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Abstract

In recent years, multiple eQTL (expression quantitative trait loci) catalogs have become available that can help understand
the functionality of complex trait-related single nucleotide polymorphisms (SNPs). In eQTL catalogs, gene expression is
often strongly associated with multiple SNPs, which may reflect either one or multiple independent associations.
Conditional eQTL analysis allows a distinction between dependent and independent eQTLs. We performed conditional
eQTL analysis in 4,896 peripheral blood microarray gene expression samples. Our analysis showed that 35% of genes with
a cis eQTL have at least two independent cis eQTLs; for several genes up to 13 independent cis eQTLs were identified.

Also, 12% (671) of the independent cis eQTLs identified in conditional analyses were not significant in unconditional
analyses. The number of GWAS catalog SNPs identified as eQTL in the conditional analyses increases with 24% as
compared to unconditional analyses. We provide an online conditional cis eQTL mapping catalog for whole blood (https://
eqgtl.onderzoek.io/), which can be used to lookup eQTLs more accurately than in standard unconditional whole blood eQTL

databases.

Introduction

The genome and the transcriptome are highly interconnected.
Currently for ~ 50% of all genes, cis eQTLs (SNPs < 1Mb distance
from the associated gene expression gene) have been identified
in whole blood micro array studies with sample sizes of around
5000 individuals (1,2). RNA-seq studies found cis eQTLs for 79%
of all genes, using 922 peripheral blood samples (3), and for 49%
in 462 lymphoblastoid cell line samples (4). Studies of other
(non-blood) tissues often used smaller sample sizes but still

discovered a large number of eQTLs. For example, in brain tis-
sue 32% of all transcripts measured have an eQTL in one of 10
brain regions (N <131) (5). Meta eQTL analyses across several
brain regions (N =424) found cis eQTLs for ~ 18% of all genes (6).
The number of identified eQTLs depends on sample size and
the threshold for significance, which varies from study to study,
but the trend suggests that with the currently increasing sample
sizes and variety of tissues (7), cis eQTLs are likely to be identi-
fied for all expressed genes.
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Table 1. Number of probesets and genes with 1, 2, 3, .., or 13 independent cis eQTL effects. In total 44,241 probesets were measured, targeting

18,238 genes

#independent eQTLs >1 >2 >3 >4 >5 >6 >7 >8 >9 >10 >11 >12 13
# probesets 13583 4039 1251 485 229 113 56 29 16 10 4 4 3
# genes 7120 2485 830 323 154 75 40 21 13 6 3 3 3

Many eQTL studies provide online eQTL databases that can
be used, for example, to determine whether an SNP identified in
a genome wide association study (GWAS SNP) is regulating gene
expression. Most GWAS SNPs are non-coding and therefore are
likely to function by regulating gene expression and protein lev-
els. Looking up significant GWAS SNPs in eQTL databases has
become part of standard post-hoc analysis performed for GWAS
(8-11). GWAS SNPs are often in linkage disequilibrium (LD) with
regions containing multiple genes; eQTL analysis can help iden-
tifying the causal gene. For example, a locus associated with
myocardial infarction is associated with SORTI1 expression,
while SORT1 is located 40KB and two genes away from the
causal SNP (12). SORT1 upregulation leads to higher LDL-
cholesterol levels, a risk factor for myocardial infarction.
Identifying the SNP-expression-disease pathway may ultim-
ately lead to treatments targeting gene or protein expression.
For example, variants in TSLP are associated with asthma and
TSLP expression: decreasing TSLP expression reduces asthma
symptoms (13). Recent reports show that RNA levels contribute
on average 73% to protein level variance (14,15), and eQTLs are
often also associated with protein levels. This emphasizes the
relevance of studying RNA, given the small sample size and/or
small number of proteins in the current protein-QTL studies.

It is not always possible to determine whether a GWAS SNP
is tagging a locus that contains the variant controlling gene ex-
pression in the current eQTL databases that only provide un-
conditional analysis results. Besides the difficulty to determine
whether two association signals tag the same causal variant
(16-18), gene expression is often regulated by multiple inde-
pendent eQTL SNPs: >26% of all genes have at least two inde-
pendent eQTLs (4,19). The GWAS SNP may tag any of the
independent eQTL effects, but these independent eQTLs can
only be identified by the conditional eQTL analysis. Several
eQTL studies have computed independent eQTL effects using
one or two conditioning steps and identified up to three inde-
pendent eQTL effects per gene (20), but to the best of our know-
ledge none of them provided the full conditional analysis
results. Here we perform and provide full conditional eQTL
mapping based on 4,896 samples from the Dutch NESDA (21)
and NTR (22) cohorts measured with Affymetrix U219 micro
arrays. For some genes up to 12 independent eQTL SNPs were
identified, and many of these eQTLs were not found in the un-
conditional analysis. We also demonstrate that conditional
eQTL analyses increases the number of GWAS catalog SNPs that
can be reliably classified as eQTLs.

Results

Peripheral blood gene expression was measured in 4,896 sub-
jects with European ancestry (1,880 unrelated subjects from
NESDA, 559 MZ twin pairs, 594 DZ twin pairs, 51 parent-sibling
trios and 557 unrelated subjects from NTR). SNPs were imputed
using the 1000 Genomes (phase 1) reference and coded additive-
codominantly (0, 1 or 2). For each gene expression (44,241 probe-
sets targeting 18,238 genes) - SNP (N=8,158,830) pair at

distance <1Mb a linear model was fitted with gene expression
as dependent, and genotype as independent variable after cor-
recting for several technical and demographic covariates
(Materials & Methods). FDR was computed based on permuta-
tions that accounted for relatedness. At a FDR of 5% (P < 1e-5),
cis eQTLs were identified for 13,583 probesets targeting 7,120
genes (31% of all probesets, 39% of all measured genes). The
number of cis eQTLs per probeset varies considerably (me-
dian =115, mean =237, SD = 424); there were 410 probesets with
more than 1000 cis eQTLs. The cis eQTLs associated with the ex-
pression of the same gene may harbor multiple independent as-
sociations, or may contain only one signal on which all
associations are dependent. In order to reveal dependent and
independent associations, for each expression probeset the
most significant association was identified (E1 SNP or primary
eQTL SNP), and cis eQTL analysis was repeated for each probe-
set conditional on the corresponding E1 SNP. This second round
of cis eQTL analysis revealed 4,039 probesets (targeting 2,485
genes) with significant cis eQTLs conditional on the E1 SNPs.
Thus, 35% of the genes with a cis eQTL (14% of all genes) have at
least one additional independent cis eQTL effect. For each pro-
beset the most significant cis eQTL conditional on the E1 SNP
was selected (E2 SNP or secondary eQTL SNP) and cis eQTL ana-
lysis was repeated conditional on the E1 and E2 SNPs. For 1251
probeset targeting 830 genes a third independent cis eQTL effect
was identified (E3 SNP). The conditional cis eQTL analysis was
repeated conditional on E1, E2, E3, ..., E13 SNPs. After correcting
for 13 independent cis eQTL effects no further associations were
retrieved. Table 1 gives an overview of the number of independ-
ent cis eQTL effects per probeset and gene, Supplementary
Material, Table S1 contains E1-E13 SNPs for each probeset. Six
genes with 10 or more independent cis eQTL effects were identi-
fied: HLA-C, HLA-B (chr 6, MHC class 1), HLA-DPA1 (chr 6, MHC
class 2), STAT6 (chr 10, a transcription factor involved in the in-
nate immune system), ZNF815P (chr 7) and KRT23 (keratin fam-
ily, chr17).

LD between E1 and corresponding E2 SNPs was on average
0.37 (sd 0.17), see Supplementary Materials, Fig. S1 and Table S1.
In order to estimate the replication rates of conditional eQTLs,
we used the results of a recent eQTL study in whole blood, using
RNA-seq (23), the BIOS study. This study provided top eQTLs
after several conditioning steps (E1-EN SNPs). We computed LD
between the corresponding E1-EN SNPs from the two studies.
From the E1 SNPs we identified (top EQTL SNPs without condi-
tioning) there were 65% in LD >0.1 with the E1 SNPs from the
BIOS study. From the E2 SNPs, there were 37% in LD >0.1, and
from the E3 SNPs 23%. We note that for the replication of a con-
ditional eQTL, the conditioning should be the same in the two
studies. From the eQTLs for which the E1 SNPs were in LD >0.8
between the two studies (forcing a similar conditioning step),
the corresponding E2 SNPs were in LD>0.1 for 45% of the
eQTLs.

Figure 1 shows that the number of independent eQTL effects
is correlated with the number of eQTLs identified in the uncon-
ditional analysis. However, there are many probesets with only
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Figure 1. For each gene expression probeset, the number of independent cis eQTLs (identified using conditional eQTL analysis) are plotted versus the number of eQTLs

identified in the unconditional analysis.

one independent eQTL which have many eQTLs in the uncondi-
tional analysis (9542 probesets have only one independent
eQTL: 3960 of them have >100, 114 have >1000 eQTLs in the un-
conditional analysis). For these 9542 probesets with only one
independent eQTL, all significant eQTLs identified in the uncon-
ditional analysis most likely reflect one underlying signal.

Conditional analysis reveals eQTLs not identified in
unconditional analysis

From the 3720 unique E2 SNPs, 621 of the E2 SNP-gene pairs
were not identified in the unconditional analysis (17%), and 366
(10%) of the E2 SNPs were not identified in the unconditional
analysis. The E2 SNPs not identified in the unconditional ana-
lysis are strongly associated with corresponding gene expres-
sion, so these do not simply reflect false positives (P < 1le-7, for
124 out of 366 E2 SNPs). Likewise, after conditioning on E1 and
E2 SNPs, 1158 E3 SNPs were identified, from which 164 (14%)
were not significant in the unconditional analysis. From all E2-
E13 SNPs, 671 (12%) were not significant in unconditional ana-
lysis. E2 SNPs only identified in conditional analysis are
‘masked’ by the effect of the corresponding E1 SNP: 34% of them
are positively correlated with the E1 SNP, but have a direction of
effect on expression opposite to the effect of the E1 SNP on ex-
pression. And 65% of them are negatively correlated with the E1
SNP, but have the same direction of effect on expression as the
E1 SNP. For example, rs946262 is the E1 SNP for CHI3L1 expres-
sion (P=2.2e-308, beta=-0.9), and rs12023876 has no effect on
unconditional expression of CHI3L1 (P>0.05, Supplementary
Materials, Fig. S2). However, the association between CHI3L1 ex-
pression and rs12023876 conditional on rs946262 is very strong

(P=2.7e-39, beta=0.2). The correlation coefficient between
1512023876 and rs946262 is 0.23. Thus, the SNPs have a positive
correlation but a different direction of effect on CHI3L1 expres-
sion, thereby creating the masking effect.

A lookup of the 671 eQTL SNPs not identified in the uncondi-
tional analysis in the GWAS catalog (https://www.genome.gov/
26525384) revealed 4 eQTL SNPs in strong LD (r*>0.8) with a
SNP reported in the GWAS catalog. For example, rs11676950 (E2
SNP for FAM117B, P=2.3e-34), is in strong LD with a GWAS hit
for total cholesterol levels (rs11694172, r*=0.8 (24)). In the ori-
ginal analysis in the paper reporting this GWAS, the identified
SNPs were associated with gene expression in an unconditional
analysis, and like in the unconditional analysis performed here,
1511694172 was not identified as eQTL. FAM117B knockout mice
have lower cholesterol levels (P < 1.3e-8 https://www.mousephe
notype.org) and FAM117B expression is associated with choles-
terol in our sample (P < 1.7e-4, Beta =0.03, N = 3306).

The percentage, however, of the 671 eQTL SNPs in strong LD
with GWAS hits (0.5%) is lower than expected by chance (based
on LD of 100 random SNP sets with GWAS catalog SNPs: mean
3% overlap, sd 0.001, maximum 3%, minimum 2.5%). This may
partially be due to the fact that most GWAS do not perform con-
ditional analysis, and so the effect of these SNPs may be masked
by primary GWAS hits, like we observed in the eQTL analysis.

Conditional eQTL analysis provides a more accurate
GWAS SNP lookup

eQTL databases are often used to verify if an SNP identified in a
GWAS (a GWAS SNP) is associated with gene expression. Due to
the strong associations between SNPs and gene expression, a
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Figure 2. Schematic overview of E1-E13 SNPs, SNPs colocalised with an E1, E2, ..., or E13 SNP (true eQTLs), and SNPs not colocalised with any of the E1-E13 SNPs (false

eQTLs).

significant association between the GWAS SNP and gene ex-
pression does not mean the SNP is a ‘true eQTL’, i.e. it may not
tag the functional locus that regulates gene expression (the
GWAS SNP and the eQTL are not ‘colocalised’ (16)) In many
studies the LD is computed between the GWAS SNP and eQTLs
to determine colocalisation of GWAS SNPs and eQTLs (2,9) but
many other methods have been proposed (16-18). After condi-
tional eQTL analysis, not only the colocalisation of the GWAS
SNP and the E1 SNP can be determined (which is commonly
done), but also of the GWAS SNP and the E2, E3, ..., E13 SNPs.
We demonstrate this by using LD computation as colocalisation
method, but any other method can be used. If a GWAS SNP is in
low LD with an E1 SNP, the association between the GWAS SNP
and gene expression may be very significant, but solely caused
by the low LD between the GWAS SNP and the E1 SNP. In this
case, the association between the GWAS SNP and gene expres-
sion will disappear when conditioning on the E1 SNP. If the
GWAS SNP is in strong LD (say r* > 0.8) with the E1 SNP, they are
likely to tag the same functional locus that regulates gene ex-
pression, and we call it a ‘true eQTL’ (Fig. 2). The same applies to
the E2, E3, ..., or E13 SNPs. When performing a GWAS SNP
lookup in our database, we propose the following procedure: 1)
Verify if the GWAS SNP is associated with gene expression in
the conditional or any of the unconditional eQTL analysis. 2) If
so, select the corresponding E1, E2, ..., or E13 SNP and use your
favorite method (16-18) to determine colocalisation of GWAS
SNPs and the E1, E2, ., or E13 SNP. 3) If the GWAS SNP is colocal-
ised with the corresponding E1, E2, ., or E13 SNP, the GWAS SNP
is likely to tag a functional locus regulating gene expression,
and we call it a true eQTL. If not, we call it a false eQTL (Fig. 2).
To illustrate this procedure, we selected all SNPs from the
GWAS catalog. From 11,966 GWAS SNPs, 3,132 (26%) are associ-
ated with gene expression in one of the eQTL analyses (uncon-
ditional, or conditional on E1, or E1 and E2, ..., E12 SNPs). From
these 3,132 GWAS SNPS, 902 (29%) are in LD (r* > 0.8) with an E1,
E2,...or E12 SNP. So from the 3,132 GWAS SNPs associated with
gene expression, we classify 902 (29%) as true eQTLs. From these
902 GWAS SNPs, 689 were in LD with an E1 SNP (identifiable
with unconditional analysis) and 213 (24%) with an E2, E3, ...,
or E12 SNP (only identifiable with conditional analysis). Thus,
without conditional eQTL analysis there would be 24% less
GWAS SNPs identified as true eQTLs. Moreover, both E1 and E2

SNPs are enriched with GWAS SNPs (6.8% of the E1 SNPs, 4.1% of
the E2 SNPs is in LD (r?>0.8) with a GWAS SNP (enrichment
P <0.01 based on LD of 100 random SNP sets with GWAS catalog
SNPs)). The conditional eQTL database we created has been
used for follow up analysis of GWAS for metabolomics, fertility,
heart rate variation, menarche, blood pressure and many others
(11,25-27).

Conditional eQTLs contribute to SNP and family-based
heritability of gene expression

The gene expression sample used for eQTL analysis consisted of
559 MZ twin pairs, 594 DZ twin pairs, 51 parent-sibling trios and
2437 unrelated subjects. This allowed estimation of the narrow
sense heritability (h2,7), and the portion of variance explained
by common SNPs (h2,) and corresponding standard deviations
in a single model (28), for each of the 44,241 gene expression
probes (Supplementary Material, Table S2). For 1143 genes we
found significant h2, (>0.14) and 5985 genes showed significant
h25r (>0.07). From the 4039 probesets with two independent
eQTLs, we estimated how much of h?,; and h?, was explained
by the primary cis eQTL, and how much by the primary and sec-
ondary cis eQTLs (Supplementary Material, Fig. S3). On average,
the primary eQTL accounts for 23% of h2,, the primary and sec-
ondary eQTL together account for 31% of h2,;. The primary
eQTL explains on average 34% of h%,, while the primary and
secondary eQTL together explain 42% of hy. Thus, although
the primary cis eQTL explains more heritability than the sec-
ondary cis eQTL, the secondary cis eQTL increases the captured
SNP and total heritability substantially, emphasizing the im-
portance of not only considering primary, but also secondary cis
eQTLs in variance or heritability decomposition.

Trans eQTL analysis

Gene expression corrected for all independent cis eQTL effects was
subjected to trans eQTL analysis. eQTL effects were defined as
trans when probeset-SNP pairs were at >5M base pairs (Mb). At an
FDR of 5% (P < 5e-10, based on permutations similar to the cis eQTL
analysis), for 434 probesets (targeting 267 genes) trans eQTLs were
identified (138 unique trans eQTL SNPs, Supplementary Material,
Table S3) after extensive QC (Sup. Methods). For all these trans
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eQTLs, associations were present for multiple probes per expres-
sion probeset (diminishing cross hybridization artifacts). Like in the
cis eQTL analysis, expression was residualized with respect to the
top trans eQTL, and trans eQTL analysis was repeated. For 129 pro-
besets an additional independent trans eQTL was identified, and
after another conditioning step, 39 probesets had three independ-
ent trans eQTLs (Supplementary Material, Table S3). After condi-
tioning on up to nine independent trans eQTLs, no more trans
eQTL effects were present. When two trans eQTL SNPs influence
the same gene expression and are located on two different
chromosomes or are located far away (>5Mb) from each other,
their independence is evident and conditional trans eQTL analysis
is not necessary. For these cases, all trans eQTLs in the conditional
analysis were also identified in unconditional analysis. Only a few
trans eQTLs are located closer than 1Mb from each other and influ-
ence the same gene expression independently. This occurs at three
loci on chromosome 6, 17 and 16, associated with in total 22 genes
(Supplementary Material, Table S3). Without conditional analysis
these cases could not have been differentiated from the cases
where all SNPs at a locus represent only one signal. See Sup.
Results for details on trans eQTL analysis, the role of (estimated)
blood cell composition traits in eQTL analyses and the associations
between CNV’s and gene expression.

Discussion

In the conditional cis eQTL analysis, 35% of the cis-regulated
gene expression appears to be allelic heterogeneous (14% of all
genes), as indicated by multiple independent eQTLs per gene.
The other 65% cis-regulated genes seem to be controlled by only
one locus. Hundreds of cis eQTLs were only identified in condi-
tional, and not in unconditional analysis. This finding has im-
portant implications: unconditional eQTL databases do not
provide the complete picture. As an example, we highlighted an
eQTL for FAM117B which was only identified in the conditional
analysis and in strong LD with a GWAS hit for total cholesterol
levels (24). The online conditional cis eQTL catalog we provide
will help researchers to verify if a SNP controls gene expression
more accurately than in standard eQTL databases.

Similarly as was reported previously (4,19), we identified mul-
tiple independent eQTL effects for 35% of the genes with an eQTL.
Since secondary eQTLs are less significant than top eQTLs, this
number is likely to increase with increases in sample size. If mul-
tiple eQTLs for a gene are associated with the same phenotype,
and do so via the mediating gene expression, the accumulated
signal in the gene expression may show a stronger association
with the phenotype than the individual eQTLs. This makes gene
expression, or the cis regulated component of gene expression,
an interesting target for association studies (29,30). Besides re-
vealing the dependency structure of eQTLs, the conditional eQTL
analysis also identifies eQTLs which are not identified in the
unconditional analysis (12%). This can be caused by a low positive
correlation between the eQTLs, while having opposite effects on
gene expression, or a negative correlation between them and the
same direction of effect on gene expression. In trans eQTL ana-
lysis the independent eQTL effects are often located at different
chromosomes, and uncorrelated, and therefore also identified in
unconditional analysis.

In conditional eQTL analysis, gene expression is conditioned
on the primary eQTL. If after this conditioning, gene expression
is still associated with some other SNP(s), there are multiple
possible scenarios: 1) there are multiple loci influencing gene
expression independently 2) since we do not measure in one
cell type but in whole blood, the two identified SNPs may each

be active in a different cell type and 3) there is one locus influ-
encing gene expressing, but this locus is not well tagged by the
measured or imputed SNP, and the seemingly independent
eQTL effects are both correlated with the functional locus and
only reflect a single effect. With the current imputation reso-
lution most functional loci are tagged and therefore the second
scenario is unlikely to occur. Future eQTL studies using DNA se-
quence data, covering the complete genome, will be able to
solve this issue.

We found that primary eQTLs (SNPs with the strongest effect
on gene expression) are significantly overlapping with GWAS
catalog SNPs, as was shown previously for all eQTLs identified
in the unconditional analysis (2). Here, we showed that also sec-
ondary eQTLs (SNPs associated with gene expression after con-
ditioning) are significantly overlapping with GWAS catalog
SNPs, even though the power to detect secondary eQTLs in
GWAS is probably lower: the secondary eQTL may also not be
the strongest association in the GWAS. Or even only be identi-
fied after conditioning on the strongest association, which is
not always done. In summary, conditional eQTL analysis in-
creases the number of identified independent eQTLs, improves
the look up of GWAS SNPs, and provides a better decomposition
of gene expression heritability. This should be taken into ac-
count in future eQTL studies.

Materials and Methods
Subjects for eQTL analysis

The two parent projects that supplied data for the eQTL analysis
are large-scale longitudinal studies: the Netherlands Study of
Depression and Anxiety (NESDA) (21) and the Netherlands Twin
Register (NTR) (22). NESDA and NTR studies were approved by
the Central Ethics Committee on Research Involving Human
Subjects of the VU University Medical Center, Amsterdam (insti-
tutional review board [IRB] number IRB-2991 under Federal wide
Assurance 3703; IRB/institute codes: NESDA 03-183 and NTR 03-
180). All participants provided written informed consent. The
sample used for eQTL analysis consisted of 4,896 subjects with
European ancestry (1,880 unrelated subjects from NESDA, 559
MZ twin pairs, 102 siblings of MZ twins (one per MZ twin pair),
594 DZ twin pairs, 111 siblings of DZ twins (one per DZ twin
pair), 51 parent-sibling trios and 344 unrelated subjects from
NTR). The age of the participants ranged from 17 to 88 years
(mean =38, SD=13); 65% of the sample was female. The data
used for this study largely overlaps with those used in our ear-
lier study (1). We used all 4647 samples used by Wright et al,,
plus 249 additional samples.

Blood sampling, RNA extraction, and RNA expression
measurement

Study protocols and biological sample collection methods were
harmonized between NTR and NESDA. RNA processing and
measurements have been described in detail previously (1,31).
Venous blood samples were drawn in the morning after an
overnight fast. Heparinized whole blood samples were trans-
ferred within 20 min of sampling into PAXgene Blood RNA tubes
(Qiagen, Valencia, California, USA) and stored at —20°C. Gene
expression assays were conducted at the Rutgers University
Cell and DNA Repository. Samples were hybridized to
Affymetrix U219 arrays (Affymetrix, Santa Clara, CA) containing
530,467 probes summarized in 49,293 probe sets. Array hybrid-
ization, washing, staining, and scanning were carried out in an
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Affymetrix GeneTitan System per the manufacturer’s protocol.
Gene expression data were required to pass standard
Affymetrix QC metrics (Affymetrix expression console) before
further analysis. We excluded from further analysis proves that
did not map uniquely to the hgl9 (Genome Reference
Consortium Human Build 37) reference genome sequence, as
well as probes targeting a messenger RNA (mRNA) molecule re-
sulting from a transcription of a DNA sequence containing a
single nucleotide polymorphism (based on the dbSNP137 com-
mon database). After this filtering step, data for analysis re-
mained for 423,201 probes, which could be summarized into
44,241 probe sets targeting 18,238 genes. Normalized probe set
expression values were obtained using Robust Multi-array
Average (RMA) normalization as implemented in the Affymetrix
Power Tools software (APT, version 1.12.0, Affymetrix). Data for
samples that displayed a low average Pearson correlation with
the probe set expression values of other samples, and samples
with incorrect sex-chromosome expression were removed,
leaving 4,896 subjects for analysis.

Gene expression normalization

The inverse quantile normal transformation was applied for
each expression probe set to obtain normal distributions. The
transformed probeset data were then residualized by multiple
linear regression with respect to the covariates sex, age, body
mass index (kg/m?), blood hemoglobin level, smoking status,
several technical covariates (plate, well, hour of blood sam-
pling, lab, days between blood sampling and RNA extraction
and average correlation with other samples) and the scores on
three principal components (PCs) as estimated from the
imputed SNP genotype data (32) using the EIGENSOFT pack-
age. The residuals resulting from the linear regression ana-
lysis of the probe set intensity values onto the covariates
listed above were subjected to a principal component ana-
lysis, with the aim to further filter out environmental vari-
ation from the data (33). For each principal component a
genome-wide association study was performed, and the first
50 principal components without genome-wide significant
SNP associations were removed from the residualized probe-
set data before eQTL analysis.

DNA extraction and SNP genotyping and imputation

DNA was extracted from peripheral blood as described previ-
ously (34). SNP genotype pre-imputation quality control, haplo-
type phasing and 1000 Genomes phase 1 imputation were
performed as described previously (35). Imputed SNP genotypes
were coded into the reference allele dosage format, and filtered
at MAF >0.01 and HW P > 1E — 04 resulting in 8,158,830 remain-
ing SNPs for eQTL analysis.

eQTL analysis and FDR based on permutations
accounting for relatedness

eQTL effects were detected with a linear model approach using
MatrixeQTL (36) with expression level as dependent variable
and SNP genotype values as independent variable. To account
for relatedness of the NTR subjects, permutations were per-
formed where in each permutation the relatedness was pre-
served. In each permutation the genotypes of the MZ twin pairs
were assigned the expression of a random MZ twin pair, the
genotypes of the DZ twin pairs were assigned the expression of
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a random DZ twin pair, the genotypes of the MZ twin pairs with
sibling were assigned the expression of a random MZ twin pair
with sibling, the genotypes of the parent-sibling trios were as-
signed the expression of a random parent-sibling trios and the
genotypes of the unrelated subjects were assigned the expres-
sion of a random subject from the group of unrelated subjects.
For each permutation the complete cis eQTL analysis was re-
peated, and after each permutation the P-value threshold for re-
jecting at FDR <0.05 was computed. This can be done in two
ways: 1) divide the total number of significant eQTLs in the per-
muted data by the total number of significant eQTLs in the
unpermuted data (=false positives/true positives) or 2) divide
the total number of probesets with a significant eQTL in the per-
muted data by the total number of probesets with a significant
eQTLs in the unpermuted data. We used the second method
which is more conservative and was proposed earlier (33) to ac-
count for large LD blocks with strong eQTL effects that inflate
the FDR when using the first method. Similar as what was
observed in Fehrman et al,, only 10 permutations were needed
to have the P-value threshold corresponding to FDR < 5% con-
verging. Of note, the eQTL P-values reported in this manuscript
are based on the complete sample with related subject and thus
are too liberal: however the FDR takes into account the family
structure and should be used to draw conclusions. The reported
betas from the linear models can be correctly estimated from
samples containing related subjects. For the conditional eQTL
analysis, the same P-values threshold was used as for the un-
conditional analysis, in order to keep the threshold fixed across
analysis. The conditional analysis consists of a new group of
tests, and has to be considered separately from the uncondi-
tional analysis in terms of significance. During conditional
analysis much less tests were performed compared to the un-
conditional analysis, so when using the same P-value threshold,
we are sure to be conservative when stating FDR <5% for the
conditional analysis.

eQTL effects were defined as cis when probe set-SNP pairs were
at distance < 1M base pairs (Mb). For each probe set that displayed
a statistically significant association with at least one SNP in the cis
region, we identified the most significantly associated SNP (E1
SNP). Conditional eQTL analysis was carried out by first residualiz-
ing probeset expression using the corresponding E1 SNP and then
repeating the eQTL analysis using the residualized data. Then, for
each probe set the most significant SNP was selected (E2 SNP) and
each probeset was residualized using the E1 and E2 SNPs, and
eQTL analysis was repeated using the residualized expression.
This was repeated until no more significant associations were
found between residualized expression and SNP data (after up to
12 rounds of conditional analysis). We call the E1-E13 SNPs inde-
pendent eQTL SNPs. So we define ‘independent eQTL SNPs’ as E1-
EN SNPs (N =2-13), for which the Ei SNP is significantly associated
with gene expression, while conditioning on the E1-E(i-1) SNP(s).
This does not mean that LD between independent eQTL SNPs is
close to zero: as we show in the results, independent eQTL SNPs
can be significantly correlated.

Initially, the first 50 principal components without genome-
wide significant SNP associations were removed from the resi-
dualized probeset data before eQTL analysis. Post hoc ana-
lysis was performed by repeating the eQTL analysis and
correcting for all 50 principal components (PCs). From all top cis
eQTLs identified in the initial analysis, 97% were still significant
after removing all 50 PCs, using the same threshold for signifi-
cance P < 1le-5 and 99.7% when using P < 1le-4 as a threshold.
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SNP and family-based heritability of gene expression

Subjects were genotyped on the Affymetrix 6k chip. SNPs that
passed basic QC, with Hardy Weinberg equilibrium P-value
below 10e-5 and minor allele frequency above 0.01 were
included in the following analysis. A genetic relatedness matrix
(GRM) was computed based on genotyped SNPs using GCTA ver-
sion 1.24.2 (37). As the sample used for this study contains a
substantial proportion of closely related individuals, the total
heritability and the variance attributable to SNPs can be esti-
mated concurrently (28). To enable estimation of both the total
additive genetic variance and the variance attributable to meas-
ured SNPs concurrently we constructed a second GRM
(GRM .. ¢.05), all values above 0.05 are copied from the GRM to the
GRM . ¢ 05, values below 0.05 are substituted with 0. GRM and
GRM . o005 contain respectively all genetic relationships in the
sample, and the close (i.e. familial) genetic relationships in the
sample. We fitted the variance model as proposed by Zaitlen
et al. (2013) to each of the probesets. This model partitions the
total variance in a probeset into the variance attributable to
SNPs (hyp) the narrow sense heritability (h2,;) and the residual
variation, i.e. variation not attributable to genetic effects. From
these models standard deviations of h2,; and h3,, were com-
puted to determine significance of heritability.

Data Submission

Full conditional eQTL results are accessible at https://eqtl.onder
zoek.io/. Gene expression and genotype data used for this study
are available at dbGaP, accession number phs000486.v1.pl
(http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?
study_id=phs000486.v1.p1).
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