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Abstract The present study employed multivariate

genetic item-level analyses to examine the ontology and

the genetic and environmental etiology of the Big Five

personality dimensions, as measured by the NEO Five

Factor Inventory (NEO-FFI) [Costa and McCrae, Revised

NEO personality inventory (NEO PI-R) and NEO five-

factor inventory (NEO-FFI) professional manual, 1992;

Hoekstra et al., NEO personality questionnaires NEO-PI-R,

NEO-FFI: manual, 1996]. Common and independent

pathway model comparison was used to test whether the

five personality dimensions fully mediate the genetic and

environmental effects on the items, as would be expected

under the realist interpretation of the Big Five. In addition,

the dimensionalities of the latent genetic and environ-

mental structures were examined. Item scores of a popu-

lation-based sample of 7,900 adult twins (including 2,805

complete twin pairs; 1,528 MZ and 1,277 DZ) on the Dutch

version of the NEO-FFI were analyzed. Although both the

genetic and the environmental covariance components

display a 5-factor structure, applications of common and

independent pathway modeling showed that they do not

comply with the collinearity constraints entailed in the

common pathway model. Implications for the substantive

interpretation of the Big Five are discussed.

Keywords Personality � Big Five � NEO-FFI �
Genetics � Item-level analysis � Common pathway

model � Independent pathway model

Introduction

Over the past century, one of the most influential approa-

ches to personality description has been the five factor (FF)

approach. Predicated on the lexical approach to personality

description, reflected in Cattell (1943a): ‘‘All aspects of

human personality which are or have been of importance,

interest, or utility have already become recorded in the

substance of language’’ (p. 483), the FF approach is based

on the idea that identification of basic dimensions of human

personality is possible via the application of factor analytic

techniques to verbal descriptors of human traits.

The beginnings of the FF approach can be traced to

Allport and Odbert (1936) selection of 4,504 psychological

trait terms from the 1925 unabridged Webster’s New

International Dictionary. Cattell (1943a, b, 1945) aug-

mented this list in the 1940s by adding ‘‘the substance of all

syndromes and types which psychologists have observed

and described in the past century or so’’, and subsequently

abbreviated it to a set of 35 variables—a factor analysis of

which produced 12 ‘‘primary’’ factors. In the early 1960s,

Tupes and Christal (1992) performed a series of factor

analyses on Cattell’s variables and observed five recurrent

orthogonal factors, which they denoted surgency/extra-

version, agreeableness, dependability, emotional stability,

and culture (French 1953). Through Norman’s (1963,

1967) further addition to, and subsequent abbreviation of,

Allport and Odbert’s original list, and further selection of

adjectives from this list by Goldberg (1977, 1980, 1983,

1990, 1992), a set of variables with a clearer five-factor
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orthogonal structure was produced. Goldberg (1981, 1982)

denoted these FFs ‘‘the Big Five’’.

In a parallel research program, following a cluster ana-

lysis of Cattell’s Sixteen Personality Factor (16PF) Ques-

tionnaire in which three factors were extracted—

neuroticism, extraversion, and openness to experience—

McCrae and Costa (1983) developed a 144-item, 18-facet,

3-dimensional questionnaire, which they termed the NEO

Inventory. After linking their neuroticism and extraversion

factors to those from the previous lexically based research

(e.g., Goldberg 1980, 1981, 1982, 1983), they fully adopted

the FF approach, and consequently developed measures of

agreeableness and conscientiousness. The addition of these

scales to the NEO Inventory resulted in the NEO Person-

ality Inventory (Costa and McCrae 1985), and the sub-

sequent implementation of facets to measure these two new

factors yielded the Revised NEO Personality Inventory

(NEO-PI-R; Costa and McCrae 1992). The NEO Five

Factor Inventory (NEO-FFI) is a shorter, 60-item version

of the NEO-PI-R.

The FF approach has been extraordinarily influential:

numerous behavior genetics studies have assessed the

heritabilities of the Big Five (and more recently sought

associations with measured genetic variants; de Moor et al.

2010), neural and clinical correlates of the FFs have been

examined (e.g., DeYoung et al. 2010; Nigg et al. 2002),

and the model has found wide practical application, for

instance in the field of personnel selection (Schmit and

Ryan 1993). A google scholar search for ‘‘FF model per-

sonality’’ returns nearly two million hits, and a google

search of the same term returns around 121 million.

Notwithstanding its popularity, however a plethora of

issues have been raised concerning the conceptual,

empirical and statistical foundations of the FF approach

(e.g., Block 1995). Lack of formal theory underpinning

the approach and the possibility of empirical analyses

being shaped by prior conceptual commitments are some

of the most prominent ones. Concerns have been raised

over the orthogonality of the factor solutions, their pro-

posed simple structure, and even the number of factors

being significantly impacted by the selection of input

variables and choices of factor rotations, which ultimately

might have rested more on the authors’ conceptual beliefs

than on mathematical/statistical criteria. In addition, the

degree of arbitrariness involved in Cattell, Norman, and

Goldberg’s selection of trait terms and construction of

clusters remains unknown. The model has received

additional criticism for failing to account for intra-indi-

vidual personality structure and personality functioning. A

factor analysis of common english terms describing laptop

computers, for instance, might yield size, processing

speed, random-access memory capacity, storage capacity,

and operating system as five orthogonal factors; however,

one may wonder to what extent these factors are infor-

mative about the physical structure of a laptop computer,

or its functional architecture (Cervone 2005). The model

has also been criticized on psychometric grounds for a

number of problems including failure of orthogonality

(Costa and McCrae 1992; Block and Block 1980; Mroc-

zek 1992; Goldberg 1992, 1993; Peabody and Goldberg

1989), the presence of cross-loadings (Parker et al. 1993;

Block 1995; Costa and McCrae 2008), low validity

coefficients (Pervin 1994), lack of reproducibility of the

five-factor structure from other personality inventories

(Caprara et al. 1995; Hahn and Comrey 1994), and lack

of fit in confirmatory context (Parker et al. 1993; McCrae

et al. 1996). The FF model is derived through, and based

on, exploratory techniques such as exploratory factor

analysis (EFA) and principal components analysis (PCA);

in the confirmatory factor analysis (CFA) context, how-

ever, the model typically obtains unsatisfactory fit.

Another, arguably more fundamental issue, concerns a

possible misinterpretation of principal components

(Markus and Borsboom 2013) and, more broadly, the

ontological nature of the FFs. Being generated in a for-

mative model, the components obtained in PCA are effi-

cient statistical summaries of the data. Their standard

interpretation amongst FF model proponents, however, is

of a realist nature; they are considered to be behavior-

generating entities (e.g., extraversion causes party-going

behavior; McCrae and Costa 2008). This possible misin-

terpretation of principal components, along with some of

the other criticism listed above, has prompted questions

about whether the Big FFs are truly a discovery, as advo-

cated by its proponents, or should rather be seen as a set of

statistical constructs emanating from factor analysis of

possibly preselected sets of variables.

In the present article, we address the last issue using

quantitative genetic methodology. As outlined in a recent

article by Franić et al. (2013a), quantitative genetic methods

can be used to test hypotheses regarding the ontological

nature of latent variables. In particular, we address the

question of whether the realist interpretation of the Big Five

personality factors (in which the factors represent entities

that cause the observed item responses) is supported by the

data, or whether the factors would more correctly be

interpreted as statistical constructs. To this end, we examine

the dimensionality of the latent genetic and environmental

structures underlying the observed covariation in NEO-FFI

items. Behavior genetic studies have been performed on

personality data before (e.g., Loehlin 1989; Loehlin and

Martin 2001; Bouchard and Loehlin 2001; Plomin and

Caspi 1990), but item-level analyses, which make it possi-

ble to address the specific research question above, have

seldom been undertaken on NEO-FFI or NEO-PI-R data

(but see Johnson and Krueger 2004).
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Approach

Genetic covariance structure modeling (Martin and Eaves

1977) is the application of structural equation modeling

(Bollen 1989; Kline 2005) to data collected in genetically

informative samples, such as samples of twins (Neale and

Cardon 1992; Franić et al. 2012). In the classical twin

design, the sample consists of monozygotic (MZ) and

dizygotic (DZ) twin pairs. DZ twins share an average of

50 % of their segregating genes, while MZ twins share

nearly their entire genome (Falconer and Mackay 1996;

van Dongen et al. 2012). The covariance structure of the

phenotypes (i.e., observed traits) is modeled as a function

of latent factors representing several sources of individual

differences: additive genetic (A), non-additive genetic (D),

shared environmental (C), and individual-specific envi-

ronmental (E) sources. Additive genetic influences are

modeled by one or more A factors, which represent the

total additive effects of genes relevant to the phenotype.

Non-additive genetic influences are modeled by one or

more D factors, representing the total non-additive effects

of genes relevant to the phenotype. Non-additive effects

arise from interactions of alleles within the same locus

(genetic dominance) and/or across different loci (epistasis).

Based on quantitative genetic theory (Falconer and Mackay

1996; Mather and Jinks 1971), the A factors are known to

correlate one across MZ twins and five across DZ twins,

and D factors are known to correlate one across MZ twins

and 25 across DZ twins. Environmental influences affect-

ing the phenotype of both twins in an identical way,

thereby increasing their similarity beyond what is expected

based on genetic resemblance alone, are represented by one

or more C factors. Therefore, by definition, the C factors

correlate unity across twins (regardless of zygosity). All

environmental influences causing the phenotype of two

family members to differ are represented by one or more E

factors. Thus, by definition, the E factors are uncorrelated

across twins.

The classical twin design does not allow for simulta-

neous estimation of A, C and D effects (Keller and Cov-

entry 2005); two of these sources of individual differences

can be modeled at most.1 Assuming, for instance, an ADE

model, the expected covariance structure in a multivariate

twin model is:

R11R12 ¼ RA þ RD þ RE rARA þ rDRD

R21R22 rARA þ rDRDð Þt RA þ RD þ RE; ð1Þ

where given p phenotypes, R11 (R22) is the p 9 p covari-

ance matrix of twin 1 (twin 2), R12 (R21) is the twin 1–twin

2 p 9 p covariance matrix, and RA, RD and RE are the

additive genetic, non-additive genetic, and unique envi-

ronmental p 9 p covariance matrices, respectively. The

coefficients rA and rD are the additive and the non-additive

genetic twin correlations, respectively (MZ: rA = rD = 1;

DZ: rA = 1/2, rD = 1/4).

Figure 1 gives two examples of the multivariate twin

models used in the present study. The first model in Fig. 1

is a common pathway model (Kendler et al. 1987), also

known as the psychometric factor model (McArdle and

Goldsmith 1990). In a common pathway model, all of the

A,C(D), and E influences on the item responses are med-

iated by a latent variable, also referred to as the psycho-

metric factor (factors P1 and P2 in Fig. 1). P1 and P2 may be

viewed as latent factors obtained in standard psychological

research, e.g. ‘neuroticism’ or ‘g’. The second model in

Fig. 1 is an independent pathway model (Kendler et al.

1987), also known as the biometric factor model (McArdle

and Goldsmith 1990). In the independent pathway model,

there is no phenotypic latent variable that mediates genetic

and environmental effects on the item responses. Rather,

the A, C(D), and E factors influence item responses

directly.

In the present text, we distinguish between genetic

factor models (introduced above), and phenotypic factor

models. By ‘phenotypic factor model’, we refer to the

factor model as usually formulated and applied in psy-

chological research. The term ‘phenotypic’ is used to

indicate that the model is applied to observed (i.e., phe-

notypic) covariation; no genetic information is used. The

8-factor cross-informant model of the CBCL (Achenbach

1991) and the FF model of personality (McCrae and Costa

1999; McCrae and John 1992) are examples of a pheno-

typic factor model.

The common pathway model bears a number of simi-

larities to the phenotypic factor model. Notably, both the

phenotypic factor model and the common pathway model

are based on the premise that all covariation in item

responses is attributable to one or more latent variables. In

phenotypic factor modeling, this hypothesis can be formu-

lated in terms of measurement invariance: all external

variables that produce covariation in item responses exert

their influence via the latent variable (Mellenbergh 1989;

Meredith 1993). Likewise, in common pathway modeling,

one assumes that all of the A, C(D), and E effects on item

covariation are mediated by the psychometric factor. That

is, there are no direct effects of A, C(D), and E on the items.

The assumption of full mediation of external influences

by the latent phenotypic variable(s) has strong implica-

tions. For instance, different external variables affecting a

set of item responses via the same latent variable exert the

same magnitude of influence relative to each other on all

the items that depend on that latent variable. For instance,

1 Other designs, e.g., the nuclear twin family design, the stealth

design, or the cascade design permit simultaneous estimation of A, C,

D and E effects (Keller et al. 2010).
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if an A and an E variable affect a set of items via the same

psychometric factor, then the magnitude of influence

exerted by the variable A on any individual item will be a

scalar multiple of the magnitude of influence exerted by the

variable E on the same item, and this scalar multiple

(k) will be a constant across all the items depending on the

same psychometric factor. This means that one can derive a

common pathway model from an independent pathway

model by imposing proportionality constraints on the factor

loadings, such that a1/a2 = d1/d2 = e1/e2 = k (following

the notation in the right panel of Fig. 1).

Thus, the common pathway model makes explicit an

assumption of the phenotypic latent variable model con-

cerning the sources of item covariation: all influences on

item covariation are mediated by the phenotypic latent

variable. Barring exceptional cases of model equivalence,

this means that a latent variable model cannot hold unless

the corresponding common pathway model holds (Franić

et al. 2013a). Because any given latent variable hypothesis

implies a corresponding common pathway model, a refu-

tation of that common pathway model would constitute

evidence against the latent variable hypothesis.

For this reason, one may test the latent variable

hypothesis by comparing the fit of a common pathway

model to that of a corresponding independent pathway

model. Specifically, if a model in which all of the A, C(D),

and E factors exert direct influence on the phenotype fits

the data statistically better than a model in which these

influences are mediated by a phenotypic latent variable,

this provides evidence against the hypothesis that the

effects on the observed item covariation are completely

mediated by the phenotypic latent variable. In that case, the

latent factors employed in the phenotypic factor model are

no more than an amalgamation of the direct influences of

the A, C(D), and E factors on the observed item responses.

If, on the other hand, an independent pathway model does

not fit the data better than the corresponding common

pathway model, this would provide support for the struc-

ture employed in the common pathway model, and sub-

stantiation for the corresponding phenotypic latent variable

hypothesis. Comparison of an independent pathway model

and a common pathway model may be conducted using a

likelihood ratio test, because, as shown, a common path-

way model can be derived from an independent pathway

model by imposing appropriate proportionality constraints

on the factor loadings (i.e., the models are nested).

Methods

Data

The data were obtained from the Netherlands Twin

Register at VU University Amsterdam (Willemsen et al.

2013), and consist of item scores of a population-based

sample of 7,900 adult twins (including 2,805 complete

twin pairs; 1,528 MZ and 1,277 DZ) on the Dutch version

of the NEO-FFI (Costa and McCrae 1992; Hoekstra et al.

1996). The participants were aged between 18 and 86

(M = 32.3, SD = 12.7) at time of measurement. 68.3 %

of the participants were female. The NEO-FFI is a

60-item personality questionnaire consisting of 5 sub-

scales: Neuroticism (N), extraversion (E), openness (O),

agreeableness (A), and conscientiousness (C). Item con-

tent is given in Table 1. The responses are given on a

5-point scale (‘strongly disagree’, ‘disagree’, ‘neutral’,

‘agree’, ‘strongly agree’).

Initially, the sample consisted of 8,090 twins, and

missingness was limited to 0.9 %. In treating missingness,

we adopted the guidelines outlined in the NEO-FFI manual

(Costa and McCrae 1992; Hoekstra et al. 1996): if miss-

ingness per participant exceeded 15 %, the participant’s

scores were excluded from the analyses. The application of

this criterion reduced the missingness to 0.4 %, and the

Fig. 1 A common (left) and an

independent (right) pathway

model
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Table 1 Item content of the

NEO-FFI. Item numbering in

the parentheses corresponds to

that in the text/Tables/Figures

Item no. Item content Scale

1 (n1) Not a worrier* Neuroticism

6 (n2) Feels inferior

11 (n3) Goes to pieces under stress

16 (n4) Rarely lonely or blue*

21 (n5) Tense, jittery

26 (n6) Feels worthless

31 (n7) Rarely fearful or anxious*

36 (n8) Angry at the way people treat him

41 (n9) Easily discouraged

46 (n10) Seldom sad or depressed*

51 (n11) Feels helpless

56 (n12) Ashamed

2 (e1) Likes having many people around Extraversion

7 (e2) Laughs easily

12 (e3) Not cheerful or light-hearted*

17 (e4) Enjoys talking to people

22 (e5) Likes to be where the action is

27 (e6) Prefers to do things alone*

32 (e7) Bursting with energy

37 (e8) Cheerful, vivacious

42 (e9) Not a cheerful optimist*

47 (e10) Leads a fast-paced life

52 (e11) Very active

57 (e12) Rather go his own way than lead others*

3 (o1) Doesn’t waste time daydreaming* Openness

8 (o2) Sticks to a single way of doing things*

13 (o3) Intrigued by patterns

18 (o4) Thinks controversial speakers only confuse students*

23 (o5) Not affected by poetry*

28 (o6) Tries new foods

33 (o7) Doesn’t notice moods different environments produce*

38 (o8) Looks to religious authorities for moral decisions*

43 (o9) Excited by poetry or art

48 (o10) Little interest in speculating about nature of universe*

53 (o11) Wide range of intellectual interests

58 (o12) Enjoys playing with theories

4 (a1) Courteous Agreeableness

9 (a2) Often gets into arguments*

14 (a3) Some consider him selfish or egotistical*

19 (a4) Prefers cooperation to competition

24 (a5) Cynical, skeptical*

29 (a6) Thinks people will take advantage*

34 (a7) Most people like him

39 (a8) Some consider him cold or calculating*

44 (a9) Business-like, unsentimental*

49 (a10) Thoughtful, considerate

54 (a11) Shows if he doesn’t like people*

59 (a12) Prepared to manipulate*
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sample size to N = 7,900. The remaining missing values

were assigned the ‘neutral’ value of 3. Application of

LISREL’s (Jöreskog and Sörbom 2004) test for underlying

bivariate normality indicated no significant departures from

normality for any of the items. The MZ and DZ twin item

correlations are depicted in Fig. 2.

Analyses

In the first phase of the analyses, the phenotypic structure

of the NEO-FFI was examined using EFA and CFA.

Here, the data were treated as if the sample consisted of

unrelated individuals. To correct for the clustering in the

data due to the genetic relatedness, we employed a cor-

rection for clustering available in MPlus (Rebollo et al.

2006; Muthén and Muthén 1998–2007). EFA and CFA

were performed using split-half validation: EFA was

performed on one randomly selected half of the sample

(N = 3,950), and CFA on the other (N = 3,950). In EFA,

3–6 factor solutions with the oblique geomin rotation

were tested. We opted for an oblique criterion because the

NEO-PI-R and NEO-FFI data conform appreciably better

to a model with oblique factors, despite the initial idea of

orthogonality (Mroczek 1992; Goldberg 1993; Peabody

and Goldberg 1989). The best-fitting substantively inter-

pretable model indicated by EFA was subsequently tested

in CFA.

In the second phase of the analyses, the results of the

phenotypic analyses were used as a basis for specifying

multivariate common and independent pathway genetic

factor models. Here, only data on complete twin pairs

(1,528 MZ and 1,277 DZ twin pairs) were used. The

genetic and environmental etiology of the items was first

examined using univariate modeling: a number of com-

peting models (ACE, ADE, AE) were fitted to each of the

60 items, and likelihood ratio testing was employed to

determine the best model for each item. The same approach

was used on subscale level: univariate (ACE, ADE, AE)

models were fitted to each of the five subscales. The results

of these preliminary analyses were subsequently used as a

basis for specifying the common and independent pathway

models.2

To address the central question concerning the onto-

logical nature of the latent personality factors, the common

and independent pathway models were compared against

each other using likelihood ratio testing. Finally, to explore

the structure of the genetic and environmental influences

Table 1 continued

Reverse-scored items are

marked with an *

Item no. Item content Scale

5 (c1) Keeps belongings neat and clean Conscientiousness

10 (c2) Good at pacing himself

15 (c3) Not very methodical*

20 (c4) Performs tasks conscientiously

25 (c5) Has a clear set of goals

30 (c6) Wastes time before settling down to work*

35 (c7) Works hard

40 (c8) Follows through on commitments

45 (c9) Not dependable*

50 (c10) Productive

55 (c11) Unable to get organized*

60 (c12) Strives for excellence
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Fig. 2 Phenotypic polychoric MZ and DZ twin item correlations

2 Although item-specific residual factors can be subjected to their

own AC(D)E decomposition, in the present paper this was not done

given our focus on dimensionality assessment and the common/

independent pathway model comparison. The residual covariances

between the twins were however added. These covariances were

estimated separately in the MZs and DZs, given the possible genetic

residual effects.
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on the NEO-FFI items in a hypothesis-free fashion, the

60 9 60 phenotypic covariance matrix was decomposed

into 60 9 60 genetic and environmental correlation

matrices, and each of these matrices was subjected to EFA.

The genetic and environmental correlations matrices were

obtained in a standard twin model using Cholesky

decompositions in Mx (Neale 2000). We used the pheno-

typic 120 9 120 (60 per twin) polychoric correlation

matrix as input, because Pearson product moment corre-

lations based on discrete data tend to be slightly biased

(Dolan 1994).

The analyses were carried out using Mplus 5 (Muthén

and Muthén 1998–2007), Mx, and R (R Development Core

Team 2009). Given the discrete nature of the items, we

fitted discrete factor models (i.e., we assumed the discrete

indicator variables to be a realization of a continuous

normal latent process, and modeled polychoric correla-

tions; Flora and Curran 2004) using the robust weighted

least squares estimator (WLSMV; Muthén and Muthén

1998–2007). The polychoric correlations between the 60

items and between the 120 (60 per twin) items served as

input in the phenotypic and the genetic factor analyses,

respectively. In evaluating model fit, the Tucker Lewis

Index (TLI)3 and the Root Mean Square Error of

Approximation (RMSEA) were used. Cut-off values

of [0.90 TLI and \0.08 RMSEA were employed as cri-

teria for acceptable fit. As both our sample size and the

models employed were large, the Chi square statistic was

of limited use as an overall fit measure (Jöreskog 1993),

and was employed only to test local hypotheses concerning

comparisons of nested models, as these comparisons are

associated with a smaller approximation error.

Results

The results of the phenotypic EFA are given in Tables 2

and 3. As evident from Table 2, the 5- and the 6-factor

phenotypic solution both fitted adequately (TLI [0.94,

RMSEA \0.055). However, as the 6-factor solution was

difficult to interpret substantively, in further analyses we

focused on the 5-factor solution. This solution, detailed in

Table 3, resembles closely Costa and McCrae’s (1992) FF

model.

Based on the EFA results, a 5-factor model [corre-

sponding exactly to Costa and McCrae’s (1992) FF model]

was formulated and tested in CFA. The fit measures, given

in Table 2, indicated a suboptimal fit. This is not unex-

pected considering the literature, which frequently reports a

misfit of the FF model to empirical data (e.g., Parker et al.

1993; McCrae et al. 1996). To examine the extent to which

the misfit is due to presence of cross-loadings, in the next

step we freed all the cross-loadings with a modification

index larger than 50, and re-fitted the model. This resulted

in an acceptable model fit (v2 = 9,708, df = 499,

TLI = 0.899, RMSEA = 0.068). However, the modified

model contained 94 cross-loadings.

Table 4 shows the factor loadings, residual variances

and inter-factor correlations associated with the simple

structure 5-factor model. The average variance explained

by the factors ranges from 22 % (O and A factors) to 42 %

(N factor). The factor correlations between O and the other

factors are generally low (r \ 0.12). The correlations

between N and the remaining factors are substantial and

negative (from -0.41 to -0.62), and the rest of the factors

(E, A, and C) are substantially and positively intercorre-

lated; from 0.45 to 0.48. This is line with the literature,

which frequently reports substantial correlations between

the FFs (e.g., Block 1995).

In the first step of the genotypic analyses, the genetic

and environmental etiology of the items was examined in a

univariate fashion. The same was done on the subscale

level, with the subscale scores being defined as the sum

scores across the relevant items. Overall, none of the items

or scales contained a detectable C component. With regard

to the A, D, and E influences, the items displayed two

major patterns: some appeared additive genetic and unique

environmental in origin (AE model), while for the rest

neither additive nor non-additive genetic influences could

be detected (E model). On subscale level, only the

Agreeableness scale displayed a significant D component,

and the remaining scales conformed to an AE model. As

another set of our preliminary analyses showed that the D

component did not exceed 5 % for any of the items

(M = 2.1 %, SD = 1 %), and that a D component was

only detected for a limited number of items, D was not

modeled in the subsequent analyses. Considering that the

power to detect sources of variation is greater at the

Table 2 Fit measures for the 3–6-factor geomin-rotated EFA solu-

tions and the 5-factor CFA model

Method Factors v2 df TLI RMSEA

EFA 3f 19,932 535 .822 .094

4f 13,918 599 .887 .075

5f 8,266 648 .940 .055

6f 6,827 642 .951 .049

CFA 5f 17,222 436 .789 .099

3 TLI is an incremental fit index based on the difference in fit of a

baseline model with uncorrelated variables and the fitted model. The

standard rule of thumb was formulated for the analyses of scale

scores, not item score. As item scores tend to correlate to a lesser

extent than scale scores (often based on multiple items), the standard

TLI rule of thumb is hard to satisfy. See e.g. Kenny (2012).
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Table 3 Standardized factor

loadings (k), residual variances

(lR = mean residual variance)

and inter-factor correlations in

the geomin–rotated 5-factor

phenotypic EFA solution

Item kN kE kO kC kA Residual variance

n1 0.55 0.15 0.67

n2 0.63 0.55

n3 0.65 0.13 0.56

n4 0.57 -0.15 0.61

n5 0.76 0.43

n6 0.75 -0.10 0.37

n7 0.66 0.18 0.54

n8 0.56 -0.28 0.61

n9 0.57 -0.11 -0.28 0.49

n10 0.67 -0.12 0.18 0.49

n11 0.59 -0.27 0.48

n12 0.56 -0.13 0.64

lR = 0.54

e1 0.67 -0.11 0.58

e2 -0.18 0.65 0.49

e3 -0.45 0.53 0.11 0.39

e4 0.63 0.13 0.53

e5 0.61 -0.21 0.61

e6 -0.19 0.32 -0.15 0.21 0.80

e7 -0.22 0.34 0.21 -0.26 0.64

e8 -0.31 0.71 0.26

e9 -0.43 0.44 0.50

e10 . 0.23 0.14 -0.29 0.83

e11 -0.15 0.41 0.41 -0.19 0.48

e12 -0.26 0.14 0.11 -0.14 0.86

lR = 0.58

o1 0.14 0.26 -0.32 0.12 0.79

o2 -0.11 -0.13 0.22 -0.20 0.91

o3 -0.11 0.60 0.64

o4 -0.19 0.36 0.16 0.82

o5 0.62 0.16 0.60

o6 0.15 0.26 0.90

o7 0.31 0.10 0.25 0.81

o8 -0.11 0.15 0.96

o9 0.67 0.53

o10 0.53 0.71

o11 -0.13 0.14 0.53 0.17 -0.14 0.59

o12 0.58 -0.21 0.63

lR = 0.74

a1 0.13 0.18 0.27 0.25 0.80

a2 -0.27 -0.13 0.43 0.71

a3 0.16 0.53 0.63

a4 0.13 0.38 0.83

a5 -0.37 0.44 0.62

a6 -0.43 0.12 0.34 0.70

a7 -0.13 0.36 0.20 0.20 0.68

a8 0.11 0.63 0.58

a9 0.20 0.58 0.63

a10 0.21 0.29 0.39 0.40 0.55
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subscale level, which conformed predominantly to an AE

model, we proceeded with the multivariate analyses using

an AE model.

To test the mediation of the genetic and environmental

influences by the latent personality factors, in the next step

a common pathway and an independent pathway AE model

were tested (Fig. 3). In the common pathway model, the

variation in the latent five personality factors was decom-

posed into additive genetic and unique environmental

components. Additive genetic influences explained around

half of the variance in the latent traits (0.48, 0.48, 0.58,

0.43, and 0.47 for the N, E, O, A, and C factors, respec-

tively), the remainder of the trait variance being deter-

mined by unique environmental factors. The fit measures

associated with the model were: v2 = 112,786, df =

14,776, TLI = 0.832, RMSEA = 0.069.4 The independent

pathway model was formulated by disposing of the phe-

notypic factors employed in the common pathway model.

The fit measures associated with this model were: v2 =

94,852, df = 14,721, TLI = 0.862, RMSEA = 0.0624. As

the difference between Chi square values obtained using

the WLSM estimator is not Chi square distributed (Muthén

and Muthén 1998–2007), the comparison of the common

and the independent pathway model was carried out using a

Chi square difference test with scaling correction factors

(Satorra and Bentler 2001). The resulting Chi square dif-

ference was Dv2 = 123,646, df = 55. Additionally, the

comparison was performed using maximum likelihood

estimation with robust standard errors (MLR; Muthén and

Muthén 1998–2007). The results converged with those

obtained using the WLSM estimator (common pathway:

v2 = 40,477, df = 14,195, TLI = 0.699, RMSEA =

0.036; independent pathway: v2 = 35,423, df = 14,140,

TLI = 0.756, RMSEA = 0.033; Chi square difference:

Dv2 = 3,115, df = 55). The significant difference between

the fit of the two models indicates incomplete mediation of

the genetic and environmental influences by the latent

personality factors.

In the light of the well-established presence of cross-

loadings in the NEO-PI-R and the NEO-FFI (Parker et al.

1993; Block 1995; Costa and McCrae 2008), an additional

test was performed: a common and an independent path-

way model based on the phenotypic model with 94 cross-

loadings were formulated and fitted to the data. Due to the

computational intensity of fitting these models using the

WLSMV estimator, the MLR estimator was used. The

resulting fit measures were v2 = 31,176, df = 14,101,

TLI = 0.803, RMSEA = 0.029, and v2 = 25,831, df =

13,952, TLI = 0.862, RMSEA = 0.025, respectively.

Table 3 continued

The highest loading for each

item is given in bold. Factor

loadings smaller than 0.10 are

omitted

Item kN kE kO kC kA Residual variance

a11 0.42 0.81

a12 -0.16 0.12 0.54 0.65

lR = 0.68

c1 -0.14 -0.11 0.57 0.14 0.66

c2 -0.16 0.62 0.55

c3 -0.17 0.49 0.74

c4 0.10 0.45 0.29 0.70

c5 0.62 -0.24 0.56

c6 -0.19 -0.18 -0.15 0.55 0.58

c7 0.19 0.67 -0.10 0.49

c8 0.56 0.20 0.62

c9 -0.14 -.12 0.41 0.29 0.66

c10 0.12 0.61 -0.12 0.53

c11 -0.46 0.46 0.11 0.44

c12 0.16 0.19 0.13 0.38 -0.27 0.72

lR = 0.60

Factor correlations:

N E O A

E -0.25

O 0.08 0.13

A -0.31 0.24 0.07

C -0.06 0.03 0.00 0.09

4 As MPlus output obtained using the WLSMV estimator could not

be used for subsequent Chi square difference testing due to the non-

linear constraints in the model, estimation was performed using the

WLSM estimator.
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Consistently with the results obtained for the simple

structure models, the fit of the two models differed sig-

nificantly (Dv2 = 4,034, df = 149), indicating incomplete

mediation of the genetic and environmental effects by the

latent personality factors, despite the assumption of simple

structure being discarded.

Finally, to further explore the structures of the genetic

and environmental influences on the item covariation, the

60 9 60 phenotypic polychoric covariance matrix was

decomposed into 60 9 60 additive genetic and unique

environmental matrices, and the dimensionality of these

two covariance matrices was assessed using EFA (geo-

min rotation). The results are given in Fig. 4. As evident

from the Figure, the scree plots (upper panel) for the A

and the E matrix both indicate a 5-factor model. Fur-

thermore, the factor structures of the additive genetic

and the unique environmental influences (lower panel

Fig. 4) resemble very closely the 5-factor phenotypic

structure of the NEO-FFI. This can also be seen in

Fig. 5, which depicts the pattern and the magnitude of

the A and E intercorrelations between the items; as

evident, the A and the E covariance structure resemble

each other highly. Finally, the magnitudes of the A and

E variance components of each of the 60 items are

depicted in Fig. 6; on average, these are 0.33 and 0.67,

respectively.

Table 4 Standardized factor loadings (k), residual variances (lR = mean residual variance), and inter-factor correlations in the phenotypic

5-factor model

Item kN Res var Item kE Res var Item kO Res var

n1 0.52 0.73 e1 0.43 0.81 o1 0.32 0.90

n2 0.65 0.58 e2 0.61 0.63 o2 0.16 0.97

n3 0.63 0.60 e3 0.82 0.33 o3 0.61 0.63

n4 0.62 0.61 e4 0.58 0.66 o4 0.32 0.90

n5 0.73 0.47 e5 0.40 0.84 o5 0.70 0.51

n6 0.78 0.39 e6 0.33 0.89 o6 0.28 0.92

n7 0.63 0.61 e7 0.55 0.70 o7 0.35 0.88

n8 0.52 0.73 e8 0.85 0.28 o8 0.11 0.99

n9 0.68 0.54 e9 0.76 0.42 o9 0.76 0.42

n10 0.69 0.52 e10 0.08 0.99 o10 0.55 0.69

n11 0.70 0.51 e11 0.65 0.57 o11 0.47 0.78

n12 0.59 0.65 e12 0.33 0.89 o12 0.50 0.75

lR = 0.58 lR = 0.67 lR = 0.78

Item kA Res var Item kC Res var

e1 0.41 0.84 a1 0.45 0.80

e2 0.47 0.78 a2 0.66 0.56

e3 0.57 0.67 a3 0.40 0.84

e4 0.36 0.87 a4 0.43 0.82

e5 0.67 0.55 a5 0.51 0.74

e6 0.48 0.77 a6 0.60 0.64

e7 0.64 0.59 a7 0.58 0.67

e8 0.42 0.83 a8 0.52 0.73

e9 0.30 0.91 a9 0.54 0.71

e10 0.55 0.70 a10 0.67 0.55

e11 0.19 0.96 a11 0.84 0.30

e12 0.31 0.91 a12 0.24 0.94

lR = 0.78 lR = 0.69

Factor correlations:

N E O A

E -0.62

O 0.12 0.08

A -0.41 0.46 0.10

C -0.53 0.45 -0.03 0.48
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Discussion

In the present study, we tested the hypothesis that the Big

FFs are causally efficient entities, which serve to mediate

the genetic and environmental effects on the phenotypic

data. This hypothesis was tested by comparing the fit of

independent pathway models to the fit of common pathway

models. If the latent variables in the FF model indeed act as

causes of behavior, which fully mediate genetic effects, the

independent and common pathway models should fit

equally well. If, however, the latent variables are merely

statistical constructs that organize phenotypic correlations

but do not have the status of causally efficient entities, the

independent pathway model should show superior fit. In

addition to these hypothesis tests, the structures and the

dimensionalities of the latent genetic and environmental

effects were examined in an EFA. Two findings emerged:

(1) the constraints associated with the common pathway

model were not tenable, i.e., the fit indices favored the

independent pathway model, and (2) the rotated 5-factor

structures as obtained in the EFA of genetic and environ-

mental correlation matrices are similar.

The fact that our analyses favor the independent path-

way model constitutes evidence against the realist inter-

pretation of the Big Five dimensions. Even when we allow

cross-loadings to be present, the magnitude of the test

statistic based on the models is such (Dv2 = 4,034,

df = 149, based on MLR) that the degree of misfit asso-

ciated with the common pathway model is considerable.

Perhaps, one could argue that both models fit well in view

of the acceptable approximation error (common pathway

model RMSEA: 0.029; independent pathway model

RMSEA: 0.025). However, in our view, the acid test here is

not the overall degree approximation error of the individual

models. Rather, it is the model comparison, which reveals

the specific source of approximation error, namely the

proportionality constraints associated with the common

pathway model. These are evidently untenable.

The fact that the exploratory factor analyses of the

additive genetic and unshared environmental correlation

matrices produced highly similar 5-factor models is inter-

esting in its own right, and by no means a trivial finding.

The phenotypic FF model does not imply five genetic and

environmental factors to surface: the latter implies the

former, but not vice versa, and several examples are known

in which the structures diverge (Kendler et al. 1987; Franić

et al. 2013b). Thus, although the data unambiguously reject

the proportionality constraints derived from the latent

variable hypothesis, it is certainly not the case that the A

and E covariance structures are radically different.

Fig. 3 The common (upper panel) and independent (lower panel)

pathway models fitted to the NEO-FFI data. The models are only

partially depicted; the full models include a ‘twin1’ and a ‘twin2’

part, analogous to Fig. 1. The ‘within twin’ A factors are mutually

correlated, as are the ‘within twin’ E factors. The item-specific factors

were modeled as correlated over twin 1 and twin 2 (i.e., the 60 9 60

twin 1–twin 2 residual covariance matrix is diagonal)
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Fig. 4 Eigenvalues of RA and RE matrices (upper panel) and factor

loadings obtained in EFA solutions with 5 A and 5 E factors (lower

panel). Shapes/shading code for different latent factors. Only the

highest factor loading for each item is shown
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Therefore, although the formal tests indicate that the

independent pathway model is preferable, the exploratory

results do lend some credence to the latent variable

hypothesis. One possible explanation for this finding is

that, although the full mediation hypothesis is not precisely

true, it does provide a reasonable approximation to the

generating model. The specific reasons for rejecting the

common pathway model may, for instance, be highly local

(due only to a subset of observed variables), and thus the

violation may be accommodated by the addition of

parameters or by the removal of offending variables. A

second possible explanation is that, even though we have

fitted highly relaxed versions of the FF model, the models

still embodied auxiliary hypotheses that were not exactly

true (e.g., linearity, normality, continuity, discarding C and

D effects) which may have produced misfit evident in the

likelihood ratio tests (which are derived on the hypothesis

that the least restricted model fits the data). A third pos-

sibility is that the similar structure of A and E matrices, as

evidenced in the present paper, is simply a chance finding
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Fig. 5 Graphical

representations (Epskamp et al.

2012) of the A (left) and E

(right) covariance components

of the NEO-FFI. Positive (upper

panel) and negative (lower

panel) covariances are shown

separately. Nodes (i.e., circles)

represent items. The thickness

of the edges (i.e., of the lines

connecting the nodes)

represents the magnitude of

covariance between the items
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that has little to do with the realist interpretation of the Big

Five dimensions. This hypothesis is tenable, because the

truth of an independent pathway model does not preclude

that the genetic and environmental covariance structures

comprise 5 factors, with or without configurally similar

loadings.

In our view, the formal test on the proportionality of

loadings should carry the primary weight of the evidence,

as it was designed specifically to distinguish between the

tested models. However, it is certainly notable that the A

and E covariance matrices showed strikingly similar

structures, and even though this equivalence is not a formal

test of the common pathway hypothesis, it does confirm an

indirect consequence of that hypothesis. Further research

may investigate the relevance of this finding to the veracity

of the FF model.

In the present analyses, the genetic and environmental

variables are all-encompassing in the sense that they rep-

resent all (unmeasured) polygenic and unshared environ-

mental influences. However, the mediation hypothesis can

be formulated with respect to any measured variable. It is a

drawback of much of the research concerning the covari-

ates of the Big Five dimensions that they generally involve

Big Five subscale scores rather than items. We consider the

demonstration of the mediatory role of, say, neuroticism in

the relationship between a covariate (e.g., sex) and the

neuroticism items, to be a stronger result than the dem-

onstration of a sex difference in the neuroticism scale

scores. In this regard the present results are relevant to

gene-finding studies (e.g., genome-wide association stud-

ies; GWAS). If a measured genetic variant has its effect on

the common factor ‘‘neuroticism’’, then its effect is present

in all the relevant items, and the interpretation of the gene

as a ‘‘gene for neuroticism’’ is tenable. This is not so if the

effect is limited to a subset of the items, or perhaps even a

single item.
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