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Heritability of Indices for Cardiac Contractility
in Ambulatory Recordings
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Heritability of Cardiac Contractility. Introduction: Overactivity of the sympathetic nervous system
(SNS) plays a pivotal role in the development of cardiovascular disease. This involvement suggests that the
genetic susceptibility to adverse cardiovascular events may derive in part from individual differences in
SNS activity.

Methods and Results: To establish a genetic contribution to SNS activity, we measured sympathetic effects
on cardiac contractility in 755 healthy adult twins and their singleton siblings. The preejection period (PEP)
and the ratio of PEP to the left ventricular ejection time (PEP/LVET ratio) were derived from ambulatory
recordings of the ECG and thorax impedance. During this type of prolonged recordings in a real life
setting, the extent of cardiac sympathetic activity will vary with the demands of daily activities. Therefore,
the genetic architecture of both indices was examined separately across three daytime periods (morning,
afternoon, evening), and during nighttime sleep. Results showed significant genetic contribution to PEP
(48–62%) over all daily periods. Heritability estimates for PEP/LVET ratio ranged between 35% and 58%.
Cardiac sympathetic activity during the waking and sleep periods was largely influenced by genetic factors
that were common to the entire 24-hour period. During sleep, additional genetic influences emerged that
accounted for 8% of the variance in PEP.

Conclusion: Impedance-derived measures of sympathetic effects on cardiac contractility show substantial
heritability across all periods of the day and during sleep. (J Cardiovasc Electrophysiol, Vol. 17, pp. 877-883,
August 2006)
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Introduction

Chronic autonomic imbalance is well recognized as a po-
tent risk factor for cardiovascular morbidity and mortality.1

As many studies have shown, increased sympathetic nervous
system (SNS) activity plays a pivotal role in the development
of hypertension,2-4 myocardial infarction (MI),5 and tachy-
cardia, the latter favoring arrhythmias.6,7 Finally, SNS activ-
ity strongly influences the clinical progression of heart fail-
ure.8-10 All these adverse cardiovascular events have a strong
genetic component.11-14 Individual differences in SNS activ-
ity may well account for this genetic susceptibility. There is
an unfortunate lack of information, however, on the influ-
ence of hereditary factors on individual differences in SNS
activity. Such information might provide new angles for fu-
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ture linkage and association studies attempting to unravel the
genetic etiology of cardiovascular disease.

The preejection period (PEP) is a widely used, valid in-
dex of beta-adrenergic effects on cardiac contractility.15,16

Because PEP is sensitive to changes in preload, the ratio of
PEP to left ventricular ejection time (LVET) has been pro-
posed as an alternative measure, although the relative merit
of this ratio over PEP remains controversial.17,18 A short-
ened PEP and an increase in the PEP/LVET ratio both signal
increased inotropic control, i.e., larger sympathetic drive to
the left ventricle. In the present study, impedance cardiogra-
phy17,19 was used to measure the systolic time intervals (PEP,
LVET) across a 24-hour period in a large group of healthy
twin families. Repeated ambulatory 24-hour measurements
have shown that individual differences in ambulatory PEP
and LVET are very stable.20 An extended twin design (twins
and siblings) was used to estimate the genetic contribution
to these stable individual differences in cardiac sympathetic
activity. The ambulatory and long-term nature of the mea-
surements offers the opportunity to examine potential sleep-
wake differences in the genetic architecture of cardiac SNS
activity.

Methods

Subjects

All participants were registered with the Netherlands Twin
Register. Their families were originally invited for a genetic
linkage study searching for genes influencing anxiety and
depression, which has been described elsewhere.21,22 Of the
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first 1,332 offspring who returned a DNA sample for this
study, 1,008 were successfully contacted for a cardiovascu-
lar ambulatory monitoring study. Of these, 174 subjects re-
fused and 18 were excluded for various reasons (pregnancy,
heart transplantation, presence of a pacemaker and known
ischemic heart disease, congestive heart failure, or diabetic
neuropathy). A final 816 subjects were eligible and willing
to participate in cardiovascular ambulatory monitoring. Data
from 34 participants on cardioactive medication (including
all beta-blockers) were discarded. For 14 additional subjects,
recordings were unavailable due to equipment failures, while
13 subjects had either a noisy ECG or impedance cardiogram
(ICG) signal, and were therefore excluded. The final sample
consisted of 215 identical twins (77 men), 296 fraternal twins
(107 men), and 244 of their siblings (94 men) from 339 fam-
ilies. Zygosity of the twins was determined by DNA typing.
The Ethics Committee of the Vrije Universiteit approved the
study protocol and all subjects gave written consent before
entering the study.

Procedure

The ambulatory recording procedure has been described
previously.23 Briefly, participants were visited at home and
the VU-AMS ambulatory ECG/ICG device was attached to-
gether with an ambulatory blood pressure monitor (Spacelabs
Medical, Inc.). Subjects were instructed to wear the VU-AMS
for 24 hours and the blood pressure monitor until going to
sleep and to keep a detailed diary during this period. Every
30 (±10) minutes the VU-AMS device produced an audible
alarm to prompt them to write down a chronological account
of activity, posture, location, and social situation during the
past 30 minutes.

Impedance Cardiography

The VU-AMS (version 4.6) measures the ECG, the tho-
rax impedance (Z0), the changes in impedance (�Z), and the
ICG continuously from a six-electrode configuration.24-26 In
addition, it measures vertical acceleration, which is used as
a proxy for gross body movement. The technical specifica-
tions of the recording technique have been published previ-
ously.24-26 The obtained dZ/dt signal of each 60-second pe-
riod was ensemble averaged with reference to the R-wave.27

This assembled dZ/dt waveform will be referred to as a “60-
second ensemble average.” Ensemble averaging reduces the
impact of single-beat fluctuations in the ICG through res-
piration and slow thorax movement. Systolic time intervals
scored in the 60-second ensemble-averaged ICG correspond
very closely to the mean systolic time intervals obtained over
the (reliable) single-beat ICG waves in that same minute.27-30

Data Reduction

Using the diary entries combined with the vertical ac-
celerometer signal and the heart rate, the entire recording
was divided into periods that were defined by posture, ac-
tivity, location, and social situation. To reduce the amount
of visual inspection needed, the same ensemble averaging
strategy used to obtain 60-second averages from single-beat
waveforms was applied to obtain large-scale ensemble av-
erages (LSEA) across these periods. A previous ambulatory
study by Riese et al.25 showed that such a LSEA validly re-
captures the information in the original 60-second ensemble

averages, while substantially reducing the total amount of
visual inspection time needed.

Postural changes and physical activity, affecting among
others preload, afterload, and the electrical axis of the heart,
may influence the duration of the PEP and LVET.31,32 The
present study, therefore, only included periods during which
subjects were either sitting (daytime) or lying (nighttime).

ICG Waveform Scoring

Systolic time intervals and the dZ/dtmin were manu-
ally scored with a VU-AMS interactive software program
(www.psy.vu.nl/vu-ams) that graphically displayed both the
60-second ensemble averages and the LSEA of the dZ/dt sig-
nal. Three time points were scored: the upstroke, the dZ/dtmin

point, and the incisura (see Fig. 1). Occasional fragments of
the dZ/dt, where it was not feasible to identify the three ICG
waveform characteristics with certainty, were removed from
the final daily period averages. Less than 2% of these ensem-
ble averages had to be excluded for any of the subjects.

The PEP is defined as the time between the onset of the
electromechanical systole (Q-wave onset) and the onset of
left ventricular ejection at the opening of the aortic valves.
As a proxy for the Q-wave onset we used the R-wave plus
48 msec, the rationale for this approach to PEP has been
reported elsewhere.25,26,31 We further calculated the ratio
of PEP/LVET, which may be less dependent on preload.18

Impedance-derived PEP and PEP/LVET ratio have convinc-
ingly been shown to be similar to their echocardiographic-
derived counterparts.33-35

Figure 1. Large-scale ensemble average of the impedance cardiogram
(ICG) signal. The change in impedance across the heart cycle is plotted
(Ohm/second, Y-axis) as a function of time (X-axis, msec). The first vertical
line indicates the location of the B-point that represents the opening of the
aortic valves at which blood starts to flow into the aorta (corresponding to
the first heart sound). The second vertical line, at the top of the waveform,
is the dZ/dtmin point corresponding to the time point of maximum velocity
of the ejected blood. The third vertical line is the X-point or incisura, rep-
resenting closure of the aortic valves (corresponding to the second heart
sound). The PEP, or preejection period, is computed as the time from the
R-wave to the B-point plus 48 msec (estimate of the fairly constant duration
of the Q-R interval). The LVET, or left ventricular ejection time, is computed
as the time between the B and X points.
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Statistical Analyses

Structural equation modeling

Genetic models were fit to the data on PEP and PEP/LVET
ratio with the use of the structural equation modeling pro-
gram Mx.36 These models use the known difference in the
genetic relationship between monozygotic (MZ) and dizy-
gotic (DZ) twins/sibs to estimate to what extent additive and
dominant genetic effects and shared environmental and non-
shared environmental effects contribute to the variance in a
trait. Shared environment (C) includes all effects on the trait
shared by members of a family, e.g., diet, neighborhood, and
family health practices. Nonshared, or unique environment
(E), represents the environmental effects that are unique to
each member of a family, plus measurement error. Additive
genetic (A) effects derive from genes whose allelic effects
combine additively. Nonadditive genetic effects include dom-
inance (D), the interaction between alleles at the same locus,
and epistasis, the interaction of alleles at different loci.

In a twin design that includes identical twins, fraternal
twins and sibling pairs, estimates of C and D are confounded.
The covariances between twins provide the sufficient infor-
mation to test either a model with A, C, and E, or a model
with A, D, and E. Inspection of the pattern of twin and sibling
correlations was used to guide the most appropriate model for
further analyses. The basic principles of structural equation
modeling of twin data have been outlined elsewhere.37,38 A
detailed treatise on the statistical testing procedure is found
in Neale and Cardon39 and in Neale et al.36

A number of steps were taken to reduce complexity of
the final genetic modeling. Because each additional sibling
increases the complexity of the specified covariance matrices,
we discarded data from seven siblings (1 male, 6 female) in a
few families with more than four additional siblings. A series
of increasingly constrained univariate models were fit for
each period of the day and for each variable separately to test
the homogeneity of means and variances for MZ twins, DZ
twins, and siblings and for males and females. If homogeneity
is found (e.g., the variance is the same in all sex by zygosity
subgroups), a single parameter can be estimated instead of
many parameters without loss of information. For the same
purpose, homogeneity of male and female correlations, and
of DZ twins and sibling pair correlations was tested.

After establishing the most parsimonious model (ACE or
ADE, AE, CE, or E) for each daily period (univariate analy-
sis), we used a full four-variate triangular decomposition to
test whether the same or different genetic and environmental
factors influenced cardiac contractility at each of the four pe-
riods of the day (morning, afternoon, evening, and night). The
triangular decomposition imposes a structure of stratification
on the shared latent factors (A, C or D, and E) such that there
is a main factor that loads on, e.g., PEP at each of the four
periods of the day, followed by a second factor that loads on
all but the first period, followed by a third latent factor that
loads on the final two periods. The final and fourth factor
only loads on the last period. A priori, we expected a single
genetic factor to underlie most of the variance throughout the
day and night, with smaller genetic influences unique to each
of the four periods of the day. The adequacy of the genetic
one-factor model to describe the observed data was tested by
contrasting it against the full triangular decomposition. Sig-
nificance tests of the individual path coefficients were carried

out by constraining paths to zero and applying likelihood ra-
tio tests. Akaike’s Information Criterion (AIC)40 was used
throughout to evaluate the relative fit of the various models.

Results

On average, the ambulatory monitoring period had a du-
ration of 21 hours and 20 minutes (±4:14 hours), which in-
cluded an average of 43 (±12) LSEA of the dZ/dt signal. Of
these, 50.5% were recorded either during sitting or lying pos-
ture. Mean age of this twin population was 30.6 years (SD =
10.4). Means for PEP and PEP/LVET ratio for all periods dur-
ing which subjects were sitting (daytime) or lying (nighttime)
are presented in Table 1. Families were selected for partic-
ipation based on the requirement that at least two members
of a family scored extremely discordant or concordant on a
factor score that indicated genetic vulnerability for anxious
depression. Because of the recruitment of additional siblings
in the selected families independent of their anxious depres-
sion scores, the distribution of the factor score approximated
the normal distribution found in the population at large.21

Yet, a small number of subjects attained clinical cut-offs for
depression (n = 32) at the time of their ambulatory measure-
ment. To test whether the sample could still be considered
unselected for cardiovascular risk factors, the degree of their
association to the subjects’ anxious depression vulnerability
score was computed. Only nonsignificant correlations were
found.

The lower triangle of Table 2 contains the stability of PEP
across the four periods of the day; the upper triangle like-
wise for the PEP/LVET ratio. Both PEP and PEP/LVET ratio
appear very stable across the four periods of the day. As ex-
pected, PEP and PEP/LVET were highly correlated through-
out the day (morning r = 0.87, afternoon r = 0.88, evening
r = 0.86, and night r = 0.92).

Twin and Sibling Correlations

To determine the extent to which MZ twin pairs are more
similar than DZ or sibling pairs, age-adjusted Pearson’s cor-
relation coefficients were calculated per zygosity, and per sex.
All possible MZ and DZ/sibling pairs were used. The corre-
lations are shown in Table 3. Throughout, a larger MZ than

TABLE 1

Means (SD) for Preejection Period (PEP), Left Ventricular Ejection Time
(LVET), and PEP/LVET Ratio for Each Period of Day

Number of LVET PEP/
Subjects PEP (ms) (msec) LVET

Morning
Men 265 96.4 (14.9) 292.4 (34.1) 0.34 (0.07)
Women 457 99.6 (18.5) 289.0 (35.7) 0.35 (0.09)

Afternoon
Men 271 95.9 (14.2) 284.6 (32.7) 0.34 (0.07)
Women 468 98.2 (17.1) 285.0 (33.9) 0.35 (0.09)

Evening
Men 264 95.7 (13.6) 293.2 (33.6) 0.33 (0.07)
Women 456 98.0 (16.2) 297.0 (35.2) 0.34 (0.08)

Night
Men 289 105.4 (15.4) 334.7 (26.6) 0.32 (0.06)
Women 505 104.8 (15.3) 331.5 (27.2) 0.32 (0.06)
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TABLE 2

Correlation of PEP and PEP/LVET Ratio Across the Four Periods of
the Day

PEP/LVET

PEP Morning Afternoon Evening Night

Morning 0.93 0.86 0.67
Afternoon 0.96 0.89 0.69
Evening 0.90 0.93 0.74

Night 0.72 0.74 0.79

Lower triangle: PEP; Upper triangle PEP/LVET ratio. Correlations were
corrected for influences of age on the mean; all correlations are significant
at P < 0.000.

DZ/sibling correlation is evident, suggesting the presence of
additive genetic and unique environmental influences. For
both PEP and the PEP/LVET ratio the majority of MZ twin
correlations is more than twice as large as the DZ correlations,
indicating the possible presence of dominance genetic effects.
We, therefore, opted to model only A, D, and E effects, and
no C effects. In addition, the opposite sex correlations for
these variables are near zero, suggesting that different genes
may be acting in males and females.

Structural Equation Modeling

There were no sex differences for mean values of PEP and
PEP/LVET. Variances of PEP and PEP/LVET ratio signifi-
cantly differed, however, between males and females. Further
model fitting employed a scalar sex limitation36,39 to account
for these differences. With increasing age, the PEP/LVET ra-
tio significantly decreased during all daily periods, and the
PEP itself decreased with age during the night. The effects
of age on the mean were taken into account in all further
models.

For all variables, intrapair correlations of all same-sex
non-MZ siblings, i.e., DZ twin-cotwin, sibling-twin, and
sibling-sibling correlations were similar for all daily peri-
ods. This meant that these correlations could be estimated by
a single parameter (denoted rDZ/sib in Table 3). As can be
gauged from Table 3, the intrapair correlation of opposite sex

TABLE 3

Twin Correlations for Preejection Period (PEP) and PEP/LVET Ratio for
Each Period of Day

PEP PEP/LVET

rMZ rDZ/sib rMZ rDZ/sib

Morning Male pairs 0.71 0.38 0.63 0.28
Female pairs 0.72 0.23 0.62 0.25
Opposite sex pairs - 0.01 - −0.03

Afternoon Male pairs 0.70 0.42 0.64 0.41
Female pairs 0.73 0.24 0.64 0.19
Opposite sex pairs - −0.01 - −0.09

Evening Male pairs 0.69 0.32 0.80 0.31
Female pairs 0.64 0.21 0.48 0.22
Opposite sex pairs - −0.05 - −0.07

Night Male pairs 0.70 0.25 0.62 0.22
Female pairs 0.46 0.13 0.50 0.20
Opposite sex pairs - −0.08 - −0.07

Twin correlations were corrected for influences of age on the mean.
MZ = monozygotic twins; DZ = dizygotic twins.

TABLE 4

Multivariate Model Fitting Results for Preejection Period (PEP) and
PEP/LVET Ratio

PEP

Model Versus Δχ2 Δdf P value AIC

1 AE triangular Full 9.035 10 0.529 −10.965
2 E triangular Full 72.737 10 0.000 52.737
3 AE common + 1 2.975 2 0.226 −1.025

four specifics
4 AE common + 3 4.063 3 0.255 −1.937

one specific
5 AE common 4 5.463 1 0.019 3.463

PEP/LVET ratio

1 AE triangular Full 6.283 10 0.791 −13.717
2 E triangular Full 57.534 10 0.000 37.534
3 AE common + 1 4.777 2 0.092 0.777

four specifics
4 AE common + 3 0.103 3 0.991 −5.897

one specific
5 AE common 4 3.08 1 0.079 1.08

The most parsimonious model is printed boldfaced. �χ2 = increase in chi
square; �df = difference in degrees of freedom between models; AIC =
Akaike’s information criterion; Full = most parsimonious unconstrained
model, against which the triangular models are tested. When increase in χ2

is not significant (P > 0.01), the most restrictive model is accepted.
Explanation of the models:
1AE triangular: triangular variance decomposition model in which variance
is explained by additive (A) and nonshared environmental (E) factors;
2E triangular: triangular variance decomposition model in which variance
is explained by nonshared environmental factors only;
3AE common + four specifics: apart from a common genetic factor, four
period-specific genetic factors explained genetic variance during the four
periods of day;
4AE common + one specific: apart from a common genetic factor, a
period-specific factor explained genetic variance at night only; and
5AE common: a single common genetic factor explained genetic variance
at all four periods of the day.

pairs could be constrained at zero for PEP and PEP/LVET ra-
tio. This means that different genetic effects operate in males
and females.

For each of the variables, univariate models including only
additive genetic and unique environment factors (AE models)
gave the best fit over all other possible models (ADE, CE, or
E) on each of the four daily periods. Multivariate AE models
(see Table 4), with the four daily periods as consecutive mea-
surements, were used to test general and daytime-specific
heritability each of the variables. For PEP and PEP/LVET
ratio alike, one genetic factor was responsible for the genetic
influences on the individual variation throughout the 24-hour
recording. Heritability estimates for the final most parsimo-
nious models are presented in Table 5. Although all variables
showed a decrease in heritability during the evening and a fur-
ther decrease during the night, these were not significant. For
PEP, an additional genetic factor emerged during sleep that
accounted for 8% of the variance in nighttime PEP.

Discussion

Based on prolonged measurements in a real life setting,
obtained in a sample of 755 healthy adult twins and sin-
gleton siblings, the present study assessed the heritability
of sympathetic effects on cardiac contractility, measured by
the PEP, both with and without controlling for individual
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TABLE 5

Heritability (±95%CI) Estimates for Preejection Period (PEP) and
PEP/LVET Ratio

PEP

Common h2 Specific h2 Total h2

Morning 0.62 (0.49–0.72) - 0.62
Afternoon 0.62 (0.48–0.72) - 0.62
Evening 0.55 (0.41–0.66) - 0.55
Night 0.40 (0.27–0.52) 0.08 (0.01–0.15) 0.48

PEP/LVET ratio

Common h2 Specific h2 Total h2

Morning 0.58 (0.43–0.69) - 0.58
Afternoon 0.56 (0.41–0.68) - 0.56
Evening 0.48 (0.32–0.61) - 0.48
Night 0.35 (0.19–0.51) - 0.35

Heritability estimates (h2) were corrected for influences of age on the mean.

differences in LVET. Genetic modeling showed that the PEP
is a significantly heritable trait. Correction for individual dif-
ferences in LVET mildly decreased heritability estimates, but
this was not significant.

Daytime generally is associated with relative sympathetic
dominance while nighttime is characterized by parasympa-
thetic dominance.41-43 To allow for the possibility that dif-
ferent genetic factors would affect sympathetic control of the
contractility of the heart during waking and sleeping hours or
during leisure (evening) and work (morning, afternoon) pe-
riods, the entire ambulatory impedance recording was split
into four daily periods. Total genetic influence on variance
in cardiac sympathetic control was found to be higher during
the daytime than during the evening and lowest during the
night. A common set of genes, however, influenced the vari-
ables during all three daytime periods and at night. At night,
significant new genetic variance emerged for PEP. This is in
keeping with studies in rodents on diurnal variation in gene
expression in the heart.44,45 These studies found variation
in diurnal gene expression to be driven in part by the cen-
tral circadian pacemaker, but also by changes from light to
dark phases. The presence of the night-specific genetic influ-
ences on cardiac contractility would support the proposition
by Young46 that the presence of night-specific gene expres-
sion in the hearts of rodents may be extrapolated to humans.
Because the specific genetic effects disappeared after cor-
recting for LVET, we cannot exclude the possibility that they
are due to preload effects caused by the change to a supine
posture.

Chronic sympathetic hyperactivity and its physiological
sequelae play a vital role in the development of hyperten-
sion and subsequent adverse cardiovascular events.2-10 In-
deed, previous clinical studies have shown that hypertensive
patients are characterized by a decrease in PEP.47 In addi-
tion, PEP has been positively correlated with the incidence
of MI, and even predicts future MI events.48 Subjects with a
genetic make-up that gives rise to increased cardiac sympa-
thetic activity, evident in a shorter PEP, may be at larger risk
to develop hypertension and subsequent adverse cardiovas-
cular events than subjects lacking such genetic susceptibil-
ity. Genes affecting between-subject variance in sympathetic
control of cardiac contractility may be found at different

levels. They may reflect individual differences in state of
arousal linked to a different rate of sympathetic nerve fir-
ing, for instance as part of personality characteristics.49,50

Individual differences in sympathetic cardiac drive may also
derive from genes at a (neuro)physiological regulatory level.
In the heart, beta-adrenergic receptors modulate cardiac func-
tion by controlling chronotropic and inotropic responses to
catecholamines of the SNS. Hence, genes controlling cate-
cholamine metabolism, neuronal norepinephrine reuptake,4

beta-adrenergic receptor function, and signal transduction
may be involved in determining the observed heritability of
the two cardiac sympathetic indices. Apart from genes in the
noradrenergic signal transduction pathway, genes involved
in the dopamine system might also be involved. Dopamine
affects sympathetic cardiac drive by negatively modulating
its activity. Polymorphisms in dopamine receptor genes have
been associated with increased SNS activity, and elevated
blood pressure levels.51

The DOS correlation for PEP was close to zero, indicat-
ing that different genes play a role in individual differences in
SNS activity in men and women. The most likely explanation
for this sex difference is an interaction between adrenoceptor
signaling and male and female sex hormones. Several studies
have shown the presence of such interaction. A role for testos-
terone in adrenoceptor regulation is found in adipose tissue
metabolism.52 Recently, it was reported that testosterone reg-
ulates gene expression of the major calcium regulatory pro-
teins in isolated ventricular myocytes.53 This indicates that
testosterone may very well contribute to the sex differences
in genetic influences on cardiac function. A further role for
female sex hormones is supported by several studies show-
ing that estrogen inhibits β 1-adrenergic receptor activation on
the heart,54,55 thereby reducing sympathetic cardiac drive and
decreasing the risk for ischemic heart disease in women.56

Finding the actual causal genes for cardiovascular dis-
eases has proven a very difficult task. It is increasingly ap-
preciated that genetic epidemiological studies of complex
diseases may benefit from the use of more narrowly defined
risk factors, or endophenotypes, over broadly defined dis-
ease phenotypes.57 For future studies, we would suggest to
use PEP (or PEP/LVET ratio) as an endophenotype in the
search for genetic susceptibility causing high SNS activity
at a young premorbid age. Genetic variation in this index of
sympathetic inotropic drive was largely explained by a com-
mon set of genes acting throughout the day and night. This is
advantageous for gene finding on at least two accounts. First,
using multiple highly genetically correlated traits provides
higher statistical power to find genes in linkage analysis.58

Secondly, these genes, by virtue of having a pervasive influ-
ence on cardiac contractility across all situations, will also
have the largest clinical relevance. We, therefore, conclude
that this ambulatory impedance-derived index of cardiac con-
tractility provides a useful trait for future gene-finding studies
targeting hypertension, MI, and arrhythmias.
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