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Genetically informative data can be used to address fundamental questions concerning the
measurement of behavior in children. The authors illustrate this with longitudinal multiple-
rater data on internalizing problems in twins. Valid information on the behavior of a child is
obtained for behavior that multiple raters agree upon and for rater-specific perception of the
child’s behavior. Rater-disagreement variance o*(rd) accounted for 35% of the individual
differences in internalizing behavior. Up to 17% of this ¢*(rd) was accounted for by
rater-specific additive genetic variance o*(A,). Thus, the disagreement should not be con-
sidered only to be bias/error but also as representing the unique feature of the relationships
between that parent and the child. The longitudinal extension of this model helps to make a
distinction between measurement error and the raters’ unique perception of the child’s
behavior. For internalizing behavior, the results show large stability across time, which is
accounted for by common additive genetic and common shared environmental factors.
Rater-specific shared environmental factors show substantial influence on stability. This
could mean that rater bias may be persistent and affect longitudinal studies.
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Genetically informative designs can be used to estimate
the size of genetic and environmental effects on variation in
behavior and other complex traits. It is less well known that
these designs also have the potential to shed a unique light
on fundamental measurement problems and could be an
important addition to the traditional methodological arsenal
for studying psychological data. This is illustrated in this
article by studying sources of rater (dis)agreement in lon-

gitudinal data on internalizing problems in monozygotic
(MZ) and dizygotic (DZ) twins rated at ages 3, 7, 10, and 12
years by their parents.

Rater (Dis)agreement

Self- and observer ratings of behavior are important
sources of information in psychology and psychiatry. It is
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therefore important to understand and estimate the magni-
tude of potential sources of error in these ratings. Errors are
usually distinguished into random and systematic compo-
nents. Random errors can result from a variety of factors,
such as misreading a question or fluctuations in the rater’s
psychological or emotional state. An important source of
systematic rater errors is rater bias that occurs when raters
consistently over- or underestimate behavioral scores (Judd,
Smith, & Kidder, 1991).

Several models and methods have been proposed for
studying rater bias, such as the weighted-average model
(Kenny, 1991), the realistic accuracy model (Funder, 1995),
or generalizability theory (Cronbach, Gleser, Nanda, & Ra-
jaratnam, 1972). Hoyt (2000) showed how the total variance
of the scores assigned by a rater to a target on attribute P,
o*(P), can be decomposed as:

a(P) = ¢*(t) + o2(r) + o*(d) + o’(e), (1)

where o(t) is the target variance, o(r) is the rater variance,
o*(d) is the dyadic variance, and o(e) is the variance of the
error term (residual variance). Target variance, o*(t), is the
variance of the deviations of the target’s mean rating (av-
eraging over all observers) from the grand mean. It reflects
the score of the target on the trait of interest that is shared
by all the raters. This variance is sometimes called universe
variance in generalizability theory. Rater variance, o(r), is
the variance of the deviations of a rater’s mean rating
(averaging over all targets) from the grand mean of all raters
for that target. It reflects how a rater generally perceives
targets on that trait or the tendency to be somewhat less/
more critical than the average rater, that is, the unique view
of a rater, or rater bias. Dyadic variance, 0'2(d), is variance
attributable to raters’ unique perceptions of a specific target.
To estimate this component, multiple ratings (e.g., items,
forms of the rating scale, or occasions) should be available
for each rater—target pair. A dyadic effect is present when
the rater rates the target either higher or lower than one
would predict on the basis of the rater bias and effect of the
target. Finally, o%(e) is the variance of the error term (re-
sidual effects).

The impact of rater bias can be substantial. Hoyt and
Kerns (1999), for example, estimated that as much as 37%
of observer ratings in psychological research may be attrib-
uted to rater bias. Bias will increase for attributes requiring
rater inference (e.g., global ratings of achievement or per-
sonality traits) and decrease with the amount of training of
the raters (Hoyt & Kerns, 1999). Rater bias reduces the
reliability and validity with which a target construct is
measured. However, its effect can be complex. For exam-
ple, response styles when completing multiple questionnaire
items will result in overestimates of the internal consistency
as measured by Cronbach’s alpha and underestimates of

correlations between a scale and a criterion variable mea-
sured in another way.

The data that are collected determine which variance
components can be estimated. As indicated, when only one
observation is available for each rater—target pair, the dyadic
variance, oz(d), cannot be distinguished from the error
variance, o>(€), and the sum of these variances has to be
estimated instead. Furthermore, the interpretation of the
estimated variance components is based on several assump-
tions. For example, target variance, 0'2(t), defined above,
reflects the score of the target on the trait of interest as
shared by all the raters. However, raters may observe targets
in distinct situations or be exposed to distinct samples of the
targets’ behavior (e.g., teacher and parent ratings of chil-
dren’s behavior may differ as the teacher observes the child
mainly at school and the parent observes the child mainly at
home). If, as is usually done, the rater variance, a2(r), is
estimated as the variance of the deviations of a rater’s mean
rating (averaging over all targets) from the grand mean of
all raters for that target, this means that the rater variance,
a”(r), includes not only rater effect but also target variance
arising from the rater being exposed to unique samples of
the target’s attributes. Thus, the interpretation of the esti-
mated variance components may be complex.

Multiple Raters and Multiple Targets

Genetically informative data can improve the interpreta-
tion of estimated variance components in rater-bias models.
This is illustrated in this article by studying sources of rater
(dis)agreement in longitudinal data on internalizing prob-
lems in MZ and DZ twins rated at ages 3, 7, 10, and 12 years
by their parents.

Single Rater and Multiple Genetically Related
Targets: The Classical Twin Design

When a study is expanded from a single target per rater to
multiple genetically related targets per rater, which is, for
example, the case in a twin study in which a mother rates the
behavior of the two children of a twin pair, variance can be
decomposed in genetic and environmental parts, and more
insight in possible sources of variance can be obtained.

MZ twins derive from a single fertilized zygote and are
(nearly always) genetically identical. Less than perfect MZ
twin correlations (ry,;, < 1) therefore indicate environmen-
tal effects that are not shared between children growing up
in the same family. Possible examples of such nonshared
environmental influences are illnesses, accidents, and dif-
ferent peer groups. DZ twins develop from two zygotes and,
like ordinary siblings, share on average 50% of their genes.
A higher resemblance of MZ versus DZ twin pairs (ry, >
rpz) typically reflects this higher genetic similarity and
indicates genetic effects. The design also allows the estima-
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tion of environmental influences common to or shared by
twins growing up in the same family. Possible examples of
factors that can make twin pairs from the same family more
alike are socioeconomic status (SES) level, subculture, and
style of parenting. These shared environmental influences
are implied if the resemblance between twin pairs exceeds
the resemblance expected on the basis of quantitative ge-
netic theory.

Figure 1 summarizes the standard path diagram used to
represent two measured variables, or phenotypes in twins
(squares). The phenotypes are influenced by the twins’
genotypes (A), their shared environment (C), and their
nonshared environment (E). These factors are unobserved
(latent) and symbolized by circles. The latent genotype and
the environmental factors usually are scaled to have unit
variance. Their influence on the phenotype is given by path
coefficients a, ¢, and e. The phenotypic variance, o*(P), of
a trait can, in absence of genotype—environment correlation
and interaction, be decomposed into additive genetic, shared
environmental, and nonshared environmental variance com-
ponents, as in Equation 1:

o*(P) = a* + ¢* + &~ 2)

If latent factors have unit variance, a” is the estimate of the
additive genetic variance, ¢? is the estimate of the shared
environmental variance, and e is the estimate of the non-
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Figure 1. The univariate twin model: Squares represent mea-
sured variables, and circles represent latent, unobserved factors. A
represents genotypes, C is common environment, and E is unique
environment. Their influence on the phenotype is given by path
coefficients a, ¢, and e. The correlation between the latent genetic
factors is 1.00 for monozygotic (MZ) twins and 0.50 for dizygotic
(DZ) twins. The correlation between the latent shared environmen-
tal factors is fixed to 1.00.

shared environmental variance; d is 1.0 for both MZ and DZ
twins, representing the total overlap in shared environment;
v is 1.0 for MZ twins, representing their perfect genetic
overlap; and v is 0.5 for DZ twins because they share 50%
of the segregating genes on average.

Multiple-Raters Twin Design

Hewitt, Silberg, Neale, Eaves, and Erickson (1992) pro-
posed two models that combine data of multiple raters of
twins’ behavior. In general, the so-called psychometric
model best describes twin data obtained from multiple raters
(e.g., Bartels et al., 2003, 2004; van der Valk, van den Oord,
Verhulst, & Boomsma, 2001, 2003).

The psychometric model for mother and father ratings of
behavior in twins is shown in Figure 2. The latent (true), but
not directly observable, phenotypes for Twin 1 and Twin 2
influence the ratings of the parents. The variance of these
phenotypes can be decomposed into additive genetic (A),
shared environmental (C), and nonshared environmental
variance (E). The ratings of the parents are influenced by the
genotype of the children that is expressed only in the pres-
ence of father or mother (A, and A from here on, a
distinction between paternal and maternal variance is made
is made by the subscript , or ; to denote mother or father
rating, respectively). Likewise, shared environmental ef-
fects (C; and C,)) and nonshared environmental effects (E;
and E,)) contribute to the maternal and paternal ratings. The
total variance in mother and father ratings thus can be
written as

0 (MRT)) = (@* + ¢ + &%) + (a3, + ¢, + %),
and
o*(FRT) = (@ + >+ &> + (@ + X+ e%), 3)

where MRT1 and FRT1 refer to the maternal and paternal
ratings of Twin 1, respectively. The possibility of estimating
and testing rater-specific component (azm,f, czm,f, and ezm’f)
in genetically informative designs brings along a subtle, but
important, conceptual shift. Rather than merely describing
rater disagreement along the lines of rater variance, o(r);
dyadic variance, o*(d); and error variance, o’(e), we can
now begin to study mechanisms of rater disagreement along
the lines of additive genetic effects, shared environmental
effects, and nonshared environmental effects. An important
improvement is the ability to test the significance and esti-
mate the magnitude of rater-specific additive genetic vari-
ance (a*,). This component reflects real behavior of the
child observed by a specific rater independent of any bias.
Thus, valid information on the behavior of a target is
obtained, and the use of multiple raters provides a more
complete picture of the target. Note that ¢* represents real
shared environmental influences, whereas ¢, and ¢ could
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Figure 2. The multiple-rater psychometric model: Squares represent measured variables, and
circles represent latent, unobserved factors. A represents genotypes, C is common environment, and
E is unique environment. Their influence on the phenotype is given by path coefficients a, ¢, and e.

Distinction between paternal and maternal variance components is made by subscript

m O ¢ tO

denote mother or father ratings. Phenotype_T1 and Phenotype_T?2 represent the agreed-upon latent
phenotype for the children of a twin pair. The correlation between the latent genetic factors is 1 for
monozygotic (MZ) twins and .5 for dizygotic (DZ) twins. The correlation between the latent shared

environmental factors is fixed to 1.

be rater bias. Furthermore, ¢ represents real idiosyncratic
experience, unaffected by measurement error. The expected
variance—covariance matrix for a twin pair rated by mother
and father is given in the Appendix.

On the basis of Equation 3, we assume that raters agree
and disagree. A parallel can be drawn between rater-agree-
ment variance, o*(ra) (first part of Equation 3), and target
variance, a*(t), in Equation 1. This variance can be decom-
posed into genetic, shared, and nonshared environmental
effects.

o’(ra) = o(t) = a* + ¢* + €% 4)

This decomposition enables us to study the relative impor-
tance of genetic and environmental effects on common
agreed-upon behavior free of bias and unreliability. So, one

of the strengths of the proposed multiple-rater design is that
a bias/error-free variance decomposition becomes available
for the behavior under study.

Furthermore, raters may disagree, and several factors
potentially underlying disagreement can be found. Rater-
disagreement variance, 0‘2(I‘d), is presented in Equation 5.
This rater-disagreement variance can now be decomposed
into variance related to true behavior of the child and bias
and/or error. For example, in the case of maternal rating, we
have
o*(rd) = (a?, + mc?, + ne?,)

+ (1 —m)c?, + (1 —n)e?, ()

where the first part within parentheses represents the part of
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the rater-disagreement variance that reflects real behavior of
the target. This part will be nonzero if mothers observe
targets in distinct situations or are exposed to distinct sam-
ples of the targets’ behavior. This real behavior, uniquely
assessed by a certain rater, can be influenced by additive
genetic, shared environmental, and nonshared environmen-
tal factors. So, constants m and n represent the part of the
rater-specific shared and nonshared environmental variance
that reflects real behavior; the rater-specific additive genetic
variance (azm) also reflects real behavior of the child ob-
served by a specific rater independent of any bias. Further-
more, disagreement between raters arises due to bias and
error, and the complements (1 — m) and (1 — n) represent
this part that is either bias or error. In a nongenetically
informative sample, it is not possible to make this distinc-
tion, and all variance not shared by raters will be included
in the estimate of variance due to rater bias or error.

Sources of bias can be distinguished. According to the
definitions of Hoyt (2000), rater variance, o(r), reflects
how a rater perceives targets on that trait or the tendency to
be somewhat less/more critical than the average rater, and
dyadic variance, o?(d), is variance attributable to raters’
unique perception of a specific target. Rater variance, o*(r),
is independent of the zygosity of the twin pair but will make
two individuals of a twin pair more alike. In a multiple-rater
design with genetically related targets, rater variance thus
will show up as rater-specific shared environment (c? ).
However, not all rater-specific shared environment will be
due to leniency error, and this distinction is made by con-
stant m in Equation 5. Furthermore, rater disagreement can
be due to rater-specific nonshared environmental effects
(ezm). This can be either nonshared environmental effects
on the real behavior of the child (ne2m in Equation 5) or
variance not shared by targets and not related to the real
behavior of the child ([1 — n]e?,, in Equation 5). As the
basic univariate multiple-rater twin design is essentially the
scenario where one observation is available for each rater—
target pair, it has the same limitation that the dyadic vari-
ance, az(d), cannot be distinguished from the error variance,
a’(e). So, in Equation 5,

(1 —n)e*, = oXd) + o’(e).

Practical implications exist in being able to discriminate
between sources of variance for rater agreement and rater
disagreement. If each rater contributes valid information
from his or her own unique perspective, focusing solely on
the shared variance gives an incomplete picture of the
target. Instead of correcting for rater bias, the rater-specific
variance may contain useful information. There is an anal-
ogy with the well-known reliability—validity trade-off in
observer-rating studies. Relying on a limited behavioral
sample with complete overlap among raters enhances inter-
rater agreement but reduces validity.

Although the interpretation of the estimated variance
components improves, assumptions still need to be made.
When assumptions are not met, the interpretation of the
estimated variance components becomes more complex.
More specifically, constants n and m cannot be estimated in
the basic univariate multiple-rater twin design; we can only
estimate the sum: ¢?, and ¢ . Thus, ¢?  will reflect shared
environmental effects on real behavior of the child observed
only by mothers plus maternal rater bias effects. In addition,
%, will reflect nonshared environmental effects on real
behavior of the child observed only by mothers plus error in
maternal ratings. To improve this interpretation, the basic
univariate design can be extended to multivariate or longi-
tudinal designs (e.g., parents rate different types of behavior
or parents rate the behavior of their child at different ages).
Because random errors of measurement, captured in oz(e),
are completely trait or age specific, these will not contribute
to the correlations across time. This extension can help to
make a finer distinction between dyadic variance, o?(d), and
measurement error, o>(€).

Assumptions in Our Model

The interpretation of the biometric variance components
explained above holds only under certain assumptions. An
assumption of the biometric decomposition is that genetic
effects are additive. Behavior is influenced by genetic in-
formation at multiple loci on the chromosomes where each
locus consists of two or more variants, called alleles. The
additive genetic values are simply the sum of the effects of
the different alleles at each locus, as well as the sum of the
effects across all causal loci. This assumption will be vio-
lated if there are interactions between alleles at the same
locus (dominance) or interactions between alleles at differ-
ent loci (epitasis). The consequence of nonadditive genetic
effects is an increase in the difference between MZ and DZ
correlations. Failure to account for these nonadditive ge-
netic effects will overestimate the total genetic variance and
underestimate environmental effects. With only twin data,
the full model estimating the nonadditive genetic plus
shared environmental variance components is not identified
and cannot be estimated. In practice, the shared environ-
mental component is typically estimated by comparing a
full model with shared environment with a restricted model
with the contribution of shared environment fixed at zero. In
cases in which the observed twin correlations are inconsis-
tent with a model assuming only additive genetic effects
(e.g., when the DZ twin correlation is less than half the MZ
twin correlation), a full model with additive genetic, dom-
inant genetic, and nonshared environment is compared with
a model with additive genetic and nonshared environmental
effects.

A second assumption concerns the absence of assortative
mating between spouses. The presence of assortative mating
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may result in genetic similarity between spouses. Positive
assortative mating increases the resemblance between DZ
twins. MZ twins, however, are already at the point of
maximum genetic resemblance, and the correlation between
their phenotypes is unaffected by assortative mating (Plo-
min, DeFries, McClearn, & McGuffin, 2000). As a result,
the genetic effects of assortative mating will artificially
inflate estimates of the shared environmental influences.
This means, in turn, that estimates of the genetic component
based primarily on the difference between MZ correlations
and DZ correlations will tend to be biased downward. The
resolution of the mechanisms of assortment relies on studies
that include the spouses or parents of twins (see, e.g., Heath
& Eaves, 1985; van Leeuwen, van den Berg, & Boomsma,
in press).

Furthermore, absence of gene—environment correlation
(rGE) and gene—environment interaction (G X E) is as-
sumed. Genotype—environment correlation refers to genetic
effects on individual differences in liability to exposure to
particular environmental circumstances, that is, it reflects a
nonrandom distribution of environments among genotypes.
rGE adds to the phenotypic variance for a trait, but it is
difficult to detect the overall extent to which phenotypic
variance is due to the correlation between genetic and
environmental effects (Plomin, DeFries, & Loehlin, 1977).
Genotype—environment interaction refers to the genetic
control of sensitivity or susceptibility to differences in the
environment. In other words, different genotypes respond
differently to the same environment (Boomsma & Martin,
2002; Eaves, 1984; Falconer & Mackay, 1996; Mather &
Jinks, 1977). The contribution of G X E to the overall
population variance is typically smaller than the main ef-
fects of genotype and environment even in controlled ex-
periments using extreme environments. The interaction be-
tween genetic effects and nonshared environment, G X E,
will contribute to the total variance but not to the resem-
blance of twin pairs. In other words, this interaction term
will be confounded with nonshared environmental effects
(Eaves, Last, Martin, & Jinks, 1977). If, however, G X E
represents an interaction between genes and shared environ-
mental influences, G X C, models assuming its absence will
result in overestimation of the effect of genes on the phe-
notype.

A next important assumption is that processes underlying
the resemblance between twin pairs are similar in MZ and
DZ twins. This assumption is important for the target and
rater components. At the target level, this is known as the
equal environment assumption, stating that the influence of
the environments on MZ and DZ twins is similar. This
assumption could, for instance, be violated if MZ twins are
treated more alike by other people than DZ twins and if this
treatment influences the trait under study. A larger resem-
blance of MZ twins then would have partly environmental
causes. Failure to take this into account would result in an

overestimate of the genetic variance, *(A), and an under-
estimate of shared environmental variance, o*(C). The
study of the equal environment assumption is complicated
by the fact that individuals may actively shape their envi-
ronments (Plomin, 1995). For example, MZ twins may
spend more time with the same peers than DZ twins because
they select similar friends. Instead of a more similar envi-
ronment inflating the resemblance between MZ twins, part
of the more similar environment then reflects the higher
genetic similarity of MZ twins and represents true genetic
variance. At the rater level, there may be an expectation that
MZ twins are more similar than DZ twins. This could inflate
the parental ratings of their twins’ resemblance and overes-
timate genetic effects in the rater-specific component
o*(A,). By comparing twin correlations in correctly classi-
fied and misclassified twins, this assumption can be studied.
If twin correlations differ for correctly (e.g., as validated by
genotyping multiple genetic markers) and incorrectly clas-
sified twins, this may reflect a rater effect. Cohen, Dibble,
and Grawe (1977) and Scarr and Carter-Salzman (1979)
found no differences between a group of misclassified MZ
twins and correctly classified MZ twins for mother and
father ratings of personality characteristics and extraver-
sion/self esteem, respectively. In contrast, Goodman and
Stevenson (1989) found, for a hyperactivity scale, some-
what lower twin correlations for mother, father, and teacher
ratings of MZ pairs mistakenly thought by their parents to
be DZ.

Furthermore, zygosity-specific or zygosity-independent
rater bias is assumed not to be present. When parents are
asked to assess their children’s phenotype, they may com-
pare the twins’ behavior. The behavior of one twin then
becomes the standard against which the behavior of the
cotwin is rated. Parents may stress either the similarities or
the differences between the children, resulting in an appar-
ent cooperation or competition effect. This so-called rater
contrast may be hard to distinguish from sibling interaction
(Carey, 1986; Eaves et al., 2000; Neale & Stevenson, 1989;
Saudino & Eaton, 1991; Simonoff et al., 1998). Both, how-
ever, will result in a difference in trait variance of MZ and
DZ twins. Evidence for rater contrast/sibling interaction is
found in some studies (for a review, see Garcia, Shaw,
Winslow, & Yaggi, 2000).

Finally, it is assumed that rater bias is uncorrelated for the
distinct raters. On the basis of this assumption, rater bias is
part of the rater-disagreement variance (see Equation 5),
resulting in bias-free estimates of additive genetic, shared
environmental, and nonshared environmental influences on
the target variance. If, however, this assumption is violated
and bias is shared between raters, this bias will be zygosity
independent and thus end up being part of the shared envi-
ronmental variance of the behavior on which raters agree
(Ceommon)- Correlated bias could arise if, for example, par-
ents share views on normative standards.
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An Application to Internalizing Problems

We use structural equation modeling for longitudinal and
genetically informative data obtained from multiple raters to
illustrate our model and its results. For the analyses with
longitudinal data, we use a Cholesky or triangular decom-
position (see Figure 3). The Cholesky decomposition is
descriptive and not driven by a specific developmental
hypothesis. It decomposes a covariance matrix into genetic
and nongenetic covariance matrices and is a first approach
to obtaining genetic and environmental correlations across
time in longitudinal data sets. Combining the psychometric
rater model and the Cholesky decomposition gives a path
diagram as depicted in Figure 4, considering one member of
a twin pair and the additive genetic part of the model solely,
and is explained in detail in the Appendix.

Subjects and Measures

Longitudinal survey data were collected in a large sample
of Dutch twin pairs. All participants are registered by the
Netherlands Twin Registry (NTR), kept by the Department
of Biological Psychology at the VU University in Amster-
dam, the Netherlands (Bartels et al., 2007; Boomsma et al.,
2006). For this study, data from twins from birth cohorts
1986-1993 were used. Behavioral checklists were collected
longitudinally at ages 3, 7, 10, and 12 years. Mother and
father ratings were collected by age-appropriate Child Be-
havior Checklists (CBCL/2-3, Achenbach, 1992; CBCL/4-
18, Achenbach, 1991). The CBCL is a standardized ques-
tionnaire for parents to report on the frequency of problem
behavior as exhibited by the child during the last 6 months.
Two broadband groupings, called internalizing (INT) and
externalizing behavior, can be formed. In this article, we
analyze INT, which reflects withdrawn behavior and anx-
ious/depressed behavior. As in every longitudinal project,
changes due to change of measurement instrument cannot

be distinguished from biological changes. However, in our
study, we used age-appropriate questionnaires from the
same taxonomy (the Achenbach System of Empirically
Based Assessment) and the broadband scale INT, which
minimizes changes due to instrument change. Details on the
CBCL and the construction of the INT scale can be found
elsewhere (Achenbach, 1991, 1992; Koot, van den Oord,
Verhulst, & Boomsma, 1997). Mother and father ratings
were available for 3,207 twin pairs at age 3 years, for 3,859
twin pairs at age 7 years, for 2,196 twin pairs at age 10
years, and for 1,105 twin pairs at age 12 years. Because of
funding constraints, the CBCL was sent only to the mother
of 3-year-old twins born between May and November 1989,
resulting in lower numbers of both mother and father ratings
at age 3 compared with age 7. For 2,395 twin pairs, only
maternal ratings were available at age 3. Furthermore, only
maternal ratings were available for 1,256 twin pairs at age
7, for 760 twin pairs at age 10, and for 376 twin pairs at age
12. For a small number of twin pairs, only father ratings
were available (182 pairs at age 3, 136 pairs at age 7, 62
pairs at age 10, and 50 pairs at age 12).

In this longitudinal sample, no differences in mean levels
of INT were found when comparing twins who participated
at all ages, twins who dropped out after age 3, and twins
who dropped out after age 3 but returned to the study at later
ages (Bartels et al., 2007). However, a significant associa-
tion between (non)response and level of SES was found
(Derks, 2006). At ages 7 and 10, the level of SES was higher
in families who returned the questionnaire than in families
who did not return the questionnaire. In contrast, no differ-
ence was found for the level of SES at age 3. Although
significant differences in the level of problem behaviors
were found between responders and nonresponders, the
effect sizes were all near zero. This implies that the differ-
ences between responders and nonresponders are statisti-

Figure 3. The Cholesky decomposition: Squares represent measured variables. In this figure, the
observed variables P_time,—P_time, represent behavior assessed at the four different time points (in
this study, ages 3, 7, 10, and 12 years). Circles represent latent, unobserved factors (n;—n,), which
could be replaced by genetic and/or environmental factors. Their influence on the phenotype is given
by path coefficients A\,,—\,,. \,; represents the influence of the first latent factor on the observed
variable at the first measurement occasion, \,, represents the influence of the first latent factor on
the observed variable at the second measurement occasion, and so on.
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Figure 4. The combined multiple-rater longitudinal model for one member of a twin pair, with a
Cholesky decomposition for the additive genetic influences on the reliable trait variance and the parental
unique additive genetic influences. All other variance components can be expressed in this way but are
left out the figure for sake of simplicity. Squares represent measured/observed variables. In this figure,
the observed variables represent mother and father ratings for the older of the twin pair (T)) at the first
measurement occasion (time 1) to the fourth measurement occasion (time 4). PT1_time 1 represents the
overlap in parental ratings (P) for the older of the twin pair (T1) at the first measurement occasion (time
1; age 3 years), PT,_time 2 represents the overlap in parental ratings for the older of the twin pair (T1)
at the second measurement occasion (time 2; age 7), and so on. A, to A, represent genotypes at
measurement occasions 1 to 4. Their influence on the phenotype is given by path coefficients a,,—ayy.
a,, represents the influence of the first latent factor on the observed variable at the first measurement
occasion, a,, represents the influence of the first latent factor on the observed variable at the second
measurement occasion, and so on. Distinction between paternal and maternal variance components is
made by subscript ,,, or ; to denote mother or father ratings.
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cally significant, probably as a result of the large sample questions and zygosity assignment by DNA markers/blood
sizes, but are not practically significant. typing is around 93% (for details, see Rietveld et al., 2000).
Zygosity was determined for 1,249 same-sex twin pairs
based on DNA or blood group polymorphisms. For all other
same-sex twin pairs, zygosity was determined by discriminant
analysis, using questionnaire items at each age separately. Full-information maximum-likelihood analysis of raw
Agreement between zygosity assignment by the replies to the data (so that all available data are used; i.e., also twin pairs

Genetic Modeling
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with only maternal ratings) was used to obtain parameter
estimates. The procedure follows the theory described by
Lange, Westlake, and Spence (1976). The package Mx
(Neale, Boker, Xie, & Maes, 2003) was used to estimate
genetic and environmental variance components (to down-
load Mx software, go to http://www.vcu.edu/mx; to obtain
Mx scripts, see the Mx-scripts library at http://www.psy-
.vu.nl/mxbib; for the Mx script used in this article, see the
doi.org Web site URL at the head of the article). A
Cholesky decomposition was specified for all common and
rater-specific genetic and environmental components. It is
possible that the processes underlying parents’ judgments of
INTs may differ for boys and girls. Furthermore, the genetic
architecture of the agreed-upon phenotype may differ for
boys and girls. Consequently, analyses were based on a
five-group design so as to be able to detect sex differences
in the variance components. In this design, the five groups
are MZ males, DZ males, MZ females, DZ females, and
twins of opposite sex. The significance of each variance
component (rater-specific and common) was tested by con-
straining them at zero in a submodel, which was compared
with the full model in which the component was freely
estimated. For instance, it was investigated whether dis-
agreement between parents were at least partly due to rater
bias or whether rater-specific views were involved. To make
this distinction, the significance of the rater-specific additive
genetic effects (A,, or A;) were tested. If these rater-specific
genetic effects were significant, systematic effects must be
present, which would not be expected when differences in
parental ratings were caused only by rater bias and unreli-
ability, which are independent of zygosity of the children.
The significance of other influences, for example, genetic
and shared environmental factors on the agreed-upon part of
the behavior, was also tested. The only factor that was never
dropped from the model was the rater-specific nonshared
environmental factor (E, ;) because measurement errors are
included in this factor. Sex differences in variance compo-
nents were tested by constraining these to be equal for boys
and girls.

Submodels were compared by hierarchical chi-square
tests. The chi-square statistic is computed by subtracting
—2LL (log likelihood) for a reduced model from that for the
full model: x* = —2LL, — (—2LL,). Given that the full
model is correct, this statistic is chi-square-distributed with
degrees of freedom (dfs) equal to the difference in the
number of parameters estimated in the two models (Adf =

dfo — dfy.
Results

Genetic Model Fitting: Significance of the Distinct
Variance Components

We first tested the significance of each variance compo-
nent. The saturated model was taken as a reference for

evaluating changes in chi-square and associated degrees of
freedom of more parsimonious models. All variance com-
ponents were significant, as indicated by the poorer fit of the
reduced models: The chi-square increased dramatically after
constraining variance components at zero (for all variance
components, p < .001). The total observed variance can be
decomposed into rater-agreement variance, az(ra), which is
accounted for by significant additive genetic, shared envi-
ronmental, and nonshared environmental effects, and into
rater-disagreement variance, a2(rd).

Significance of the rater-specific additive genetic effects
(a*,, and %) indicated that rater disagreement was not
solely due to bias or error but that each parent provided
specific and reliable information on the behavior of his or
her child. Furthermore, significant rater-specific shared and
nonshared environmental influences were present, partly
representing bias and/or error. Finally, sex differences in the
magnitude of the variance components were found, x*(90)
= 131.044, p < .05.

Variance and Covariance Decomposition

The percentages of the total age-specific variance (bolded
cells) and the total between-age covariances (off diagonal)
decomposed into common (rater-agreement) and rater-spe-
cific (rater-disagreement) additive genetic, shared environ-
mental, and nonshared environmental factors for boys (be-
low diagonal) and girls (above diagonal) based on the best
fitting model are presented in Table 1. Common factors
(Acommon T Ceommon T Ecommon) aré¢ more important than
rater-specific factors (A pique T Cunique T Eunique)- The ratio
of the common factor variance to the total variance could be
treated as an index of interrater reliability. For example,
70% of the total variance in INT at age 3 based on maternal
ratings is agreed upon by both raters. The remaining vari-
ance (about 30%) is rater-disagreement variance. Common
additive genetic factors are most important in explaining
individual differences in INT at ages 3, 7, 10, and 12.
However, a decrease in common additive genetic influences
is found over the years. A complementary increase in com-
mon shared environmental influences is found.

Rater-specific variance components are significant as
well. Between 1% to 17% of the total variance in INT (the
observed behavior) is accounted for by rater-unique views
of mothers and fathers (A,,,, Ay). Differences in the magni-
tude of variance components is based on the rater (mother
vs. father), age of the target (age 3, 7, 10, or 12), and gender
of the target (boy or girl). Asking both mothers and fathers
to rate problem behavior in children does add additional
information on the child’s behavior. The use of this design
shows that 1% to 17% of rater-disagreement variance is
reflecting real behavior. In a nongenetically informative
sample, this part of the rater-disagreement variance would
be labeled as bias or error.
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Table 1

BARTELS ET AL.

Proportions of the Total Genetic and Environmental Variances (Diagonal; Bolded Cells) and Covariances (Off Diagonal) for
Internalizing Problem Behavior Based on the Best Fitting Model for Boys (Below Diagonal) and Girls (Above Diagonal)

Internalizing
Mother Father
3 7 10 12 3 7 10 12

Acomxnon

3 .51/.45 43 43 41 .53/.46 47 48 44

7 .56 .36/.29 .35 27 71 .38/.31 42 32

10 .50 44 .28/.24 .28 .70 53 .32/.27 .34

12 49 .39 .35 .28/.22 .66 44 .39 .30/.23
Ccommon

3 .04/.09 31 .33 43 .04/.09 .34 .37 46

7 17 11/.16 22 .33 21 A1/.17 27 .39

10 23 .20 .18/.19 27 33 23 21/.22 .33

12 .26 .26 .25 .18/.23 .36 .29 .28 .20/.25
Ecommon

3 15/.13 .03 .01 —.03 15/.14 .04 .01 —.03

7 .03 15/.16 12 11 .04 .16/.16 .15 13

10 .00 .10 .16/.14 15 .00 12 .18/.16 18

12 —.01 12 .16 .14/.14 —.01 13 .18 .16/.15
Auniquc

3 .09/.14 .04 .00 —.12 11/.01 —.02 —.03 —.04

7 .03 13/.11 .06 .00 .06 10/.11 —.06 —.02

10 .04 13 12/.10 .06 —.07 —.04 .05/.07 .02

12 —.11 12 .10 .14/.06 —-.07 —.02 .01 17/.13
Cunique

3 .08/.04 17 22 .26 .05/.19 .14 22 12

7 .20 .13/.16 .20 .19 .01 12/.15 22 17

10 27 13 12/.17 .16 12 12 13/.19 .16

12 31 .10 .10 .16/.21 13 13 12 .07/.13

3 .13/.15 .02 .01 .05 12/.11 .03 —.05 .05

7 .01 12/.12 .05 .10 —.03 .13/.10 .00 .01

10 —.04 .00 .14/.16 .08 —.08 .04 .11/.09 —.03

12 .06 .01 .04 .10/.14 —.07 .03 .02 10/.11
Note. In boldfaced cells, the first number is the estimate for boys, and the second number is the estimate for girls. Distinct estimates for the common

variance component for mothers and fathers arise due to standardization based on the total observed variance for each rater. A

influence on common agreed-upon variance; C.omon
environmental influence on the common agreed-upon variance; A,

unique

common

= additive genetic

= shared environmental influence on the common agreed-upon variance; E. .., = nonshared

= parental unique genetic influences; C = parental unique shared

unique

environmental variance; E, ;. = parental unique nonshared environmental variance.

A salient finding is the significant and rather high influ-
ence of rater-specific shared environmental factors (C, Cy).
This factor can represent two components. First, it can
represent real shared environmental influences, uniquely
assessed by one of the parents. Second, it can represent rater
bias. Rater-specific nonshared environmental influences
(E,,, Ep) account for 9% to 16% of the variance at the
distinct ages. Measurement error and real nonshared envi-
ronmental influences are captured in these estimates.

More important in Table 1 are the influences of common
and rater-specific genetic and environmental factors on the
covariances (off diagonal), representing genetic and envi-
ronmental influences on the stability of INT throughout
childhood. Stability in the behavior similarly assessed by

both parents is explained by common additive genetic in-
fluences (51% of the covariance on average for boys and
39% for girls) and common shared environmental influ-
ences (26% of the covariance on average for boys and 34%
for girls). Common nonshared environmental influences
seem to be less important for stability in problem behavior,
as indicated by very low influences on the covariances.
Rater-specific influences are generally less important for
stability in INT over the years. The one exception is the
mother-specific and the father-specific shared environmen-
tal influences. About 19% of the covariance in INT based on
the mother ratings is accounted for by these rater-specific
shared environmental influences. Therefore, rater bias pos-
sibly accounts for a significant part of the stability, although
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its account cannot be fully distinguished from valid variance
in this model. It can further be observed that the paternal
unique additive genetic component (A;) does not add infor-
mation on stability of behavior. This has been found for
other phenotypes as well, for example, obsessive-compul-
sive behavior (OCB; van Grootheest et al., 2007), which
indicates that it is not likely to be a chance finding. Father
ratings do not appear to be the best source of information for
studying stability of behavior. Note that the A; component,
being age specific, is not inconsistent with the interpretation
of unique perceptions of inherited characteristics. Rather, it
indicates that this component is not stable over time and
that, apparently, the father perceives somewhat different
aspects of the child’s behavior at each age. In contrast to the
findings for OCB (van Grootheest et al., 2007), maternal
unique views (A ,) account for a small to modest percentage
of the total covariance. These results indicate that for study-
ing the stability of INT, most of the information comes from
the part of the covariance on which both parents agree.

Discussion

In this article, we have illustrated how genetically infor-
mative data can be used to address fundamental questions
concerning the assessment of behavior and behavior prob-
lems in young children. For this purpose, we analyzed
longitudinal data on internalizing problem behavior in chil-
dren as assessed by both parents and collected in a large
sample of Dutch twin pairs. The extension of the multiple-
rater model to a longitudinal model allowed the decompo-
sition of the longitudinal variance—covariance matrix into
components due to common additive genetic, shared envi-
ronmental, and nonshared environmental influences, as well
as components due to rater-specific additive genetic, shared
environmental, and nonshared environmental influences.
Conditional on the assumptions discussed in the introduc-
tion, the common components can be interpreted as reflect-
ing behavior similarly assessed by both parents, that is, the
target variance, o*(t). The rater-specific components reflect
disagreement in behavioral assessment by mothers and fa-
thers and may include rater effects, dyadic effects, and
residual error effects.

The significant influences of additive genetic factors on
the target variance (common agreed-upon behavior of the
child) indicate the child’s innate vulnerability to childhood
psychopathology. The significant influences of common
nonshared environmental influences indicate the importance
of pure idiosyncratic experiences. The significant influence
of common shared environmental factors indicate that en-
vironmental factors that are overlapping for the two children
of a twin pair, for example, family environment or neigh-
borhood, are of importance as well.

In our example, rater-disagreement variance, oz(rd), that
is, A, + C, + E,, accounted on average for 35% of the

individual differences in INT, which is in line with the 37%
mentioned by Hoyt and Kerns (1999). One percent to 17%
(Mdn = 10%) of this rater-disagreement variance was ac-
counted for by rater-specific additive genetic variance,
o*(A,). This suggests that parents assess reliable unique
aspects of their child’s behavior. Thus, the lack of agree-
ment not only should be considered to be bias but also partly
represents the unique feature of the relationships between
that parent and his or her child. The remaining part of the
rater-disagreement variance consisted on average (across
the multiple measurements) of 11% (Mdn = 12%) shared
environmental variance, 02(Cu), and 12% (Mdn = 12%)
nonshared environmental variance, O'Z(Eu). With this de-
sign, it is not possible to distinguish rater-specific shared
environmental variance from rater bias, and we cannot
distinguish rater-specific nonshared environmental effects
from random measurement error plus dyadic effects. How-
ever, the rater-specific shared environment components,
02(Cu),were about equal to the common shared environ-
mental effects, o*(C), while the rater-specific additive ge-
netic components, 0'2(Au), were relatively small compared
with the common additive genetic effects, 0°(A). An expla-
nation of the different balance for C compared with A could
be that a part of 0*(C,) is rater bias. However, this finding
should be interpreted with care because no real distinction
between rater bias and real rater-specific shared environ-
mental effect can be made with the proposed design.

Longitudinal data can shed some further light on the
nature of rater disagreement. The finding that the contribu-
tions of both A,, and A; to cross-time covariances are near
zero and often negative indicates that the rater-specific
variance reflects real but only age-specific behavior of the
child. Stability of INT is reflected by the influences of
common additive genetic effects to the covariance. Further-
more, the finding that rater-specific shared environment
component o*(C,) contributes at least moderately to stabil-
ity over time could mean that rater bias may be persistent
and affect longitudinal studies. Finally, the absence of sta-
bility in the rater-specific nonshared environmental influ-
ences (especially for father raters) suggests the presence of
random error variance that would not be expected to be
stable across time. However, nonshared environmental in-
fluences on the target covariance (the covariance of the
common agreed-upon behavior) over time were also small,
so the later finding should be interpreted with care as these
estimates could also reflect real rater-specific nonshared
environmental influences.

Our results suggest that two strategies are possible in
studying childhood psychopathology given data obtained
from raters: (a) Only focus on the behavior on which raters
agree, which could be incomplete due to the absence of
rater-specific additive genetic variance, representing the
unique view of a rater on the target behavior. However, a
bias-free estimate of genetic and environmental influences
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on the target variance is obtained. (b) Focus on behavior on
which raters both agree and disagree, which gives a more
complete picture of the child’s behavior. However, this
strategy has the disadvantages of a possible confounding
with leniency/severity effects and measurement error.

We have discussed the unique contributions of the clas-
sical twin design when it is combined with information from
multiple raters. The model may be applied to other geneti-
cally informative designs, such as the full family design, the
step/half-sibling design, or the adoption design. The full
family design and the adoption design, however, lack infor-
mation for studying rater (dis)agreement in the detailed
sense we have illustrated for the twin design. For instance,
within the family design, one can collect data from multiple
raters on multiple offspring, but the family design does not
permit one to disentangle genetic and shared environmental
factors as the underlying source of familial aggregation. For
studies on rater disagreement, this distinction is essential to
distinguish rater-specific (informative) views, represented
by rater-specific additive genetic effects, from (noninforma-
tive) rater bias, represented by rater-specific shared envi-
ronmental effects. Furthermore, in the adoption design, the
two (or more) raters do not rate genetically related subjects
but, rather, genetically unrelated siblings. Information from
biological parents is often lacking in this design, so effects
of shared environment can be estimated, whereas informa-
tion to estimate heritability and rater-specific additive ge-
netic effects in the case of our model is lacking. A design
with additional groups of different levels of genetic relat-
edness, such as, full siblings, half-siblings, and step-sib-
lings, could be as informative as the proposed classical twin
design but will be less powerful.

Rater Contrast

To use the proposed model, several assumptions have been
presented in the introduction. Although the analysis may offer
a more refined picture of the nature of rater differences or
developmental processes, reality is likely to be more complex.
One example involves a mix of phenomena that have been
referred to in the literature as contrast effects, sibling interac-
tion, or the equal environment assumption. For example, the
current model assumes that the INT of one twin does not
directly affect the other twin’s INT. For common childhood
psychopathology, claims of cooperation and competition ef-
fects have been made (for a review, see Garcia, Shaw, Win-
slow, & Yaggi, 2000). Sibling interactions may be very hard to
distinguish from certain types of rater effects (Eaves et al.,
2000; Neale & Stevenson, 1989; Simonoff et al., 1998). When
parents are asked to assess their children’s phenotype, they
may compare the twins’ behavior. The behavior of one twin
could then become the standard against which the behavior of
the co-twin is rated. Parents may stress either the similarities or
the differences between the children, resulting in an apparent

cooperation or competition effect. Furthermore, genetic non-
additivity, such as allelic interaction effects on the same or
different loci, may also produce patterns that resemble those of
sibling interaction and rater effects. More specifically, these
effects will result in a difference in trait variance of MZ and
DZ twins, and with large sample sizes, the variance differences
between zygosities provide a good test. Variances and twin
correlations for the data used in the current article do not give
any indication of the presence of contrast effects or genetic
dominance, so we have not taken these effects into account.

We have further assumed that processes are similar for
MZ versus DZ twins. Because, in reality, this assumption
might not hold and processes might differ for MZ and DZ
twins, this could affect the validity of the results. For
instance, it has been argued that the similarity of MZ twins
might be inflated because they grow up in more similar
environments than DZ twins. However, individuals may
actively shape their environments so that part of the more
similar environment may actually be a reflection of the
higher genetic similarity of MZ twins. Also, it has been
suggested that raters may expect DZ twins to be dissimilar
to a certain extent. Some support for possible zygosity-
dependent rater-contrast effects comes from the finding that
when more behavioral measures of temperament are used
(e.g., actometer readings or behavioral observations), DZ
correlations may be higher (Saudino & Eaton, 1991).
Borkenau, Riemann, Angleitner, and Spinath (2001) found,
for instance, that video-based personality ratings yielded
estimates of shared environmental influences about .15
higher than those obtained using self-reports and peer re-
ports. These authors stated that the main source of this
difference was the relatively high DZ correlation in video-
based personality ratings. However, no tests were per-
formed to examine whether these results were significant
nor were other possible explanations evaluated systemati-
cally. Furthermore, it is not clear whether behavioral obser-
vations assess the same behavior as, for instance, ratings by
parents, who may observe their children in more diverse and
different situations. In fact, what may appear to be a limi-
tation of the twin method could merely be a reflection of the
true complexity of psychological processes. In a sense, this
underscores the point made in this article that there is a need
to extend the methodological arsenal. Collecting informa-
tion from multiple raters in large genetically informative
samples may be important in this respect. It has the potential
to shed light on some of the these issues by systematically
evaluating many of the processes that may underlie differ-
ences between raters.

Conclusions

Genetically informative designs offer some unique pos-
sibilities. This has been illustrated in this article by focusing
on rater agreement and disagreement using parental ratings.
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The same model could be applied to parent and teacher data.
Using teacher data will probably increase the rater-specific
components as, by definition, the information available to a
teacher and parent will overlap less than the information
available to a mother and father. Furthermore, expansion
can be in the direction of examples for the study of envi-
ronmental (Collins, Maccoby, Steinberg, Hetherington, &
Bornstein, 2000) and developmental mechanisms (van den
Oord & Rowe, 1997). Clearly, genetically informative de-
signs will not solve all problems, and there are inherent
limitations as to the complexity of the phenomena that can
be modeled. These designs will, however, provide a unique
piece of information that cannot be obtained using nonge-
netically informative samples.
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Appendix

The Expected Variance—Covariance Matrix for a Twin Pair Rated by Mother and Father

To derive the expected covariances between ratings and
between twins, we first focus on the ratings of the mother
for Twin 1 (MRT)) and of the father for Twin 1 (FRT,). On
the basis of the rules of path analysis (see Figure 2 in the
main text), we write the model as a matrix equation:

MRT, ] [ 1
[FRT] }_[1]X[[a]X[A]+[C]><[C]+[e]><[E]]+

a, 0 A, cn O
{ 0 “f]x[ Af}Jr[ 0 Cf]
Ll ol le ] e
C; 0 e E; |’

where A, C, and E represent the additive genetic, shared
environmental, and nonshared environmental latent factors,
respectively, and where their influence on the phenotype is
given by path coefficients a, ¢, and e. Furthermore, a dis-
tinction between paternal and maternal factors is made by
the subscript ,, or ; to denote mother or father rating. The
first part of this matrix equation represents influences of A,
C, and E on the reliable trait variance (behavior similarly
observed by both mother and father). The second part of the
matrix equation represents rater disagreement. All genetic

and environmental factors are uncorrelated.
To extend the model to a twin pair, we define the (4 X 1)
data vector with parental ratings as y’ = [MRT,, FRT,, MRT,,

FRT,]. By taking the expectation, we obtain the (4 X 4)
expected covariance matrix for the full model in Figure 2:

_ EA+2c+EE|r ®EA+EC ,
EY_LX[rg®2A+EC|2,f+EC+EE]XL

G+ S + F|r,®G + S
T 96 +SIG+8s+F [ B

where (3, + 3¢ + Xp) represents the within-person vari-
ance structure for one twin and (r, ® X, + ) the be-
tween-twins covariance, representing the twin variance—
covariance matrix for the reliable trait variance (see also the
upper part of Figure 2 in the main text). Correlation r, can
be derived from quantitative genetic theory (Falconer &
Mackay, 1996) and equals 1.0 for monozygotic twins and
0.5 for dizygotic twins. The ® is the Kronecker product.
The twin variance—covariance matrix for the reliable trait
variance is multiplied by matrix L. L is a (4 X 2) matrix
with loadings of the latent phenotypes (PT, and PT,) on the

parental ratings. This factor-loading matrix is of the general
formL = I ® (I, ® d). I, is a n, X n, identity matrix where
n, is the number of measurement occasions. I is a 2 X 2
identity matrix determined by the fact there are two children
in a twin pair, and d is an n, X 1 vector determined by the
number of raters (n,). For model identification, the elements
in matrix L are fixed to one. G, S, and F (2 X 2) are:

Se 0 (3 0
G:[ 0 EAf]’ S_[ 0 ch]’
andF=[

2, 0
0 2 |

where 3, A, and py A, Tepresent the additive genetic variance
based on mother and father ratings, Ecm and ch represent
the within-person shared environmental variance based on
mother and father ratings, and X, and EEf represent the
within-person nonshared environmental variance based on
mother and father ratings (see also the lower part of Figure
2 in the main text). Combining the distinct components of
both raters, who each rate two children of a twin pair, results
in a 4 X 4 covariance matrix for the rater-specific factors.

Implementation of the Longitudinal Models in the
Psychometric Model

In the case of multiple measurement occasions, we write

the data vector as y> = [MRT, — ), ..., MRT;, — ,),
FRT —_ .....FRT; - ,), MRTy, _ ), ..., MRTy, _ ),
FRT,¢ = ), - .., FRTy — ,,)] where t indexes the measure-

ment occasion and n, the maximum number of measurement
occasions. The expectation X is again given by Equation
A2. However, matrices 2 ,, 2, and 2 may now be re-
placed by the matrix % in Equation A3. This imposes a
saturated (Cholesky) structure on the covariances among the
genetic and environmental factors at the measurement oc-
casions that are common to both parents. Matrices G, S, and
F in Equation A2 represent the covariances among time
points that involve factors unique for each rater. These
unique covariances can also be modeled using a saturated
structure. In this case of multiple measurement occasions,
G, S, and F have the following block diagonal structure:

rd
23, |

(Appendix continues)
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in which Z is a n, X n, full matrix with zeroes. Matrix X,
is for mother and 3 for father to indicate that parameter
estimates may differ for both parents.

The Cholesky decomposition model in Figure 3 in the
main text is an unconstrained model for the (co)variances
among measurement occasions. It implies the covariance
structure

S=XXxXX (A3)

where ' indicates transposition. In matrix terminology, ma-
trix X is an n, X n, lower triangular matrix with n, equal to
the number of measurement occasions. For instance and
illustrative for our application, for n, = 4 matrixes, X would
be

Ay O 0 O

M A O 0
X — 21 22

)\31 )\32 }\33 O

N A Az Ay

In this matrix, N, represents the influence of the first
latent factor (m;) on the first measurement occasion,
while A5, represents the influence of the second latent
factor (m,) on the third measurement occasion (the matrix
elements correspond to the path coefficients in Figure 3
in the main text).
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