0.13 0.19 
7 0.4 0.4 0.50 0.86 0.27 0.47 0.12 0.18 
8 0.4 0.8 0.45 0.75 0.22 0.38 0.13 0.16 
9 0.8 0.4 0.42 0.71 0.23 0.37 0.10 0.15 

phenotypic  series is decomposed  into two trajectories. The results in 
Table V indicate that even in the univariate case, the correlation for M Z  
twins between individual estimates of  G and E is consistently less than 
0.5,  and for the bivariate t ime series it does not exceed 0.3.  For  D Z  
twins on the other hand, it is more  difficult in the univariate case to 
obtain independent est imates of  genetic and environmental  profiles.  But 
in the bivariate series, the instantaneous correlation between estimates 
of  G and E factor scores also does not exceed 0.5.  The  correlation 
between individual estimates of  G and E depends somewhat  on the pat- 
tern of  the autocorrelations: when the difference between [3(g) and [3(e) 
is large, the individual decomposi t ion yields factor  scores that have a 
lower intercorrelation than when [3(g) and [3(e) are the same.  Notice that 
these results pertain only to the analyses of  individual estimates of  G(t) 
and E(t) and do not relate in any w a y  to the standard applications of  the 
s implex model  in genetic model ing.  In the latter, only  a decomposi t ion 
of  the total population var iance is considered,  whereas  these results con- 
cern the relationship of  individual est imates of  G and E factor scores.  

Finally, Fig. 2 gives the recovered genetic profiles for a pair o f  D Z  
twins and the confidence intervals around the recovered scores. These 
recovered profiles closely fol low the true profiles.  For this example ,  data 
f rom the last trivariate data set were  used [where [3(g) = 0.8 and [3(e) 
= 0.4].  The confidence intervals around the two estimated series ( i .e . ,  
for twin1 and twin2) indicate that they can be reliably separated. 

F i x e d  I n t e r v a l  S m o o t h e r  

The Ka lman  filter is a recursive est imator  of  the (latent) state o f  the 
process at t ime point t, g iven the observat ions up to t. Because of  the 
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Fig. 2. Recovered genetic profiles across time for twin1 and twin2 of a DZ twin pair. 
The dashed lines give the recovered genetic factor scores. Solid lines represent the 95% 
upper and lower confidence intervals around estimated profiles. 

recursive nature of the Kalman filter many  computational and storage 
requirements are avoided that would be necessary if all data were processed 
at each measurement occasion. In the case of  twin data, this means,  for 
example,  that for data sets consisting of  large numbers of  repeatedly 
measured variables, estimation of  parameters as in Eq. (5) can be carried 
out on mean cross products and that these estimates can be used in the 
Kalman filter, thus minimizing computational and storage requirements. 
In cross-sectional designs the Kalman filter is identical to the well-known 
regression estimator of  factor scores (Priestly and Subba Rao, 1975). In 
longitudinal designs, however,  the regression estimator is optimal, while 
the Kalman filter is not. Optimal recursive estimates of  factor scores in 
noisy t ime series can be obtained with the fixed interval smoother.  The 
latter recursive estimates are identical to those obtained with the regres- 
sion estimator. The fixed interval smoother consists of  the Kalman filter 
followed by a recursion from the last to the first measurement occasion. 
During this backward sweep information is used that was obtained during 
Kalman filtering, viz., the Kalman estimates and their respective error 
covariance matrices. 

Two additional trivariate data sets were simulated where the vari- 



Estimation of Individual Profiles 253 

ance of the noise series e(t) now was equal to 100 instead of 10 for each 
indicator variable. For each variable more than 50% of the signal thus 
consisted of noise. For the first data set [[3(,g) = [3(e) = 0] there were 
no improvements in estimates for G(t) and E(t) after using the smoother. 
For a second data set [where [3(g) = [3(e) = 0.8] standard errors of  
factor scores obtained in this way were smaller and the average corre- 
lation between true and estimated G rose from 0.724 to 0.797 for DZ 
and from 0.848 to 0.863 for MZ twins. The average correlations between 
true and estimated E increased from 0.700 to 0.740 for DZ and from 
0.734 to 0.779 for MZ twins. Thus, there is some improvement in es- 
timates when the fixed interval smoother is used in addition to the Kal- 
man filter (and [3 is larger than zero), but this improvement is relatively 
small. 

Filtering of  Individual Data 

The results reported so far are based on Kalman filtering of  twin 
data where the observations from both members of a pair are used si- 
multaneously in the construction of  the individual factor scores. This 
means that a different filter is applied to MZ and DZ data. In the MZ 
filter, for instance, data from both twins are weighted equally in the 
computation of  the genetic factor scores. Parameters (i.e.,  genetic and 
environmental factor loadings) that are estimated in a genetic covariance 
analysis of twin data or data from other genetically related individuals 
can also be used, however, to construct a Kalman filter that pertains to 
observations from a single person. Data from genetically informative 
samples are of course necessary to estimate heritabilities and other pa- 
rameters, but actual filtering is relatively easily carried out for a single 
person. That is, a filter can be constructed where no data from cotwins, 
siblings, or other genetically related subjects are needed. For the trivar- 
iate data sets that were analyzed above, individual factor scores were 
recomputed, this time without using the data from the cotwin. The results 
show that ignoring information from cotwins affects mainly the precision 
with which MZ factor scores are estimated (i.e. larger standard errors 
and confidence intervals around estimates). This is illustrated in Fig. 3, 
where confidence intervals from the " t w i n "  filter and the " ind iv idua l "  
filter [for the last trivariate data set where [3(g) ----- 0.8 and [3(e) = 0.4] 
are placed around the true genetic profile of a MZ twin pair. The pre- 
cision with which factor scores for DZ twins are estimated is affected to 
a lesser extent. Here the results from the individual filter are almost as 
good as when the information from the DZ cotwin is used as well.  
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Fig. 3. Genetic profile across time for a MZ twin pair. The dashed line gives the true 
genetic factor scores. The inner solid lines represent the 95% confidence interval based 
on a Kalman filter that uses observations from both twins simultaneously. The outer 
solid lines represent the 95% confidence interval based on an individual Kalman filter. 

D I S C U S S I O N  

The focus of  this paper  was  the estimation of  individual genetic and 
envionmental  factor scores across t ime. Such factor scores can be reliably 
estimated and individual independent estimates of  G(t) and E(t) can be 
obtained when at least three measures  are taken at each t ime point.  When  
only one measure  is available,  individual genetic and environmental  fac- 
tor scores are intercorrelated, especial ly for D Z  twins. Results for M Z  
twins are quite good,  however ,  and when bivariate measures  are taken 
at each occasion results for both groups are acceptable.  Even when there 
are high intercorrelations between G(t) and E(t) estimates,  however ,  these 
can be taken care of  by  application of  mult ivariate tests in the construc- 
tion of  confidence intervals (or testing differences f rom zero) because 
the Kalman filter (as the regression estimator and fixed interval smoother)  
yields the complete  var iance/covar iance matr ix  of  G(t) and E(t) estimates.  
Confidence intervals can also be  tailored to suit specific purposes ,  i .e . ,  
large intervals to avoid false posit ives or small intervals to avoid false 
negatives. Estimation of  G(t) and E(t) makes it possible to identify sources 
underlying deviant development in individual subjects. The genetic model 
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given by Eq. (1) can be extended to include environmental factors shared 
by family members and latent profiles for these processes can then be 
estimated. In general, a longitudinal analysis of repeated-measures data 
hardly allows an observed time series to be decomposed into more than 
one underlying series. Twin and family data are unique in that they do 
allow such a decomposition. Results based on a representative twin study 
can be generalized to the population as a whole by construction of an 
individual Kalman filter. Exploration of individual filtering indicates that 
these results are almost as good as those for DZ twins. This enables a 
more detailed evaluation of deviant development for individual subjects. 
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