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Abstract. We tested the influence of the apolipoprotein E 
(apoE) polymorphism on the intrapair differences in the 
levels of plasma cholesterol, plasma triglycerides, low 
density lipoprotein-cholesterol, apoB and apoE in mono- 
zygotic (MZ) twins, and estimated whether or not there 
was a interaction between the apoE polymorphism and en- 
vironmental factors. In 65 MZ twin pairs, the intrapair dif- 
ferences in the measured lipoprotein parameters were sim- 
ilar in the different apoE phenotype classes. This indicates 
that the effect of the apoE polymorphism is not influenced 
by environmental variability between the MZ pair mem- 
bers and accordingly identifies the APOE gene as a 
"level" gene. 

Introduction 

Apolipoprotein E (apoE) is one of the major protein con- 
stituents of chylomicron and very low density lipoprotein 
(VLDL) remnants. It plays a central role in the receptor- 
mediated uptake of these particles by acting as a high 
affinity ligand for hepatic lipoprotein receptors (Sherril et 
al. 1980; Weisgraber et al. 1982). ApoE also plays a key 
role in the conversion of VLDL via intermediate density 
lipoprotein (IDL) into low density lipoproteins (LDL) 
(Demant et al. 1991). Human apoE can be separated by 
isoelectric focusing into three major isoforms, E2, E3 and 
E4, which each differ in their isoelectric point by a single 
charge unit, apoE4 being the most basic and E2 the most 
acidic form. These isoforms are encoded by three codom- 
inant alleles. E*2, E*3 and E*4, at a single APOE gene lo- 
cus on chromosome 19 (Zannis and Breslow 1981; Scott 
et al. 1985). ApoE3 is the most common isoform. ApoE4 
differs from apoE3 by an arginine for cysteine substitu- 
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tion at amino acid residue 112 [designated as apoE4 
(Cys 112-+Arg)J, whereas apoE2 differs from apoE3 by a 
cysteine for arginine substitution at residue 158 [apo 
E2(Arg158--)Cys)]. Various population studies have 
demonstrated an influence of the apoE polymorphism on 
plasma lipid and (apo)lipoprotein levels (reviewed by 
Davignon et al. 1988). In these studies, the APOE*2 allele 
is associated with lower levels of total plasma cholesterol, 
LDL cholesterol and apoB, whereas for the APOE*4 al- 
lele, the opposite holds true. The apoE polymorphism was 
found to explain between 1.4% and 8.7% of the interindi- 
vidual variability of plasma cholesterol (Smit et al. 1988; 
Boerwinkle and Utermann 1988). 

There are a number of reports showing an interaction 
between the apoE polymorphism and environmental fac- 
tors (e.g. diet) in their effect on lipids and (apo)lipopro- 
teins (for recent reviews on this, see Abbey et al. 1991; 
Ferrel 1992). An approach that can be used to study this 
interaction is that based on studying monozygotic (MZ) 
twin pairs, as outlined by Magnus et al. (1981) and Berg 
(1984, 1987, 1990). MZ twins share all nuclear genes; 
thus, the difference in a quantitative trait, e.g. plasma cho- 
lesterol, observed between the two members of an MZ 
twin pair must reflect variation caused by the environ- 
ment, such as diet. In order to study the effect of the apoE 
polymorphism, we have grouped MZ twin pairs according 
to apoE phenotypes. This makes it possible to determine 
whether a group of MZ twins with a specific apoE pheno- 
type has a significantly larger or smaller mean [absolutel 
intrapair difference in plasma cholesterol than other 
groups of MZ pairs with other apoE phenotypes. The find- 
ing of a significant and consistent effect would imply the 
existence of an interaction between the APOE gene and 
environmental factors. Accordingly, in the present study, 
we estimated the influence of the apoE polymorphism on 
the intrapair differences of plasma lipids in 65 MZ twin 
pairs, as part of a study of 160 Dutch twin families. 
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Materials and methods 

Population description and sample collection 

The individuals described in this article were apparently healthy, and 
belonged to a cohort of 160 twin families (158 fathers, mean age 48.1 
years, SD = 6.7; 160 mothers, mean age 45.6 years, SD -- 5.9; 161 
boys, mean age 16.7 years, SD = 1.8; 159 girls, mean age 16.7 years, 
SD = 2.2). All twins were still living with their parents. The addresses 
of the families were obtained from various City Council population 
registries. Families were only included in this study if both parents 
and twins were willing to cooperate. There were 35 families with MZ 
boys, 35 with MZ girls, 31 with dizygous (DZ) boys, 30 with DZ girls 
and 29 with DZ twins of opposite sex. 

EDTA blood was obtained between 8.30 and 10.30 a.m. by 
venepuncture after overnight fasting. Plasma was separated from the 
cells by centrifugation for 10min at 3000rpm. Part of the plasma was 
kept at 4~ for lipid determinations within the next 5 days. The re- 
mainder was stored in 2.5 ml aliquots in tubes with tightly fitting 
screw-caps at -20~ for later use. 

Plasma lipid and (apo)lipoprotein analysis 

Cholesterol and triglyceride levels were determined using enzymatic 
methods (Boehringer, Mannheim, Germany; CHOD-PAP kit no. 
236691 and GPO-PAP kit no. 701904). HDL cholesterol was mea- 
sured following phosphotungstate Mg 2+ precipitation of VLDL, IDL 
and LDL according to Lopes-Virella et al. (1977). LDL cholesterol 
was subsequently calculated using the formula of Friedewald et al. 
(1972). 

Apolipoprotein B was quantified by radial immunodiffusion as de- 
scribed by ttavekes et al. (1981). ApoE was quantified by enzyme- 
linked immunosorbent assays as described by Bury et al. (1986). 

Apolipoprotein E phenotyping 

The apoE phenotyping was performed using a rapid micromethod 
based on isoelectric focusing (pH 5-7) of delipidated plasma samples, 
followed by immunoblotting on nitrocellulose filters using a poly- 
clonal anti-apoE antiserum as previously described (Havekes et al. 
1987). 

Statistical analysis 

The apoE phenotype frequencies and the APOE allele frequencies 
were determined in the complete set of 160 families with the excep- 
tion of 2 missing fathers. For the parents and MZ twins, the calcula- 
tion of the allele frequencies was performed by gene-counting proce- 
dures. For the DZ twins, the allele frequencies were estimated accord- 
ing to Martin (1975) using the sib-genotype frequencies of Smith and 
Penrose (1955). 

The MZ intrapair differences were estimated in three different 
groups: MZ twin pairs with the E3E2 phenotype (n--12), MZ pairs 
with the E3E3 phenotype (n=39) and MZ pairs with the E4E3 pheno- 
type (n = 14). The one MZ pair with the E4E4 phenotype was excluded 
from these analyses for obvious reasons. We did not observe MZ twin 
pairs with the E2E2 or the E4E2 phenotypes. The phenotypic differ- 
ence for each twin pair was calculated as: df(g) = Yef~ - Ygf2 where the 
subscriptfdenotes the twin pair, g denotes genotype, and ! and 2 de- 
note the first and second twin in the pair with arbitrary labelling. A 
two-way analysis of variance (ANOVA), with gender and apoE phe- 
notype entered as factors, was then computed for three different esti- 
mates of xf~g): (1) calculated according to Magnus et al. (1981) as Xf(g) 
= I df(g)[, (2) calculated according to Elashoff et al. (1991) as Xf(g) = 
[dftg), - Cg ...... I, where Cg denotes the mean genotype-specific differ- 
ence, and (3) again according to Elashoff et al. (1991 ), as Xf(g) = I dry.e) 
- c8 ,,eai,,, P, where cg denotes the median genotype-specific difference. 
In addition, we also followed the approach proposed by Martin et al. 
(1983) by calculating within-pairs mean squares (WMS) for each 
trait, followed by a comparison of the WMS for each apoE phenotype 
by means of Bartlett's test of heterogeneity of variances (Sokal and 
Rohlf 1981 ). ANOVA procedures were performed using the programs 
contained in the statistical package NCSS, version 5.1 (Dr. J. L. Hinze, 
Kaysville, Utah, USA). 

Table 1. Apolipoprotein E phenotype numbers, relative frequencies 
(in %, in brackets) and apoE allele frequencies in parents and children 
of 160 Dutch twin families 

ApoE Parents Twins 
phenotype 

MZ a DZ b 

E2E2 3 (0.9) 0 (0.0) 1 (0.6) 
E3E2 48 (15.0) 13 (18.6) 37 (20.6) 
E3E3 185 (57.8) 41 (58.6) 88 (48.9) 
E4E2 10 (3.1) 0 (0.0) 4 (2.2) 
E4E3 67 (20.9) 15 (21.4) 46 (25.6) 
E4E4 5 (1.6) 1 (1.4) 4 (2.2) 
Total 318 70 180 

Alleles: 
E*2 0.101 0.093 0.103 
E*3 0.762 0.786 0.726 
E*4 0.137 0.121 0.163 

a Each MZ twin pair is counted as one phenotype 
b Each DZ twin pair is counted as two phenotypes; for this group, the 
allele frequencies are calculated from sib-pair phenotype frequencies 
according to Martin (1975) 

Results 

Apolipoprotein E phenotype distribution 

The  apoE p h e n o t y p e  n u m b e r s  and  f r equenc ies  for the 
comple t e  set o f  paren ts  and  twins  are p resen ted  in  Table  1. 
The  obse rved  apoE  f requenc ies  in  all g roups  cons ideres ,  
viz. parents ,  M Z  and  D Z  twins ,  were  in  gene t ic  equ i l ib -  
r i u m  (results  no t  shown) .  The  obse rved  al le le  f requenc ies  
in these three groups  do not  differ  s ign i f i can t ly  f rom those 
f o u n d  in  a la rger  D u t c h  p o p u l a t i o n  (S m i t  et al. 1988).  
There  were  no  s ign i f i can t  gende r  d i f fe rences  wi th  respect  
to the apoE p h e n o t y p e  d i s t r ibu t ion  in  the three groups  
cons ide red  (resul ts  no t  shown) .  

Influence o f  apoE polymorphism on intrapair difference 
in measured parameters  in M Z  twins 

The  in f luence  o f  the apoE p o l y m o r p h i s m  on  the p l a s m a  
l ipid  levels  was  es t ima ted  by  c o m p a r i n g  the in t rapa i r  dif- 
fe rences  in  the levels  o f  the quan t i t a t ive  traits in  the M Z  
twins ,  in i t ia l ly  as ou t l ined  by  M a g n u s  et al. (1981).  As  ex-  
p l a ined  above ,  we on ly  cons ide red  the M Z  twin-pa i r s  wi th  
the E3E2,  E3E3  or E4E3  pheno types .  As  s h o w n  in  Table  
2, the m e a n  apoE pheno type - spec i f i c  in t rapa i r  d i f ferences  
for each of  the traits, es t imated  by xf~g) = I df(g)] (see statisti- 
cal  ana lys i s  for fur ther  details) ,  d id  no t  differ  s ignif icant ly .  
However ,  s ince it was repor ted  that this approach  cou ld  
resul t  in  Type  I or  Type  II errors ( B r o w n e  and  Forsy the  
1974), we  repea ted  our  ca lcu la t ions ,  f o l l owing  the sugges-  
t ions  o f  E la shof f  et al. (1991),  u s ing  a L e v e n e  test. This  in-  
vo lves  the sub t rac t ion  o f  a m e a s u r e  o f  centra l  t e n d e n c y  
f rom the pheno typ i c  d i f fe rence  for  each twin  pair  (see sta- 
t is t ical  ana lys i s  for fur ther  details) .  We  cons ide red  two 
di f ferent  es t imates  of  centra l  t e n d e n c y  Cg, with  Cg repre-  
sen t ing  e i ther  the m e a n  geno type - spec i f i c  d i f fe rence  or  
the m e d i a n  geno type - spec i f i c  d i f ference.  However ,  as can  
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Table 2. ApoE genotype-specific mean within-pair differences (XI(~)) • 
SD estimated by three different methods for MZ 

ApoE phenotype P" 

E3E2 E3E3 E4E3 
(n = 12) (n = 39) (n = 14) 
Xfe) + SD XAr • SD XfT~) -+ SD 

X/<~) = I dm, , ) l  

Cholesterol b 0.45 • 0.31 0.37 • 0.31 0.26 • 0.30 NS 

Triglycerides 0.25 • 0.14 0.12 • 0.19 0.18 • 0.15 NS 

LDL-cholesterol 0.38 +_ 0.28 0.31 • 0.25 0.26 _+ 0.26 NS 
ApoB 10.2 •  6.6 • 5.9 • NS 

ApoE I.I • 1.0 1.0 •  0.8 _+0.8 NS 

_r.lr,,,; = I d/(,,,,) - m e a n  d17~, ) I 

Cholesterol b 0.38 • 0.28 0.36 • 0.25 0.25 • 0.26 NS 

Triglycerides 0.23-+0.14 0.11 +_0.12 0.17• NS 
LDL-cholesterol 0.36 • 0.24 0.31 • 0.25 0.24 • 0.30 NS 

ApoB 9.7 •  6.6 •  6.3 • l NS 
ApoE 1.1 • 1.0 • 0.8 _+0,7 NS 

x l ~ .  ~ = Idle:,, ) - m e d i a n  dl(,~)l 

Cholesterol b 0.38 _+ 0.28 0.36 • 0.31 0.25 • 0.30 NS 
Triglycerides 0.23_+0.14 0.11 • 0.17 • 0.15 NS 
LDL cholesterol 0.35 • 0.24 0.31 • 0.25 0.24 +_ 0.26 NS 
ApoB 9.5 • 7.3 6.6 • 5.8 • NS 
ApoE I.I • 1.0 1.0 _+0.6 0.8 • NS 

NS, not significant (P > 0.05) 
P value indicating the difference between the apoE phenotpye groups 

calculated by means of two-way ANOVA with apoE phenotye and 
gender entered as factors 
b Levels are expressed in mmol/l except for the apoB and apoE levels, 
which are expressed in mg/100 ml 

Table 3. Within-pairs mean squares (WMS) by apoE phenotype for 
levels of plasma lipids and (apo)lipoproteins in MZ twins 

E3E2 E3E3 E4E3 Z 2~ 
(n= 12) (n = 39) (n= 14) 

Cholesterol 0.33 0.23 0.10 4.01 
Triglycerides 0.09 0.04 0.06 4.77 
LDL cholesterol 0.26 0.16 0.10 2.73 
ApoB 189.30 76. l 0 115.20 4.06 
ApoE 2.09 1.87 0.84 2.92 

X 2 and its significance were calculated by means of Bartlett's test of 
heterogeneity of variances. The level of Z 2 is significant larger than 
5.99 (with d f =  2) 

be inferred from Table 2, this did not result in a drastic 
change in the phenotype-specific mean intrapair differ- 
ences. For each of the traits, these models did not reveal 
any significant difference between the three apoE pheno- 
type groups, as evaluated by two-way ANOVA. In addi- 
tion, there was (1) no significant influence of gender on 
the within-pair differences, and (2) no significant interac- 
tion between apoE phenotype and gender (results not 
shown). We also followed a different approach, suggested 
by Martin et al. (1983), and used the WMS as an estimate 
for the intrapair difference. However, this approach also 
did not result in any significant apoE phenotype-specific 

mean intrapair difl%rence (Table 3). Altogether, our results 
indicate that, in the MZ twins that we studied, no signifi- 
cant interaction between environmental variability and 
apoE phenotype lbr any of the lipid traits considered could 
be detected. 

D i s c u s s i o n  

In the present study, we describe the apoE phenotype dis- 
tribution and APOE allele frequencies for the parents, and 
MZ and DZ twins from 160 Dutch twin families. The 
apoE phenotype distribution and APOE allele frequencies 
in each of the three groups were comparable with the val- 
ues reported previously for a large Dutch population (Smit 
et al. 1988). 

In various studies, the apoE polymorphism has been re- 
ported to influence plasma lipid and (apo)lipoprotein lev- 
els, although to a variable extent (Davignon et al. 1988). 
The APOE*4 allele was found to be associated with in- 
creased levels of total plasma cholesterol, LDL choles- 
terol, apoB and recently also with increased levels of  
Lp(a) (de Knijff et al. 1991), whereas the opposite holds 
true for the APOE*2 allele. Conversely, in APOE*4 allele 
carriers, plasma apoE levels were decreased, whereas the 
apoE levels were increased in APOE*2 allele carriers. The 
mechanism behind the effect of the apoE polymorphism 
on plasma (apo)lipoprotein levels is commonly assumed 
to be the result of the influence of the apoE polymorphism 
on the efficiency of the catabolism of chylomicron and 
VLDL remnants (Utermann 1985; Weintraub et al. 1987; 
Demant et al. 1991). These influences were also found by 
us for this group of twin families (Kempen et al. 199 l ). 

Several studies have provided evidence t%r a significant 
interaction between environmental (e.g. dietary) variabil- 
ity and apoE polymorphism (Miettinen et al. 1988, 1992; 
Tikkanen et al. 1990a; Manttari et al. 1991). These studies 
demonstrate that individuals carrying an APOE*4 allele 
show a greater sensitivity for dietary interventions when 
compared with individuals without this allele. This inter- 
action could, at least partly, be explained by differences in 
intestinal cholesterol absorption and cholesterol synthesis 
(Miettinen 1991; Miettinen et al. 1992). However, simi- 
larly convincing studies have failed to detect any interac- 
tion between the apoE polymorphism and dietary variabil- 
ity (Fisher et al. 1983; Savolainen et al. 1991; Glatz et al. 
1991 ). Furthermore, Hallman et al, (1991 ) showed that the 
influence of the apoE polymorphism on plasma choles- 
terol levels in nine different populations was remarkable 
consistent, despite marked differences in apoE phenotype 
frequencies and dietary habits between the various popu- 
lations. This suggests that the APOE gene influences the 
plasma cholesterol levels independent of environmental 
factors. 

We speculate that these conflicting results can be, at 
least in part, explained by the presence of genetic differ- 
ences between the various population. This could give rise 
to gene-gene and gene-environment interactions to a vari- 
able extent in these populations of unrelated individuals. 
In two studies, Pedersen and Berg (1989, 1990) reported 
an interaction between the PvuI I  restriction fragment 
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length p o l y m o r p h i s m  (RFLP)  at the L D L  receptor  locus 
and apoE in two Norweg ian  populat ions .  They found that 
the increased  p l a sma  choles terol  and L D L  choles terol  lev- 
els associa ted  with apoE4 are reduced,  by  an unknown 
mechan i sm,  in those individuals  with the PvuII-A1 allele. 
Conversely ,  in a F in ish  popula t ion ,  the ra ised L D L  choles-  
terol levels  in individuals  with apoE4 are further increased 
by  the X*2 al lele  of  the Xbal R F L P  in the A P O B  gene 
(Aalto-Set~il~i et al. 1988; Mie t t inen  1991). In addit ion,  
there are studies sugges t ing  that genet ic  var iabi l i ty  in the 
A P O B  gene interacts with die tary var iabi l i ty  (Tikkanen et 
al. 1990b; A b b e y  et al. 1991). 

Ins tead o f  s tudying associa t ions  in r andomly  selected 
popula t ions  of  unrela ted individuals ,  Magnus  et al. (1981) 
were  the first to suggest  the use o f  mean  genotypic  intra- 
pair  differences,  es t imated  in M Z  twin pairs,  as a means  o f  
examin ing  gene-env i ronment  interact ions without  the dis- 
turbing effects of  gene-gene  interact ions (MZ twins share 
by  def ini t ion the same nuclear  genes).  Us ing  this ap- 
proach,  Berg (1987) showed,  for example ,  a s ignif icant  
in teract ion be tween  envi ronmenta l  var iabi l i ty  and the 
A P O B  gene on the p l a sma  levels  o f  apoB.  The  results of  
the present  s tudy indicate  that the intrapair  di f ferences  in 
the group o f  M Z  twins were  not s ignif icant ly  different  be-  
tween the three apoE pheno type  groups  (Table 2). How-  
ever, s ince absolute  d i f ferences  can have highly  skewed 
dis t r ibut ions  and this, in its turn, can affect both  type I and 
Type II errors in subsequent ly  per formed  tests (Browne 
and Forsy the  1974), we ca lcula ted  our results  as p roposed  
by Mart in  et al. (1983) and Elashof f  et al. (1991). This re- 
sui ted in s imilar  results,  sustaining our  init ial  observa-  
tions, and indica ted  that the inf luence o f  the A P O E  gene 
on p la sma  l ipids  is not affected by envi ronmenta l  var iabi l -  
ity. This ident if ies  the A P O E  gene as a " level"  gene ac- 
cording to the def ini t ions  p roposed  by  Magnus  et al. 
(1981) and Berg (1984, 1987, 1990). 

The twins that we studied were young  and still l iving 
with their  parents.  As  was poin ted  out by Magnus  et al. 
(1981), int rapair  d i f ference may  be more  p ronounced  in 
o lder  twins or  in twins not l iving together. Likewise ,  
h igher  in t rapair  di f ferences  can be expected  be tween 
twins l iving separately.  Some  evidence  for  this was pub-  
l ished by  Koskenvuo  et al. (1989). They showed that apoE 
phenotype-spec i f i c  mean  intrapair  di f ferences  were  ap- 
p rox ima te ly  twice  as high in M Z  twins reared apart  when 
compared  with the dif ferences  in M Z  twins l iving to- 
gether. Therefore ,  we have recent ly  started a second study 
among o lder  twins not  l iving together,  a l lowing for maxi-  
m u m  envi ronmenta l  variabil i ty.  

In summary,  our  results  indicate  that, in our  sample  o f  
adolescent  M Z  twins,  the A P O E  gene acts as a " level"  
gene,  i.e. a gene with an direct  inf luence on p la sma  l ipid 
and (apo) l ipoprote in  levels.  This supports  the hypothes is  
that the apoE p o l y m o r p h i s m  plays  an impor tant  and inde- 
penden t  role in de te rmining  p la sma  l ipid levels.  
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