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Abstract

Children and adolescents show high variability in brain development. Brain age—the estimated biological age of an
individual brain—can be used to index developmental stage. In a longitudinal sample of adolescents (age 9–23 years),
including monozygotic and dizygotic twins and their siblings, structural magnetic resonance imaging scans (N = 673) at 3
time points were acquired. Using brain morphology data of different types and at different spatial scales, brain age
predictors were trained and validated. Differences in brain age between males and females were assessed and the
heritability of individual variation in brain age gaps was calculated. On average, females were ahead of males by at most
1 year, but similar aging patterns were found for both sexes. The difference between brain age and chronological age was
heritable, as was the change in brain age gap over time. In conclusion, females and males show similar developmental
(“aging”) patterns but, on average, females pass through this development earlier. Reliable brain age predictors may be used
to detect (extreme) deviations in developmental state of the brain early, possibly indicating aberrant development as a sign
of risk of neurodevelopmental disorders.
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Introduction
Brain morphology is continuously changing throughout life. One
way of quantifying individual differences in the context of devel-
opment and aging is to compute a “brain age,” which is a
neurobiological marker of age, rather than a chronological one.
Brain age is a predicted age based on brain phenotypes such as
brain structure (structural magnetic resonance imaging [MRI];
Franke et al. 2010) or functioning (functional MRI; Dosenbach
et al. 2010), usually determined through machine learning tech-
niques. Differences between predicted and chronological age
can be interpreted as delayed or accelerated development or
aging (“brain age gap”). Advanced brain age has been found for

several brain diseases, such as schizophrenia (Hajek et al. 2019;
Koutsouleris et al. 2014; Nenadić et al. 2017; Schnack et al. 2016),
and Alzheimer’s disease (Gaser et al. 2013; Lowe et al. 2016). Since
psychotic disorders originate in adolescence, advanced brain age
could be used as a clinically useful marker for early aberrant
development. For example, increased brain age has been found
in subjects at high risk for psychosis (Koutsouleris et al. 2014).
Since structural brain changes in childhood and adolescence are
expected to differ qualitatively and quantitatively from those in
adulthood, a brain age model tailored to the younger age range
would likely be more accurate and more sensitive to subtle aging
effects in adolescents at risk. Several studies have been carried
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out in children and adolescents thus far, showing a mean abso-
lute prediction error of around 1.0–1.7 years (Brown et al. 2012;
Cao et al. 2015; Erus et al. 2015; Franke et al. 2012; Khundrakpam
et al. 2015; Truelove-Hill et al. 2020). These deviations from the
chronological age can be interpreted as delayed or accelerated
brain development, making brain age a potential biomarker to
detect deviant development.

The high heritability of both brain structure and psychiatric
disorders gives rise to the question whether genes drive individ-
ual differences in brain age gaps, as this would further validate
the use of brain age as a risk factor for disease. Brain age itself
has been found to be a heritable phenotype in a small sample
of adult females (Cole et al. 2017). The question is whether
delayed or accelerated brain age during development can be
explained by genetic factors. Heritability of adolescent brain
age gaps from functional data has recently been established
based on electroencephalography (EEG)-derived brain measures
(Vandenbosch et al. 2019). In that study, the EEG-based brain
age gap was relatively stable over a period from childhood
to adolescence. The MRI-based maturation index, a measure
related to brain age, has also been found to be relatively stable
throughout development (Cao et al. 2015). It remains an open
question whether the temporal dynamics of brain age gaps over
time are genetically driven.

In this work, we study several factors that could explain
individual differences in brain age gaps. Sex may be one of
those factors: females have been found to be more advanced
in their development of brain structure (e.g., Gennatas et al.
2017; Giedd et al. 1999; Koolschijn and Crone 2013). In addition,
females reach puberty earlier than males by a few years (Mul
et al. 2001), and pubertal hormone levels have been associated
with brain structure (reviewed in Herting and Sowell, 2017;
Vijayakumar et al. 2018). We hypothesize that an MRI-based
age prediction model in adolescence will estimate the brains
of females to be older than their chronological age and those
of males to be younger than their chronological age. Second,
we investigate the influence of genetic factors on brain age
gaps derived from MRI and on the dynamics of this brain age
gap over time. Finally, we investigate brain age gaps derived
from different neurobiological measures at different scales to
investigate whether these capture the same underlying devel-
opmental processes. We base the age prediction on three differ-
ent feature sets: volumetric region-of-interest (ROI) measures,
vertex-based cortical thickness measures, and voxel-based gray
matter density (GMD). We study these questions in a longi-
tudinal, extended twin cohort that was followed throughout
puberty and adolescence (Supplementary Table S1, Koenis et al.
2018; van Soelen et al. 2012a; Peper et al. 2009). We build sex-
specific brain age models to investigate the influence of sex. We
apply longitudinal twin modeling to disentangle the influences
of genetic and environmental factors that act on the brain age
gaps and to assess heritability of the dynamics of the brain
age gaps over time. Finally, we investigate the (genetic) overlap
between MRI-based brain age gaps derived at different spatial
scales.

Methods and Materials
Participants

A total of 330 subjects from 112 families consisting of twin pairs
and their siblings participated in the longitudinal BrainSCALE
study on brain and cognitive development during childhood and

adolescence (van Soelen et al. 2012b), a collaborative project
between the Netherland Twin Register (Boomsma et al. 2006;
Van Beijsterveldt et al. 2013) at the Vrije Universiteit Amsterdam
and the University Medical Center Utrecht (UMCU). The Brain-
SCALE cohort consists of healthy typically developing children.
Exclusion criteria for participation at the start of the study
were: a known major medical or psychiatric history; chronic
use of medication; participation in special education; physical
or sensory disabilities; having a pacemaker; metal materials
in the head with the exception for dental braces (van Soe-
len et al. 2012b). At follow-up, children were not assessed for
these exclusion criteria (except for contraindications for MRI).
The families first participated in 2005 when the twins were
9.1 (0.1) years of age and revisited the UMCU when the twins
were 12.1 (0.2) and 17.2 (0.2) years old. The siblings were 11.8
(1.1), 14.8 (1.3), and 19.8 (1.3) years old at baseline and follow-
ups, respectively. The total age range of the sample was 9.0 to
22.9 years. Return rates were 80% and 77% of initial inclusion.
All members of a family were scanned on the same day (96%)
with the exception of 11 occasions (2 twins, 9 siblings). In these
cases, the participant was scanned within 2 months of their
siblings. See Supplementary Table S1 for demographics of par-
ticipants included in this analysis. This study was approved by
the Central Committee on Research Involving Human Subjects
of Netherlands (CCMO), and studies were performed in accor-
dance with the Declaration of Helsinki. Parents signed informed
consent forms for their children. At the third measurement, the
adolescents signed their own informed consent forms. Parents
were financially compensated for travel expenses, and children
received a present or gift voucher at the end of the testing
days.

MRI Acquisition

Participants underwent MRI on two identical 1.5 Tesla Philips
Achieva scanners (Philips) at the UMCU. For measures of brain
morphology, a three-dimensional T1-weighted scan (spoiled
gradient echo; time echo = 4.6 ms; time repetition = 30 ms; flip
angle = 30˚; 160–180 contiguous coronal slices of 1.2 mm; in-
plane resolution of 1.0 × 1.0 mm2; acquisition matrix of 256 × 256
voxels; field-of-view of 256 mm with 70% scan percentage) of
the whole head was acquired (Peper et al. 2009) with the same
acquisition parameters and on the same scanners for each
visit. There was considerable dropout at MRI scanning at the
second visit (24%), mainly due to dental braces. In addition, a
number of scans dropped out because of motion (11%/10%/7%).
In total, this study contained 673 scans from 305 subjects
(Supplementary Table S1).

Image Processing

We wished to measure aging of the brain using three differ-
ent brain morphological metrics, assessing different types of
information and at different scales: (1) Voxel-wise GMD, a high-
dimensional representation of the whole brain’s gray matter,
“close” to the acquired image; (2) Vertex-wise cortical thickness,
a high-dimensional representation of the cortical gray matter;
(3) Region-based cortical and subcortical volumes of interest, a
low-dimensional representation of the gray matter of the brain.

Image processing was done using two pipelines, one for
a voxel-based approach (“voxel-based morphometry (VBM)”;
Ashburner and Friston 2000) and one for a surface-based
approach (FreeSurfer; Fischl et al. 2002, 2004). An in-house
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processing pipeline was used for the voxel-based approach (see,
e.g., Nieuwenhuis et al. 2012): First, the T1-weighted images
were reoriented into Talairach orientation without scaling
and corrected for magnetic field inhomogeneities (Sled et al.
1998). Intracranial masks were created and manually checked
and edited if necessary, as described earlier for the baseline
measurement. These were used as a basis to create intracranial
masks at follow-ups (Peper et al. 2008; van Soelen et al. 2013).
The intracranial volume (ICV) was then separated into gray
matter, white matter, and cerebrospinal fluid using a partial
volume segmentation algorithm (Brouwer et al. 2010). The gray
matter fractions were blurred using an 8-mm full-width half-
maximum kernel and resampled to a 2 × 2 × 2.4 mm3 resolution,
resulting in so-called GMD maps. The T1-weighted images
were then warped by a combination of linear and nonlinear
transformations to a model brain (Collins et al. 1995). The
GMD images were warped into model space using these same
transformations. For the second approach, Freesurfer version 5.3
was run with the T1-weighted images in Talairach orientation
as input. The manually edited intracranial masks were used
to adjust the brain mask images after the initial processing
steps. Global and subcortical volumes were extracted (Desikan–
Killiany atlas; Desikan et al. 2006). We also extracted data on
vertex level. We first averaged all scans in the study using
the FreeSurfer subroutine fsaverage. Subsequently, to limit the
number of vertices, we decimated the average template with
a factor 10 using the subroutine mri_decimate and mapped all
subjects to that template before extracting the data for each
individual. Despite the availability of longitudinal data, we only
used data from the cross-sectional pipeline for two reasons: One,
subjects in our study had up to three scans included, and we
wanted to avoid bias in segmentation accuracy between images.
Two, for practical reasons, brain age should be computable
from one image only. This approach has the consequence that
we did not use the most accurate segmentation possible for
participants that had longitudinal data available. For subsequent
analyses, we expect the effect of this to be small, if anything,
slightly increased noise levels result in an underestimation of
heritability.

Features

We selected three brain feature sets to serve as input for the
machine learning algorithm: (1) a voxel-based GMD feature set
(157 256 features), (2) resampled (30 741 features) vertex-based
cortical thickness values extracted from the FreeSurfer pipeline,
(3) a feature set consisting of 90 local volumes extracted from the
FreeSurfer pipeline (cortical volumes, subcortical, and cerebellar
gray matter volumes, lateral, third, and fourth ventricle vol-
umes). The measures of this third set were corrected for ICV by
division, since global volume will be confounded by sex effects.
These feature sets were chosen because we wanted to investi-
gate brain-aging substrates with as much as possible variation
in scale. We chose gray matter measures only because much
of the white matter information is on the gray–white matter
interface, which is also captured by gray matter. Before enter-
ing the training data into the algorithm, we removed features
without variance and features for which more than 10% of the
subjects had a value of 0. This only occurred in the vertex-wise
analyses (6.1% of the features). Remaining zeros were imputed
with the median value (0.07% of the data). Subsequently, the
feature data were centered at zero, scaled to unit variance and
scaling parameters were saved.

Brain Age Modeling

Three brain age models were built by training a support vector
regression (SVR) machine (Drucker et al. 1997) to predict age
as a weighted sum of the scaled features (plus an offset) from
each of the three sets of brain imaging features (see previous
section), according to the design described below. Our choice
for SVR was based on its favorable properties with respect to
robustness against high-dimensional feature sets, the possibil-
ity to incorporate linear and nonlinear kernels, and the good
interpretability of the resulting linear models. We initially tested
SVR models using both a linear and a radial basis function (RBF)
kernel. Performance did not improve using the RBF kernel. Since
interpretation of the weights of the linear model is easier, in
the rest of this manuscript we describe results of the linear
kernel only.

The data set was split into a training set and an application
set. If a subject’s age is estimated from his/her brain scan by
applying a brain age model to that scan, none of this subject’s
brain scans nor any scan from his/her family members should
be used in the training procedure of this model—otherwise
the brain age estimate will be biased. The following modeling
design, based on the leave-family-out (LOFO) procedure (Dubois
et al. 2018), ensures unbiased brain age estimates.

The scans of the subjects were organized per family. For each
of the 107 families, one scan from only one family member was
selected for the training set. The training set thus consisted of
107 scans from 107 unrelated subjects (49 males, 58 females)
from the full study, chosen such that the range and variance
of the ages in the training set was as large as possible. Within
the training set, we used nested cross-validation to build the
brain age models: in each outer fold (k = 10), approximately 11%
of the subjects were left out. The remaining training data were
then used to select the optimal value for the cost-parameter
C, using 5-fold cross-validation (inner folds) (FreeSurfer-based
models only; voxel-based models used a previously optimized
C; Schnack et al. 2016). The optimal C was defined by the value
minimizing the root mean square error and was subsequently
used to train the model on the training data excluding the left-
out subjects. This final model was then used to predict the age
of all the available scans of the subjects that were left out (i.e.,
the subjects in the outer folds and those of their siblings). We
repeated this procedure 25 times to account for variation in the
selection of the folds and averaged the 25 predicted ages for each
scan. We used SVR as implemented in the R library film (https://
bitbucket.org/RonaldJJ/film/src/master/) to build the brain age
models.

To assess the performance of these models, we computed the
mean absolute error (MAE)—the average deviation of the pre-
dicted age from the chronological age—and R2, the proportion
of chronological age variance explained by the model for all the
scans in the training set. In what follows, we will call the pre-
dicted age the “brain age” and deviations from the chronological
age will be the “brain age gap.” After computing MAE and R2,
we regressed brain age against chronological age in the training
set using the LOFO procedure, to remove the “regression to the
mean effect” present in brain age estimates (Le et al. 2018). The
coefficients of these regressions were used to compute corrected
brain age gaps in the left-out subjects and their family members.
This correction is a linear transformation of the data, similar for
each subject, which aims to improve the estimate of the true
age gap but does not change the relationship between subjects.
It therefore should not influence the heritability and correlation
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analyses that depend on these relationships, rather than on the
absolute values. Indeed, when we reran analyses without age
correction, the findings did not change and we only present
results based on the corrected brain age gaps here.

Sex Differences

To assess the age-dependent sex differences in corrected brain
age gaps, we used linear mixed modeling including fixed effects
for age, sex, their interactions, and random effects for subjects
nested within families. We fitted linear, quadratic, and cubic
age effects in the sexes separately and proceeded with the
model that had the lowest Akaike Information Criterion. In this
model, we tested for significance of the effect of sex. Linear
mixed modeling was performed using the lme4 package in R
(Bates et al. 2015), using maximum likelihood estimation for
model fitting as this allows for statistical comparisons of nested
models.

We additionally created a male and female brain age model.
We followed the LOFO procedure as described above and sepa-
rated the remaining subjects in the training set on sex to train
sex-specific models. We then predicted brain age in the left-out
subjects and their siblings, regardless of their sex and repeated
this procedure 25 times. For each subject, this resulted in a
same-sex prediction, where as an example, a male’s brain age
was predicted on a males-trained model, and in an opposite
sex prediction, where a male’s brain age was predicted using
a females-trained model. We computed MAE and R2 for the
training set for the male and female brain age prediction models
and corrected brain age gaps in the full cohort, as described
above.

Genetic Modeling

Twin and twin-sibling studies allow for disentanglement of
additive genetic factors (A), common environmental factors (C),
and unique environmental factors (E) (Boomsma et al. 2002;
Posthuma and Boomsma 2000), by exploiting the fact that
monozygotic (MZ) twins share almost 100% of their genetic
makeup, whereas dizygotic (DZ) twins and sibling pairs share on
average 50% of their aggregating genes. Heritability of the brain
age gaps suggests that genetic factors influence an individual’s
deviation from expected average age trajectories. Given the
mean effects of sex on the age trajectories, group mean age
and sex effects were regressed out of the brain age gaps, thereby
removing the developmental difference between a twin pair
and their sibling, based on the best-fitting model identified
above. Residuals of this regression were entered in the genetic
model. First, we investigate the correlations between brain
age gaps over time in a bivariate Cholesky model including
A, C, and E (the ACE-model). We chose a generic model for
all three time points for easier interpretation of results, even
though some of the MZ/DZ correlations indicated an absence of
common environmental influences (Supplementary Table S2).
These phenotypic (observed) correlations (Rph) can be separated
into a genetic (Rph-a) and environmental (Rph-e) component
based on cross-twin/cross-trait correlations. Significance of
genetic overlap was established by determining whether the
fit significantly deteriorated when the genetic correlation was
constrained to zero. Likewise, when the genetic correlation could
not be constrained to one (full overlap) without deteriorating
the fit, we concluded that different genetic factors play a
role at the different time points. This also indirectly tests for

the necessity to include more than one genetic factor in the
model. This will answer the question whether the genetic
factors influencing brain age gaps are the same throughout
development. Longitudinal twin models additionally allow for
investigating the heritability of change in brain age gap (Teeuw
et al. 2019; van Soelen et al. 2012a). A significant contribution of
genetic factors on the change in brain age would suggest that
the speed of the individual’s developmental brain morphology
pattern compared with his/her peers is driven by genetic factors.
We implemented a trivariate Cholesky model including A, C,
and E to estimate heritability at all three measurements to
estimate heritability of brain age gap and brain age gap change
(Supplementary Fig. S1). Finally, we investigate correlations
between brain age gaps between the different modalities and
tested whether the genetic correlation could be constrained to
zero or one to assess whether the brain age gaps computed from
the different feature sets are driven by the same or different
genetic background in a series of bivariate ACE models.

Post Hoc Analyses

Brain age based on volumetric (ROI) measures was corrected for
overall volume, which is necessary given the well-documented
sex difference in brain size between males and females. For the
same reason, we chose VBM GMD measures and not optimized
VBM, as that method would also contain brain size informa-
tion in the features. For cortical thickness, we initially chose
uncorrected values, as cortical thickness is less related to overall
brain size and sex differences in mean cortical thickness are
limited in our cohort (Teeuw et al. 2019). It thus remains an
open question whether brain age findings based on the cortical
thickness feature set are driven by mean cortical thickness or
regional variations in cortical thickness during development. To
investigate this question, we repeated the analyses using brain
age estimates based on corrected cortical thickness values (by
division by mean cortical thickness) and brain age estimates
based on mean cortical thickness alone (i.e., linear regression,
using the LOFO procedure with 25 repeats as before).

Results
The model trained on the voxel-based GMD feature set outper-
formed those on volumetric ROI-based and vertex-based thick-
ness feature sets (Fig. 1A), having both a smaller MAE (1.24 year)
and higher R2 (0.77). Over time, the brain age gaps were rela-
tively stable, with significant correlations that ranged between
0.6 and 0.8 (Fig. 2). These correlations over time were simi-
lar for males and females (Supplementary Tables S3 and S4).
Supplementary Table S5 contains the MAE and explained vari-
ance R2 for brain age models based on the different feature sets.

(Sex Differences in) Brain Age (Gap): Evolution
Over Time

Age gap development was described best with a cubic curve,
with different age trajectories for males and females (P < 0.001)
for all three of the feature sets (Fig. 1B). Males on average had
a negative age gap (estimated to be younger than their chrono-
logical age) and females on average had a positive age gap (esti-
mated to be older than their chronological age) in the combined
model in a period from around 12 to 19 years of age.

We then trained brain age prediction models in the female
and male subjects of the training set separately, using the same
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Figure 1. (A) Brain age predictions versus chronological age for models trained on GMD in voxels (left), vertex-wise thickness (middle), and volumes (ROIs, right) in
the combined training set. (B) Regression-attenuation corrected brain age gap trajectories over time for females (in orange) and males (in purple). The plotted 95%

confidence intervals are based on fixed effects uncertainty.

LOFO procedure as described above. For voxel-based models, the
combined model outperformed both the female and the male
model. For models trained on volumetric ROIs and vertex-wise
cortical thickness, the female model performed as good as or
better than the combined model, and the male model performed
worse than the combined model (Supplementary Table S5).
Using the opposite-sex predictions, that is, predicting the
females’ brain age gap based on the male model and vice versa,
showed the same pattern of sex differences across our age range
as in the combined model (Supplementary Fig. S2).

Figure 3 shows the weight maps for the volumetric ROI fea-
tures, for the combined, female, and male models. The female
model showed generally larger absolute weights than males
(Supplementary Table S6). These ROI-based models are provided
in the Appendix for application to other data sets.

Genetics of the Brain Age Gap and Its Evolution
Over Time

Brain age gaps based on vertex-based thickness and voxel-based
GMD were significantly heritable, with estimated heritability
ranging between 56% and 79%. The heritability of volume (ROI)-
based brain age gaps was significant around age 10 only (32%).

The amount of change in GMD age gaps was significantly her-
itable (21% and 31% over two time periods, respectively). For
thickness-based age gaps, the amount of change was signif-
icantly heritable in the second time interval only (19%). See
Table 1 for heritability estimates and Supplementary Table S2
for twin and twin-sibling correlations. Making use of the cross-
twin cross-time correlations, we found stable genetic factors to
explain part of the correlations between the age gaps over time
within the same feature set, for all three the feature sets (Fig. 2
and Supplementary Table S3).

Brain Age Gaps at Different Spatial Scales

Correlations between brain age gaps based on different fea-
ture sets were significant but substantially lower (0.15–0.40)
than correlations over time within feature sets. Correlations
between thickness-based and GMD-based brain age gap mea-
sures were also in part explained by shared genetic factors, but
not fully: the genetic correlation between thickness- and GMD-
based brain age gaps, specifically at age ∼ 18, was significantly
lower than 1, suggesting the existence of distinct genetic fac-
tors influencing the brain age measures separately (Fig. 2 and
Supplementary Table S3).
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Figure 2. Significant phenotypic correlations over time and between different brain age gap estimates are depicted by blue circles. Circles are both scaled and colored
according to the size of the correlations. Right: Correlations separated into a genetic (Rph-a; lower diagonal in green colors) and unique environmental part (Rph-e; upper
diagonal in yellow–orange colors). The common environmental part (Rph-c) was estimated to be small, nonsignificant, and was not displayed here. Black circles were
added to correlations that were driven by a significant component that was shared by both phenotypes. Gray diamonds represent correlations for which the overlap

was not complete, that is, the genetic/environmental correlation was significantly different from 1. In both panels, correlations that survived Bonferroni comparisons
for multiple comparisons (0.05/72) are marked with ∗.

Table 1 Heritability of brain age gap∗

Feature set Variance components (h2/c2/e2)

(age ∼ 10) (age ∼ 13) (age ∼ 18) (age ∼ 10—> ∼ 13) (age ∼ 13—> ∼ 18)

GMD (Voxels) h 2: 0.56 (0.32–0.71) h 2: 0.64 (0.33–0.83) h 2: 0.74 (0.53–0.85) h 2: 0.21 (0.02–0.53) h 2: 0.32 (0.03–0.64)
c 2: 0.00 (0.00–0.14) c 2: 0.06 (0.00–0.28) c 2: 0.02 (0.00–0.18) c 2: 0.09 (0.00–0.30) c 2: 0.03 (0.00–0.19)
e 2: 0.43 (0.28–0.62) e 2: 0.30 (0.17–0.48) e 2: 0.24 (0.15–0.38) e 2: 0.70 (0.46–0.87) e 2: 0.66 (0.35–0.90)

Cortical thickness
(vertices)

h 2: 0.57 (0.35–0.75) h 2: 0.79 (0.57–0.90) h 2: 0.59 (0.28–0.76) h 2: 0.10 (0.00–0.40) h 2: 0.19 (0.02–0.51)
c 2: 0.08 (0.00–0.26) c 2: 0.00 (0.00–0.16) c 2: 0.04 (0.00–0.28) c 2: 0.14 (0.00–0.33) c 2: 0.07 (0.00–0.25)
e 2: 0.35 (0.26–0.51) e 2: 0.21 (0.13–041) e 2: 0.37 (0.26–0.56) e 2: 0.76 (0.57–0.96) e 2: 0.74 (0.40–0.99)

Volumes (ROI) h 2: 0.32 (0.01–0.57) h 2: 0.32 (0.00–0.61) h 2: 0.15 (0.00–0.53) h 2: 0.17 (0.00–0.39) h 2: 0.17 (0.00–0.38)
c 2: 0.13 (0.00–0.33) c 2: 0.15 (0.00–0.38) c 2: 0.29 (0.00–0.46) c 2: 0.00 (0.00–0.21) c 2: 0.00 (0.00–0.16)
e 2: 0.55 (0.39–0.73) e 2: 0.53 (0.34–0.76) e 2: 0.56 (0.39–0.73) e 2: 0.83 (0.61–1.00) e 2: 0.83 (0.62–1.00)

∗Brain age gaps were corrected for residual age effects based on the best-fitting model (cubic age effect, separately for the sexes). The variance was separated into an
additive genetic component (h2), a common environmental component (c2), and a unique environmental component (e2). Significant h2 or c2 components (P < 0.05)
are displayed in bold.

Post Hoc Analyses—the Effect of Mean
Cortical Thickness

We repeated the cortical thickness based brain age training
our model on corrected cortical thickness values (by division
by mean cortical thickness) and brain age estimates based on
mean cortical thickness alone. The model based on corrected
cortical thickness values performed slightly worse (MAE of 2.10
and R2 of 0.41) and the model based on mean cortical thickness

alone performed considerably worse (MAE of 2.63 and R2 of
0.09) compared with the original model (c.f. MAE of 1.94 and R2

of 0.49). Sex differences in the developmental trajectory were
present and similar in the vertex-based corrected and uncor-
rected models (P < 0.001) but not significant for the brain age
estimates based on mean cortical thickness alone (P = 0.22). In
contrast, heritabilities of brain age gaps were similar for mean
cortical thickness-based models (54%/63%/71%) but lower at
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the second and third wave for vertex-based corrected cortical
thickness values (60%/38%/48%; c.f. 57%/79%/59% in the original
case).

Discussion
We investigated the brain structural development between 9 and
23 years of age using brain age, a marker that approximates
the actual, neuroanatomical, age of the brain. The genetically
informative longitudinal design of the study, with up to three
scans per subject and its size (673 scans in total) allowed us to
investigate possible sex-dependent speed of development, and
the extent to which genes contribute to the developmental tra-
jectory. Our main findings include on average a more advanced
brain age observed in females compared with males during
adolescence, for all three investigated brain age modalities:
GMD, cortical thickness, and regional volumes. Individual brain
age gaps were relatively stable over time, as inferred by high
correlations of brain age gaps at different ages, implying that
children that had higher brain age gaps early in adolescence
were also still ahead 3 and 8 years later. Individual brain age was
to a large extent determined by genetic factors with heritabil-
ity estimates up to 79% for brain age gaps derived from local
gray matter measures. The genetic overlap between cortical
thickness-and GMD-derived brain age gap measures indicates
that both represent the same kind of underlying biological brain
age. Finally, for GMD brain age gaps, the change in brain age
gap over time was also heritable, indicating that the speed of
development for an individual was driven by genes.

Brain Age in Females and Males

At the beginning of puberty around age 9, we found very limited
sex differences in brain age gap from the combined model.
From around age 12, we observe a positive brain age gap in the
females—representing an advanced estimated brain age—and
a negative brain age gap in males, indicating a brain that is
estimated to be younger than their chronological age. The maxi-
mum difference between males and females is about 1 year and
occurs at ages 14–16, depending on the brain age model used. At
age 18, brain age gaps in males and females seem to converge.
This waxing and waning of an advanced brain age in females
is in line with females reaching puberty earlier, evidenced by,
for example, an earlier progression of Tanner status (Mul et al.
2001) and earlier increase of puberty-related hormone levels
(Koenis et al. 2013). A maximal difference of 1 year might be a
conservative estimate, since brains may develop differently in
males and females, thereby confounding the brain age estima-
tors. Interestingly, when we trained separate brain age models
for males and females and applied these models to the opposite
sex, age estimates were about as good and similar patterns of
brain age gaps trajectories throughout adolescence were found
as in the models that were trained on both sexes together.
The same patterns of brain age gap changes with age were
found. This suggests that the patterns of brain development
do not differ very much between males and females and that
differences in predicted age, or brain age, are due to differences
in speed (or onset) of the same developmental processes. It
should be noted, however, that this does not imply that there are
no differences between males and females in brain structure.
Stable differences, for instance, such as the well-documented
approximately 10% larger brain in males compared with females
(Ruigrok et al. 2014), will not be “seen” by age predictors. It must

be noted that in both our ROI-based as well as our GMD-based
models, this sex effect was taken out beforehand. The corti-
cal thickness-based model did contain information on mean
cortical thickness, but this did not drive the sex effect. Hence,
differences between males and females in the developmental
pattern of brain age gap were driven by local variations in
cortical thickness.

The ROI-based models (Fig. 3) show the brain regions most
contributing to the brain age estimates. The postcentral gyrus
is among the top-ranked features for both the female and male
model, which has been observed before as one of the contrib-
utors to brain age predictions (Khundrakpam et al. 2015). That
study also showed a prominent role for the frontal association
areas, which we do not find here. Instead, we observe that
many of the top-ranked regions include the cingulate, medial
orbitofrontal area, and nucleus accumbens, all part of the emo-
tional limbic system, which plays a role in emotional processes
and reward valuation (Rolls 2015). Given that adolescents show
high emotional sensitivity and reward-seeking behavior (Casey
et al. 2008), we may hypothesize that our brain age estimate
represents emotional maturity.

Shared (Genetic) Influences on Brain Age and Brain
Age Change

All brain age gaps correlated, with highest correlations found
over time within modality.

We found a significant genetic overlap between brain age
based on local GMD and based on local cortical thickness, thus
indicating a shared genetic influence on the development of
these brain properties. Brain age based on ROI volumes did not
have significant genetic overlap with the other measures. This
may indicate a developmental process with different genetic
background, but it may also be due to the effect of averaging out
over larger regions in the brain as higher spatial accuracy has
been shown to provide better brain age estimates (Khundrak-
pam et al. 2015). Indeed, the precision (in terms of MAE) of the
ROI-based model was substantially lower than the precision of
the other two models. Finding genetic variants influencing brain
age, such as was recently done in an adult cohort (Kaufmann
et al. 2019) may help identify biological pathways that influence
brain age, and potentially explain the brain age deficits that
have been observed in psychiatric disorders (Hajek et al. 2019;
Koutsouleris et al. 2014; Nenadić et al. 2017; Schnack et al. 2016).
Apart from genetic influences on the brain age gaps themselves,
we also found a significant genetic contribution to change in
brain age gap over time. This indicates that individual differ-
ences in the speed of development are driven by genetic factors.
This is important, since it has been recognized that longitu-
dinal changes, rather than cross-sectional measurements, are
more informative on the development of psychiatric disorders
(Rapoport and Gogtay 2008; Shaw et al. 2010). We recently found
genetic variants that influence longitudinal structural brain
changes in an age-dependent manner (Brouwer et al. 2020).
Focusing such studies on adolescent brain age specifically may
aid in determining biological pathways associated with optimal
development.

Different Modalities and Reliability of Brain Age

Supplementary Figure S3 shows a summary of the findings for
the different brain age modalities. The combination of MAE of
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Figure 3. Feature weights of the ROI-based models: (A) the combined model, (B) the model based on the female training set, and (C) the male training set. Not shown

are the feature weights for the L/R nucleus accumbens and L/R inferior lateral ventricle (0.024/−0.114 and 0.011/−0.011 for the combined model, −0.039/−0.102 and
−0.068/−0.10 for female model, 0.017/−0.063, and 0.015/−0.011 for the male model, respectively).

prediction and the correlation of brain age gap between differ-
ent time points can inform us about how accurate and how
reliable the biological age of the brain is predicted. Voxel-wise
GMD models showed low MAE and high over-time correlations,
indicative of an accurate and reliable brain age prediction. ROI
volume-based models had medium MAE but high over-time cor-
relations, suggesting reliable, but somewhat biased predictions:
the predicted age is likely a combination of true biological age

and biological factors that are not related to age. Finally, the
vertex-wise cortical thickness-based models showed high MAE
and high over-time correlations, indicating reliable but even
less accurate age predictions: the predicted biological age is
biased due to relatively large contributions of biological factors
not related to age. An example of biological factors not related
to age could be brain regions that show an association with
age, and for which size is also related to a function that has
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influenced the size. If the size of such a volume is large because
of its association with brain function, it could be interpreted
as higher brain age by our models. Another example is that
some individuals will have brain morphology that resembles
the morphology of an older brain from the perspective of our
age model, for example due to their genetic background, but
which may not be informative for brain age for that subject.
Longitudinal measures as well as different feature sets may help
to disentangle these biological factors.

For the surface-based models, MAEs for the male models
were higher than for the female models. This notion that female
ages could be predicted more accurately than male ages sug-
gests that there is less variation (in timing) of the developing
female brain than there is in the male brain. Other develop-
mental studies indeed have shown larger variation in male
brain structure than in female brain structure (Forde et al. 2019;
Wierenga et al. 2019; Wierenga et al. 2018). A more homoge-
neous sample gives rise to stronger relationships between brain
features and age, which is reflected by larger regression coeffi-
cients, or feature weights. Indeed, the female models displayed
larger feature weights than the male models. For the combined
models, the situation is more complex due to the trade-off
between heterogeneity and the positive effect of sample size
on model performance. With respect to the female models, the
increased heterogeneity of the combined sample resulted in less
accurate models (higher MAE). With respect to the male models,
incorporating relatively large heterogeneity, the effect of a twice
as large sample outweighed the increase in heterogeneity: the
combined models’ MAE was lower.

Strengths and Limitations

Strengths of our study include the large number of scans, the
longitudinal design (up to three scans per subject) and the
fact that we measured twins and siblings, allowing for genetic
analyses. There are also some limitations to be mentioned. Our
age range started at 9 years; therefore, we cannot extrapolate
our findings to years prior to this age. Furthermore, although
the overall sample size is quite large, when split in males and
females, training samples were modest in size. Future studies
should thus aim at assessing brain age at earlier ages. Com-
bining our models with those obtained in other (longitudinal)
studies could validate and further refine the results.

Conclusions and Future Directions

To conclude, we have built a reliable brain age model for ado-
lescence (ages 9–23) and applied that to the longitudinal MRI
scans of twin subjects and their siblings. Brain development
(“aging”) in males and females follows comparable patterns, but
in females group level brain age is at most 1 year ahead of group
level brain age in males. At the individual level, being ahead or
not is a heritable phenotype. In future studies, advanced/delayed
brain aging may be related to neuropsychological or behavioral
traits.

Supplementary Material
Supplementary material can be found at Cerebral Cortex online.
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