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INTRODUCTION

Developmental behavior genetics is concerned with the diverse ways in
which genetic and environmental processes are involved in changes as
well as continuity in development (Plomin, 1986; DeFries & Fulker,
1986). During ontogenesis, observed (phenotypic) change of a quan-
titative character may be due to distinct subsets of genes turning on and
off, whereas continuity, on the other hand, may be caused by stable
environmental causes. In contrast to the popular point of view, then,
genetically determined characters are not always stable, nor are lon-
gitudinally stable characters always due to hereditary influences. Only
through carefully designed longitudinal investigation of phenotypic
changes in genetically related individuals can the dynamic patterns of
genetic and environmental influences be disentangled.

In the following we shall mainly be concerned with a particular type
of genetic model for the analysis of longitudinal phenotypic data,
namely the simplex model (Joreskog, 1970). The genetic simplex model
is a genuine time series model and therefore can explain the characteris-
tic time-dependent patternings of serial correlation (autocorrelation) as
observed in longitudinal studies. It was already shown by Cronbach
(1967) that common factor analysis of autocorrelation matrices will
yield spurious, ie. invalid, results. Consequently, recent efforts in the
genetic modeling of longitudinal data have put particular emphasis on
the elaboration of simplex models in this context (Boomsma &
Molenaar, 19874; Eaves, Hewitt & Heath, 1988).

Presently, we will introduce two important generalizations of the
genetic simplex model. Firstly, we will consider the estimation of latent
time-dependent profiles of genetic and environmental influences for
each individual subject. Behavior geneticists never considered the
genetic and environmental scores of single subjects. Yet in a
mathematical-statistical sense, genetic single-subject scores are similar
to factor scores and therefore can be obtained by means of standard
techniques for the estimation of factor scores. This approach would
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seem particularly worthwhile for genetic research into deviances and the
consequent possibilities of carrying out preventive interventions (cf.
Mednick et al., 1983). In fact, Boomsma, Molenaar & Orlebeke (in
press) show that for two subjects with the same phenotypic pattern of
high blood pressure, the high blood-pressure of one subject is associated
with a high genetic score, whereas the blood pressure of the other
subject is associated with a high environmental score. Given such
information, any interventions aimed at normalizing blood pressure
could be entirely different for each of these subjects. We will show that
the estimation of single-subject scores can be extended to the genetic
simplex model, thus yielding longitudinal trajectories of intraindividual
variation of genetic and environmental scores. This will be shown for
the most difficult case in which only univariate phenotypic measureme-
nts are available at each time point. Not only is this the more relevant
case from the application-oriented point of view, but its success will
guarantee the success of analogous multivariate cases because the
availability of multivariate phenotypic measurements at each time point
will always yield much better conditioned estimates of the latent
time-dependent profiles concerned.

Secondly, the simplex model will be generalized to include latent
genetic and environmental trends. Behavior geneticists do not usually
consider the role of genetic and environmental influences on both the
stability and change of individual differences as well as the species-
specific developmental function or average growth curve. Yet, these two
aspects of longitudinal data are complementary and not necessarily
independent in understanding development. This approach would seem
particularly useful for genetic analyses of unstandardized longitudinal
data pertaining to, for example biological or ability development. In
particular when multivariate phenotypic measurements are available at
each time point, this combined analysis of interindividual and intrain-
dividual changes in the means and variation of genetic and environmen-
tal scores can yield important explanatory evidence concerning the
maturational and learning processes underlying developmental trait
patterns (Baltes, personal communication; see Baltes & Nesselroade,
1973). For the same reasons alluded to earlier, we will show
that the simplex model for univariate phenotypic measurements can
be reliably generalized to include latent genetic and environmental
trends.

In the following, the validity of both the estimation of individual
genetic and environmental profiles as well as the analysis of the genetic
simplex model with structured means will be shown by means of
simulation studies. In this way one can directly compare the results
obtained with a finite sample of longitudinal data and the true model
used in the simulation of the data. In the closing section, we will present
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the results of an illustrative application of the genetic simplex model,
including the proposed generalizations, to real data.

THE GENETIC SIMPLEX

In this section we will discuss the basic genetic simplex model for
univariate repeated measurements in a heuristic, application-oriented
way. After the presentation of the defining equations, the genetic
simplex model for monozygotic (MZ) and dizygotic (DZ) twin data will
be reformulated as a particular multigroup LISREL model (see [6reskog
& Sérbom, 1986). As the LISREL program is now widely available, this
will facilitate regular applications of the proposed approaches. For ease
of presentation, several simplifying assumptions will be made that
enable concentration on the main issues. Specifically, interactions and
covariances between genetic and environmental influences are assumed
to be absent, as are interactions between alleles at loci (i.e., no
genetic dominance effects) and interactions between loci (Le., no
epistasis). In addition, it is assumed that assortative mating does not
occur, while only one particular type of environmental influences will
be considered, namely those influences that are not shared by members
of a family. These assumptions do not imply that the effects concerned
cannot be detected or modeled: the analysis of genotype—environment
interactions and correlations when environmental measures are available
is presented in, for example, Plomin, DeFries & Fulker (1988), the
application of nonlinear factor analysis to genotype—environment in-
teraction is discussed in Molenaar & Boomsma (1987a) and Molenaar,
Boomsma, Neeleman & Dolan (in press), a theoretical model of
assortative mating and cultural transmission is given in Fulker (1988),
while shared environmental influences and dominance can straightfor-
wardly be included in the basic genetic model. Only some of the effects
(e.g., epistasis) may be difficult to quantify in human research (Eaves,
1977) and represent cases where theory outruns the available data (Eaves
and Young, 1981).

Before presenting our basic model we will briefly discuss its
underlying assumptions. The genetic simplex model is a particular
instance of the general covariance structure model (Jéreskog & Sérbom,
1986) and therefore obeys the same assumptions as the latter model.
That is, for maximum likelihood (ML) estimation to apply it is assumed
that the vector of repeated phenotypic observations has a multivariate
normal distribution. Browne & Shapiro (1988) show that ML estimation
in covariance structure models is quite robust against departures from
multivariate normality. A similar result regarding the robustness of ML
estimation in structural models of both covariances and means has been
obtained by Gourieroux, Monfort & Trognon (1984): if the distribution
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of the observed phenotypes belongs to the general class of linear
exponential distributions and if the model for the means is correctly
specified, then ML estimates are consistent and asymptotically normally
distributed. The latter result bears on the genetic simplex model
including latent genetic and environmental trends.

Another issue concerns the number of MZ or DZ twin pairs, or more
generally the number of pedigrees, which is required. The minimum
number of pedigrees is directly related to the number of repeated
phenotypic measurements. If the number of repeated measurements
increases, the dimension of the estimated matrices of mean cross-
products (see below) also increases. In order to guarantee the required
positive-definiteness of the latter matrices, the number of pedigrees then
also has to increase to a value that is strictly larger than the number of
repeated measurements. Specifically, if we have 7" univariate phenotypic
measurements then the number of MZ twin pairs and the number of DZ
twin pairs each have to be larger than 7.

Turning to our basic model, if in a longitudinal design a univariate
phenotype P is observed at t=1,...,T time points, the following
dynamic genetic model can be considered:

Pity=G@t)+E(@)+e(), t=1,...,T, (1)

where P(t), G(t) and E(t) represent phenotypic, genetic and (non-
shared) environmental time series, respectively, while e(t) denotes a
residual series. An advantageous parametric time series model for the
genetic and environmental influences is then given by a first-order
autoregression:

G(t) = Bc(t)G(t — 1) + La(t)- (2)
E(t) = Pe(t)E( — 1) + Lx(2). (3)

The autoregressive coefficient B(t) (similar remarks apply to Bg(t)) is a
measure of the amount of genetic variation at time point £ — 1 that is
transmitted to time point ¢ and therefore is associated with the stability
(cf. Rudinger, Andres and Rietz, Chapter 13 of this volume) or, stated
otherwise, the memory of the genetic process between t —1 and t. The
so-called innovation [g(t) (similar remarks apply to {g(t)) denotes the
effects of new genes turned on at time point ¢ and will therefore lower
the stability of the genetic process between £ —1 and ¢.

Identification of the genetic simplex model defined by equations
(1)=(3) requires data from genetically related individuals, such as twins.
The genetic relations between family members provide information with
respect to the latent factor series G(t) and E(t). In particular,
monozygotic (MZ) twin pairs have all their genetic material in common
and hence cor[G,(t), Go(t)] = 1. The instantaneous genetic correlation
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for dizygotic (DZ) twins is 0.5 on average, 1.e. cor[G,(t), G4(¢)] = 0.5, as
is the genetic correlation among ordinary siblings. This information can
be used to arrive at an identified model with more than one latent
process, even if the observed phenotypic time series is univariate.
Specifically, longitudinal data from twins open up the possibility of
decomposing a univariate phenotypic series into a genetic and an
environmental series which may each behave quite differently in time.
This may not always be immediately evident from the observed series
(cf. Heath, Jardine, Eaves & Martin, 1988). For example, variance due
to G(t) may increase over time, while variance due to E(t) may
decrease. Increased genetic variance could be due to the amplification of
existing genetic differences, as expressed by large values of S4(t), or to
new genetic variance coming into play (new genes ‘turned on’), as
expressed by large values of Zc(t).

We will now reformulate the genetic simplex model defined by
equations (1)—(3) as a LISREL model, while restricting attention to
longitudinal MZ and DZ twin data. Furthermore, it is assumed for ease
of presentation that the residual series e(t) in equation (1) is absent.
First we introduce the (7'X T) diagonal matrices ¥ and W with
time-dependent variances Wq(t, t) = var[{s(t)] and Wg(t, t) = var[Lg(t)]
as the tth diagonal elements, respectively (¢t =1, ..., T'). Notice that the
first diagonal elements of W (similar remarks apply to Wg) is special in
that no autoregression for G(1) can be formulated at time point 1.
Consequently, at ¢t =1 equation (2) becomes simply G(1)= {g(1), and
W(1, 1) = var[{(1)] now denotes the genetic variance at time point 1.
Only for t>1 do the diagonal elements of Wg(t, ¢t) denote the
variances of the genetic innovations. Next, the 7 X T matrices BE and
B are introduced. For instance, BE has the following pattern:

0 sty 0 0
Bo O ... 0 0
¢ 0
5 : 0
0 0 ... 0 B(T) 0
where B¢(2), ..., Bg(T) are the autoregressive coefficients in equation

(2) BE has the same pattern. Reformulation of the genetic simplex model
for MZ and DZ twin pairs is now accomplished by specification of the
expected structure of ‘the (7' X T) matrices of mean cross-products
between and within these twin pairs. Let Zyzp and Zyzyw denote the
expected structure of the matrices of mean cross-products between and
within MZ pairs, respectively. Before specifying the expected structure
concerned, we will first consider their respective estimates Syzp and
Smzm in order to elucidate the nature of these matrices of mean
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cross-products. For example, Syzy is obtained as the hypothesis matrix
from a one-way multivariate analysis of variance, where the factor has
as many levels as there are MZ twin pairs and where the (T X 1) vector
P=[(P(1),...,P(T)]' derived from equation (1) is the dependent
variable (the prime ' denotes the transpose). Syzn is obtained as the
error matrix from the same multivariate analysis of variance. Accor-
dingly, the longitudinal data from the MZ and DZ twin groups are
summarized in the four matrices Syzp, Smzws Spzs and Spzyw. The
expected structure of these matrices for the genetic simplex model is:

Zmze = AmzsBcWeBoAmzs + BrWeBy
il B.W,.BL
2pzs = ApzeBcWeBoApzs + BeWeBr
2pzw = ApzwBcWeBcApzw + BgWeBi

(4)

In these expressions, Bg= (I —B%)™', where I denotes the (T'x T)
unity matrix. The general structure of the above expectations is firmly
based on the genetical foundation underlying the biometric model of
continuous variation (Mather & Jinks, 1977). In particular, the (T x T)
matrices Ayzp, Apzs and Apgzy are diagonal matrices with fixed
loadings derived from the biometrical model: V2 for Ayzg, V1.5 for
Apzp, and V0.5 for Apzy. In view of the absence of genetic influences
within MZ twins, Ayzy 1S a zero matrix.

The four matrix equations given in (4) are fitted to the associated
estimates of the matrices of mean cross-products using a four-group
LISREL design with parameters to be estimated invariant across groups
(for further details, see Boomsma & Molenaar, 19874). In addition to
the estimates of all the parameters in Wg, BE, Wi and B, the standard
LISREL solution also gives the matrices of genetic and environmental
correlations between time points. Moreover, LISREL supplies the
so-called factor scores regression matrix which can be used to estimate
the latent G(z) and E(t) time series for each individual subject. In the
next section we will discuss a simulation study of the validity of
individual G(¢) and E(t) trajectories thus obtained.

A SIMULATION STUDY OF INDIVIDUAL
GENETIC PROFILES

In order to study the validity and reliability of estimates of the G(t) and
E(t) time series for individual subjects, the genetic simplex model will
be applied to four sets of simulated data. Each of the factor scores
regression matrices thus obtained will be applied to the corresponding
data set and the estimated individual G(t) and E(t) trajectories will then
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be compared with the associated ‘true’ trajectories used in the simula-
tion. Each longitudinal data set comprises univariate phenotypic ob-
servations at T =10 time points for N=100MZ twin pairs and
N =100DZ twin pairs. At each time point the variance of G(t) as well
as that of E(t) was fixed at var[G(¢)] = var[E(t)] =100, whence the
heritability at each point equals A*(t)=0.5, t =1, ..., T. The four data
sets are further characterized as follows:
1. Bs(t)=0 and Bg(t) =0; consequently, the phenotypic series
P(t) lacks autocorrelation.
2. Bs(t)=0.8 and PBg(t)=0; the genetic series G(t) is autocor-
related, whereas E(¢) is not autocorrelated.
3. Ba(t)=0 and Bg(t)=0.8; G(z) is not autocorrelated whereas
E(t) 1s autocorrelated.
4. Bs(t)=0.8 and Pe(t)=0.8; both G(t) and E(t) are
autocorrelated.
A detailed description of the simulation algorithm is given in Molenaar
& Boomsma (19875).

The fit of the genetic simplex model to each of the longitudinal data
sets is good: chi-squared goodness-of-fit is 190.37 (p =0.320) for data
set 1, 171.07 (p = 0.709) for data set 2, 187.70 (p = 0.370) for data set 3,
and 182.41 (p = 0.477) for data set 4 (d.f. =182 in each case). As the
combination of an autocorrelated series and an uncorrelated series yields
a phenotypic series that has an intricate pattern of autocorrelation (cf.
Granger & Morris, 1976), and because this particular combination has
been the subject of many theoretical approaches in mathematical signal
analysis, we will present more detailed results for data set 2. Table
12.1(a) shows the estimates of Bq(t), Pr(t), Wa(t, t) and We(t, t) for
each time point . Notice that the true values are: Bg(t) = 0.8, B(t) =0,
We(1,1)=100 at t =1, We(t, t)=36 for £>1, and We(r, t) =100 for
each t. The associated standard errors are, on the average 0.117 for
Bal(t), 0.72 for Bg(t), 12.143 for W(t, t) and 11.925 for Wz, t).

Using the factor scores regression matrices for data set 2, the G(¢) and
E(t) time series for each of the 400 individuals subjects in this sample
can be estimated and compared with the true individual series used in
the simulation. We can now answer several important questions. Firstly,
what is the reliability of the estimates of individual G(¢) and E(¢) series?
The answer can be obtained from Table 12.1(b) which shows the
standard errors of the estimated G(z) and E(z) series for MZ and DZ
twins. Remember that the variance of the true G(t) and E(z) scores is:
var[G(t)] = var[E(t)] = 100. As the standard error of estimated G(z)
scores of MZ twins at each time point is about 5, this implies that G(z)
scores which differ by at least 1 standard deviation in the original metric
can be reliably distinguished at usual significance levels. Similar remarks
apply to the reliability of the E(t) scores of the MZ twins as well as the
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scores of DZ twins (the standard errors with the DZ twins are only
slightly larger). Secondly, we can answer the question whether esti-
mated G(t) and E(t) scores are valid indicators of the associated true
scores. The answer can be obtained from Table 12.1(c) which shows for
each time point # the correlation between estimated and true G(t) scores
as well as E(t) scores for both MZ and DZ twins. It turns out that these
correlations all lie in the neighbourhood of 0.8 and therefore estimated
scores can be considered to yield valid indications of the corresponding
true scores at each time point. Thirdly, we can answer the question
whether the dynamic structure of the true G(¢) and E(t) series is
faithfully reflected by the estimated individual trajectories. The answer
to this question can be obtained from Table 12.1(d) which shows the
autocorrelation between times 1 and 2, times 2 and 3, etc., of the
estimated individual G(t) and E(t) trajectories of MZ and DZ twins.
The true autocorrelation between these pairs of neighboring time points
is 0.8 for the G(z) series and 0 for the E(t) series. Table 12.1(d) shows
that this dynamic structure is indeed recovered by the estimated
mdividual trajectories. Finally, we would like to know the cross-
correlation between estimated G(¢) and E(t) scores. According to the
genetic simplex model this cross-correlation is expected to be zero. On
the other hand, however, each univariate P(¢) series is decomposed into
two trajectories: an estimated G(t) and E(¢) series. Consequently, the
effective cross-correlation between the latter series will deviate from
zero. Indeed, it is found that the cross-correlation between estimated
G(2) and E(t) series, averaged over 10 time points, is 0.35 for MZ twins
and 0.58 for DZ twins.

In conclusion, the results of our simulation study show that on the
basis of the genetic simplex model for univariate phenotypic time series,
the latent genetic and environmental series of each individual subject can
be reliably and validly estimated. The detailed results for data sets 1, 3
and 4 are similar to the results presented above for data set 2. The
genetic simplex model has been fitted by means of the LISREL
program, which also yields the factor scores regression matrices used in
the estimation of the individual genetic and environmental trajectories.
Hence, the proposed approach can be readily implemented for the kinds
of longitudinal research purposes alluded to earlier.

BEHAVIOR GENETIC SIMPLEX WITH
STRUCTURED MEANS

So far the focus has been on detecting the genetic and environmental
influences on the stability and change of inter-individual differences
during development. The role of genetic and environmental influences
on the species-specific function or average growth curve does not
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Table 12.1. Results with data set 2

(a) Parameter estimates

t(ime): 1 2 3 4 5 6 7 8 9 10
B(2) 0799 0879 0778 0843 0784 0839 0879 0771 0.727
Be(t) 0.040 0034 0079 0079 0.096 0157 0.090 —0.104 0.099
Wo(s,t) 99.89 33.22  40.16 3372 2559 3036 53.83 3112 1774 3152

We(t,t) 102.0 86.28 104.42 98.89 95.76 113.1 92.4 114.1 107.3 106.9

(b) Standard errors of estimated G(t) and E(t)

t(ime): 1 2 3 4 6 7 8 9 10
MZ 5.81 4.96 5.30 509 488 5.09 5.48 5.39 4.48 4.92
DZ 6.86 5.98 6.32 6.02 5.77 591 6.53 6.42 5.31 5.64
{c} MZ and DZ correlations true-estimated
t(ime): 1 2 3 4 5 6 7 8 9 10
MZ
G(t) 0.783 0.879 0.851 0.847 0.868 0.858 0.848 0.832 0.815 0.822
E(t) 0.783 0.826  0.852 0.837 0.831 0.857 0.838 0.835 0.854 0.798
DZ

G(t) 0.759 0.813  0.832 0.813 0.834 0.780 0.807 0.813 0.789 0.776

E(t)

0.734 0.747  0.809 0.793 0.780 0.777 0806 0835 0753 0.781

(d) Recovered lag | antacorrelations of G(t) and E(t)

lag: t1—12 t2—t3 t3—t4 t4—1t5 t5—1t6 t6—1t7 t7—1t8 t8—¢9 t9—1t10
MZ twins

Gt} 0.763 0.788  0.8B28 0.858 0.845 0.730 0.855 0.894 0.831
E(t) —0.021 0.002  0.088 0.051 0.131 0.176 0.153 —0.140 0.073
DZ twins

G(t) 0.755 0.788 0.832 0.86¢4 0.85% 0.729  0.838 0.886 0.835
E(t) 0.089 —0.013 0.056 0.116 0.048 0206 0.039 -—0.109 0.119

usually feature in behavior genetic studies of development (see
McArdle, 1986, for one attempt to analyze such influences by means of
a common-factor model). These two aspects of longitudinal data,
however, are complementary and not necessarily independent in un-
derstanding development (McCall, 1981). Indeed, Thomas (1980) has
noted strikingly large (usually positive) correlations between repeatedly
measured means and standard deviations indicating that changes in one
are usually accompanied by similar changes in the other. These
correlations, which are observed for a variety of phys:cal and psycholo-
gical variables, encourage the idea that means and variances may in some
fashion be related.
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In the present section an extension of the genetic simplex model is
presented to analyze phenotypic means and covariance structure simul-
taneously within the context of developmental behavior genetics. The
extended simplex is suggested as a way to examine the relationship
between means and covariance structure by modeling these with a
common set of parameters. This implies that the objective of the
simultaneous analysis of means and covariance structure is to test the
hypothesis that they can be attributed to a common underlying process.
The extension of the double simplex can be detailed briefly as follows:
let E[P(t)] denote the expectation of the phenotypic mean at occasion ¢
(t=1 to T) which is, as a basic assumption of the twin method,
assumed to be identical for MZ and DZ twins (Mather & Jinks, 1977).
E[P(r)] at occasion t is the sum of the latent genetic and environmental
means:

E[P(t)]=E[G@t)] + E[E(t)], (t=1toT). (5)

The latent means at each occasion ¢ (¢ # 1) are in part attributable to the
immediately preceding occasion ¢ — 1 and in part independent thereof:

E[G(t)] = Ba(t)E[G(t —1)] + G5 (t=21t0 T) (6)
E[E@)]=BudE[EG¢ — 1]+ Es (t=210 T). 7)

The autoregressive coefficients fg(¢) and Bg(t) now account for both
the stability of individual differences and the continuity in the mean.
The terms G, and E, represent a time-invariant (hence unsubscripted)
independent input at each occasion analogous to random innovation
terms § (see equations (2) and (3)). The latent means (E[G(1)], E[E(1)])
are estimated independently at the start of the time series. The addition
of structured means does not alter the simplex model for the covariance
structure. However, this extension may result in a rejection of the
model whenever the continuity in the mean and the stability of
individual differences can not both be explained by the common set of
autoregressive coefficients.

It can be shown (cf. Dolan, Molenaar & Boomsma, submitted) that
the identification of the parameters associated with the mean trend,
E[G(1)], E[EQ1)], Ga and E,, requires longitudinal data for at least at
T =5 time points. That is, T must be greater than the number of
parameters associated with the means.

Specification as a LISREL VI model

In specifying the extended simplex model as a LISREL model the
following has to be taken into account. Firstly we require a method to
estimate factor means. Usually this is accomplished by introducing a
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unit variable and a dummy factor. The parameters of the latent means
are then estimated by regressing the latent factors on this dummy factor.
As can be seen in Figure 12.1, the unit variable loads on the dummy
factor with a fixed loading equal to 1.0 so that the dummy factor &, has
a mean equal to 1.0. The latent means at the first occasion and the
subsequent means innovations are estimated by regressing the first
latent variables G(1) and E(1) and the subsequent G(t) and E(t) on the
dummy factor.

Secondly, the data have to be summarized in a fashion that retains the
phenotypic means. Generally simultaneous structural equation model-
ing of means and covariance structure is carried out over the so-called
augmented (AM) moment matrix, ie. the matrix of the uncentered
moments when a variable equaling one for every sample unit has been
added as the last variable (see Joreskog & Sérbom, 1986). The addition
of the phenotypic means to the cross-product matrices is done as
follows. Let Sy(T X T) represent the between cross-product matrix and
let m(T % 1) be the vector of phenotypic means. Then the augmented
matrix, Sam(7T + 1, T + 1), is:

g = [(SB+mm’) m]
= m' 1.0

where 1.0 is the variance of the unit variable which will be specified to
load with a fixed loading of 1.0 on the dummy factor. Although there
are two (between and within) input matrices for MZ and DZ twins, it is
sufficient to add the means to just one matrix associated with each
zygosity. As the factor loadings of the phenotypic variables on the
genetic series are zero in the MZ within-matrix, the means are added to
the between-matrices.

A complicating aspect of the genetic simplex in the present context is
the presence of the fixed genetic weights in the matrices of factor
loadings (see equation (4)). Because these weights are different for each
group, it is necessary to introduce a second dummy factor to com-
pensate for the effect of these weights on the estimation of the genetic
mean trend. Figure 12.1 shows how the presence of the genetic weights
(w) as fixed loadings would weight the contributions of G, at each
occasion. As these weights differ across groups it is not possible to
constrain the estimates of the latent mean parameters across groups in
accordance with the assumption of equal MZ and DZ means. The
second dummy factor, denoted D in Figure 12.1, allows one to weigh
the latent means parameters with the inverse of the genetic weight in
each group, thus canceling out the effect of the genetic weights.

The phenotypic mean at the first occasion is then modeled as:

E[P(1)]=wE[G(1)] + E[E(1)], (8)
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Figure 12.1. The genetic simplex with structured means. yg is the estimate of
E[G(1)]. y& is the estimate of E[E(1)]. G, and E, are the time invariant means
1nnovations terms.

Ey A a

where

E[G(1)]= ya(l/w) )
and

E[E(1)] = 7&. (10)
The subsequent phenotypic means are modeled as:

E[P(t)]=wE[G()]+ E[E(t)] t=2t0 T), (11)
where

E[G()] = (Bc()E[G(t — )]+ Ga)1/w) (12)
and

E[E()]= Be()E[E(t — 1)] + E.a. (13)

The terms G, and E, are the fixed innovation terms.

Ilustration

The extended double simplex model will be demonstrated with simu-
lated data. To this end 7" = 6 repeated measures were simulated for 100
MZ and 100 DZ twin pairs according to the model described above with
an additive genetic and a (specific or non-shared) environmental series.
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Table 12.2. Analysis of cross-product structure with structured means

t:2 3 4 5 6

True 0.9 0.8 0.5 0.4 0.3

Est.  0.920(0.038) 0.810(0.054) 0.403(0.073)  0.275(0.087)  0.261(0.092)

Belt)

True 0.5 0.5 0.5 0.5 0.5

Est.  0.550(0.082) 0.552(0.071) 0.696(0.095)  0.634(0.078)  0.584(0.058)
E[G(1)] Ga E[EQ)] E,

True 25 21 35 12

Est.  22.89(10.5) 19.99(5.2) 36.08(10.6) 10.82(7.3)
¥3(71) = 79.25(p = 0.23)

The true parameter values pertaining to the means structure are given in
Table 12.2. The simultaneous analysis of means and covariance structure
yielded a chi-square value of 79.25 (d.f. =71, p =0.21). The parameter
estimates and standard errors are given in Table 12.2. It can be seen that
the latent means at the first occasion and the fixed means innovation
terms are correctly recovered.

Using the factor scores regression matrices associated with the
augmented moment matrices for MZ and DZ twins, it is possible to
estimate the individual G(¢) and E(t) trajectories. Notice that, for
example, the estimated G(¢) trajectory for each single subject consists of
a stochastic (autocorrelated) series, specific to this subject, superim-
posed on the genetic mean trend common to all subjects. Hence it is
possible to estimate the mean genetic and environmental trends by
averaging the respective individual trajectories of all twins. Figure 12.2
shows the true and estimated mean genetic and environmental trends
thus obtained. It can be seen that the estimated mean trends closely
correspond to the true trends used in the simulation.

To demonstrate briefly the discriminatory ability of the model with
regard to the relationship between the means and cross-product
structure, the analysis was repeated after a constant of 10 had been
alternately added to and subtracted from phenotypic means at suc-
cessive time points. The chi-square value increased considerably to
112.29 which is, given 71 degrees of freedom, significant (p < 0.01).
This result indicates that the extended simplex model adequately
discriminates between means structures which can and cannot be
explained by the same parameters as the cross-product structure.
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Figure 12.2. Top: the true and estimated mean trend of the genetic series.
Bottom: the true and estimated mean trend of the environmental series.

AN APPLICATION TO REAL DATA

In this section we will present some results of an application of the
genetic simplex model, including the extensions described earlier, to
part of a longitudinal data set provided by Dr Siv Fischbein of the
Stockholm Institute of Education. The analysis of the complete data set,
mnvolving longitudinal measurements of height and weight of MZ and
DZ twins of both sexes at 13 equidistant time points covering seven
years, will be presented elsewhere (Fischbein, Dolan, Molenaar &



264 P. MOLENAAR, D. BOOMSMA, C. DOLAN

Boomsma, in preparation). Here, we will restrict attention to the weight
data of girls only, at T =6 time points covering three years. At t=1,
the mean age of the girls is 11.5 years; at ¢ = 6 the mean age is 14 years
(standard deviation (s.d.) =0.37). The means and variances of weight at
each time point for MZ (32 pairs) and DZ (100 pairs) twins are
presented in Table 12.3(a). Formal tests of the equality of variances
between MZ and DZ groups at each time point are not significant at
alpha = 0.01.

Firstly, the genetic simplex model is fitted to the matrices of mean
cross-products (see equation (4)), thus discarding information concern-
ing the phenotypic mean trend. It turns out that the model fits well
(chi-square = 65.97, d.f. =62, p = 0.34). The parameter estimates in this
model, presented in Table 12.3(b), indicate the presence of an in-
variantly high transmission of genetic and environmental information
between consecutive time points: all estimates of the autoregressive
coefficients lie in the neighbourhood of 1.0. Furthermore, the estimates
of the variances of genetic and environmental innovations (reflecting the
inception of the effects of new genes or influences) all differ significantly
from zero and do not show a decreasing trend with time. Taken
together, the parameter estimates in Table 12.3 imply that (a) the
stability of intraindividual differences in weight is height, (b) the
variance of the genetic series is a nonstationary, almost linearly
increasing function of time, (c) the variance of the environmental series
shows the same nonstationary pattern as the genetic series, but is much
smaller, hence (d) the heritability is high and almost constant across
time points. Interestingly, both the G(t) and the E(t) series have the
characteristic of Brownian motion, a well-known physical process (cf.
Cox & Miller, 1965) that could be employed to interpret further the
dynamic influences at hand.

To illustrate the estimation of individual latent trajectories in the
genetic simplex model, we selected a single MZ twin pair and estimated
the G(t) and E(t) series for each member of this pair by means of the
factor scores regression matrix. The obtained trajectories, together with
the associated phenotypic series of each girl, are shown in Figure 12.3.
It can be seen that for one girl the environmental influences have an
augmenting effect that decreases with time, whereas for the other girl
the environmental influences have a suppressing effect that also decre-
ases with time.

Secondly, the extended genetic simplex is fitted to the augmented
moment matrices, thus including information concerning the phe-
notypic mean trend. The parameter estimates thus obtained for the
structured means model are presented in Table 12.4. Estimates of Bg(t),
Bx(t), var[Ea(t)] and var[Eg(z)] are almost equal to those presented in
Table 12.3. If the complete structured means model is fitted, including
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Table 12.3(a). Means and variances of the monozygotic and dizygotic
twin samples

t 1 2 3 4 5 6

Mean of age (in years) at time of measurement (s.d. = 0.37)

11.5 12.0 12.5 13 13.5 14
Covariance matrix DZ twins (N of pairs = 50)

24.27

24.68 26.61

26.25 2813 3296

26.17 28.20 32.17 34.03

26.17  28.18 3255 33.69 36.13

2593 27.62 3198 33.25 3542 3752

Mean: 35.4 37.6 40.3 42.6 45.2 474
Covariance matriz MZ twins (N of pairs = 32)

36.77

38.80 42,74

39.58 43.16  46.52

40.32 4430 4838  52.42

40.75 4478 4878 53.12  56.14

40.09 43.63 4699  50.81 53.77  54.35
Mean: 364 38.7 41.4 43.7 46.0 48.1

Table 12.3(b). Results with mean cross-products of weight data (standard errors
in parentheses)

t: 2 3 4 5 6

Antoregressive coefficients
Bo(t) 1.05(0.027) 1.04(0.033) 1.02(0.028) 1.02(0.027) 0.99(C.027)
Belt) 0.91(0.053) 1.05(0.090) 0.82(0.074) 0.82(0.073) 0.99(0.090)

Variances of G(1) and E(1) and of innovations at t > 1
var[G(1)]  23.41(3.46)
var[E(1)] 3.44(0.82)

var[{g(t)]  1.33(0.23) 2.27(0.44)  1.36(0.35)  1.80(0.37)  1.97(0.41)
var[£g(e)]  0.33(0.08) 0.93(0.22)  0.93(0.21) 0.72{0.17)  0.93(0.22)

Overall goodness-of -fit
73(62) = 65.97 (p = 0.341)

Derived statistics at each time

var[G()]  23.41 27.59 32.12 35.04 38.26 38.49
var[E(t)] 3.44 3.20 4,48 401 3.43 430
b(r) 0.87 0.89 0.87 0.89 0.91 0.89
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Figure 12.3. Individual phenotypic, genetic and environmental series of two
monozygotic twins obtained with mean cross-products.

the parameters E[G(1)], Ga, E[E(1)], E, then the fit of the genetic
simplex model thus extended is good: chi-square=67.33, d.f.=71,
p =0.63. It turns out, however, that the estimate of £, and E[E(1)] are
not significant and therefore a restricted model is fitted in which first E,
is fixed at zero. It then appears that the restricted model still fits well
(chi-square = 69.65, d.f.=72, p =0.56), while the estimate of E[E(1)]
still does not differ significantly from zero. Consequently, a second
restriction was introduced by fixing E[E(1)] at zero. Again the fit of this
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Table 12.4. Results with angmented moments of weight data
(standard errors in parentheses)

Model 1 means estimated in E and G series

E[G(1)] = 25.84(7.48) G, =5.59 (2.78)
E[E(1)] = 9.95(7.45) En=—4.064 (2.71)
Chi-square (71) = 67.33 (p = 0.63)

Model 2 means estimated at E(1) and in G series
E[G(1)] = 32.34 (6.23) Ga = 1.68(0.77)
E[E(1)] = 3.45 (6.19) E. = 0.0(0.0)
Chi-square (72) = 69.65 (p =0.56)
Model 3 means estimated in G series
E[G(1)] = 35.76 (1.07)

Chi-square (73) = 69.79 (p = 0.59)

G, = 1.34 (0.507)

model is good: chi-square =69.79, d.f.=73, p =059. In sum, these
results suggest that in the present sample of Swedish twins (a) both the
stability and the change of the interindividual and intraindividual
differences in weight as well as the average growth curve can be
explained by the same simplex model involving genetic and non-shared
environmental influences, while (b) the average growth curve appears to
be solely under genetic control.

Using the factor scores regression matrix, we estimated the individual
G(t) and E(t) trajectories. As was pointed out earlier, it is then possible
to estimate the mean genetic trend by averaging the individual genetic
trajectories of all twins. Figure 12.4 shows the estimated mean genetic
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Figure 12.4. Phenotypic and estimated genetic mean trends.
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trend thus obtained, together with the phenotypic mean trend. This
figure reinforces our conclusion that the average phenotypic growth
curve appears to be solely under genetic control.

To illustrate further the estimation of individual latent trajectories in
the extended simplex model under consideration, we selected the same
MZ twin pair for which the results were shown in Figure 12.3 and again
estimated the G(¢) and E(t) series for each member of this pair. Figure
12.5 shows the effect of including information concerning the
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Figure 12.5. Individual genetic and environmental series of one monozygotic
twin obtained with mean cross-products and augmented moments.
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phenotypic mean trend on these estimates. The first graph of Figure 12.5
is a replica of the G(t) and E(z) series of one of the girls already shown in
Figure 12.3, i.e., as determined on the basis of the covariance structure.
The second graph depicts the estimated G(¢) and E(¢) series of this same
girl, now determined on the basis of both the phenotypic mean trend as
well as the covariance structure. Clearly, the raw longitudinal weight
series of this girl appears to be almost completely due to generic
influences; a conclusion that might be missed if information concerning
mean trends is not considered. Of course, this conclusion can only be
drawn because both interindividual and intraindividual variation as well
as mean growth can be explained by the same genetic simplex model.

DISCUSSION AND CONCLUSION

The genetic simplex model for longitudinal phenotypic data can be
generalized in a number of ways. Firstly, the order of the autoregression
describing G(¢) and/or E(t) may be increased, for instance to accom-
modate the presence of time-dependent oscillations. Secondly, the
random innovations {g(t) and/or Cg(t) can be taken to be autocor-
related, thus leading to a consideration of more involved latent process
models of autoregressive-moving average type. Thirdly, the genetic
time-series model given by equation (1) can be extended by the
inclusion of a common environmental process which is shared by
members of the same family. Fourthly, the simplex model can be
generalized to enable the decomposition of a multivariate phenotypic
series into common and specific genetic and environmental processes. In
a way, however, these generalizations turn out to be straightforward
extensions of the genetic simplex model discussed earlier.

There have been some criticisms of simplex modeling in the recent
literature. Notwithstanding the fundamental critique of applying
common-factor analysis techniques to autocorrelated matrices of lon-
gitudinal data (see Wohlwill, 1973: 270-272), it has been suggested that
both simplex and common-factor models are equivalent models in case
variances and means are included in the analysis or a confirmatory
analysis 1s carried out. A definite refutation of such suggestions,
however, can be given on the basis of the following mathematical-
statistical result: the spectrum of a Toeplitz (autocorrelation) matrix is
continuous, whereas a factor model presupposes a discrete or at least
mixed spectrum (cf. Grenander & Szegd, 1958). This implies, among
other things, that when the number 7 of time points increases, an
increasing number of common factors is needed in order to describe the
autocorrelation structure of a univariate simplex. Cronbach (1967)
already showed that the common factors so obtained are spurious.
Another criticism of simplex modeling has been raised by Rogosa &



270 P. MOLENAAR, D. BOOMSMA, C. DOLAN

Willett (1985), who showed by means of a simulation experiment that a
simplex model may yield a satisfactory fit to a covariance structure
associated with an entirely different (linear random coefficient) growth
model. However, we repeated this simulation experiment and found
that the results of Rogosa & Willett are related to a particular instance
of the linear random coefficient growth model. Specifically, if the
number of time points (T =5 in the original simulation experiment) is
slightly increased (e.g. 7 > 6) then the simplex model no longer fits the
obtained covariance structure. A full discussion of these new results will
be given in a separate publication. It is concluded that the mentioned
criticisms of simplex modeling of longitudinal data do not appear to be
serious. This conclusion is reinforced by the fact that autoregressive
models such as those considered in this chapter occupy a very
prominent place in the mathematical-statistical theory of time-
dependent processes (Hannan & Deistler, 1988).

Whereas the genetic simplex model can be conceived as a parametric
model, there now exist non-parametric approaches to the genetic
analysis of stretches of time-dependent data of arbitrary length (Mole-
naar & Boomsma, 19875,c). In these non-parametric approaches, each
autocorrelated phenotypic series is transformed into a sequence of
uncorrelated variables, either in the time domain (Karhunen—Logve
transformation) or in the frequency domain (Fourier transformation),
thus enabling the application of standard biometrical analysis techniques
to each transformed variable separately. These approaches, called
genetic signal analyses, can lead to interesting applications in, for
example, psychophysiological studies.

The possibility of estimating the time course of G(t) and E(t) for each
individual subject can also lead to interesting applications in genetic
counseling and epidemiology. In particular, this enables one to determ-
ine the impact of genetic and environmental processes on specific
subjects or on groups of subjects who suffer from deviant development.
Estimation of individual G(¢) and E(¢) trajectories is also possible in
genetic signal analysis. Of course, these possibilities may provide
important information concerning the ways in which remedial treatment
is to be carried out.

The inclusion of mean genetic and environmental trend functions in a
single simplex process model for the analysis of phenotypic cross-
products has important theoretical implications. It is now possible to
test whether genetic processes underlying individual differences can also
account for mean phenotypic growth within a particular population. A
sufficient number of constraints has to be imposed on the structured
means model to ensure its identifiability. Here we considered a
constrained means model given by equations (6) and (7) which closely
resembles a first-order autoregression. In contrast, we could have
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derived a means model from theoretical considerations concerning
behavioral growth (Guire & Kowalski, 1979). In general, such theoreti-
cal growth models are nonlinear and can only be identified through the
mmposition of nonlinear constraints. A general LISREL model for the
analysis of structural models with nonlinear constraints is presented in
Boomsma & Molenaar (19875).

In conclusion we have indicated the potential of genetic simplex
models for the analysis of longitudinal data. It can be expected that
regular application of this type of models will lead to significant
progress in the field of developmental behavior genetics.
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