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Cardiovascular neurometrics of the hyperactive child
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Abstract

With the advent of powerful minicomputers, the assessment of hyperactivity
may shift from heuristic evaluations based on psychometric data to neurometric
analyses of the relationship between central and autonomic nervous system
activity and behavior. Neurometrics refers to algorithmic extraction of salient
features of electrophysiological data. A neurometric assessment of hyperactivity
is proposed, based on the extraction of rhythmic features of the heart rate
pattern. Specifically, we will concentrate on spectral measures of respiratory
sinus arrhythmia, i.e. a neurally mediated periodicity associated with
respiration and cognitive processes like attention. The computation of spectral
measures requires a heart rate series that is stationary. Consequently the
algorithm is augmented with suitable tests. It is shown by means of a simple
simulation experiment that the presence of non-stationary mean trends is
harmless. The occurrence of non-stationary autocorrelation is a nuisance,
howieve_:r, and we will discuss a pertinent test based on evolutionary spectral
analysis.

1. Introduction

The concept of the Hyperactive Behavior Syndrome in children has been
introduced in the 1950s (Laufer & Denhoff, 1957). The clinical symptoms
included hyperactive motor behavior, short attention span, variability in
performance, impulsiveness, irritability, explosiveness and poor school-
performance. Although variants of the term "hyperactivity" have been used
throughout the literature, there has been increasing recognition that the
problem these children have, is not well characterized in terms of motor
overactivity. In 1980, the official diagnostic manual of the American Psychiatric
Association DSM 111 adopted a new label "attention deficit disorder” (ADD).
While this new label refers only to attentional problems, research findings
indicate that attentional problems represent one of a constellation “of closely
related deficits.

Historically, the hyperactive syndrome evolved from follow-up of children
with known insults to the CNS. The assumption of underlying organicity is
evidenced by the frequent interchangeable use of the label 'MBD'.
Consequently, ADD/hyperactivity has been conceptualized in terms of brain
function. Moreover, the past decade has shown a rapid rowth of
psychophysiological techniques which have been applied to clinical problems
such as ADD/hyperactivity (Halliday, 1985).

With the advent of powerful and economical minicomputers, many
investigators have turned their attention to the problem of devising methods to
extract and quantify features of diagnostic utility from electrophysiological data.
The most ambitious and consistent approach to this issue has been that of
'neurometrics’ as developed by John (1977) and his associates. Neurometrics is
a technology that is intended to increase the sensitivity of electrophysiclogical
assessment and to extend its utility in the domain of sensory, perceptual, and
cognitive functions. This assessment quantifies features objectively extracted
from the EEG and multimodal ERPs elicited in a variety of standardized test
conditions, and describes brain dysfunctions in terms of statistically significant
deviations from age related normative values (e.g. John, 1877; Pricep, John,
Ahn & Kaye, 1984),

The central idea underlying the neurometric approach is the emphasis on
quantitative evaluation of brain function as opposed to reliance upon qualitative
interpretation of behavioral and psychometric data., The quantitative evaluation
of brain function, however, is not limited to salient features extracted from the
surface EEG or ERPs. In this paper we will present a neurometric approach
based upon quantitative measurement of features extracted from the heart rate
pattern reflecting wvarious aspects of brain function related to attention and
motor behavior.
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1.1. Cardiovascular neurometrics

The prevalence of heart rate in cardiovascular psychophysiology is based upon
the assumption of a relationship between heart rate and the CNS. That is,
heart rate is assumed to index cognitive processes. Before the arrival of
sophisticated measurement equipment and new methodology, heart rate was
viewed as a global measure of arousal or emotion. With the introduction of new
technology, however, the role of monitoring heart rate shifted from a crude
measure of arousal to a sensitive index of cognitive processes.

There are two basic approaches in extracting salient features of heart rate:
(1) description of the directional trend in heart rate (see van der Molen,
Somsen & Orlebeke, 1985, for a review); and (2) description of heart rate
variability, Heart rate variability has been used as an estimate of neural control
over the heart, and thus, indirectly as a measure of CNS integrity (e.g.
Porges, 1986), Heart rate variability has also been related to perceptual-
cognitive performance. Porges and Humphrey‘(TQ"(?), for example, found that
subjects with greater baseline heart rate variability had faster reaction times
and were better able to focus attention.

Heart rate variability represents the sum of many influences and s,
therafore, not the optimal measure of the neural mediation of the heart. One of
the oscillations in the heart rate pattern is associated with respiration (i.e.,
respiratory sinus arrhythmia, RSA). This rhythm is particularly important
because the changing amplitude of RSA parallels psychological constructs such
as attention and vigilance.

71.2. RSA and Hyperactivity

It has been widely accepted that respiration influences phasic modulation of
vagal efferent output to the heart. Research on neural pathways of wvagal
cardio-inhikitory neurons has demonstrated that these neurons show a
respiratory-related pattern of discharge with the primary efferent action on the
heart during expiration (cf. Spyer, 1981). Moreover, it is long known that
exaggerated amplitudes in RSA are associated with high levels of vagal tone and
low levels of motor activity. Porges, assuming a parallel between spontaneous
motor activity and vagal tone, hypothesized that hyperactivity, which clinically
has been characterized by a lack of control and inhibition of spontanecus motor
behavior, may have an autonomic correlate of low vagal tone. It was found that
the administraticn of methyiphenidate improved the performance of hyperactive
children on attention demanding tasks, and shifted the pattern of heart rate
rasponse toward greater parasympathetic mediation. These findings were taken
to suggest that the hyperactive child is deficient in levels of parasympathetic
activity and is dominated by activity of the sympathetic system (Porges, 1976).

2. Quantification
2.1. Spectral analysis

If heart rate variability were only influenced by respiration, heart rate
variability would be equivalent to RSA and would covary with vagal tone.
However, heart rate variability is influenced by other factors, including
changes in blood pressure and in the thermoregulatory system. Therefore, it is
necessary to partition from the total heart rate wvariabijlity, a measure of RSA
by quantifying the component mediated by breathing. Spectral analysis is the
proper tool to study fluctuations in heart period, It can be used to study
thythmic activity of heart rate by decomposing the time series into constituent
sinusoidal functions of different frequencies. The frequencies of interest in the
study of RSA are the frequencies associated with normal breathing. In adults
this is about 10 - 25 breaths per minute; in children approximately 15 - 30. To
calculate the component of heart rate variability associated with breathing, the
spectral densities for each frequency within this band are summed. The
accumulation of spectral density estimates of heart rate activity associated with
the respiratory frequency band provides an estimate of RSA (Porges, 1986).

2.2. Preliminary steps

The first and most important step is to determine the condition under which the
psychophysiological measures will be taken. It is common practice to measure
heart rate wvariability from a treatment condition and pre/post treatment
conditions. The treatment condition may consist of attention demanding tasks,
specificaily tailored to detect the attentional deficits in hyperactive children
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(e.g. Porges & Coles, 1982; van der Molen, Somsen & Orlebeke, 1985). The
next step is the recording of the EKG and the identification of a relevant
phenomenon in the EKG. For our purposes, the QRS complex in the EKG can be
used. R-R intervals can easily be detected with a 1 ms resolution (e.g.
Rompelman, 1985).

Having converted the EKG into an event series, the next gquestion that
arises is how to process the cardiac event series, if possible, in relation to
other signals (e.g. respiration). The beating of the heart may be
operationalized as a point event detected by the occurrence of the R-wave,
Many spectral methods require preprocessing, because they need a regular
signal instead of signal estimates of R-wave occurrence. There are a variety of
methods that may be used to generate an estimate of a point process at equal
time intervals (e.g. de Boer, Karemaker & Strackee, 1984). Weighting is a
suitable method that allows time-indexed comparisons with other physiological
systems (e.g. respiration, blood pressure). Heart period is converted to time-
based data by estimating heart period for successive time windows. For each
window, the weighted heart period is calculated as the sum of each heart period
occupying the window, multiplied by the proportion of the window that it
occupies. It is necessary to estimate the heart period at sequential intervals of
approximately one-half of the duration of the shortest heart period (Porges,
1986). The next step to spectral analysis is the application of a Fourier
transform to the signal. At this point it is important to note that spectral
analysis provides reliable and interpretable estimates of the amplitude of a
periodic oscillation, only if the data are at least weakly stationary.

Porges (1988) suggests that the time series of heart period activity is
usually not stationary. In most situations RSA is superimposed on a complex
baseline trend. This baseline trend tends to exhibit large shifts over time
relative to the amplitude of RSA. This shift in mean and variance of the HR
often violates the stationarity assumption. Porges argues that traditional
methods of detrending and filtering do not effectively remove the variance of
the baseline trend to make the processed heart period pattern stationary. His
solution to this problem is to model the complex baseline trend with a series of
localized polynomials. These short duration polynomials are stepped through the
data set, providing residuals that are free from trends and slow sinusoidal
changes. The residuals are analyzed with spectral analysis and the sum of the
spectral density estimates are compared across the respiratory frequency band.

2.3. Evolutionary spectral analysis

Porges' procedure of preprocessing the heart period signal can be criticized for
at |east three reasons. First, Porges' conception of 'stationarity’ is incongruous
with definitions that can be found in leading time-series texts (e.g. Brillinger,
1975). This is particularly clear when he points to the Traube-Hering-Mayer
wave as one of the main sources of non-stationarity. This wave occurs with a
periodicity of approximately 10 to 15 s per cycle and has been implicated in
blood pressure control. Conceptually, this slower oscillation is not different
from RSA. Secondly, Porges assumes that the time-series of heart period
activity is not stationary; ﬁis procedure, however, does not include a test for
this assumption. Moreover, even after preprocessing there is no way of knowing
whether the residual rhythmic heart period pattern is stationary. Thirdly,
Porges' preprocessing procedure functions as a high-pass filter in which the
cut-off frequency is dependent upon signal characteristics. Thus, all
frequencies slower than the filter's cut-off are lost. Hence, the residual
spectrum does not provide potential relevant information concerning the 0.1 Hz
component in the heart rhythm that has been associated with mental effort {e.g.
Mulder, 1883). Finally, it can be shown that the characteristics of the residual
spectrum are not different from the characteristics of the spectrum computed on
the 'raw’ data, as far as the higher frequencies are concerned.

In the remainder of this paper we will present the outline of a spectral
technique that includes a test for the stationarity of time-series. This technique
is labeled 'evolutionary spectral analysis' (Priestley, 1981). After presenting the
basic notions of evolutionary spectral analysis, we will illustrate this technique
with simulated and experimental data.

Testing stationarity

For the sake of conciseness, we will henceforth concentrate on sequences of
inter-beat intervals (IBls), because a consideration of alterpative measures of
cardiac activity would not seriously affect the present discussion (cf. de Boer
et al., 1884). An application of spectral analysis then, requires that a sequence
of I1Bls is weakly stationary. This means that the sequence has to have both a
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constant mean function:
E(IBI{(E)) = m

for all t, as well as an autocorrelation function that is invariant under
translations along the time axis:

cor(IBI{t), 1BI{t*u)) = cor(IBI(t + t"),
IBI(t + t" *+ u)) = c(u)

for all t, t" and u. We will first consider the requirement of a constant mean
function.

By definition, a non-stationary mean function or trend consists of low-
frequency oscillatory components {cf. Hannan, 1970). In case one would prefer
to define a trend as a polynomial function of sufficiently low order, or
otherwise, this would be immaterial to our present concerns, i.e., the spectrum
of a trend is always concentrated in a neighborhood of zero fregquency. The
reason is, that in a formal sense cosinusoids, orthogonal polynomials, and the
like, constitute interchangeable basic functions for the linear space spanned by
a signal (Ahmed & Rao, 1975). We already indicated, however, that a natural
spectral measure of RSA is given by the power in a frequency band centered at
0.25 Hz. As spectral values at sufficiently separated frequencies are mutually
uncorrelated (Brillinger, 1975}, it therefore can be expected that spectral RSA
measures (centered at 0.25 Hz) will not be affected by the eventual presence
of trends (centered at 0 Hz). Hence, it can be expected that there is no need
to detrend an IB| sequence (e.g., by means of some form of high-pass filtering
procedure) in order to obtain an unbiased spectral measure of RSA, Only if one
is also interested in the low frequency part of the spectrum, the removal of a
non-stationary mean function is desired if apparent trends can be separated
from other fluctuations to be studied.

All this can easily be demonstrated by means of a simple simulation
experiment. An |Bl sequence (total length 1024 intervals) with non-stationary
mean function (exponentially damped 0.005 Hz sinusocid) and substantial low-
frequency components has been generated, the initial part of which is shown in
Figure ia. The estimated spectrum of this sequence is shown in Figure 1b,
revealing the presence of various peaks, e.g. in the neighborhood of 0, 0.1,
and 0.25 Hz. Next, following Porges’ procedure, the low frequency components
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Figure 1. Initial part of simulated IBl sequence (ia), estimated interval
spectrum of the sequence (1b), initial part of polynomial trend
removed by means of high-pass filtering (1¢) and estimated interval
spectrum of filtered sequence.

of the original IBl sequence are removed by means of high-pass filtering (a
third-order polynomial is fitted to each consecutive epoch of 32 intervals,
yielding a filter with cut-off frequency at 0.0825 Hz ). Figure lc shows part of
the trend which has thus been removed. Finally, Figure 1d depicts the
estimated spectrum of the filtered IB! sequence: clearly, the spectral values at
frequencies above 0.1 Hz. are equal te those of the original series shown in
Figure 1b, the latter could have been used directly in order to compute a
spectral RSA measure. The situation is entirely different if one turns to the
case in which the autocorrelation function is non-stationary. The spectrum will
then also be time-varying as it corresponds with the Fourier transform of the
autocorrelation function, and one should proceed by forming spectral estimates
based on segments of the data, rather than all the data, for which the
concerning assumption of stationarity does not appear to be too seriously
violated (Brillinger, 1975, p. 176).
Let the non-stationary spectrum P(f,t} be represented by:

P(f,t) = JA(f,)|? P(f)

where A(f,t) is a time- and frequency-dependent function that modulates the
spectral representation of an IB| sequence. If A(f,t) is slowly varying with
time - i.e., for each fixed f, A(f,t) {considered as a function of t) has a
Fourier transform whose absolute maximum occurs at zero-frequency - then
P(f,t) is called an evolutionary spectium. Priestley and Subba Rao {1969)
present a test for evolutionary spectra which is based on a double window
technique. First, a Bartlett window covering a relatively small time interval is
used in order to compute local Fourier transforms of the 1Bl sequence at each
time point. This yields a time-dependent sequence of transforms |BI(f,t), where
f belongs to a given set of F frenguencies. Second, a Daniell window covering a
refatively large time interval is applied to the IBI(f,t) sequence in order to
compute estimates of P(f,t) at a set of T well-separated time points.
Simultaneous resolution in the time and irequerncy domain is limited because the
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of T and F has an upper bound. In this way, a two-way array of
E;ZS‘E&! estimates at different times (first facto_r) and fnjequem:les {second
factor) is obtained. Using a logarithmic transformation, the test then amounts to
a two-factor analysis of variance in which the residual variance is a known
function of the bandwidth of both windows. If only the main effects of time and
frequencies are significant, i.e., log P(f,t) = 2log|A(t)] * log P(f), then P(f,t)
is called uniformly modulated because A{f,t) is now constant across frequencies:

P(f,t) = |A(D)|?* P(f)

n IB! sequence with uniformly modulated spectrum can be conceived of as the
Qutput ofqa weakly time-dependent filter A(t), the input of which is 3
stationary sequence with spectrum P(f). o

As Priestley and Subba Rao already lllustrjated the validity of the test by
means of a simulation experiment, we will confine ourselves to a presentation of
some typical outcomes with real data. [Bl sequences comprising 450 intervals
were obtained with 8 subjects while they were resting, carrying out a reaction-
time task, or doing mental arithmetic. An application of the test to each of the
24 1Bl sequences indicates that only four sequences have a significantly t{ime-
varying spectrum. Each of these non-stationary sequences has been obtained
with a different subject. Two sequences have been ‘obtamed whgle a subject
was doing mental arithmetic, one sequence while a subject was resting, and one
while a subject carried out a reaction-time task. All significant outcomes only
pertain to the main effect between times, hence the concerning spectra are
uniformly modulated. . _

It turns out that in this sample significant results appear to be arbitrarily
distributed across subjects and experimental conditions. As to this, one should
bear in mind that the test focuses on evolutionary spectra or, equivalently,
non-stationary autocorrelation, and hence is insensitive to differences in mean
level. Moreover, frequencies in the neighborhood of 0 Hz do not enter the test,
consequently the outcomes are not affected by the presence of trends. Given
the unsystematic occurrence of non-stationary autocorrelation, then, a regular
application of the test is called for. As soon as an |Bl sequence with non-
stationary autocorrelation s thus detected, one should proceed by forming
separate spectral estimates based on stationary segments of the data. These
segments can be determined by means of a suitable iterative procedure, where
at each step the test is again used in order to ascertain stationarity,

3. Conclusion

This paper presented the outlines of a cardiovascular neurometric approach that
has the potential to be used in the assessment of hyperactivity. A lot of work
has to be done, however. To date a lack of normative data prevents the
inclusion of this technique in current diagnostic procedures. Even more
important, RSA should be measured under carefully controlled experimental
conditions. These conditions should be derived from a psychophysiclogical model
of hyperactivity that relates physiclogical indices and cognitive processing. In a
more general sense, it should be established more firmly that developmental
trends in vagal control over the heart parallel the trends in behavior.

Spectral analysis is a basic tool in cardiovascular neurometrics of, e.g.,
hyperactivity. That is, the use of spectral techniques in this context can be
very profitable if the necessary precautions have been made in order to
ascertain second-order stationarity. As to this, the presence of non-stationary
trends can almost always be handled satisfactorily by means of filtering
techniques. On the other hand, the usual filtering techniques do not correct
for non-staticnarity of the entire spectrum. Therefore one needs a suitable
test in order to 1) detect non-stationarity of spectral values in, e.g., the RSA
frequency band and 2) to invoke suitable corrective measures. We proposed one
such test and illustrated its use with an application to real data. A more
definite evaluation of the characteristics of this test will be determined from an
extensive application to simulated and real data. The results of this study,
including a consideration of alternative corrective procedures for non-
stationarities in the high-frequency band, will be presented in a forthcoming

publication.
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