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IMMEDIATE COMMUNICATION

Genome-wide association for major depressive disorder: a
possible role for the presynaptic protein piccolo
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Major depressive disorder (MDD) is a common complex trait with enormous public health
significance. As part of the Genetic Association Information Network initiative of the US
Foundation for the National Institutes of Health, we conducted a genome-wide association study
of 435291 single nucleotide polymorphisms (SNPs) genotyped in 1738 MDD cases and 1802
controls selected to be at low liability for MDD. Of the top 200, 11 signals localized to a 167 kb
region overlapping the gene piccolo (PCLO, whose protein product localizes to the cytomatrix of
the presynaptic active zone and is important in monoaminergic neurotransmission in the brain)
with P-values of 7.7 x 107 for rs2715148 and 1.2 x 10 for rs2522833. We undertook replication
of SNPs in this region in five independent samples (6079 MDD independent cases and 5893
controls) but no SNP exceeded the replication significance threshold when all replication
samples were analyzed together. However, there was heterogeneity in the replication samples,
and secondary analysis of the original sample with the sample of greatest similarity yielded
P=6.4x 102 for the nonsynonymous SNP rs2522833 that gives rise to a serine to alanine
substitution near a C2 calcium-binding domain of the PCLO protein. With the integrated
replication effort, we present a specific hypothesis for further studies.
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Introduction agitation/retardation, anergia, excessive guilt or
worthlessness, poor concentration or indecisiveness,
and recurrent thoughts of death or suicide).” MDD is

distinct from normal sadness by its persistence (that

The defining features of major depressive disorder
(MDD) are marked and persistent dysphoria plus

additional cognitive signs and symptoms (anhedonia,
sleep disturbance, weight/appetite changes, motor
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is, =2 weeks), additional signs and symptoms, and
substantial associated impairment. The definition of
MDD excludes other conditions typified by substan-
tial depressive symptoms (other psychiatric disor-
ders, drug/alcohol dependence and somatic diseases).
The lifetime prevalence of MDD is ~15%™* and is
twofold higher in women® with a course typified by
recurrence of illness.® It is associated with consider-
able morbidity,”® excess mortality from suicide and
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other causes,'®*® and substantial direct and indirect

costs.” A World Health Organization study projected
MDD to be the second leading cause of disability
worldwide by 2020."

Although there is a considerable corpus of research
on the epidemiology and biological correlates of
MDD, little is known for certain about its etiology.
An important etiological clue may be the familial
tendency of MDD and its heritability of 31-42%."°
This clue led to a number of genome-wide linkage
studies (Supplementary Methods) and studies of
>100 theoretical or positional candidate genes. As for
the use of these study designs with other biomedical
disorders, their application to MDD has not been as
successful as had been hoped.

It is now clear that genome-wide association
studies (GWASs) can be a successful tool in the
genetic dissection of complex biomedical disor-
ders.'”'® The goal of this report is to describe a GWAS
for MDD that was systematically designed to remedi-
ate a set of methodological issues common to genetic
studies of MDD. Examples of these issues include
small sample sizes, inhomogeneous samples in terms
of ancestry and phenotyping, convenience sampling,
and controls that are unaffected but not at low
liability for MDD. Moreover, large-scale replication
was integral to our design.

Materials and methods

This GWAS was one of the six initial Genetic
Association Information Network (GAIN) studies
sponsored by the Foundation for the NIH." Indivi-
dual phenotype and genotype data are available to
researchers by application to the dbGaP repository.?°
We have attempted to follow published guidelines for
GWAS (Chanock et al.,?* Box 1).

Subjects

The parent projects that supplied subjects for this
GWASs are longitudinal studies, the Netherlands
Study of Depression and Anxiety (NESDA; http://
www.nesda.nl)** and the Netherlands Twin Registry
(NTR; http://www.tweelingenregister.org).?®* Sam-
pling and data collection characteristics of the
GAIN-MDD study have been described in detail
elsewhere.”*

MDD cases were mainly from NESDA, a long-
itudinal cohort study designed to be representative of
individuals with depressive and/or anxiety disorders.
Recruitment of participants for NESDA took place
from 09/2004—02/2007, and ascertainment was from
outpatient specialist mental health facilities and by
primary care screening. Additional cases were from
the population-based cohorts NEMESIS,*® AR-
IADNE?*® and the NTR. Regardless of recruitment
setting, similar inclusion and exclusion criteria were
used to select MDD cases. Inclusion criteria were a
lifetime diagnosis of DSM-IV MDD" as diagnosed
by the Composite International Diagnostic Inter-
view psychiatric interview,?” age 18-65 years, and
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self-reported western European ancestry. Persons who
were not fluent in Dutch and those with a primary
diagnosis of schizophrenia or schizoaffective dis-
order, obsessive—compulsive disorder, bipolar disor-
der or severe substance use dependence were ex-
cluded (the etiology of MDD in these subjects may be
distinct). The 1862 cases included in GAIN were
recruited from mental health care organizations
(N=785), primary care (N=603) and community
samples (NEMESIS N=218, ARIADNE N=96 and
NTR N=160).

Control subjects were mainly from the NTR, which
has collected longitudinal data from twins and their
families since 1991 (total cohort of ~22000 partici-
pants from 5546 families). The majority of families
were recruited when the twins were adolescents or
young adults through city council registrations along
with alternative efforts to recruit older twins. Long-
itudinal phenotyping includes assessment of depres-
sive symptoms (via multiple instruments), anxiety,
neuroticism and other personality measures. Inclu-
sion required availability of both survey data and
biological samples, no report of MDD at any measure-
ment occasion, and low genetic liability for MDD. No
report of MDD was determined by specific queries
about medication use or whether the subject had ever
sought treatment for depression symptoms and/or
through the CIDI interview. Low genetic liability for
MDD was determined by the use of a factor score
derived from longitudinal measures of neuroticism,
anxiety and depressive symptoms*® (mean 0, s.d. 0.7);
controls were required never to have scored highly
(>0.65) on this factor score. Finally, controls and
their parents were required to have been born in the
Netherlands or western Europe. Only one control per
family was selected. There were controls (N=1703)
from the NTR and additional controls from NESDA
(N=133 from general practice, N=24 from AR-
IADNE). NESDA controls had no lifetime diagnosis
of MDD or an anxiety disorder as assessed by the CIDI
and reported low depressive symptoms at baseline
(K-10 score <16 and inventory of depressive symp-
toms score <4).2930

Case-control matching

If there were multiple eligible NTR controls in a
family, we first matched on sex and age, and used the
highest number of completed questionnaires as an
additional criterion. Again, only one control per
family was included.

DNA sampling

Before the start of the NESDA and NTR biological
sample collection, processing, and storage protocols
were harmonized and DNA extraction was conducted
concurrently in the same laboratory. For NESDA,
blood sampling for the NESDA participants took
place during the baseline visit (between 0830 and
0930 hours) and DNA was isolated using the Flex-
iGene DNA AGF3000 kit (Qiagen, Valencia, CA, USA)
on an AutoGenFlex 3000 workstation (Autogen,
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Holliston, MA, USA). For NTR, biological samples
were taken in the subject’s home (between 0700 and
1000 hours) and DNA was extracted using the Pure-
gene DNA isolation kit (Gentra, Minneapolis, MN,
USA) for frozen whole blood samples. DNA concen-
trations were determined using the PicoGreen dsDNA
Quantitation kit (Invitrogen Corporation, Carlsbad,
CA, USA). All procedures were performed according
to the manufacturer’s protocols.

Ethical issues

The NESDA and NTR studies were approved by the
Central Ethics Committee on Research Involving
Human Subjects of the VU University Medical Center,
Amsterdam, an Institutional Review Board certified
by the US Office of Human Research Protections
(IRB number IRB-2991 under Federal-wide Assur-
ance-3703; IRB/institute codes, NESDA 03-183; NTR
03-180). All subjects provided written informed con-
sent. As part of the GAIN application process, consent
forms were specifically rereviewed for suitability for
the deposit of deidentified phenotype and genotype
data into the controlled-access dbGaP repository.*®
NESDA and NTR subjects were informed of participa-
tion in GAIN by newsletters. Only 22 NESDA
respondents refused informed consent for genetic
research (1.7% of all respondents approached).

GWAS genotyping

Individual genotyping was conducted by Perlegen
Sciences (Mountain View, CA, USA) using a set of
four proprietary, high-density oligonucleotide arrays.
The SNPs on these arrays were selected to tag
common variation in the HapMap European and
Asian panels using previously described genotype
data,*" tagging approach® and methodology.*® At the
beginning of GAIN, all HapMap®** samples were
genotyped with the Perlegen GWAS platform. Inde-
pendent review of these data by the GAIN analysis
group'® showed 99.8% agreement with prior HapMap
genotypes and the mean maximum r* between the
Perlegen SNPs and HapMap phase II SNPs** was 0.89
for single and 0.96 for multimarker analyses. The
genotyping procedures and genotyping calling algo-
rithms are described in the Supplementary Methods
and in prior reports.?>3® Briefly, 40 x 96-well plates
were sent to Perlegen for GWAS genotyping. Geno-
typing was conducted blind to case—control status.
Cases and controls were randomly allocated to plates
and to positions within plates. Each plate contained
DNA samples from 93 Dutch subjects plus 3 quality
control samples. The three quality control samples
included: two parents of one control on that plate (40
complete trios in total); and half the plates contained
the same HapMap CEU sample (used for quality
control in all GAIN projects) and half had a randomly
selected duplicate case sample. The total number of
samples was 3840 (=40 plates x 96 samples per plate)
or 1860 cases + 1860 controls + 80 parents + 20 dupli-
cate samples + 20 HapMap samples.
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Quality control—subjects

Of the 3820 Dutch samples sent to Perlegen (exclud-
ing the 20 HapMap internal control samples), geno-
types were delivered for 3761 samples. A total of 59
samples did not have GWAS data: 39 samples with
uncertain linkage between genotype and phenotype
records, 7 samples with evidence of contamination, 6
samples that failed genotyping and 7 miscellaneous
failures (2 of these were excluded as chrX and chrY
genotyping data were consistent with the presence of
XO and XXY sex chromosome status). After further
analysis, 8 subjects were removed for excessive
missing genotype data (>25%), 1 case for high
genome-wide homozygosity (~75%), 38 subjects
whose genome-wide IBS estimates were consistent
with first- or second-degree relationships and 57
additional subjects whose ancestry diverged from
the remainder of the sample (see Supplementary
Methods for details). After these exclusions (N=104)
and removing duplicated and trio quality control
samples, there were 3540 subjects in the final analysis
data set including 1738 cases and 1802 controls. The
principal reason for fewer cases than controls was the
higher prevalence of substantial non-European ances-
try. The list of subjects in the final analyses data set is
included as a Supplementary File (‘mddC.fam’).

Quality control—SNPs

The unfiltered data set obtained from dbGaP con-
tained 599 156 unique SNPs. The Perlegen genotyping
algorithm yielded a quality score for each individual
genotype, and a more stringent quality score cutoff
(>10) than that used by Perlegen was applied. The
SNP quality control process is described in detail in
the Supplementary Methods. Briefly, to be included
in the final analysis data set, SNPs were required not
to have any of the following features: gross mapping
problem,*” >2 genotype disagreements in 40 dupli-
cated samples, >2 Mendelian inheritance errors in 38
complete trio samples, minor allele frequency <0.01
or >0.05 missing genotypes in either cases or
controls. A Hardy—Weinberg filter was not used as
lack of fit to Hardy—Weinberg expectations can occur
for valid reasons (for example, a true association)®®
and given that 95.6% (=51592/53994) of SNPs with
P<0.00001 from an exact test of Hardy—Weinberg
equilibrium® in controls were already flagged for
exclusion. A total of 435291 SNPs met these criteria
and were included in the final analysis data set
(included as a Supplementary File, ‘mddC.bim’).
Additional quality control checks are described in
the Supplementary Methods). A total of 13 controls
were genotyped in a different study using the
Mlumina 317K platform and, of the 82636 SNPs
common to both platforms, the genotype agreement
was 99.94%.

Single-marker statistical analyses

There were three classes of SNPs—those that could be
heterozygous in all subjects (chr1-22 and chrX/PAR1),
those that were heterozygous in women (non-PAR
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chrX) and those that were hemizygous in men (non-
PAR chrX and chrY). All SNPs that passed quality
control checks were tested for association with MDD
using 1 d.f. Cochran-Armitage trend tests. For com-
plex traits, it is widely believed that the contributions
of individual SNPs to disease risk are often roughly
additive.*® The Cochran-Armitage trend test can be
used to detect such effects. This test is usually
recommended due to its robustness to the violation
of the HWE assumption:*' P-values from women and
men for non-PAR chrX were combined using Fisher’s
method.**

Population stratification artifacts were assessed in
two ways. As described elsewhere,*® including prin-
cipal components as covariates in a logistic regression
model can robustly control stratification effects. To do
this, we identified a set of 127688 SNPs in linkage
equilibrium*® and used the ‘smartpca’ program in
EigenSoft** to compute 10 principal components for
each subject that were included as covariates in
logistic regression models (case/control status~ SN-
P, +PC1+PC2+ ... + PC10). We also used a stratified
Cochran—Mantel-Haenszel test in PLINK** as a
complementary approach.

For noteworthy associations, there were additional
checks to ensure that an association was not due to
experimental bias. These checks included: manual
inspection of SNP cluster plots to ensure reasonable
performance of the genotyping calling algorithm;
evaluation of conformation to Hardy—Weinberg equili-
brium in controls, cases and overall (discussed in the
Supplementary Methods); the checks for population
stratification described above; evaluation of plate-
specific association results to ensure that the overall
association was not driven by one or a few plates;
comparison of control MAFs to the HapMap EUR
panel; and evaluation of the characteristics of a SNP in
high linkage disequilibrium (‘proxy association’) as a
similar association with such a SNP decreases the
chance of some forms of method artifacts.

Control of false discoveries

Given the 10°-107 statistical comparisons in a GWAS,
small P-values are expected by chance. To control the
risk of false discoveries, g-values***® were computed
for all P-values for single-marker tests of association.
A g-value is an estimate of the proportion of false
discoveries among all significant markers, or the false
discovery rate (FDR) for the corresponding P-value.
The use of g-values is preferable to more traditional
multiple testing controls because g-values provide a
better balance between the competing goals of finding
true positives versus controlling false discoveries,
allow more similar comparisons across studies be-
cause proportions of false discoveries are much less
dependent on the number of tests conducted and are
relatively robust against the effects of correlated
tests.*>*=** The g-value threshold for declaring sig-
nificance was 0.10 (that is, the top 10% of the
significant findings are, on average, allowed to be
false discoveries).?®®® FDR thresholds <0.10 result in
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a disproportionate drop in power to detect true
effects.

Imputation

We used two imputation approaches, the SNPMStat
method of Lin et al.”® to impute 246 additional SNPs
in the piccolo (PCLO) region and Abecasis® MACH
(v1) to impute 2 037 829 autosomal SNPs with R*>0.5
(a cutoff that removes ~90% of SNPs with unreliable
imputation results while dropping 2-3% of reliably
imputed SNPs). Both SNPMStat and MACH gave
similar results in the PCLO region. Imputed genotypes
were used in secondary analyses. The HapMap2 EUR
panel®™** was used as reference.

Statistical power

Quanto®”*® was used to approximate statistical power
given the following assumptions: two-tailed
a=1x10"7 (=0.05/500000), 1738 cases and 1802
controls, lifetime morbid risk of MDD of 0.15 and a
log additive genetic model. For statistical power of
0.80 ($=0.20), the minimum detectable genotypic
relative risks are 1.59, 1.40 and 1.35 for minor allele
frequencies of 0.10, 0.25 and 0.40.

Software

PLINK (v1.0),*® SAS (v9.1.3),>° R (v2.6.1),°° HAPSTAT
(v3),°%* MACH1, SNPMStat,*® HaploView,** and JMP
(v6)®® were used for data management, quality con-
trol, statistical analyses and graphics.

Bioinformatics

All genomic locations are per NCBI Build 35 ¢¢ (UCSC
hg17).%” Pseudoautosomal region 1 (PAR1) is assumed
to be located on chrX:1-2692881 and chrY:1-
2692881 and PAR2 on chrX:154 494 747—154 824 264
and chrY:57372174-57701691.°® SNP annotations
were per TAMAL® based chiefly on UCSC genome
browser files,®” HapMap®** and dbSNP.®¢

Results

Sample description

Table 1 presents descriptive data for cases and
controls. Controls had a higher proportion of men
and were slightly older (and thus were farther through
the period of risk for MDD). Consistent with known
correlates of MDD, cases had a significantly lower
educational level, less often had a partner, were more
often smokers and scored much higher on the NEO-
FFI neuroticism scale.

SNP description

The analysis SNP set had 435291 SNPs including
427049 autosomal SNPs, 7988 SNPs on the non-PAR
portions of chrX, 239 SNPs on chrXY/PAR1, 15
SNPs on chrY and 0 SNPs on PAR2. The median
SNP missingness was 0.00339 (interquartile
range 0.00113-0.0105) and the median minor allele
frequency was  0.2422  (interquartile  range
0.1375-0.3646) with similar estimates in cases and
controls. The average marker density over the genome
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Table 1 Descriptive data for cases with MDD and controls at low liability for MDD included in the GWAS

Descriptor Cases Controls Test

Number of subjects genotyped 1738 1802 —

Mean age in years (s.d.) 42.6 (12.6) 45.1 (14.1) 1.353sF =31.1, P<0.001
Female (%) 69.6 62.0 13=22.5, P<0.001
Educational level (%, low/middle/high) 7.8/62.0/32.2 5.7/56.3/38.1 ¥3=16.3, P<0.001
Partner status (% with partner) 68.9 87.0 ¥2=167.2, P<0.001
Smoking (current) (%) 42.0 20.2 73=194.5, P<0.001
Mean neuroticism (NEO, s.d.) 39.3 (8.0) 28.2 (5.5) 1.2020F =1831, P<0.001

MDD, age of onset in years (s.d.) early age
of onset (<30 years) (%)

27.7 (12.4) 57.3 —

Family history of depression (%) 85.5 —
Recurrent MDD 50.9 —
Family history, recurrent MDD or early age of onset (<30 years) 94.8 —

Abbreviation: MDD, major depressive disorder.

was 1 SNP every 7069 bases (=3 077 088087 bases/
435291 SNPs). The median intermarker distance was
2911 bases with interquartile range 966—7374 bases
and a 99th percentile of 50.1 kb.

Single-marker association tests

We used the Cochran-Armitage trend test to test for
association of the 435291 SNPs in the GWAS data set
with case/control status. The estimated A°° was 1.046
(similar P-value minima and As were obtained using
logistic regression with 10 principal components and
using a stratified Cochran—Mantel-Haenszel tests
based on identity-by-state clusters).*>** The minimum
g-value was 0.28 (that is, if these tests were called
significant, over the long term, a minimum false
discovery rate of ~28% would be incurred). As the
prespecified g-value threshold was 0.10, no SNP
reached genome-wide significance. The proportion of
all SNPs without true effects (P,)** was conservatively
estimated to be P0=0.9999954, consistent with the
presence of ~2 SNPs with true effects in these GWAS
data.

Figure 1a depicts the quantile—quantile plots*® for
these analyses. The observed P-values do not strongly
depart from the P-value distribution expected by
chance. Figure 1b shows a plot of —log10(Ptrend) by
genomic location.

Table 2 presents the findings for the top 25 SNPs.
The quality control metrics—SNP missingness, agree-
ment with HWE and similarity of the control MAFs to
the HapMap EUR panel—for the top 25 SNPs are
generally acceptable. Of the top 25, 4 associations are
in the presynaptic cytomatrix protein PCLO. Table 3
depicts the top 25 multi-SNP clusters (that is, for an
index SNP with association P<0.001, these clusters
are additional SNPs within 250kb of the index SNP
with r°>0.50). The full version of this table is
included as a Supplementary File (‘Table 3_full.xls’).
PCLO is present in the top 25 clusters along with two
additional multi-SNP clusters in the top 200. Other
notable SNP clusters occurred in GRM7 (rank 51),
DGKH (rank 83, a candidate gene for bipolar
disorder),”® DAOA (rank 124) and DRD2 (rank 226).

Focusing on piccolo

Although no association met genome-wide signifi-
cance, there were clusters of SNPs in PCLO (Figure 2).
Notably, 11 of the 200 smallest P-values localized to a
167 kb segment overlapping PCLO. Interest in PCLO
was increased given its expression in brain, localiza-
tion to the presynaptic active zone” and involvement
in monoamine neurotransmission, a venerable hy-
pothesis of the etiology of MDD.”* Moreover, the third
most significant SNP (rs2522833) codes for a non-
synonymous amino-acid change (ala-4814-ser) in
PCLO near its C2A calcium binding domain.”

We investigated possible causes of spurious asso-
ciations in the PCLO region (chr7:82032093-
82436 848). First, these findings were not due to
plate effects as inspection of plate-specific association
data for these SNPs did not show any marked outliers
or systematic biases. Second, review of allelic
intensity cluster plots on which genotype calls were
based revealed adequate performance of the Perlegen
genotype calling algorithm. Third, inspection of
additional quality control metrics did not suggest
systematic problems with SNPs in this region. Fourth,
inspection of LD matrices excluded very high LD as
the sole explanation for the results (Supplementary
Figure 10), and none of the genotyped SNPs had
strong LD (r*>0.8) with rs2715148 (the SNP with the
smallest P-value in the PCLO region). Fifth, popula-
tion stratification can cause false-positive findings
but this did not appear to explain the PCLO associa-
tion: (1) the same 11 SNPs had P-values among the
top 200 associations in unadjusted analyses as well as
with adjustment via principal components and
stratified analyses; and (b) for the 57 SNPs in the
PCLO region, the P-values across these three types of
analyses were consistent (the Spearman’s correlations
between P-values from trend tests, logistic regression
and stratified analyses were all >0.962). Sixth, the
minor allele frequencies in the control group in the
PCLO region were usually quite similar to available
EUR control groups suggesting that the PCLO findings
were not due to an artifact of the control selection
process (see below). Finally, bioinformatic investiga-
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Figure 1 Genome-wide association study (GWAS) results for major depressive disorder (MDD) in cases versus controls.
(a) Quantile—quantile plots and A estimates for the primary analysis using the Cochran—Armitage trend test and confirmatory
analyses using logistic regressions and Cochran—Mantel-Haenszel stratified tests. The dashed lines show the expected 95%
probability interval for ordered P-values, and the circles show the observed versus expected values for all SNPs. The A values
are the median y* from all association tests divided by the expected value under the null hypothesis of no association. If 1 is
large (for example, >1.2), there is evidence that the observed test statistics deviate from the expected. This could be due to
true associations but is more likely due to a systematic bias (for example, population stratification effects). The 4 values in
(a) are not consistent with the presence of systematic biases in the results. (b) —log,,(P) by genomic location for chri—chr22

plus chrX.

tion did not suggest that this is a problematic region to
genotype as the PCLO region is not known to be under
positive selection in humans,” to contain segmental
duplications®” or common copy number variants
(search of the Database of Genomic Variants yielded
two rare copy number variations (CNVs) with control
frequencies of 0.12 and 0.89%).75"7

We conducted additional analyses to attempt to
localize the association depicted in Figure 2. Imputa-
tion®® supported the directly typed SNP associations
but did not yield an association P-value markedly
more significant than any directly genotyped SNP
(although 22 of the 25 most significant imputed
associations in the genome were in this region).
Haplotype analysis using three-SNP sliding windows
did not improve localization. Secondary analyses by
sex, case ascertainment setting and recurrent early
onset MDD (reoMDD, arguably the most heritable
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form of MDD)"*”® suggested that most of the signals
were from women and from subjects with reoMDD
(Supplementary Table 11). The findings for reoMDD
were often stronger than the primary analyses,
particularly for the most significant SNP (rs2715148)
where the P-value decreased by 1.2 orders of
magnitude to 9.5 x 1072,

PCLO replication

Although no finding met genome-wide significance,
the presence of multiple possible signals in PCLO and
the plausibility of a function for PCLO in the etiology
of MDD led us to attempt replication in external
samples. We assembled a collection of 11972 inde-
pendent subjects (6079 MDD cases and 5893 controls)
from seven different groups and a total of six case—
control replication samples (two German samples
were combined; Supplementary Methods). As with
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Table 2

Information on the SNPs with the smallest association P-values in the GWAS

Basic SNP data Bioinformatics Results MAF Quality control—SNP missingness Quality
control—
additional

checks
SNP Chr  Position Alleles  Strand Gene TAMAL* SLEP" Rank OR (CI) P- P-empirical q-value P-gwemp  All Cases Controls HapMap_EUR All Cases Controls P-missing
asymptotic

1512471796 2 20177 820 A/G + 10 1.26 (1.14-1.390.000014  0.000014 0.58 0.99 0.298 0.322 0.275 0.271 0.012 0.010 0.014 0.36

157565124 2 20183313 A/G + Reg pot 7 1.26 (1.14-1.40p.000012  0.000011 0.58 0.98 0.296 0.321 0.272 0.271 0.030 0.034 0.026 0.20

153923028 2 29597247 T/C - ALK CNV CNV, mutated in colon 12 1.34 (1.17-1.540.000024  0.000020 0.66 1.00 0.135 0.153 0.119 0.175 0.001 0.002 0.000 0.06
CA

1512621441 2 201794 446 A/G + Near CNV 13 1.31 (1.16-1.490.000024  0.000027 0.66 1.00 0.166 0.185 0.147 0.150 0.008 0.008 0.009 0.86

rs11132168 4 184428 336 T/IC + MDD linkage peak 16 0.75 (0.65-0.860.000029  0.000035 0.66 1.00 0.133 0.116 0.150 0.117 0.001 0.001 0.002 0.63
(8.6 Mb)

1517074631 4 184652 456 G/A + MDD linkage peak 23 0.75 (0.66-0.86).000043  0.000040 0.66 1.00 0.137 0.120 0.154 0.076 0.003 0.005 0.002 0.26
(8.3 Mb)

152094923 6 14 397 061 TIG - SCZ linkage meta- 20 0.82 (0.74-0.90D.000042  0.000046 0.66 1.00 0.417 0.393 0.441 0.475 0.001 0.001 0.002 1.00
analysis (2.5 Mb)

152274822 6 14 399 068 C/T - SCZ linkage meta- 6 0.79 (0.71-0.880.000009  0.000007 0.58 0.96 0.268 0.245 0.291 0.283 0.003 0.002 0.003 1.00
analysis (2.5 Mb)

151558477 7 30928587 C/T + MDD linkage peak 1 1.27 (1.16-1.40p.000001  0.000002 0.28 0.37 0.430 0.460 0.401 0.442 0.003 0.003 0.004 0.77 HWD cases
(3.0Mb)

157791986 7 30930719 G/C + MDD linkage peak 14 1.22 (1.12-1.350.000026  0.000038 0.66 1.00 0.451 0.477 0.427 0.425 0.001 0.001 0.002 0.38
(3.0 Mb)

152715148 7 82094 686 A/C + PCLO Cons, reg pot BIP GWAS rs2715148 2 0.79 (0.72-0.87).000001  0.000003 0.28 0.42 0.482 0.452 0.510 0.525 0.002 0.002 0.002 0.72
(P=0.03)

152522833 7 82098 359 C/A + PCLO Cons, reg pot, BIP GWAS rs7781142 3 1.26 (1.15-1.39D.000002  0.000002 0.28 0.52 0.455 0.485 0.427 0.425 0.002 0.000 0.003 0.03

cSNP (P=0.03)

152522840 7 82123 066 GIT + PCLO Cons, reg pot BIP GWAS 157799260 4 1.25 (1.14-1.38D.000004  0.000003 0.40 0.74 0.456 0.484 0.428 0.425 0.004 0.002 0.006 0.18
(P=0.04)

152107828 7 82200320 AIT + PCLO Reg pot 8 0.81 (0.74-0.890.000013  0.000007 0.58 0.99 0.460 0.433 0.486 0.500 0.037 0.036 0.038 0.79

151457266 8 24825757 A/G - Reg pot MDD linkage peak 17 0.81 (0.73-0.890.000029  0.000034 0.66 1.00 0.319 0.295 0.342 0.300 0.002 0.002 0.001 0.44
(7.4 Mb)

rs7005189 8 81663211 T/C + Cons, reg pot BIP GWAS 1511778905 15 0.76 (0.66-0.860.000028  0.000036 0.66 1.00 0.153 0.134 0.170 0.150 0.001 0.000 0.002 0.25
(P=0.03, 9.9kb)

151780436 10 34297618 AlG - 5 0.80 (0.73-0.88).000008  0.000013 0.58 0.95 0.374 0.348 0.400 0.325 0.018 0.016 0.021 0.31

rs11031676 11 32242721 T/IC + Reg pot 21 1.26 (1.1 40D.000043  0.000035 0.66 1.00 0.232 0.253 0.212 0.139 0.006 0.007 0.004 0.28

rs12579771 12 44019689 T/IC + TMEM16F Cons, reg pot MDD linkage peak 11 0.78 (0.69-0.87D.000022  0.000023 0.66 1.00 0.205 0.184 0.225 0.271 0.000 0.000 0.001 1.00
(8.8 Mb)

154765078 12 123171707 C/T + 25 0.82 (0.74-0.900.000044  0.000035 0.66 1.00 0.374 0.350 0.397 0.408 0.004 0.003 0.004 1.00

158023445 15 46980083 C/T + SHC4 Reg pot 9 0.72 (0.62-0.84).000014  0.000009 0.58 0.99 0.119 0.101 0.135 0.108 0.011 0.012 0.010 0.63

153885179 19 14 688 830 A/C - ZNF333 Reg pot, cSNP 18 0.61 (0.48-0.77D.000032  0.000031 0.66 1.00 0.046 0.035 0.056 0.033 0.021 0.024 0.018 0.24

15941796 20 39724220 A/G + Reg pot 22 1.22 (1.11-1.350.000043  0.000037 0.66 1.00 0.398 0.422 0.374 0.408 0.013 0.013 0.012 0.88

1512480143 20 39741240 G/A + 24 1.25 (1.13-1.390.000044  0.000035 0.66 1.00 0.265 0.288 0.244 0.233 0.001 0.001 0.002 1.00

15928862 21 20559590 G/A + Reg pot Near CNV 19 0.78 (0.69-0.880.000040  0.000044 0.66 1.00 0.190 0.170 0.209 0.167 0.013 0.012 0.013 0.77

Notes: Sorted by location. All locations per NCBI Build 35 (UCSC hg17). Alleles are given as minor/major. OR (CI), odds ratio (95% confidence interval). P-asymptotic,

P-value from Trend test. P-empirical, pointwise P-value from adaptive permutation method in PLINK. For g-Value see text. P-gwemp, genome-wide empirical P-value by traditional permutation testing
(5000 replicates). MAF, minor allele frequency. HapMap MAFs have been converted to the reference allele of the MDD sample. P-missing tests the difference in missingness between cases and controls. For
noteworthy associations, the four flags refer to acceptable cluster plots, conformation to Hardy—Weinberg equilibrium, absence of plate-specific association outliers and the presence of a “proxy” SNP in high
linkage disequilibrium with the primary SNP.

4TAMAL codes. Bioinformatic flag possibilities: coding SNP (cSNP), SNP in segmental duplication, known copy number variant (CNV), conserved base (Cons), miRNA target site, region of regulatory potential
(reg pot), predicted promoter, transfactor binding site, enhancer, exon, splice site, mRNA expression QTL (lymphocytes or cortex). Only positive flags are shown.

PSLEP, Sullivan Lab Evidence Project (http://slep.unc.edu) a compendium of genetic findings from the literature. Sources (PubMed IDs): CNVs from Database of Genomic Variation (PMID 15286789), breast and

colon cancer mutations (17932254), MDD genome-wide linkage studies (12612864, 14582139, 17427203), SCZ genome-wide linkage meta-analysis (12802786) and bipolar disorder (BIP) GWAS (17554300).
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Figure 2 Plot of the piccolo (PCLO) region (NCBI build 35, UCSC hg17, chr7:82 000 000—82 500 000). P-values in this figure
are all from SNPMstat. The x axis is chromosomal position, the left y axis is —log10(P) for genotyped SNPs (colored
diamonds) and imputed SNPs (grey diamonds), and the right y axis is the recombination rate from the HapMap EUR panel
(light blue curve). The color of the genotyped single nucleotide polymorphisms (SNPs) corresponds to LD with the SNP with
smallest P-value (rs2715148): red 0.8 <r*< 1.0, orange 0.5 <r*<0.8, yellow 0.2<r*<0.5 and white r* <0.2. The significant and
extent of all three-SNP haplotypes with P<0.0001 in this region are colored light green. The transcripts for two PCLO
isoforms are shown in dark green at the bottom. Graph adapted from an R function by the Broad DGI group.

NESDA cases, all replication cases were adults of
European ancestry on whom a structured clinical
interview was used to substantiate the lifetime
diagnosis of DSM-IV MDD," and all studies excluded
common MDD phenocopies (for example, depressive
symptoms due to another psychiatric disorder or a
general medical condition). As with NTR controls, all
replication controls were adults of European ancestry
ascertained from the population, and individuals
reporting MDD symptoms were excluded. We esti-
mated statistical power using Quanto®” (assumptions:
log-additive genetic model, MDD lifetime risk 0.15,
MAF =0.45 (similar to rs2522833), a genotypic rela-
tive risk of 1.14 (‘shrunk’ down from the observed
GRR of 1.26 for rs2522833 to account for the ‘Winner’s
Curse’ phenomenon))’ and a conservative two-tailed
type 1 error rate of 0.00167 (=0.05/30 replication
SNPs). Statistical power was 97.2% for replication for
the two SNPs genotyped in all samples (N=11972)
and 90.4% for the remaining SNPs (N=9278). Five
replication samples were genotyped for 30 SNPs
using the same Sequenom iPlex SNP pool (15 SNPs
were in the primary GWAS and 15 were selected to
tag common variation in Europeans)®® and one sample
was successfully genotyped for two SNPs using
TagMan. The SNP selection strategy effectively cast
a broad net over the region showing association in
Figure 2. For the NESDA/NTR samples, agreement
between the initial Perlegen genotypes in this region
and independent re-genotyping was high (0.9987).
The single SNP results for MDD are depicted in
Figure 3 and Table 4a. Our analytic plan dictated the
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combined analysis of all replication samples with the use
of a one-tailed directional test. No association in the
replication sample reached statistical significance after
correction for multiple comparisons and SNP noninde-
pendence due to LD (ninth column in Table 4a).
Similarly, haplotype analyses did not reveal significantly
associated regions (Supplementary Figure 16). There
were four P-values <0.05 in the replication sample but
only rs10954694 also had Z-scores of the same sign in
both samples. Table 4b shows the results for reoMDD,
and no single SNP was significant after correction for
multiple comparisons. When we repeated the MDD
analyses restricted to female subjects, the observed
significance levels did not become markedly stronger
in any of the replication samples in contrast to the initial
NESDA/NTR sample. Thus, results from analyses of all
replication samples did not reach the a priori criterion
for replication evidence for the involvement of PCLO in
the etiology of MDD.

Unanticipated heterogeneity in cases

However, we observed, a posteriori, that there was
potentially important heterogeneity in the replication
samples for eight SNPs that were strongly associated
in the original sample (I*>0.4, ninth column in Table
4a). In investigating this further (Supplementary
Methods), we determined that there was little
evidence for genetic heterogeneity in the genotyped
region for controls but, unexpectedly, there was
significant heterogeneity in the cases. Principal
components analysis and inspection of Table 4a and
the forest plots in Figure 3 indicated that the outlier
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Table 3 Clustering of SNPs with low P-values

Rank Chr Start End Nsnps Pmin N<0.0001 N<0.001 N<o0.01 Expressed in ~ Genes Gene products SLEP*
brain?
1 7 30928587 30931521 3 1.25E—-06 2 0 1 Yes ADCYAP1R1 Adenylate cyclase activating Neuroactive ligandreceptor
polypeptide 1 interaction
(pituitary) |receptor type I
2 7 82041576 82208167 10 1.50E—-06 6 4 0 Yes PCLO Piccolo (presynaptic cytomatrix
protein)
4 6 14 388 932 14 399 068 2 9.09E—-06 1 1 0
5 2 20177820 20183313 2 1.18E—-05 2 0 0 Yes LAPTM4A Lysosomal-associated protein
transmembrane 4o
6 15 46979618 46980083 2 1.36E—-05 1 1 0 Yes CRI1/EID1/RaLP/ CREBBP/EP300 inhibitor 1/EP300
SHC4 interacting
inhibitor of differentiation 1/railike
protein/SHC (Src homology 2 domain
containing) family, member 4
9 2 201794 446 201880818 2 2.44E-05 1 1 0 Yes AJ487678/AJ487679/ Caspase 10/caspase 10/PRO3098/ CASP10 causes multiple
AK125394/AY690601/  caspase 10 splice neoplasms (OMIM 601762);
CASP10 CFLAR/ variant G/caspase 10, apoptosis- CFLAR upregulated in MDD in
NDUFB3 related cysteine postmortem brain
peptidase/CASP8 and FADD-like
apoptosis
regulator/NADH dehydrogenase
(ubiquinone) 1f subcomplex, 3,
12kDa
14 20 39724220 39742644 5 4.27E-05 5 0 0
15 6 14 386 148 14 397 061 3 4.23E-05 1 1 1
16 4 184652456 184658 003 3 4.28E—-05 1 0 2
17 5 117174763 117 282887 4 4.84E—-05 1 1 2
19 10 127071672 127087 021 3 0.000046 1 2 0
20 5 22752605 22792155 3 4.65E—05 1 0 2 Yes CDH12 Cadherin 12, type 2 (Ncadherin 2)
22 15 88130196 88136792 2 5.52E—05 1 1 0 Yes ANPEP/MESP2 Alanyl (membrane) aminopeptidase =~ MESP2 causes spondylocostal
(aminopeptidase N, aminopeptidase  dysostosis (OMIM 605195)
M,
microsomal aminopeptidase, CD13,
p150)/
mesoderm posterior 2 homolog
(mouse)
23 8 54098 247 54102064 2 4.83E-05 2 0 0
24 4 145875183 145878794 2 5.47E—05 1 0 1
27 11 32242721 32244520 2 4.25E-05 2 0 0
28 8 27 249 840 27379524 6 5.38E—05 1 2 3 Yes AK128371/CHRNA2/ Hypothetical protein FLJ46514/ CHRNAZ2 causes nocturnal
PTK2B cholinergic frontal lobe epilepsy (OMIM
receptor, nicotinic, «2 (neuronal)/ 118502)
PTK2B protein tyrosine kinase 2§
29 3 12453817 12459985 2 0.00005 1 1 0 PPARG Peroxisome proliferator-activated Type 2 diabetes mellitus
receptory risk gene
32 3 99975 821 100183 009 2 7.26E—-05 1 0 1 Yes DCBLD2/ST3GAL6 Di din, CUB and LCCL domain
containing 2/ST3p galactoside o
2,3sialyltransferase 6
34 3 70451852 70476913 2 8.22E-05 1 0 1
38 2 7424098 7440754 3 8.95E—05 1 1 1
41 5 54352635 54363712 3 0.000071 1 1 1 Yes GZMK Granzyme K (granzyme 3; tryptase II)
43 13 111889281 111902 203 2 7.87E—05 1 1 0
44 1 211470329 211508991 4 0.000072 1 3 0
46 8 24784576 24 825085 2 0.000359 0 2 0 NEF3/NEFM Neurofilament 3 (150 kDa medium)/

neurofilament,
medium polypeptide 150kDa

Abbreviation: MDD, Major depressive disorder.

4SLEP, Sullivan Lab Evidence Project (http://slep.unc.edu) a compendium of genetic findings from the literature.
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Figure 3 Piccolo (PCLO) region replication results for major depressive disorder (MDD) showing genomic context and forest
plots for the top 12 single nucleotide polymorphisms (SNPs) in the original sample. The backbone of the graph is the region
of PCLO targeted for follow-up. SNP locations are given by the grey triangles. There are 12 forest plots for the SNPs with
P<0.001 in the original sample. Each forest plot is for one SNP and shows the odds ratio (square) and 95% confidence
intervals (horizontal line) for a particular sample with the area of the square proportional to sample size.

was the Australian QIMR sample. Notably, the
original and QIMR samples were particularly similar
in that both studies included population-based cases
and controls were selected to be at low liability for
MDD based on longitudinal assessments. Of the nine
SNPs with P<0.05 in the QIMR sample, eight had
both low P-values and Z-scores with the same sign as
in the NESDA/NTR sample. As an exploratory
analysis, we analyzed the original and QIMR samples
jointly, and the minimum P-value was 6.4 x 107® at
the nonsynonymous SNP rs2522833 that gives rise to
a serine to alanine substitution near the C2A calcium-
binding domain of the PCLO protein.

Secondary analyses

We conducted additional analyses of the NESDA/
NTR GWAS data set that were specified a priori but
which should be considered exploratory.

(1) The network of proteins with which PCLO
interacts in its function at the presynaptic cytoskele-
tal matrix is relatively well characterized, and we
reasoned that genes encoding these proteins might
harbor risk or protective variants. We assessed this
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hypothesis by testing for association conditioning on
the PCLO nsSNP rs2522833 (that is, investigating
whether controlling statistically for the effect of
rs2522833 increases the salience of other SNP
associations), assessing the minimum P-value per
gene, and then comparing this list to a list of 54 genes
that make proteins that interact with PCLO. This
analysis did not reveal any SNPs or genes whose
significance was markedly lower than without
including rs2522833 in the logistic regression model.
Moreover, no known PCLO interacting protein was
notable on this list.

(2) We imputed genotypes for 2037 829 autosomal
SNPs using MACH with reference to HapMap CEU
genotypes. The resulting A was 1.048, and the
minimum P-value was 1.21 x 1077. As noted above,
22 of the 25 most significant imputed associations
were in the PCLO region. Investigation of SNP
clustering that accounted for LD yielded results
similar to those shown in Table 3.

(3) We assembled a list of 103 candidate genes that
had been studied for association with MDD in the
literature.®' A total of 19 of these genes had no SNPs



within its transcript and another 9 genes had
inadequate coverage (>1 SNP per 15 kb; Supplemen-
tary Table 17). Of the remaining 75 genes, only
neuronal nitric oxide synthase (NOS1, P=0.0006)
had P<0.001. However, NOS1 (as with most genes in
Supplementary Table 16) is quite large and there is a
possibility of a potential influence on these results.

(4) We compared the GWAS association results to a
meta-analysis of gene expression data from 12 studies
of postmortem brain tissue in MDD cases compared
with controls (10 frontal cortex and 2 cerebellum
studies). These data are available via the Stanley
Foundation (http://www.stanleygenomic.org). There
were five genes with GWAS P<0.05 (all had gene
expression changes significant at P 0.0004—0.007).
The genes were: SGCG (sarcoglycan), CALD1 (caldes-
mon 1), EEF1A1 (eukaryotic translation elongation
factor 101), CFLAR (CASP8 and FADD-like apoptosis
regulator) and TP73L (tumor protein p73-like). There
is no overlap of this list with the PCLO interactors or
MDD candidate genes from the literature.

(5) Alternative models, filters and phenotypes: (i)
For reoMDD, the minimum P-value over all GWAS
SNPs was at the PCLO region SNP rs2715148
(8.4 x 107®) which ranked second of all SNPs using
the trend test (Table 2). (ii) rs2715148 also had the
smallest P-value under a dominant model of SNP
action (6.2 x 107°). (iii) Given the female predomi-
nance in MDD, we analyzed data from women and
men separately. For female cases and controls,
rs2715148 had the smallest P-value (4.0 x 10~7) and
multiple other PCLO SNPs had P-values in the 107°-
10° range. For men, most PCLO SNPs had P>0.05 and
the minimum was in the SLC9A9 SNP rs4839627
(9.1 x 1077). (iv) Again, given sex differences in MDD
prevalence, we investigated SNPs on chrX and chrY
more closely. The minimum P-value in chrX pseu-
doautosomal region 1 was 0.02. For the non-PAR
regions of chrX in women, the SNPs with the smallest
P-values were rs11094388 (P=0.0003, intergenic),
r$5971108 (P=0.0003, PTCHD1), rs5930667
(P=0.0004, intergenic), rs4618863 (P=0.0005, inter-
genic), rs2207796 (P=0.0005, in the very large gene
DMD) and rs5936428 (P=0.0009, FMR2). For men, the
minimum P-value on chrX was at rs10521594
(P=5.4 x 107°, intergenic) and 0.22 on chrY.

Discussion

Overview

MDD is a common complex trait of enormous public
health significance. As part of the GAIN initiative of
the US Foundation for the NIH,'®* we conducted a
GWAS of 435 291 SNPs genotyped in 1738 MDD cases
and 1802 controls selected to be at low liability for
MDD. Our study had numerous positive attributes
including its historically large sample size, its largely
population-based and longitudinal design, and rela-
tively unbiased and dense genome-wide genotyping
designed to capture common variation in subjects of
European ancestry.
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According to our primary analysis plan, no SNP—
MDD phenotype association reached genome-wide
significance as the minimum g-value was 0.28, greater
than the pre-defined g-value threshold of 0.10. This
result was not unexpected. For example, type 2
diabetes mellitus has arguably reaped the greatest
harvest from GWAS®* and yet two of the initial T2DM
GWAS were unremarkable when analyzed indepen-
dently.?*** One of the key lessons of the GWAS era is
the importance of meta-analysis where its application
to the primary GWAS can uncover positive findings
that replicate well across studies.'®®

Is PCLO a causal risk factor for MDD?

Although no locus exceeded the genome-wide thresh-
old after correction for multiple comparisons, 11 of the
top 200 signals localized to a 167 kb region overlapping
the gene PCLO. The protein product of PCLO localizes
to the presynaptic active zone and is important in brain
monoaminergic neurotransmission,®® clearly intersect-
ing with a venerable hypothesis of the etiology of mood
disorders.?” Moreover, the third most significant asso-
ciation was a common nonsynonymous SNP near its
critical C2A binding domain in PCLO.?*#* Although it
is an obvious candidate gene, we are not aware of any
prior association studies of PCLO and mood disorders
(PCLO is in a region of 7q implicated by linkage in
autism and one autism association study has been
published).*

We judged the intersection of this GWAS
result with prior knowledge sufficient to trigger a
large-scale replication effort by genotyping PCLO
SNPs in 6079 MDD-independent cases and 5893
controls. Statistical power to replicate exceeded
90% even after accounting for”® the ‘Winner’s Curse’
phenomenon (a form of regression to the mean
whereby the true genotypic relative risk is over-
estimated in the initial study).”>** However, in spite
of the apparent a priori strength of a hypothesis of
genetic variation in PCLO in the etiology of MDD, no
SNP analyzed in the replication sample met appro-
priately rigorous criteria for replication.** Therefore,
unlike GWAS for many nonpsychiatric biomedical
disorders, our GWAS and replication efforts did not
yield ‘proof beyond a reasonable doubt’ level of
evidence for an association between genetic variation
in PCLO and MDD.

Investigation of the sources of heterogeneity in the
replication samples indicated that controls were
genetically similar to the original sample in the PCLO
region but that cases were dissimilar. We observed,
a posteriori, that both principal components derived
from PCLO region genotypes in QIMR cases and effect
size estimates in the QIMR replication sample tended
to be similar to the original sample. This is notable
because, of all the replication samples, ascertainment
of QIMR subjects was most similar to the primary
NESDA/NTR sample in that cases were identified
from population-based sources (100% for QIMR and
60% for NESDA) rather than tertiary sources as for the
other replication samples. MDD cases from clinical
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samples may differ from population-based cases due
to selection bias,” Berkson’s bias,*® differing refer-
ral filters®® or even a different genetic basis® with
respect to genetic variation in the PCLO region.

Joint analysis of the NESDA/NTR and QIMR
samples yielded P=6.4 x 10~® (uncorrected for multi-
ple hypothesis testing) for the nonsynonymous SNP
rs2522833. This result suggests a specific hypothesis
for future studies: an association between genetic
variation in PCLO and MDD may be detected only in
population-based cases. Thus, it would be premature
to exclude PCLO from a function in the etiology of
some forms of MDD.

The heterogeneous nature of MDD

Interpretation of the PCLO replication efforts is
consistent with two broad possibilities. The first
possibility is that genetic variation in PCLO is truly
not associated with MDD. This interpretation is
supported by the replication analyses (specified
a priori) in which no SNP was significantly associated
after correction for multiple comparisons and SNP
dependence due to LD. This strict interpretation is
generally viewed as ‘best practice’ in human genet-
ics®* but implicitly assumes etiological homogeneity
for MDD in the PCLO region. The second possibility
invokes a less parsimonious model involving hetero-
geneity, that genetic variation in PCLO is etiologically
causal to some subtypes of MDD. This inter-
pretation is an a posteriori hypothesis consistent
with the empirical results particularly in the
notable differences in associations between samples,
case ascertainment strategies, and indications from
principal components analysis that NESDA and
QIMR cases are more similar than the clinically
ascertained subjects.

It is notable that the control samples from each site
were considerably more similar than cases from the
same sites.

The tension between null a priori results and
plausible a posteriori hypotheses is a core issue in
psychiatric genetics. Important phenotypes like MDD
are defined reliably and with reference to diagnostic
schema developed principally for clinical purposes.
Heterogeneous etiology of MDD is widely suspected
but there are no proven ways to index heterogeneity
(indeed, a prominent rationale for genetics studies is
improve differential diagnosis).

Our results are consistent with prior observations of
the heterogeneous nature of MDD, particularly with
regard to ascertainment. Individuals who meet MDD
criteria from community or primary care sources may
have a more inclusive and less comorbid form of
MDD whereas tertiary ascertainment may yield
subjects with greater comorbidity and perhaps dis-
tinctive etiology.® In particular, it is formally possible
(but unproven) that the PCLO results are accurate—
genetic variation in PCLO might be causal to the types
of MDD seen in community samples but other loci
contribute to a distinctive type of MDD seen in
tertiary care samples.
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Other hypotheses

There were two MDD cases who may have had
unrecognized genomic disorders® (possible Turner’s
and Klinefelter’s syndromes). We speculate that small
numbers of cases with MDD will have CNV-related
genomic disorders that are plausibly causal to MDD.
Clarification of the function of such rare variants will
require larger samples.

Most of the additional exploratory analyses were
unrevealing, including examination of proteins
known to interact with PCLO, genotype imputation,
comparison of GWAS findings with MDD candidate
genes from the literature and gene expression changes
in the brain in cases with MDD, and alternative
genetic models, phenotype definitions and sex-spe-
cific analyses.

We searched the Sullivan Lab Evidence Project
(SLEP) compendium of psychiatric genetics find-
ings'® in an attempt to discover overlap of our
findings with those reported in the literature. First,
with reference to a meta-analysis of microarray
studies on the Stanley brain bank MDD and control
samples, expression of CFLAR and MARCH3 were
increased and LST1 and HLA-B were decreased in
MDD postmortem frontal cortex. These regions
ranked 9, 232, 267 and 432 in the NESDA/NTR
GWAS. Second, we looked for convergence of our
findings with other GWAS of psychiatric disorders.
Notable genomic locations of overlap of the top 480
regions in the present GWAS were found with GWAS
for ADHD (ITIH1; S Faraone, personal communi-
cation), the Wellcome Trust Case-Control Consortium
GWAS for bipolar disorder (SHFM1 and UGT2B4)'%*
and a bipolar GWAS that used DNA pooling (GRM7
and DGKH).”° Third, we looked at the minimum
P-values in our study for genes that met or nearly
achieved genome-wide significance: the minimum
P-values in our study for MAMDC1"*® were 0.004, 0.03
for ZNF804A,"** 0.002 for ANK3'® and 0.03 for
CACNA1C.* These overlaps are intriguing (although
the possibility of chance cannot be excluded), and
will be formally investigated as part of our participa-
tion in the Psychiatric GWAS Consortium analyses."®

Limitations

(1) Although statistical power has been systematically
underestimated in psychiatric genetics, when we
began this study in Q3 2006, it was believed that
statistical power would be reasonable to detect
realistic genetic effects. However, the definition of
‘realistic’ has shifted considerably since 2006 and it
may be important to design studies that can detect
genotypic relative risks <1.10. (2) When this study
began, the coverage and performance of the Perlegen
GWAS platform were among the better options
available.' The technology and pricing have evolved
rapidly and superior platforms are now available. A
key limitation of the Perlegen platform is its inability
to assess CNV'® that may be particularly salient for
psychiatric disorders.’*”'°® More generally, the GWAS
platform might not be sufficiently ‘genome-wide’ and
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Table 4 PCLO replication results

SNP ID hg17 position NESDA-NTR (NL) All replication samples QIMR (AUS) M-P Inst Psych (GER) West Germany (GER) STAR*D (US) U Edinburgh (UK) DeCC (UK)
N z P N z P Poowr Iz N z P Pcom N z P P_corr N z P Peor N z P Poeor N z P Poor N z P Pcom

(a) MDD (major depressive disorder)

17780196 82021603 3657 2.87  0.00406 9270 158 011 081 065 2004 287 00041 0066 1907 187 006 059 2482 -0.82 041 1 201 -091 036 1 826 068 049 1

1517282875 82041576 3657 —4.09  43E-05 7235 -0.23  0.82 1 061 2002 -231 0021 029 2479 0.55 058 1 1926 140 016 090 826 025 081 1

1s10954689 82047024 3657 3.91  9.1B-05 9269 138 017 092 052 2004 288 00039 0076 1899 054 059 1 2489 0.76 045 1 2051 027 098 826  -012 090 1

1s12672552 82058350 3658 058 056 9277 138 047 092 000 2005 -030 077 1 1907 —081 042 1 2488 ~0.02 099 1 2051 032 099 826  -137 017 091

156948464 82061983 3658 3.46 0.00055 9269 0.86 0.39 1 0.00 2005 1.05 0.29 0.99 1907 0.46 0.65 1 2480 0.56 0.58 1 2051 0.13 0.85 826 0.92 0.36 1

1513227462 82065698 3658  -0.98 032 9271 081 042 1 069 2004 -024 081 1 1906 142 016 087 2484 0.56 058 1 2051 028 098 826 288 0.0040  0.050

1517156675 82067056 3658  3.89 00001 9277 161 011 080 016 2005 248 0013 020 1907 070 048 1 2488 0.74 046 1 2051 08s 1 826 039 069 1

156079066 82067588 3656 3.4 B.AE-05 9237 181 007 066 039 1983 265 00082 013 1906 093 035 1 2475 0.91 036 1 2047 0.32 826 048 063 1

16965452 82073522 3658 151 0.3 048 092 000 2000 197 0048 051 1903 —088 038 1 2486 ~0.42 068 1 2051 0.54 826 074 046 1

111771757 82074382 3645 068 050 063 1 066 1993 083 041 1 1905 063 053 1 2051 0.06 825 193 0.05

1512668093 82079684 3658 0.73 0.47 925 % 0.027 0.36 0.00 2005 0.38 0.71 1 1888 0.99 2489 1.53 0.13 0.82 2050 0.21 826 0.97

156954078 82080529 3 4.44 8.1 06 9204 0.07 0.94 1 0.48 1990 2.26 0.024 0.33 1890 0.18 0.85 1 2469 0.79 0.43 1 2037 0.17 818 0.17 0.86

152715148 82004686 44B-07 11850 023 082 1 040 2003 -177 0076 066 1905 ~066 051 1 2478 0.68 049 1 2048 0.04 826 016 0.88 2500 033 074 088

152522833 82098359 54E-07 11934 012 090 1 041 2002 220 0028 035 1892 049 062 1 2484 0.35 07z 1 2050 0.15 826 -0.00 0.92 2680 -110 027 037

152522840 82123066 16E-06 9268 063 053 1 040 2004 206 0039 044 1904 055 058 1 2483 0.33 075 1 2051 0.13 826 0.6  0.87

1513233504 82142482 0.00843 9263 082 041 1 012 2003 112 026 098 1907 149 014 084 2476 ~0.22 083 100 2051 0.28 826 056 0.58

152888018 82145941 3 0.00015 9260 0.86 0.39 1 0.19 2005 0.60 0.55 1 1903 0.73 0.47 1 2477 1.23 0.22 0.95 2049 0.07 826 0.40 0.69

152371364 82151525 3656 0.02611 9271 1.60 0.11 0.80 0.21 2004 2.64 0.008 0.13 1903 0.33 0.74 1 2487 0.69 0.49 1 2051 0.93 826 0.24

12371367 82163042 3656 0.00406 9257 067 051 1 000 2004 088 038 1 1893 ~032 075 1 2484 0.13 089 1 2050 826 0.08

152189972 82169314 3657 0.17 9272 0028 035 000 2004 169 0092 1905 011 091 1 2486 0.85 040 1 2051 826 116

1s17235252 82180688 3658 0.30 7363 009 073 062 2004 -147 014 2487 ~2.29 002 026 2046 826 147

1517809157 82192478 3652 0.00975 9266 0.05 0.56 0.00 2003 -1.36 017 1906 ~1.53 0.13 0.82 2481 -1.15 0.97 2050 826 0.47

152107828 82 200 0 2.8E-06 9271 1.05 0.29 0.99 0.09 2005 1.59 0.11 1902 1.09 0.27 0.98 2487 0.30 0.76 1 2051 826 0.48

1510954694 82201812 3656 0.00558 9274 3 0.011 0.19 0.00 2005 1.24 0.22 1907 1.02 0.31 0.99 2486 1.59 0.11 0.77 2050 0.47 826 0.75

1510487645 82203942 3638 0.66 9272 1 000 2005 1901 055 058 1 2489 —187 006 055 2051 0.48 826 -0.5

150600648 82205975 3658 0.60 9278 099 001 2005 1907.00 069 049 1 2489 ~2.02 004 043 2051 0.33 826 -0.24

1s17235831 82206612 3652 0.35 9271 1 022 2003 1904 —043 067 1 2488 —1.34 018 091 2051 0.88 825 157

16959723 82206991 3656 0.03084 9265 9 055 000 2003 1905 ~130 019 093 2481 “115 025 1 2050 0.67 826 —0.44

187799260 82208167 3658 2.8E-05 9274 0.87 1 0.00 2005 1905 0.94 0.99 2487 0.30 0.76 1 2051 0.61 826 0.41

1512669254 82217749 56 0.02077 2.06 0.46 0.00 2005 0.99 1904 0.58 1 2489 0.82 0.41 1 2050 0.30 826 1.79 0.62 E g
o

(b) reoMDD (recurrent, early onset MDD) L9

17780196 82021603 2369 280 000514 6403 1 0.64 2.16 036 1310 205 0.04 0.45 1580 ~116 024 097 1548 —109 028 098 710 086 1 =a

1517282875 82041576 2368 —4.48 7.5E-06 4983 1 0.00 ~1.00 0.99 1582 0.68 0.50 1 1437 1.06 0.29 0.99 710 0.84 1 -1

1510954689 82047024 2369 4.06 4.9E-05 6403 0.97 0.00 1.27 0.95 1305 1.09 0.28 0.98 1,85 0.11 0.91 1 1548 0.31 0.76 1 710 0.81 1 i §

1812672552 82058 350 1.19 0.24 6409 1 0.00 1.28 0.94 1310 0.30 0.76 1 1585 0.22 0.83 1 1548 0.18 0.86 1 710 0.28 0.99 ~~ w,

156948464 82061983 0.00430 6407 1 000 1256 058 1 1310 ~005 096 1 1583 1.76 008 067 1548 116 025 097 710 039 1 (S

1513227462 82065698 0.00306 6405 1 054 1255 -023 1 1309 ~193 005 051 1583 0.15 088 1 148 090 037 1 710 0027 0.296 a

117156675 82067056 1L1E-04 6409 098 027 2.40 025 1310 070 049 1 1585 0.47 064 1 1548 —041 068 1 710 08z 1 3

156979066 82067 588 2.7E-04 6383 0.26 0.98 0.44 2.09 0.43 1309 1.37 017 0.91 1580 -0.24 0.81 1 1546 -1.03 0.30 0.99 710 0.56 1 2

156965452 8207 2 0.00155 6401 0.26 0.98 0.00 1.15 0.97 1307 1.12 0.26 0.97 1583 1.04 0.30 0.98 1548 0.43 0.67 1 710 0.49 1 %

111771757 82074382 0.99 4814 040 1 060 1249 -033 1 1308 158 011 1 1548 -139  0.16 709 009 072 o

1512668093 82079684 0.06 6395 010 077 000 1256  —0.97 099 1296 —068 050 1 1585 ~0.94 035 099 1548 064 052 710 020 094 [

16954078 82080529 6.58-07 6365 092 1 021 1251 128 095 1300 —078 044 1 1578 135 048 091 1534 101 031 702 076 1 3

12715148 82094686 9.0B-08 8416 075 1 040 1255  -085 1 1308 “117 024 0.96 1577 177 008 068 1547 192 0.06 710 085 1 2019 -018 086 096 3

152522833 82098359 8478 083 1 003 1254 109 098 1300 139 016 088 1582 ~0.76 045 1 1547 099 0.32 710 089 1 2085  -048 063 078 ®

152522840 82123066 2368 4.89 9.9E-07 6404 0.65 1 0.18 1256 1.12 0.26 0.98 1308 1.32 0.19 0.91 1582 ~0.74 0.46 1 1548 ~1.08 0.28 710 0.89 1 §-

1513233504 82142482 2367 226 002405 6405 1 008 1256 -005 096 1 1310 173 008 067 1581 ~0.65 051 1 1548 -084  0.40 710 066 1 3

152888018 82145941 2368  4.08  45E-05 6399 095 015 1256  -106 029 098 1306 11 027 097 1579 ~1.55 012 081 1548  -154 012 O 710 054 1 o

12371364 82151525 2368 143 015 6403 098 058 1256 323 0001 002 1306 —068 049 1 1583 ~0.29 078 1 1548 018 085 1 710 064 1 a

12371367 82163042 2367 240 002 6397 1 125 010 092 1 1303 ~018 086 1 1581 —121 023 096 1547 -007 095 1 710 073 1 8

152189972 82169314 2369 0.94 0.35 6406 0.89 1255 1.67 0.10 0.73 1310 —0.08 0.94 1 1583 -0.20 0.84 1 1548 0.21 0.83 1 710 0.32 0.99 E’p’

1817235252 82180688 0.20 5096 1 —0.50 0.62 1 1585 ~1.78 0.08 6 1545 ~0.02 0.99 1 710 0.21 0.95 o

1517809157 82192478 2364  —196  0.05 6402 1 0.00 —068 049 1 1309 —068 049 1 1581 0.86 039 1 1547 054 059 1 710 055 1 S

152107828 82200320 2369 —~4.60  42E-06 6405 1 0.00 ~056 058 1 1307 ~104 030 098 1584 114 025 097 1548 118 024 097 710 071 1

1510054694 82201812 2367 191  0.06 6406 019 000 172 009 071 1310 113 026 097 1583 0.70 048 1 1547 048 063 1 710 036 1

1s10487645 82203942 2369 155 012 6405 086 000 1256  -112 026 097 1306 041 068 1 1585 ~101 031 099 1548 —116 025 097 710 034 1

159690648 82205975 2369 1.74 0.08 6409 0.09 0.73 0.00 1256 -1.22 0.22 0.95 1310 0.43 0.67 1 1585 ~1.13 0.26 0.97 1548 —1.47 0.14 0.86 710 0.39 1

1517235831 82206612 2364  —103  0.30 6403 080 1 000 1255 017 087 1 1307 036 072 1 1584 —143 015 087 1548 -004 097 1 709 023 0.96

156050723 82206991 2368 311  0.00189 6402 022 096 000 1255 002 098 1 1308 ~108 028 098 1582 —138 017 090 1547  -012 090 1 710 063 1

157799260 82208167 2369 430  17E-05 6407 054 1 000 1256 019 085 1 1309 “120 023 0.95 1584 0.33 074 1 1548 056 058 1 710 073 1

1s12660254 82217749 2368 250 001 6406 007 063 004 1256 -247 003 035 1308 ~015 088 1 1585 ~0.98 033 099 1547  —040 069 1 710 022 095

Abbreviations: N =total sample size for an analysis, Z =logistic regression beta divided by its standard error, P=asymptotic P-value from Wald y*-test (1 d.f.) uncorrected for multiple comparisons, P_corr = empirical P-value from accounting for

multiple comparisons and LD structure (50K permutations), and /A2 =%, an index of heterogeneity of logistic regression parameter estimates.
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unbiased: the platform may have had inadequate
coverage in an etiologically important region of the
genome, SNPs are only one type of genetic variation,
and important non-SNP genetic variation might not
have been sufficiently well captured. (3) There was an
imbalance in the proportion of men in cases and
controls. Although it is unclear whether and how this
might bias the results, it may have lead to some degree
of bias. (d) Finally, GWASs are predicated upon the
crucial assumption that the predominant diagnostic
criteria are valid with respect to the fundamental
architecture of the disorder.

Conclusions

We describe here a large effort to identify DNA
sequence variation fundamental to MDD. Although
our initial GWAS results for the PCLO region were
intriguing, this highly plausible hypothesis did not
find support in a large-scale replication attempt. Our
hypothesis about a function of genetic variation in
PCLO for MDD in population but not clinical settings
emphasizes the importance of knowing the epide-
miological sampling frame for a study. Finally, we
hope that the model we used in this study—a
cooperative international effort—will be adopted by
groups studying other psychiatric disorders in order
to maximize progress.
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