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Abstract

Metabolites are small molecules involved in cellular metabolism where they act as reaction substrates or products. The term ‘metabolomics’
refers to the comprehensive study of these molecules. The concentrations of metabolites in biological tissues are under genetic control, but this
is limited by environmental factors such as diet. In adult mono- and dizygotic twin pairs, we estimated the contribution of genetic and shared
environmental influences on metabolite levels by structural equation modeling and tested whether the familial resemblance for metabolite
levels is mainly explained by genetic or by environmental factors that are shared by family members. Metabolites were measured across
three platforms: two based on proton nuclear magnetic resonance techniques and one employing mass spectrometry. These three platforms
comprised 237 single metabolic traits of several chemical classes. For the three platforms, metabolites were assessed in 1407, 1037 and
1116 twin pairs, respectively. We carried out power calculations to establish what percentage of shared environmental variance could be
detected given these sample sizes. Our study did not find evidence for a systematic contribution of shared environment, defined as the
influence of growing up together in the same household, on metabolites assessed in adulthood. Significant heritability was observed for nearly
all 237 metabolites; significant contribution of the shared environment was limited to 6 metabolites. The top quartile of the heritability
distribution was populated by 5 of the 11 investigated chemical classes. In this quartile, metabolites of the class lipoprotein were significantly
overrepresented, whereas metabolites of classes glycerophospholipids and glycerolipids were significantly underrepresented.
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Metabolites (small molecules involved in biological processes)
are important intermediates in understanding how a person’s
genotype translates to health or disease. Many different types of
metabolites can be distinguished, including amino acids, lipids,
and sugars (Adamski & Suhre, 2013). Due to their diversity, metab-
olites have various functions in the human body, including energy
storage, signaling, and forming structures, such as proteins or cell
walls (Dunn et al., 2011). Thus, metabolites can be considered the
building blocks of the body (Hasirci & Hasirci, 2018). The com-
plete set of metabolites found within a specific biological sample
is referred to as the metabolome (Wishart, 2007), the study thereof
is termed metabolomics (Fiehn, 2002). The metabolome is
downstream of gene transcription, protein translation and protein
function; therefore, metabolites are close to observable phenotypes
in health and disease (Draisma et al., 2013; Goodacre et al., 2004).
Metabolomics has been successful in identifying disease bio-
markers, unraveling biological mechanisms, and for drug
discovery and development (Pang et al., 2019).

The metabolome differs between people, as metabolite levels
are influenced by many exogenous (originating from outside an
organism) and endogenous factors (originating from inside an
organism). Exogenous factors influencing the human metabolome
include lifestyle, diet or medication use. For example, metabolite
levels differ between current-, former- and never-smokers,
between individuals on a low fat, low glycemic, or very low
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carbohydrate diet, and among users of various medication classes
(Esko et al., 2017; J. Liu et al., 2020; Xu et al., 2013). Endogenous
factors influencing the human metabolome include sex, age or
body mass index (BMI). For example, metabolite levels differ
between males and females, younger and older individuals and
obese and nonobese individuals (Chaleckis et al., 2016; Fan
et al., 2018; Rangel-Huerta et al., 2019). Endogenous factors also
include genetic influences, either directly on metabolite levels or
indirectly through the effect on behavior or lifestyle (e.g., smoking;
M. Liu et al., 2019). The metabolome can differ between cases and
controls — for example, in major depressive disorder (Bot et al.,
2019). Here it is observed that associations between metabolites
and the case/control status are attenuated by antidepressant use,
while the causalities of the associations remain unknown as of
yet. Thus, metabolite levels reflect individual differences in
genetics, physiology, lifestyle and behavior or responses to envi-
ronmental changes (Fiehn, 2002).

Genetic factors account for approximately 50% of the
individual differences in metabolite levels (Shin et al., 2014; Yet
et al., 2016). The average proportion of phenotypic variance in
metabolite levels ascribed to genetic factors (i.e., heritability; h2)
differs per type of metabolite. The median heritability for lipids
is approximately 37%, with heritability estimates for sphingolipids
(e.g., sphingomyelins) and glycerolipids (e.g., triglycerides) often,
but not consistently, higher than for phospholipids (e.g., phospha-
tidylcholines; Bellis et al., 2014; Darst et al., 2019; Frahnow et al.,
2017). Similarly, while the median heritability for amino acids is
approximately 40% (Darst et al., 2019), amino acids that the
body is able (nonessential) or unable (essential) to synthesize de
novo differ in mean heritability. Specifically, levels of essential
amino acids are less heritable than levels of nonessential amino
acids (Rhee et al., 2013). These differences in heritability among
metabolite classes also occur for single-nucleotide polymorphism
(SNP)-based heritability (i.e., heritability estimates derived from
genomewide SNPs; Rhee et al., 2016; Tabassum et al., 2019). In fact,
the observed differences in additive heritability estimates among
metabolite classes are rarely significant, while differences in herit-
ability estimates based on known genetic variants are
frequently significant (Hagenbeek et al., 2020).

Whereas the contribution of genetic variants to metabolite
levels is fairly well established, also through genome-wide associ-
ation and (exome-) sequencing studies (Hagenbeek et al., 2020;
Kastenmüller et al., 2015; Yazdani et al., 2019), the contribution
of the shared or common environment (c2) to metabolite levels
is not as well characterized. Not all studies investigating the genetic
contribution to metabolite levels were based on the classic
twin design (e.g., Draisma et al., 2013; Tremblay et al., 2019).
Instead, these types of methods estimate the familial resemblance
(or generalized heritability) of metabolite levels, which comprises
both additive genetic effects and common environment effects
shared by family members (Rice, 2008). Studies using the classic

twin design to investigate the contributions to metabolite levels
vary widely with respect to how metabolites are influenced by
common environment as well as in the estimate of the effects of
the common environment. Overall, it would appear that studies
in smaller samples more frequently report larger contributions
of the common environment to metabolite levels (e.g., Frahnow
et al., 2017; Kettunen et al., 2012). Large-scale twin studies that
estimate the contribution of shared environment tend to be scarce.

In the current study, we aim to expand our understanding of the
contribution of common environment shared by family members
to variation in fasting blood metabolites and analyzed data from
multiple metabolomics platforms from a large cohort of twins
(between 1037 and 1407 twin pairs per platform), representing a
general population. First, a series of power analyses were
performed, estimating the statistical power to detect shared
environment in the classical twin design, given the number of
monozygotic (MZ) and dizygotic (DZ) twin pairs available in
our study. The power to detect shared environment in quantitative
genetic studies, employing the classical twin design, is influenced
by effect size, the heritability of the trait, the sample size, the
probability level that is chosen, and the homogeneity of means
and variances in the MZ and DZ groups of the sample (Martin
et al., 1978; Posthuma & Boomsma, 2000). Sample size and
probability were given, and we investigated different values for
the proportion of variation explained by shared environment
against a background of different heritability values that were
chosen based on what is typically reported in the literature for
metabolomics. Next, we determined the heritability of all
metabolic traits by structural equation modeling where contribu-
tions to additive genetic effects (A), shared environmental effects
between siblings (C) and unique environmental effects (E) were
estimated. By computing the significance of the C variance
component when comparing ACE model outcomes to AE model
outcomes, we were able to assess whether C contributes to the total
variance observed in all metabolic traits. Finally, to obtain insight
into the distribution of chemical classes our metabolites belong to
over the range of calculated heritabilities and contributions of
shared environment, we performed enrichment analyses. The
metabolic traits were grouped in heritability and shared environ-
ment estimate quartiles. By counting the number of metabolites of
a given class per quartile and comparing these to the counts of the
entire range of heritabilities or common environment contribu-
tions, we determined class enrichment factors per quartile and
assessed their statistical significance by Fisher’s exact tests.

Methods

Participants

At the Netherlands Twin Register (NTR; Ligthart et al., 2019)
metabolomics data for twins were available for 886 complete
MZ pairs and 601 complete DZ pairs (c.f. Table 1). All

Table 1. Participant characteristics by the Nightingale, lipidomics and NMR-LUMC platforms

Platform Age (SD) BMI (SD) FFml FSmkng FLLMd NMZPrs NDZPrs

Nightingale 35.23 (10.31) 23.92 (3.79) 0.69 0.21 0.05 886 601

Lipidomics 35.71 (10.32) 23.97 (3.91) 0.69 0.21 0.05 643 524

NMR-LUMC 35.10 (10.78) 24.02 (3.84) 0.68 0.21 0.04 663 407

Note: Age (SD) denotes themean age and standard deviation, BMI (SD) themean BMI and standard deviation, FFml the fraction of female subjects, FSmkng the fraction of current smokers, FLLMd the
fraction of subjects using lipid lowering medication, NMZPrs the number of complete monozygotic twin pairs and NDZPrs the number of complete dizygotic twin pairs.
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measurements were performed in blood samples that were col-
lected from participants of the NTR biobank projects
(Willemsen et al., 2010; Willemsen et al., 2013). Blood samples
were collected after overnight fasting. Fertile women were bled
in their pill-free week or on day 2−4 of their menstrual cycle.
For the Nightingale Health metabolomics platform (see below),
data were acquired in several shipments (subsets). After complet-
ing the preprocessing of themetabolomics data, each platform sub-
set (if applicable) was merged into a single per platform dataset,
randomly retaining a single observation per platform whenever
multiple observations were available. Characteristics for the sam-
ple of individuals included in the analyses can be found in Table 1.
Informed consent was obtained from all participants. Projects were
approved by the Central Ethics Committee on Research Involving
Human Subjects of the VU University Medical Centre,
Amsterdam, an Institutional Review Board certified by the US
Office of Human Research Protections (IRB number
IRB00002991 under Federal-wide Assurance-FWA00017598;
IRB/institute codes and NTR 03-180).

Metabolite Profiling

Below, we briefly describe the methods used for metabolite profil-
ing. For more detailed information, see Hagenbeek et al. (2020).

Nightingale Health 1H-NMR platform. Metabolic biomarkers
were quantified from plasma samples using high-throughput
proton nuclear magnetic resonance spectroscopy (1H-NMR)
metabolomics (Nightingale Health Ltd, Helsinki, Finland). This
method provides simultaneous quantification of routine lipids,
lipoprotein subclass profiling with lipid concentrations within
14 subclasses, fatty acid composition, and various low-molecular
weight metabolites, including amino acids, ketone bodies and
glycolysis-related metabolites in molar concentration units.
Details of the experimentation and epidemiological applications

of the NMRmetabolomics platform have been reviewed previously
(Soininen et al., 2015; Würtz et al., 2017).

UPLC-MS lipidomics platform. Plasma lipid profiling was per-
formed at the division of Analytical Biosciences at the Leiden
Academic Center for Drug Research at Leiden University/
Netherlands Metabolomics Centre. The lipids were analyzed with
an Ultra-High-Performance Liquid Chromatograph directly
coupled to an Electrospray Ionization Quadruple Time-of-Flight
high-resolution mass spectrometer (UPLC-ESI-Q-TOF; Agilent
6530, San Jose, CA, USA) that uses reference mass correction.
For liquid chromatographic separation, a ACQUITY UPLC
HSS T3 column (1.8 μm, 2.1 × 100 mm) was used with a flow
of 0.4 ml/min over a 16-min gradient. Lipid detection was per-
formed using a full scan in the positive ion mode. The rawMS data
were pre-processed using Agilent MassHunter Quantitative
Analysis software (Agilent, Version B.04.00). Detailed descriptions
of lipid profiling and quantification have been described previously
(Dane et al., 2014; Gonzalez-Covarrubias et al., 2013).

Leiden 1H-NMR platform (for small metabolites). The Leiden
1H-NMR spectroscopy experiment of ethylenediaminetetraacetic
acid plasma samples used a 600-MHz Bruker Advance II spec-
trometer (Bruker BioSpin, Karlsruhe, Germany). The peak decon-
volution method used for this platform has been previously
described (Demirkan et al., 2015; Verhoeven et al., 2017).

Metabolomics Data Preprocessing

To ensure our data were consistent with Hagenbeek, Pool,
van Dongen, Draisma, Boomsma et al. (2020), we excluded partic-
ipants if they were on lipid-lowering medication at the time of
blood draw or if they had not adhered to the fasting protocol
(~4 % of the sample of each platform). Preprocessing of the
metabolomics data was executed for each of the platforms and
measurement/shipment batches per platform separately.
Metabolites were excluded from analysis when the mean coeffi-
cient of variation exceeded 25% or the missing rate exceeded
5%. Metabolite measurements were set to missing if they were
below the lower limit of detection or quantification or could be
classified as an outlier (five standard deviations greater or smaller
than the mean). Metabolite measurements that were set to missing
because they fell below the limit of detection/quantification were
imputed with half of the value of this limit, or when this limit
was unknown with half of the lowest observed level for this
metabolite. All remaining missing values were imputed using
multivariate imputation by chained equations (‘mice’; van
Buuren & Groothuis-Oudshoorn, 2011). On average, nine values
had to be imputed for each metabolite (SD= 12; range: 1−151).
Data for each metabolite on the lipidomics platform and both
1H-NMR platforms were normalized by inverse normal rank
transformation (Demirkan et al., 2015; Kettunen et al., 2016).

We computed heritability for 237 single metabolic traits (i.e., no
ratios or composite variables, see Supplementary Table S1). These
traits are members of 11 different chemical classes, as listed by the
human metabolome database (Hagenbeek et al., 2020; Wishart
et al., 2018). As is shown in Table 2, most metabolites are lipid
species.

To account for confounding by age and sex, we used the
residuals of the linear fit of model Mi~Age þ Sex for each
metabolite i (Mi) as input for the statistical analyses. The
above data processing steps were performed in the Jupyterlab

Table 2. Chemical class counts for each platform used

Platform

Chemical class Nightingale Lipidomics NMR-LUMC ALL

Lipoprotein 64 64

Glycerophospholipids 2 61 63

Glycerolipids 37 37

Carboxylic acids and
derivatives

8 22 30

Sphingolipids 20 20

Organooxygen compounds 8 8

Hydroxy acids and
derivatives

2 4 6

Steroids and steroid
derivatives

1 2 3

Keto acids and derivatives 2 2

Diradylglycerols 2 2

Organonitrogen
compounds

2 2

Note: The numbers in the platform columns represent the number of compounds of a
chemical class, where ‘−’ means that there are none.
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environment (v0.35.4), running an IPython kernel (v5.1.1: python
v3.7.3) and utilizing modules pandas (v0.24.2), scipy (v1.2.1) and
statsmodels (v0.9.0). The complete lists with full names of all
detected metabolites that survived QC and preprocessing for all
platforms can be found in Supplementary Table S1.

Statistical Analyses

Power analyses. We calculated covariance matrices for multiple
combinations of heritability and the proportion of variation
explained by common environment (C). Background heritability
differed between 0.2 and 0.7, which are typical values estimated
for metabolites (Hagenbeek et al., 2020). Within heritability class,
the effect of C was increased from 0.1 to 0.3. Power analyses were
carried out in the statistical software packageMx (Maes et al., 2009;
Neale, 1997), with estimation of parameters by normal theory
maximum likelihood. Goodness-of-fit testing was based on likeli-
hood ratio tests. First, an ACE model was considered, and next
the influence of C was constrained at 0 and power was obtained
for a 1 degree of freedom test with p = .05. Note that we do not
take into account the number of tests performed, which would
lower the probability level (and hence lower the power to detect C).

Genetic analyses. For each metaboliteMi, we estimated the addi-
tive genetic contribution (A) and the contributions of common and
unique environment (C and E). We applied genetic structural
equation modeling using maximum likelihood estimation on both
ACE and AE models. By comparing the outcomes of both models,
for each metabolite, we applied a threshold of 3.84 on the χ2
statistic, above which we considered the contribution of C signifi-
cant. The analyses were performed in the R software package

(v3.5.2) using the OpenMx (v2.13.2.161) library (applying the
NPSOL optimizer) for running the ACE and AE models (Boker
et al., 2011).

Analyses of chemical class enrichment over heritability
percentile groups. We subdivided the outcomes of the additive
genetic components of the heritability or common environment
variance component into three groups: (1) the 0−25 percentile
group, (2) the 25−75 percentile group and (3) the 75−100 percen-
tile group. In each group, we counted the number of class member-
ships of the metabolites. Within each group, we performed Fisher’s
exact tests (Fisher, 1922) of the group chemical class counts with
respect to their counts in the entire sample.

Results

Power Analyses

The outcomes of the power analyses are summarized in Table 3. As
can be observed from these results, for all three platforms, when A
is in the range of 0.2–0.6, a larger sample size is needed to enable
detection of C ≤ 0.2. This implies that when we observe a sta-
tistically significant C variance component, its minimal value
needs to be approximately 0.2.

Genetic Analyses

The results of the ACE models for each platform and across
the platforms are listed in Table 4. The results of the ACE
and AE models are summarized graphically in Figure 1. On
average, the analyses included 694 (range 612–848) and 503
(range 389–559) MZ and DZ pairs, respectively. For 6 of the
237metabolites, we observe a significant contribution of c2 ranging

Table 3. Statistical power estimates as a function of values for A, C, rMZ and rDZ for the metabolomics platforms in this work

Nightingale Lipidomics NMR-LUMC

A C rMZ rDZ Power χ2 Power χ2 Power χ2

0.2 0.1 0.3 0.2 0.212 1.343 0.192 1.177 0.163 0.943

0.2 0.2 0.4 0.3 0.685 5.964 0.630 5.255 0.533 4.182

0.2 0.3 0.5 0.4 0.975 15.383 0.958 13.625 0.906 10.766

0.3 0.1 0.4 0.25 0.225 1.449 0.204 1.275 0.172 1.017

0.3 0.2 0.5 0.35 0.728 6.585 0.675 5.826 0.574 4.610

0.3 0.3 0.6 0.45 0.986 17.339 0.975 15.419 0.935 12.117

0.4 0.1 0.5 0.3 0.243 1.591 0.220 1.407 0.184 1.115

0.4 0.2 0.6 0.4 0.775 7.377 0.726 6.555 0.622 5.157

0.4 0.3 0.7 0.5 0.993 19.799 0.987 17.666 0.960 13.820

0.5 0.1 0.6 0.35 0.265 1.773 0.240 1.574 0.199 1.240

0.5 0.2 0.7 0.45 0.824 8.368 0.779 7.462 0.676 5.842

0.5 0.3 0.8 0.55 0.997 22.849 0.994 20.432 0.978 15.937

0.6 0.1 0.7 0.4 0.292 1.999 0.266 1.782 0.218 1.396

0.6 0.2 0.8 0.5 0.871 9.578 0.833 8.562 0.734 6.682

0.6 0.3 0.9 0.6 0.999 25.562 0.998 23.760 0.990 18.528

0.7 0.1 0.8 0.45 0.325 2.272 0.296 2.030 0.242 1.585

0.7 0.2 0.9 0.55 0.912 11.017 0.880 9.851 0.791 7.687

Note: A, additive genetic effects; C, shared environmental effects between siblings; E, unique environmental effects; MZ, monozygotic; DZ, dizygotic. For determining the estimates, we applied
N(MZ pairs)= 848 and N(DZ pairs)= 559 for the Nightingale platform, N(MZ pairs)= 612 and N(DZ pairs)= 504 for the lipidomics platform, and N(MZ pairs)= 648 and N(DZ pairs)= 389 for the
NMR-LUMC platform.
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from 0.175 to 0.423 (mean= 0.254). Over 6 ACE models and 231
AE models, the mean additive genetic variance component a2 is
0.456 (range 0.136–0.735) and the mean of the residual error
and unique environment variance component e2 is 0.527 (range
0.265–0.864). Supplementary Figures S1 and S2 depict the
model outcomes for the AE and ACE models, respectively.
Supplementary Figure S2 shows the MZ and DZ twin correlations
for all metabolites.

Analyses of Chemical Class Enrichment Over Percentile
Groups of Heritabilities and Shared Environment Variance
Components

Only six metabolic traits exhibit a significant shared environment
variance component, rendering it futile to perform an enrichment
analysis over C percentile groups. As can be observed in Figure 1, it
seems that the lipoprotein chemical class is overrepresented in the
top heritability percentile group and underrepresented in percen-
tiles 25–50 and 0–25. This is confirmed by enrichment analyses of
the chemical groups across the different heritability percentile
groups (Table 5). Moreover, chemical classes glycerophospholipids
and glycerolipids are significantly underrepresented in the top
percentile group 75–100. The parallel coordinates plots in
Figure 2 summarize these findings graphically.

Discussion

Metabolites have an important role in the relationship between
the genotype and health and disease. Therefore, characterizing

the factors influencing metabolite levels is a vital first step toward
elucidating the mechanisms underlying health and disease. It is
well established that metabolite levels are influenced by a complex
interplay of genetic and environmental influences; however, the
role of the common, or shared, environment in metabolite levels
remains unclear. Here, we investigated the contribution of the
common environment to variation in fasting blood metabolite
levels in a large twin cohort. Although our study had sufficient
power to detect a contribution of the common environment to
the metabolite levels of 20% or higher, we found little evidence
for a contribution of this size. In contrast, but in line with expect-
ations, we found that additive genetics contributed significantly
to metabolite levels. We found that the top 25% most heritable
metabolites included mostly lipoproteins, while lipoproteins were
underrepresented in the other.

Our conclusions need to be placed in the context of the design,
platforms and biofluid that were used. First, while we established
that with a fixed sample size, a probability level of 5% and depend-
ing on the background heritability, a contribution of common
environment of 20% can be detected with reasonable power.
A contribution of the common environment of 30% had very high
statistical power for all platforms. However, when the contribution
of the common environment is small, even for the largest sample
sizes in our study (Nightingale platform with 848 MZ and 559
DZ twin pairs), the power to detect common environment shared
by twins is low. Second, our study was cross-sectional, not
longitudinal. While the fasting metabolite levels of individuals
are generally stable over time (Lacruz et al., 2018), age is a

Table 4. Summary of the AE (a) and ACE models (b and c) per platform and combined across platforms. Table 4b lists the ACE component means and variances
only for the traits that exhibited a signifacant contribution of C. Table 4c lists the ACE component means and variances irrespective of the significance of the
contribution of C

Dataset a2 e2 NM NMZPairs NDZPairs NTwinPairs

(a)

Nightingale 0.56 [0.25, 0.65] 0.44 [0.35, 0.75] 76 848 559 1407

Lipidomics 0.42 [0.17, 0.57] 0.59 [0.43, 0.86] 122 612 504 1116

NMR-LUMC 0.41 [0.15, 0.74] 0.60 [0.27, 0.85] 33 648 389 1037

ALL 0.46 [0.14, 0.74] 0.54 [0.27, 0.86] 231 695 506 1200

Dataset a2 c2 e2 NM NMZPairs NDZPairs NTwinPairs

(b)

Nightingale 0.37 [0.37, 0.37] 0.18 [0.18, 0.18] 0.45 [0.45, 0.45] 1 848 559 1407

Lipidomics NA NA NA 0 NA NA NA

NMR-LUMC 0.20 [0.16, 0.25] 0.27 [0.20, 0.34] 0.53 [0.46, 0.64] 5 648 389 1037

ALL 0.23 [0.16, 0.37] 0.25 [0.18, 0.34] 0.52 [0.45, 0.64] 6 681 417 1099

Dataset a2 c2 e2 NM NMZPairs NDZPairs NTwinPairs

(c)

Nightingale 0.50 [0.18, 0.63] 0.06 [0.00, 0.18] 0.44 [0.35, 0.75] 77 848 559 1407

Lipidomics 0.40 [0.14, 0.57] 0.01 [0.00, 0.16] 0.59 [0.43, 0.86] 122 612 504 1116

NMR-LUMC 0.35 [0.08, 0.74] 0.07 [0.00, 0.34] 0.58 [0.27, 0.85] 38 648 389 1037

ALL 0.43 [0.08, 0.74] 0.04 [0.00, 0.34] 0.54 [0.27, 0.86] 237 695 506 1200

Note: A, additive genetic effects; C, shared environmental effects between siblings; E, unique environmental effects; MZ, monozygotic; DZ, dizygotic. For each metabolomics platform, the
additive genetic variance component a2 and the variance component of the common environment c2 are listed. These outcomes are based onNMmetabolites of which NM(ACE) have a significant
C component. The analyses are based on NMZPairs and NDZPairs of MZ and DZ twin pairs. The bottom row lists the statistics over all platforms. Values for the individual metabolites are listed in
Supplementary Table S1.
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Fig. 1. Heritabilities for twin AE or ACE models. For the six metabolites showing a red bar, a significant contribution of C was observed (χ2> 3.84). For all other metabolites, only estimates for the additive genetic component are shown, as
determined by AEmodels. On the top of bar plot, two color bars are depicted that indicate the chemical class of themetabolite (top bars) and themetabolomics platform of themetabolite was reported from (bottom bars). The x-axes denote
the indices of the metabolites, listed in Supplementary Table S1.
Note: A, additive genetic effects; C, shared environmental effects between siblings; E, unique environmental effects.
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well-established factor influencing metabolite levels, with higher
levels observed in adults as compared to children (Ellul et al.,
2019). Third, this work involves metabolic traits measured in
blood. Results reported here do not necessarily represent those
expected for other tissue types. Fourth, we investigated ‘fasting
state’metabolite levels. As such, this can be considered a relatively
stable homeostatic state, in contrast to states of high energy
consumption or after food and/or drink intake. Finally, this study,
as most others, includes platforms favoring lipids, limiting the con-
clusions we may draw with regard to nonlipid species (Hagenbeek
et al., 2020).

We observed a limited contribution of common environment to
the total variation in metabolite levels: we estimated a significant
contribution of the common environment only for 6 out of 237
metabolites. For these 6 traits, the average contribution to the
common environment was 0.25 (range: 0.17−0.34). Our findings
are in line with previous studies reporting an influence of the
common environment for a minority of the investigated metabo-
lites, with average contributions of the common environment
frequently lower even than the 0.25 we observed (Kettunen
et al., 2012; Menni et al., 2013; Yet et al., 2016). The limited
contribution of the common environment on metabolite levels
is also consistent with observations for other molecular traits, such

as expression (Ouwens et al., 2020;Wright et al., 2014) or methyla-
tion levels (van Dongen et al., 2016), which were measured in the
same group of twin pairs as in this work. This is in stark contrast to
a recent family-based study that reported substantial familial
resemblance in metabolite levels to which common environment
had the strongest contribution (Tremblay et al., 2019). A strong
contribution of the common environment has also been observed
for specific lipid species, while other lipid species had no or only
small contributions of the common environment (Frahnow
et al., 2017). It must be noted that those studies reporting substan-
tial influence of the common environment frequently have small
sample sizes and are generally younger than our own samples.

The observation that an effect of the common environment is
more frequently reported in younger participants is in line
with observations for other complex traits. For several complex
traits with a strong influence of the common environment during
childhood, this decreases greatly with age, often completely disap-
pearing in adulthood (Haworth et al., 2010; Lamb et al., 2010).
Currently, longitudinal genetic investigations of metabolite levels
starting in childhood are lacking. Therefore, we may not definitely
conclude that a similar pattern holds for metabolite levels.
Moreover, in general for studies including adult samples, the
question arises what the common environment comprises

Fig. 2. Parallel coordinates plots of the top and bottom heritability quartlies showing the enrichment of the lipoprotein chemical class in the top percentile and its underrep-
resentation in the bottom percentile groups. Note that classes glycerophospholipids and glycerolipids are underrepresented in the top percentile group.
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(Finnicum et al., 2019; Zaitlen et al., 2013). In adult twin pairs
living apart the common environment may represent lasting
influences of their time spend living together. Alternatively, the
common environment could reflect similar living environments,
including the same (or similar) neighborhood, exposure to similar
pollutants or shared lifestyles. Thus, while many environmental
factors influencing metabolite levels have been identified, the
distinction between common and unique environmental factors
remains unclear.

We found an overrepresentation of lipoproteins with heritabil-
ity estimates in the highest quartile. Interestingly, we observed no
differences in total heritability estimates between lipoproteins and
other lipid classes in the same sample using genome-wide SNP
data; however, the portion of heritability due to known metabolite
loci did differ between lipid classes (Hagenbeek et al., 2020). This
could indicate that the genetic relationship estimates from
genome-wide SNP data do not comprise enough information to
assess this enrichment. Combining the enrichment results with
our previous findings that class-specific metabolite loci have a
larger contribution to metabolite heritability than nonclass loci
suggests the merit of investigating the genetics of biochemical
pathways rather than individual metabolites. The strength of
leveraging knowledge of biochemical pathways in genetic investi-
gations has been previously established. Genetic investigations of
metabolite ratios reflecting enzymatic conversions in biochemical
pathways have led to stronger associations than studying single
metabolites (Suhre et al., 2016). Similarly, multivariate genome-
wide association studies of correlated metabolic networks have
proven effective (Inouye et al., 2012).

Conclusion

Based on structural equation modeling in twins, a significant her-
itability was found for the blood concentrations of 231 metabolites,
explaining 46% of their variance on average.We find that in the top
25%most heritable metabolites, those of class lipoprotein are over-
represented, while metabolites of classes glycerophospholipids and
glycerolipids are underrepresented. In contrast, we find little evi-
dence of shared environment influences on individual differences
in metabolite levels. These findings show that familial resemblance
in the concentrations of metabolites is due to genetic factors with
minimal contribution of the shared environment.
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