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The well-known simplex model is extended to a model that may be used 
for the genetic and environmental analysis of  covariance structures. This 
"double" simplex structure can be specified as a LISREL model. It is 
shown that data which give rise to a simplex correlation structure, such 
as repeated-measures data, do not fit a factor-analysis model. The pa- 
rameter estimation of the simplex model is illustrated with computer- 
simulated twin data. 
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INTRODUCTION 

We define a repeated-measures study as a study in which the same vari- 
able or set of variables is measured repeatedly over time on the same 
subjects. The measurement occasions may be trials, such as in a learning 
experiment, or time periods, such as in a longitudinal study or in a psy- 
chophysiological experiment. The covariance or correlation matrix of 
such data will form a simplex (Guttman, 1954), that is, correlations will 
be maximal nearest the diagonal (i.e., among adjoining occasions) and 
fall away systematically as the distance between the variables along the 
time dimension increases. Stated otherwise, correlations correspond to 
distances between scale points. 

A simplex structure can be generated by a Markov stochastic process 
(J6reskog, 1970), that is, a first-order nonstationary autoregressive pro- 
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cess. The Markov property of the model is that the partial correlation p,-~.j- 
= 0, whenever i < j < k. Guttman (1954) showed that the inverse of a 
perfect simplex correlation matrix, that is, a simplex with negligible mea- 
surement error, is of a very simple form: all elements are zero except for 
those in the three central diagonals. For a positive correlation matrix the 
main diagonal elements of its inverse are all positive; the elements in the 
two diagonals surrounding the main diagonal are negative and smaller 
than the elements on the main diagonal. From this it follows that, for 
prediction purposes, any intermediate variable can be predicted from two 
variables, i.e., the ones immediately before and after. To predict the first 
and last variables only the second and the next to the last variable, re- 
spectively, get nonzero regression weights. In the case of a quasi-simplex, 
which allows for substantial measurement errors, the multiple regression 
weights show the same general pattern. The highest weights usually go 
to the two neighbors of an intermediate variable. These two weights are 
always positive; all other weights are closer to zero and not restricted to 
be positive. According to Wold's decomposition theorem (cf. Hannah, 
1977), this bidirectional prediction scheme is formally equivalent with a 
unidirectional prediction involving only the preceding variable (whence 
it is called a causal prediction). 

Data that give rise to a simplex correlation structure will not usually 
fit a factor-analysis model with one common factor (J6reskog, 1970). Fur- 
thermore, as pointed out by Cronbach (1967), factor analysis of any cor- 
relation matrix conforming to a simplex will almost always result in at 
least three or four factors whose loadings will increase and decrease with 
time according to a pattern expected from the mathematical properties 
of a simplex. Cronbach argued that there is nothing determinate in the 
points at which these factors peak or cross over, since these can be mark- 
edly altered by changing either the method of factor analysis or the time 
points included in the analysis. A more basic point was brought forward 
by Wohlwill (1973), namely, that the factor-analysis model is fundamen- 
tally unsuited to data conforming to a simplex, because of the determi- 
nation of the correlations by the single dimension of proximity. In fact, 
Guttman (1954) already showed that for an infinite universe, a nonsingular 
simplex has an infinite number of common factors (p. 313). 

For a repeated-measures design this implies that by simply increasing 
the number of time points in the analysis, a confirmatory factor analysis 
will result in an increasing number of factors before the model fits the 
data. Therefore, instead of a model based on factor analysis, we need an 
alternative model which recognizes the time-dependent structure of the 
data. 
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Fig. 1. (A) Quasi-simplex model,  where y ' s  are the observed variables, "q's are the latent 
variables, e 's are measurement  errors in y, ~ 's  are regression coefficients of  ~q on ~q, and 
~'s are residuals. (B) Double simplex model, where y is the observed time series, G and E 
are the underlying genetic and environmental series, ~3's are regression coefficients, and ~'s 
are residuals. 
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THE "SINGLE" SIMPLEX 

Gut tman  formulated the idea of a simplex both with and without  
reference  to a hypothet ical  underlying variable.  We formulate  here a 
model  for  a t ime series yi with reference to an underlying t ime series ~li. 
I f  we consider  p variables y~, y2,  �9 �9 �9 , Yp,  then a quas i -Markov simplex 
with p underlying latent variables "ql, "q2, �9 �9 �9 , "qp, can be represented  
in te rms of path analysis as is shown in Fig. 1A. When  the units of  mea- 
surement  in the latent variables are chosen to be same as in the observed  
variables,  the equations defining the model  are then 

Yi = "qi + ~i, i = 1, 2 . . . . .  p ,  

~i  --~" ~i~]i--1 ~- ~i, i = 2, 3 . . . .  , p ,  

where  the r are errors of  measurement  in y and the ~'s are r andom 
dis turbance terms.  

THE "DOUBLE" SIMPLEX 

Within a behavioral  genetics context  we usually work  with more  than 
one latent  construct ,  i.e., we usually want  to analyze phenotypic  var iance 
and covar iance  into at least genetic and environmental  factors.  We there- 
fore need to extend the simplex model  described above  to a model  in 
which more  than a single underlying time ~eries is specified. Such a model  
may  be obtained as follows: consider  p variables y~, y2 . . . . .  yp (Fig. 
1B), with latent variables G~, G 2  . . . . .  G p  and E l ,  E 2  . . . .  , Ep.  The 
units of  measu remen t  in the latent variables are again chosen to be the 
same as in the observed  variables.  In this case,  the equations defining the 
model  become  

yi  = Gi  + E i ,  

Gi = ~3(g)iGi-1 +" ~(g)i, 

E i  = p (e ) iE i -1  + g(e)e, 

i = 1 , 2  . . . . .  p ,  

i = 2 , 3  . . . . .  p ,  

i = 2 , 3  . . . . .  p ,  

where  Gi and Ei  and ~(g)i and ~(e)i, i = 1, 2 . . . . .  p ,  are mutually 
uncorre la ted  and where  ~(g)i+l is uncorrelated with G;, and ~(e)i+l is 
uncorrela ted with Ei, i = 2, 3, . . . , p - 1. 

The parameters  of  the model  are 

�9 (g)l = var (Gl ) ,  

�9 (e)l = var(E1), 

~(g) i  = var[~(g)i], 

�9 (e)i = var[~(e)i], 

[3(g)2, [3(g)3 . . . . .  f3(g)p, and 

i = 2 , 3  . . . . .  p ,  

i = 2 , 3  . . . . .  p ,  

p(e)2, p(e)3 . . . . .  6(e)p. 
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I f p  = 3 the covariance matrix ofy~ is of  the form 

var(G1) + var(E1) 

[t3(g)2var(G1) 
+ [3(e)zvar(E0] 

var(Gz) + var(Ez) 

[[3(g)2 13(g)3var(Gl) [[3(g)3var(Gz) var(G3) + var(E3) 
+ [3(e)2 t3(e)3var(E1)] + [3(e)3var(E2)] 

where 

var(Gi) = [32(g)i var (G;_l )  + q~(g);, i = 2, 3 . . . .  , p, 

var(Ei) = f3Z(e)i var (E/_l )  + q~(e),., i = 2, 3 . . . .  , p. 

With this model no measurement  errors are specified. Any measurement  
errors  in y are included in the separate environmental  factors. The iden- 
tification of  this model,  however ,  requires data from genetically related 
individuals. We illustrate the model and the parameter  estimation with 
computer-simulated twin data, but these data can be replaced by or ex- 
tended to other  family groupings as well. 

DATA SIMULATION 

Time series were generated for 100 monozygot ic  (MZ) and 100 di- 
zygotic (DZ) twin pairs using the simple genetic model y,- = Gi + Ei, 
i = 1, 2, . . . , 10, under  the assumptions that gene action is additive, 
mating is random, and there is no shared environmental  influence. For  
both G~ and Ei a first-order autoregressive model was specified: 

Gi = ~(g)iGi-1 + ~(g)i, i = 2, 3 . . . . .  10, 

Ei = ~(e)iEi-1 + ~(e)i, i = 2, 3 . . . . .  10. 

With respect  to G and E at each time point, 

cor levi ,  Ezi] = O, 

cor [Gu,  Gz,-] = 1 for MZ twins, and 

cor [G~i, Gzi] = 0.5 for DZ twins, 

where  the first subscript identifies persons within twin pairs. 
Using the F T G E N  subroutine from the IMSL Fortran Library 

(IMSL, Inc.,  1979), four MZ and DZ data sets were generated: 

(I) [3(g)e = 0 and fS(e)i = 0; 

(II) [3(g)~ = 0.75 and [3(e)i = 0; 
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Table I. Simplex Correlation Matrix (Data IV) 

1 
0.693 1 
0.438 0.736 1 
0.345 0 .605  0.763 1 
0.247 0 .443  0.567 0.733 1 
0.179 0 .302  0.413 0.527 0.745 
0.153 0 .217  0.257 0.351 0.532 
0.171 0 . 232  0 .249  0 ,293  0.406 
0.130 0 .163  0 .210  0 .250  0.345 
0.127 0 .175  0 .174  0 .186  0.247 

1 
0.765 1 
0.561 0,769 1 
0.449 0.541 0.737 1 
0.291 0.413 0 .579  0.743 

(III) [3(g)i = 0 and 13(e)i = 0.75; 

(IV) 13(g)i = 0.75 and [3(e)~ = 0.75. 

All Gi and Ei were standardized with mean 0 and variance 100 across all 
time points, whence the proport ion of genetic variance at each time point 
is always fixed at 0.5. If  [3(g)e # 0 or f3(e)i # O, then the covariance function 
of  Gi or Ei is a decreasing function of the distance between time points,  
whence  the correlation matrix of  the observed time series ye conforms to 
a simplex structure. For  the last data set (data IV) the simplex structure 
of the resulting correlation matrix is shown in Table I. 

DATA ANALYSIS 

As a first step between-pair  and within-pair mean products  matrices 
were computed for MZ and DZ twins for each of the four data sets. Each 
10 x 10 matrix has 55 unique statistics, providing a total of 220 df. All 
data sets were analyzed with both confirmatory factor-analysis models 
(Martin and Eaves ,  1977; Boomsma and Molenaar,  1986) and simplex 
models.  For  the factor-analysis model the expected covariance structures 
for  the MZ and DZ between and within matrices may be writ ten as follows: 

~MZB = 2(AA' + D 2) + HIt '  + E 2, 

~ M z w  = HH'  + E 2, 

~DZB = 1.5(AA' + D 2) + HH'  + E 2, 

~ r ) z w  = 0.5(AA' + D 2) + HH'  + E 2, 

where A represents the loadings of the variables on the additive genetic 
factors,  and H the loadings on the environmental  factors. D and E rep- 
resent  diagonal matrices containing loadings of  genetic and environmental  



Genetic Analysis of Repeated Measures, I 117 

influences specific to each variable. The computational procedures for 
this model using the LISREL computer program have been described 
elsewhere (Boomsma and Molenaar, 1986). 

For the simplex models the expected covariance structures can be 
written as 

EMZB = 2(Bg G Bg') + Be E Be', 

EMZW = B~ E Be', 

~I~ZB = 1.5(Bg G Bg') + Be E B~', 

EDZW = 0�9 G Bg') + Be E Be', 

where G and E are (p x p) diagonal matrices containing the unique genetic 
and environmental variances at each time point and where Bg and B~ (p 
x p) are coefficient matrices with the same form. For instance, 

,i1 l [3(g)2 1 
Bg-= [~(g)2~(g)3 ~(g)3 1 �9 

�9 1 

k[3(g)2-.. [3(g)p 13(g)~ I 

Notice that Bg can be written as 

where Bg* is defined as 

Bg :r 

Bg = (I -- Bg*) - l ,  

-0 0 0 0 0 O" 
3(g)2 0 0 0 0 0 
0 8(g)3 0 0 0 0 
0 0 0 0 0 

0 0 0 0 6(g)p 0 

Likewise, Be may be written as Be = (I - B e * ) -  1. The latter expressions, 
i.e., Bg* and Be*,  will be used in order to arrive at a LISREL model 
(J6reskog and S6rbom, 1981) for the proposed analysis�9 

In LISREL the covariance matrix of y equals 

~ y  = Ay(I - B)-I~P (I - B ' ) - IAy '. 

If the units of measurement in the latent variables are chosen to be the 
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same as in the observed variables, the Ay matrix can be used for the 
genetic and environmental weights from the model specified above. For 
p = 3 the accommodation of the expected covariance structures for MZ 
twins can be obtained by 

MZB, 

[ ~  ~22 0~2 1 0 i ]  A y =  0 1 ; 
0 0 0 

MZW, 

[i ~ 1 7 6 1 7 6  Ay = 0 0 0 1 . 
0 0 0 0 

For DZ twins the Ay matrices become 

DZB, DZW, [70 o10i] Ay = ~ 0 0 1 ; Ay = ~ 0 0 1 . 
o  5oo o v -3oo 

Note that the weighting of (Bg G Bg') in the expected covariance structures 
is accommodated by the square roots of the genetic weights in Ay, since 
the Ay matrix pre- and postmultiples [(I - B) -1 ~ ( I  - B') -1] in the 
construction of ~ y .  

B (6 x 6) is composed of Bg* and Be* : 

"0 0 
13(g); o 
0 ~(g)3 

B =  
0 0 
0 0 
0 0 

0 0 
0 0 
0 0 
0 0 
0 [3@)2 
0 0 

0 0- 
0 0 
0 0 
0 0 ' 
0 0 
[3(e)3 0 

and ~ (6 x 6) is a diagonal matrix containing the unique genetic and 
environmental variances, i.e., that part of the variances that  is not ex- 
plained by Gi- 1 or E i -  1. 

From these specifications it follows that ~ y  = 

O'12 0"22 

0"13 0 " 2 3  0"33 
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where 

(yla = ~ ( g ) l  + ~ ( e ) l ,  

0.12 = ~3(g)z~(g) j  + 13(e)z~(e)l, 

O'22  = ~3~(g)zXIt(g)l + x[t(g)2 + [32(e)zXIS(e)l + xI-r(e)2, 

cr13 = f3(g)z f3(g)3~(g) l  + B(e)2[3(e)3~(e)l, 

0-23 = f3(g)3[f32(g)z~(g) l  + ~(g)2] + 13(e)3[[32(e)2qf(e)l + ~(e)2], 

0-33 = ~3~(g)3[f3Z(g)2q~(g)l + ~(g)a] + qd(g)3 

+ ~32(e)3[[32(e)z~(e)l + ~(e)2] + ~(e)3. 

The four equations ~ y  = Ay (I - B) -1 ~ (I - B') -1 Ay' can be fit 
simultaneously with L ISREL using a four-group design with parameters 
to be estimated invariant across groups. In addition to estimates of all t3's 
and ~ ' s ,  the standardized L ISREL solution also gives the matrices of 
genetic and environmental correlations between time points. 

R E S U L T S  

Table II shows the results of fitting a factor-analysis model with one 
common genetic and one common environmental factor and a simplex 
model as outlined in the preceding section to all four data sets. 

For  the first data set [where 13(g); = 13(e),- = 0] the • for both the 
factor-analysis model and the simplex model indicate a good fit. Both 
models correctly recover that there is no genetic or environmental co- 
variance among time points. In the factor-analysis model this was indi- 
cated by the nonsignificant loadings on the common factors and in the 
simplex model by the nonsignificant regression weights. 

Table II. Model Fitting 

Factor-analysis  model  Simplex model  
(df = 180) (df = 182) 

X 2 P X 2 P 

Data  I 170.6 0.68 182.4 0.48 
Data  II 289.2 0.00 179.1 0.55 
Data  III 658.3 0.00 195.3 0.24 
Data  IV 1140.8 0.00 204.2 0,13 
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Table III. Model Fitting (Data IV) 

df X ~ P 

Simplex model 
182 204.23 0.13 

Factor-analysis models 

1G + 1E 180 1140.79 0.00 
2G + 2E 162 478.92 0.00 
3G + 3E 146 298.78 0.00 
4G + 4E 132 169.31 0.02 
5G + 5E 120 130.58 0.24 

For the second [where all [3(g) = 0.75] and the third [where all [3(e) 
= 0.75] data sets, the factor-analysis models no longer fit the data, while 
the simplex models correctly identify the underlying structures of the 
genetic and environmental series. As indicated by the degrees of freedom 
in Table II, no parameters were fixed at zero in advance. 

We now consider the last data set [where [3(g)i = [3(e)i = 0.75] in 
some more detail. The factor-analysis model with one common genetic 
and one common environmental factor gave a very large X 2 for this data 
set. Next, we systematically increased the number of common factors as 
is shown in Table III. For these models Cholesky factors were used, that 
is, a lower triangular matrix of factor loadings. This pattern conforms to 
a specific rotation in an otherwise unrestricted vector space (cf. Mulaik, 
1972). For a time series consisting of 10 time points a total of five common 
genetic and five common environmental factors has to be used before the 
model fits the data. Moreover, the significant loadings on these common 
factors did not allow a meaningful interpretation of the data. In contrast, 
the simplex model gives not only a satisfactory fit, but also an adequate 
account of the underlying genetic and environmental covariance func- 
tions. LISREL parameter estimates for the simplex model are presented 
in Table IV. Also in Table IV are the estimates for the total amounts of 
genetic and environmental variance at each time point. From these var- 
iances we can summarize the contributions of the unique and shared ge- 
netic and environmental variances at each time point to the total variances 
as is done in the lower part of Table IV. As can be seen, roughly half of 
the genetic and environmental variances at each time point are unique in 
the sense that they are not explained by the preceding G or E, respectively. 

Finally, Table V shows the matrices of genetic and environmental 
correlations among time points as they were obtained from the standard- 
ized LISREL solution. It is clear that each matrix conforms to a perfect 
simplex structure. 
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Table IV. Simplex Analysis (Data IV) a 
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q~(g) t3(g) var(G) re(e) 13(e) var(E) var(T) 

1 98.0 - -  98.0 87.1 - -  87.1 185.1 
(16.3) (11.3) 

2 44.5 0.65 85.9 49.7 0.69 9t.2 177.1 
(8.3) (0.08) (6.3) (0.07) 

3 46,1 0.82 103.9 43.5 0.73 92.1 196.0 
(8.0) (0.09) (5.6) (0.06) 

4 46.7 0.78 109.9 37.4 0.77 92.0 201.9 
(7.4) (0.08) (4.9) (0.06) 

5 44.8 0.82 118.7 44.5 0.64 82.2 200.9 
(8.1) (0.08) (5.7) (0.06) 

6 52.8 0.81 130.7 42.9 0.77 91.6 222.3 
(8.4) (0.07) (5.6) (0.07) 

7 41.9 0.66 98.8 41.9 0.87 111.2 210.0 
(7.7) (0.07) (5.4) (0.06) 

8 41.6 0.77 117.7 36.8 0.71 92.9 210.6 
(6.9) (0.08) (4,8) (0.05) 

9 51,6 0.71 110.9 33.0 0.76 86.7 197.6 
(7.4) (0.08) (4.9) (0.06) 

i0 45.1 0.65 92.0 37.6 0.85 100.2 192.2 
(7.6) (0.08) (4.9) (0.06) 

Proportions of variance 

Unique Total Unique Total 
genetic genetic environmental environmental 

1 - -  0.53 - -  0.47 
2 0.25 0.49 0.28 0.51 
3 0.24 0.53 0.22 0.47 
4 0.23 0.54 0.19 0.46 
5 0.22 0.59 0.22 0.41 
6 0.24 0.59 0,19 0.41 
7 0.20 0.47 0.20 0.53 
8 0.20 0.56 0.18 0.44 
9 0.26 0.56 0.17 0.44 

10 0.24 0.48 0.20 0.52 

a ~(g), 13(g), gt(e), and 13(e) are LISREL parameter estimates (standard errors are given 
in parentheses), var(Gi) = f32(g)ivar(Gi_l) + ~(g)i, var(Ei) = 132(e)ivar(ei_l) + gr(e)i, 
and var(T) = var(G) + var(E). 

D I S C U S S I O N  

T h e  a b o v e  r e s u l t s  c l ea r ly  i n d i c a t e  t h e  f a i l u re  o f  f a c t o r - a n a l y s i s  m o d e l s  
in  a n a l y z i n g  d a t a  t h a t  c o n f o r m  to  a s i m p l e x  s t r u c t u r e ,  s u c h  as  r e p e a t e d -  
m e a s u r e s  da ta .  M o r e  g e n e r a l l y ,  m u l t i v a r i a t e  m e t h o d s  tha t  h a v e  b e e n  de-  
v e l o p e d  for  the  a n a l y s i s  o f  c o v a r i a n c e  o f  d i f f e r en t  t y p e s  o f  v a r i a b l e s  
s h o u l d  n o t  be  g e n e r a l i z e d  d i r e c t l y  to l o n g i t u d i n a l  da ta .  I n  fac t ,  a s i m p l e x  
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Table V. Genetic and Environmental Correlations 

Genetic Correlations (data IV) 

1 1 
2 0.70 1 
3 0.52 0.75 1 
4 0.39 0.57 0.76 1 
5 0.31 0.45 0.60 0.79 1 
6 0.24 0.34 0.46 0.61 0.77 1 
7 0.18 0.26 0.35 0.46 0.58 0.76 1 
8 0.14 0.20 0.27 0.35 0.45 0.59 0.76 1 
9 0.10 0.14 0.19 0.25 0.31 0.40 0.54 0.70 1 

10 0.07 0.10 0.13 0.17 0.22 0.29 0.37 0.49 0.70 1 

Environmental correlations 

1 1 
2 0.67 1 
3 0.49 0.73 1 
4 0.38 0.56 0.77 1 
5 0.25 0.38 0.52 0.68 
6 0.18 0.27 0.38 0.49 
7 0.15 0.22 0.30 0.39 
8 0.11 0.17 0.23 0.30 
9 0.09 0.13 0.18 0.24 

10 0.07 0.10 0.14 0.19 

1 
0.73 1 
0.57 0.79 1 
0.45 0.61 0.78 1 
0.35 0.48 0.61 0.79 1 
0.28 0.38 0.48 0.62 0.79 

structure may even apply to variables that are ordered not in time, but 
along a dimension of complexity as discussed by, for instance, Guttman 
(1954) and J6reskog (1970). 

We showed that the simplex model can be extended to the analysis 
of more than a single latent construct, so that it becomes possible to 
analyze an observed time series into underlying genetic and environ- 
mental series. In contrast with J6reskog's (1970) original model, no spe- 
cific constraints are required to make the model identified, since this 
generalized model includes separate simplex structures for Gi and El, and 
measurement errors are included in E. 

Although in the illustrative models above the proportions of genetic 
and environmental variance were equal across time and all genetic and 
environmental correlations between time points were the same, this is 
not a necessary restriction. In fact, no such constraints were used in the 
LISREL analysis. Thus, the simplex model allows for both differential 
heritabilities and environmentalities at different time points and different 
genetic and environmental correlations between time points. Also, the 
assumption of no shared family environment is not a necessary restriction. 
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An additional structure may be specified to test the influence of common- 
environmental components. 

The proposed simplex analysis can also be used for the analysis of 
multivariate time series. In this case, each single time series may conform 
to a simplex structure, while the relationship between different types of 
variables can be analyzed with a confirmatory factor-analysis model. All 
these analyses can be carried out with LISREL. There is a limit, however, 
to the number of variables that can be used in a LISREL analysis. We 
therefore developed an alternative approach to the genetic analysis of 
time series which will be presented in a subsequent paper. 

REFERENCES 

Boomsma, D. I., and Molenaar, P. C. M. (1986). Using LISREL to analyze genetic and 
environmental covafiance structure. Behav. Genet. 16:237-250. 

Cronbach, L. J. (1967). Year-to-year correlations of mental tests: A review of the Hofstaetter 
analysis. Child Dev. 38:283-289. 

Guttman, L. (1954). A new approach to factor analysis: the rode• In LazarsfeId, P. F. (ed.), 
Mathematical Thinking in the Social Sciences, Free Press, Glencoe, Ill., pp. 258-349. 

Hannan, E. J. (1977). Multiple Time Series, Wiley, New York. 
IMSL, Inc. (1979). IMSL Library Reference Manual Edition 7, IMSL Inc., Houston, Te• 
J6reskog, K. G. (1970). Estimation and testing of simplex models. Br. J. Math. Stat. Psychol. 

23:121-145. 
J6reskog, K. G., and S6rbom, D. (1981). LISREL: Analysis of Linear Structural Relation- 

ships by Maximum Likelihood and Least Squares Methods, National Educational Re- 
sources, Chicago. 

Martin, N. G., and Eaves, L. J. (1977). The genetical analysis of covariance structure. 
Heredity 38:79-95. 

Mulaik, S. A. (1972). The Foundations of Factor Analysis, McGraw-Hill, New York. 
Wohlwill, J. F. (1973). The Study of Behavioral Development, Academic Press, New York. 

Edited by C. R. Cloninger 


